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Mods: Browser-Based Rapid 
Prototyping Workflow Composition

1 Modules from left to right:  
1. Input design file (here in the 
form of a .PNG image file repre-
senting traces and pads).  
2. Select preset parameters for 
the milling job. This can be done 
with a presets module such 
as the one here called set PCB 
defaults that specifies a 1/64˝ 
end mill and 4 milling contours 
at 0.004˝ depth.  
3. Generate the toolpath using 
the parameters specified.  
4. Set up the material and set the 
origin using the machine.  
5. (cropped out) Run the toolpath 
on the machine by spooling 
through a WebSocket.
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ABSTRACT
Software is shared through files and libraries, but workflows are not. To be able to share 

workflows for rapid automation, we developed an extensible environment for running 

CAD, CAM, and machine control. We present Mods, a browser-based environment for 

data handling, toolpath planning, and machine execution. Users compose modules (either 

existing modules or new modules they contribute) into workflows for machine automation 

sequences in a dataflow environment. The modules themselves run client side, imple-

menting the functions used by the modules (such as toolpath planning algorithms or image 

analysis) in JavaScript, which runs in the browser. The physical machines are connected to 

a JavaScript server, which listens to commands from the client over a WebSocket connec-

tion. Together, these software modules make up an extensible and simple-to-use alternative 

to traditional CAD/CAM machine control environments.
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INTRODUCTION
The workflows for running digital fabrication machines 

can be tedious; the user needs to interface among CAD 

softwares and their representations, the machine’s CAM 

software and its possible file formats, and load these onto 

the machine that is going to run the toolpath, all while 

making sure the material stock accommodates the digital 

design. Yet digital fabrication is a highly active current field 

of research (Malone and Lipson 2007; Coleman and Cole 

2017; Lewis 2006; Zoran and Paradiso 2013; Rivers, Moyer, 

and Durand 2012; Gramazio and Kohler 2014; Mellis et al. 

2013). Machine users constantly develop new workflows 

depending on what machine they are using, what file format 

their design is in, what file formats the machines expect, 

and how material-specific operations such as zeroing and 

part placement take place. 

Software is one realm where rapid prototyping is already 

widespread in practice. However, usability lags when 

it comes to the software driving automation equipment 

(including digital fabrication machines). We are saddled 

with buggy print drivers, file name length limitations, or 

confusing limitations (Soler et al. 2017; Louis-Rosenberg 

2016; Coleman et al. 2016). Adding functionality such as 

sensor feedback complicates matters yet further. Once 

workflows are finally perfected it is hard to share them 

with other machine users, except through out-of-band 

documentation: you can share libraries for designs, or 

settings for slicers, or machine instructions for a zeroing 

process, but you cannot share something that includes all 

those parts in one place.

 

To be able to share and reuse the workflows that users 

of CAD/CAM develop, we developed an open-source, 

extensible, event-driven environment for creating machine 

actions called Mods. Mods is a framework in which users 

can author workflows using a dataflow programming 

language. 

BACKGROUND
Dataflow programming research was originally motivated 

in the 1970s by the need for massive parallelism, which 

was considered at odds with von Neumann Architecture’s 

global program counter and global updatable memory 

(Johnston, Hanna, and Millar 2004). Researchers proposed 

dataflow programming as executing commands once all 

operands were available and using only local memory 

(Davis and Keller 1982; Johnston et al. 2004). These 

methods were exceptionally suited for visual programming, 

as programs could be represented by nodes and graphs. 

Visual programming dataflow languages, such as National 

Instruments Labview, were subsequently popularized 

in the 1990s and continue to be used to this day (Bitter, 

Mohiuddin, and Nawrocki 2006). In computer-aided design, 

dataflow programming mimics a designer’s modelling 

workflow. The ability to generalize these workflows into 

parametric designs in CAD makes visual dataflow program-

ming languages such as Rhino3D’s Grasshopper very 

popular (Bachman 2017). We draw inspiration from these 

dataflow languages and design practices in the develop-

ment of Mods. 

Event-driven software architectures with asynchronous 

I/O are now commonly considered best practice for (online) 

applications with both high throughput and scaling require-

ments (Tilkov and Vinoski 2010). Node.js is a JavaScript 

runtime environment using the Chrome V8 engine, which 

can be used for both server-side and client-side scripting 

and facilitates real-time communication (Dahl 2017). The 

2 A Mods program for toolpath generation. This program uses the modules “read png,” “threshold image,” “distance transform,” “offset,” “edge detect,” “orient 
edges,” “vectorize,” “to plotter moves,” and finally connects to the physical machine through the “fabnet” module. More generally, this program reads in an 
image, thresholds it, produces a machine toolpath of that threshold, and sends it to the machine.

COMPUTATIONAL INFIDELITIES
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V8 engine does just-in-time (JIT) compilation of JavaScript 

to native machine code, offering massive speedup in 

comparison to interpreted JavaScript (Google 2017). Mods 

code would be impossibly slow without JIT compilation, 

and interfacing between the client and server sides would 

be very difficult without Node.js. Furthermore, by using 

JavaScript’s typed arrays we avoid converting at every 

access and can take advantage of highly optimized web file 

readers available in libraries such as OpenGL (Group 2017). 

These recent (since 2010) browser and JavaScript technol-

ogies make the development of Mods as a browser-based 

system possible. We also drew inspiration from other 

platforms moving into the browser, such as the creative 

programming language Processing, which was adapted 

into P5.js (McCarthy, Reas, and Fry 2015), or the Scratch 

programming language for children (Resnick et al. 2009). 

The remixing that takes place in these online communities 

can lead to improved computational thinking and learning 

(Dasgupta et al. 2016), and we modelled our remixing possi-

bilities using insights from these studies. 

We are interested in the full workflow from idea 

through manufacturing. We are specifically interested 

in low-volume production and real-time feedback in the 

fabrication process, similar to Willis et al. describe in 

“Interactive Fabrication” (2011). While dataflow program-

ming exists for CAD, the hooks to CAM are limited. G-Code 

generators such as 3D-printer slicers or machine-specific 

postprocessors are well developed for existing machines, 

but don't easily generalize to nonstandard machines. For 

executing machine commands, platforms like GRBL and 

TinyG do a stellar job for G-Code interpretation, but G-Code 

has severe limitations (for example, G-Code does not have 

conditional statements). Finally, there are middleware 

suites such as Willow Garage’s ROS or IBM’s Node Red, 

which create a structure for passing messages between 

services, but do not implement the functionality we want in 

digital fabrication workflows. These limitations are why we 

decided to explore what an accessible system with CAD/

CAM machine control in one place could look like.

USING MODS
Before going into the implementation details of Mods, we 

describe how a user might perform an example fabrica-

tion task using Mods. For example, if a user would like to 

subtractively machine a copper-clad board using a milling 

machine such as a Roland SRM-20 to produce a circuit, this 

would be done in the following steps and as illustrated in 

Figure 1.

• Open the program “SRM-20 PCB” at http://mods.cba.mit.

edu. Part of this program is shown in Figure 1.

• Input design file (image of the board) 

• Specify the machining parameters (depth of cut, number 

of offsets, percentage of offset, climb or conventional, 

etc.) 

• Calculate toolpath (using other modules we will later 

describe in Figure 3) 

• Zero machine (by moving the toolhead close using 

computer commands and then manually zeroing the bit)

• Start the milling job.

For this workflow we assume that the SRM-20 milling 

machine is connected to the user’s computer and that the 

Mods server is already installed and running there. The 

Mods server can be stopped and restarted at any time by 

the user. This is only one example of a Mods workflow—

many others are possible.

Mods: Rapid Protoyping Workflow Composition Peek, Gershenfeld

3 A closer look at the “edge detect,” “orient edges,” “vectorize” modules. Each image can also be opened in a separate window to inspect the toolpath more 
closely.
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MODS SOFTWARE ARCHITECTURE
Mods consists of modules that can be connected together 

in a dataflow graph. Users can use existing modules 

(provided in a repository), write their own modules (using 

a module template), or modify existing modules (directly 

in the browser). The modules can be connected together 

into programs. To run, the main source mods.js sets up a 

container within the browser where programs of modules 

can run. Each module includes initialization, event handling, 

presentation, and application. This means that the func-

tionality of the module and how it will be rendered are both 

included in each single module. A module can be edited, 

reloaded, and saved from within Mods. Programs (collec-

tions of modules and their connections) can be saved as 

well. This all happens client side—the module is all its parts 

and does not use any online resources. Mods.js provides 

the container, while modules each have a closure. When 

the modules are loaded by mods.js, they spawn HTML5 web 

workers to complete their tasks. This means that although 

Mods runs in a browser, it does not need to be connected to 

a server for running the computational modules—they are 

standalone. 

function worker() {
self.addEventListener('message',function(evt) { 

var h = evt.data.height
var w = evt.data.width
var t = evt.data.threshold
var buf = new Uint8ClampedArray(evt.data.buffer) 
var r,g,b,a,i 
for (var row = 0; row < h; ++row) {

for (var col = 0; col < w; ++col) { 
r = buf[(h-1-row)*w*4+col*4+0]
g = buf[(h-1-row)*w*4+col*4+1]
b = buf[(h-1-row)*w*4+col*4+2]
a = buf[(h-1-row)*w*4+col*4+3] 
i = (r+g+b)/(3*255) 
if (a == 0)

val = 255 
else if (i > t) 

var val = 255 
else 

var val = 0 
buf[(h-1-row)*w*4+col*4+0] = val 
buf[(h-1-row)*w*4+col*4+1] = val 
buf[(h-1-row)*w*4+col*4+2] = val 
buf[(h-1-row)*w*4+col*4+3] = 255
} 

}
self.postMessage({buffer:buf.buffer},[buf.buffer])
}) 

}

var server_port = ’1234’
var client_address = ’127.0.0.1’
var server = {}
var WebSocketServer = require(’ws’).Server
wss = new WebSocketServer({port:server_port})
wss.on(’connection’,function(ws) {

if (ws._socket.remoteAddress != client_address) {
console.log("connection rejected from "+ws._socket.

remoteAddress)
wss.close()
return
}

else {
console.log("connection accepted from "+ws._socket.

remoteAddress)
}

ws.on(’message’,function(msg) {
eval(msg) }
}

 }

4 We have developed 
machine-specific Node.js 
servers controlling different 
machines. A generic Node.
js server might evaluate any 
messages passed through a 
WebSocket from a Mods module. 
Mods modules for different 
machines may be more specific 
with what messages need to be 
evaluated (e.g., lpr -P milling-
machine [data]), and handle 
details like hardware flow 
control or ports permissions 
when connecting a machine. 
For example, to interface with 
the Roland MDX-20 milling 
machine, we need to set up a 
serial port with a baud rate of 
9600, RTSCTS flow control, and 
the correct port name. These 
attributes are specified in a 
“serial” module available in the 
repository.

5 The image threshold module 
will spawn this web worker to 
execute thresholding (making a 
color or greyscale image black 
and white).

COMPUTATIONAL INFIDELITIES
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We have developed machine-specific Node.js servers 

controlling different machines, as shown in Figure 4. The 

example program in Figure 3 follows a typical design file 

(here a .png) to toolpath workflow (here in coordinates). 

This is the same workflow used in Figure 1. When a module 

is added or updated, it triggers events on the modules that 

are connected downstream. If we look at the code that 

makes up the modules, we find the module’s inputs, outputs, 

interface code, and functions. For example, the threshold 

module is shown in Figure 5. Each module will start working 

upon receiving the operands, or more specifically once an 

event has been triggered because the inputs have been 

modified. If the inputs are modified again, previous workers 

are terminated.

USER-MADE MODS
Mods has been tested by novices using small-format 

digital fabrication machines such as laser cutters, milling 

machines, and 3D printers (Peek et al. 2017). Users can 

access Mods by going to http://mods.cba.mit.edu or 

running Mods locally. We host a repository of open-source 

modules including video, image, .stl, and sensor input 

modules, modules that directly import from CAD tools like 

Solidworks, machine code output modules, and server code 

for connecting to digital fabrication machines. However, 

this of course does not cover all the applications users 

might be interested in. Therefore, users can augment Mods 

with custom modules. Users have, for example, made their 

own modules for liquid handling machines that are used in 

biological experiments. Those modules expose functionality 

such as pipetting, mixing, or creating buffers.

DISCUSSION
The main reason we developed Mods was to avoid debug-

ging drivers to run digital fabrication machines. We fear 

that trying lots of different ancient versions of the .dxf file 

format to be able to get a toolpath right for a waterjet or 

other digital fabrication machine is very familiar to thou-

sands of architects. While we acknowledge that our system 

is hardly ready to replace all CAM and machine control 

software, we hope to demonstrate that it is possible to 

capture the workflows that are developed each time a user 

figures out how to run a particular machine for a partic-

ular geometry, material, or specification. Especially within 

architecture, where low-volume production is the norm and 

highly precise fabrication of thousands of unique parts is 

required, we hope to increase workflow efficiency.

We chose to implement Mods to run in the browser to be 

able to keep connections to machines working with an 

increasingly post–operating system world. We specifically 

did not implement Mods as a Grasshopper plugin so that 

we could more easily interface with the machines through 

serial/USB/ethercat/etc. connections maintained from the 

Mods server. While Grasshopper is a powerful tool, it is still 

difficult to connect it directly to machine tools.

Performance is of concern when moving to interpreted 

languages. Toolpath planning has historically been a 

computationally intensive task. To measure the perfor-

mance of Mods, we created several benchmarking 

modules. To benchmark processing power we calculate π 

to a specified decimal point, and to benchmark connectivity 

we time a roundtrip to the server. On a typical-performance 

laptop on which we also wrote this paper, we measured 

1033 Mflops and 9.8 ms round trip with the server. This 

is on par with performance of compiled C on the same 

machine, so we conclude that our implementation does not 

suffer from interpreted language slowdown.

CONCLUSION
In summary, Mods is a browser-based event-driven envi-

ronment for data handling, toolpath planning, and machine 

execution. It makes creating workflows for generating 

automation sequences for machines easier by allowing 

users to compose modules into programs in a dataflow 

environment. This allows users take advantage of the 

precision of digital fabrication machines without their 

historical constraints. The modules themselves run client 

side, implementing the functions used by the modules 

(such as toolpath-planning algorithms or image analysis) 

in JavaScript, which runs in the browser. The physical 

machines are connected to a JavaScript server, which 

listens to commands from the client over a WebSocket 

connection. Together, these software modules make up a 

simple-to-use and simple-to-extend alternative to tradi-

tional CAD/CAM machine control environments. We believe 

this is a step towards harnessing the precision of machines 

for the creativity of individuals.
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