
This is page 365

Printer: Opaque this

Chapter 15

Cluster-Weighted Modeling:
Probabilistic Time Series
Prediction, Characterization
and Synthesis

Bernd Schoner
1

Neil Gershenfeld

ABSTRACT Cluster-Weighted Modeling, a mixture density estimator around

local models, is presented as a framework for the analysis, prediction and

characterization of non-linear time series. First architecture, model estima-

tion and characterization formalisms are introduced. The characterization

tools include estimator uncertainty, predictor uncertainty and the corre-

lation dimension of the data set. In the second part of this chapter the

framework is extended to synthesize audio signals and is applied to model

a violin in a data-driven input-output approach.

15.1 Introduction

The list of time series worthwhile to be forecast is about as long as the

�rst unsuccessful attempts to do so. It would be most helpful to know

beforehand when a heart is about to stop beating, what the weather will be

like tomorrow and when the stock market is going to crash. Unfortunately,

these examples share the one property that they have nothing in common

and that they don't �t into any familiar categories of system dynamics

theory. Not only are they non-linear, non-Gaussian and non-stationary,

they are essentially non-everything.

Linear systems theory has yielded a multitude of results that are widely

applied in practically all engineering and scienti�c disciplines. The major-

ity of signal processing, system engineering, control and characterization

techniques rely on linear assumptions and use a theory that has matured

in decades of research and implementations. However, the limitations of

linear theory are clear: non-linear behavior of any kind can not be handled.

The reconstruction (embedding) theorem on the other hand provides

1Author for correspondence.



366 Bernd Schoner and Neil Gershenfeld

the theoretical means to handle highly non-linear behavior of arbitrary

physical systems with hidden dynamics [22]. It shows that the system's

state space can be mapped into a di�eomorphic space, constructed from

any observable of the system, and that we can characterize the data with

respect to dimensionality and dynamic behavior in the reconstructed space.

The reconstruction theorem also detects low dimensional structure in a high

dimensional data space, which lets us work in the space described by the

e�ective degrees of freedom of a system, for example a violin, rather than

its countless mechanical degrees of freedom.

Unfortunately it turns out to be rather diÆcult to use a reconstructed

state space to predict the output of a complex system. While low dimen-

sional systems are tractable (Fig.15.1), models become easily unstable given

a complicated state space or an arbitrary prediction horizon. Driven sys-

tems should be easier to handle than autonomous systems. However, the

model dimensionality of a driven system is signi�cantly bigger, since input

and output observables need to be considered at the same time[4]. The

presence of noise in practically any real world system further complicates

the embedding task. Due to these problems we end up with a fairly small

number of examples where embedding, despite its theoretical promise, has

been applied successfully to predict a signal.

In between linear and highly non-linear systems there is a large class

of systems that are not easily classi�ed as one or the other but combine

characteristics from both worlds. The bow string interaction of a violin, for

example, is strongly non-linear, since it transforms the slow actions of the

player into a fast audio signal. At the same time the e�ect of the violin

body is most eÆciently described by a linear �lter since there is only little

non-linear e�ects in the bridge and body dynamics2 [14]. Hence a violin

combines linear and non-linear processing.

This chapter introduces Cluster-Weighted Modeling (CWM) as a mod-

eling tool that allows one to characterize and predict systems of arbitrary

dynamic character. The framework is based on density estimation around

Gaussian kernels which contain simple local models describing the system

dynamics of a data subspace. In the extreme case where only one kernel is

used the framework collapses to a simple model that is linear in the coef-

�cients. In the opposite extreme it allows one to embed and forecast data

that may be non-Gaussian, discontinuous, high-dimensional and chaotic. In

between CWM covers a multitude of models, each of which is characterized

by a di�erent local model and state representation. We create globally non-

linear models with transparent local structures through the embedding of

past practice and mature techniques in the general non-linear framework.

2The exception from this is the famous Wolf tone, a tone that periodically collapses

despite constant bowing. The phenomenon is particularly strong on the cello and is

caused by a non-linear coupling between of a string and body mode [6].



15. Cluster-Weighted Modeling 367

The limitations of Arti�cial Neural Networks (ANNs) have become ap-

parent almost as quickly as their modeling power: networks take long

to converge, coeÆcients are only meaningful in the context of the entire

model and failure and success of an architecture are unpredictable be-

forehand. More recently a new family of networks has been developed,

which interpret data probabilistically and are often represented in graphical

networks[3, 9, 11]. As a meta-class of models, graphical models are concep-

tually unbounded. They unify existing network architectures, for example

classical ANNs in a single theory [15], provide new insights and extensions

to conventional networks and open up new application domains. Graphical

models are also referred to as independence networks, since the graphi-

cal representation really describes dependence and independence among

random variables. They are called Bayesian belief networks since depen-

dencies between variables are expressed in terms of conditional probabil-

ity functions that have implicit or explicit prior beliefs built into them.

They are furthermore named inuence diagrams since causal dependences

between variables are clearly illustrated. \Inuence" is meant probabilisti-

cally, which contains deterministic causality as a special case. Unfortunately

graphical models lack a systematic search algorithm that maps a given

problem into a network architecture. Instead, before the network parame-

ters can be trained on new data, the architecture needs to be redesigned

node by node from scratch.

Cluster-Weighted Modeling is a special case of a probabilistic model that

gives up some of the generality of graphical models in favor of ease of use,

a minimal number of hyper-parameters and a fast parameter search. It has

been designed as an architecture that is as general as reasonably possi-

ble, but as speci�c to a particular application as necessary. We present a

tool that allows us to do statistical time series analysis from a physicist's

perspective and at the same time allows us to solve complicated engineer-

ing problems, for example the design of a digital musical instruments. As

opposed to ANNs it provides transparent local structures and meaning-

ful parameters, it allows one to identify and analyze data subspaces and

converges quickly.

The �rst part of this chapter provides the basic architecture, estimation

and characterization tools of CWM. The second part is concerned with the

problem of building a data-driven input-output model of a violin. The violin

is a complex driven device that in its socio-cultural, artistic and physical

subtlety is hardly matched by any other human artifact. At the same time

the violin provides a very clear error metric in that the model is just as

good as it sounds. From a non-linear dynamics and statistics viewpoint

the violin is a paradigmatic object, since it shows non-linear and linear,

stochastic and deterministic behavior at the same time.



368 Bernd Schoner and Neil Gershenfeld

15.2 Cluster-Weighted Modeling

15.2.1 Architecture

Cluster-Weighted Modeling (CWM) is an input-output inference frame-

work based on probability density estimation of a joint set of input feature

and output target data. It is similar to mixture-of-experts type architec-

tures [10] and can be interpreted as a exible and transparent technique to

approximate an arbitrary function. Unlike conventional Kernel based tech-

niques, CWM requires only one hyper-parameter to be �xed beforehand,

and provides data parameters such as the length scale (bandwidth) of the

local approximation as an output rather than an input of the algorithm [5].

We start with a set of discrete or real valued input features x which may

be measured features or components in a time lagged embedding space, and

an discrete or real valued output target vector y. Given the joint input-

output set fyn;xngNn=1, the most general model infers the joint density

p(y;x) of the data set, from which conditional quantities such as the ex-

pected y given x, hyjxi, and the expected covariance of y given x, hPyjxi
can be derived.

We expand this joint density in clusters labeled cm, each of which con-

tains an input domain of inuence, a local model, and an output distri-

bution. In a �rst step the joint density is separated into an unconditioned

cluster probability and a conditional probability of a data given a cluster,

which is then further expanded into an input domain of inuence and an

output distribution,

p(y;x) =

MX
m=1

p(y;x; cm) (15.1)

=

MX
m=1

p(y;xjcm) p(cm)

=

MX
m=1

p(yjx; cm) p(xjcm) p(cm) :

Many problems require a distinction between slowly varying state vari-

ables describing the global boundary conditions and state of the system

and fast varying variables describing the fast dynamics of the system. If

this is the case we decompose x into xs and xf and obtain for the density

p(y;x) =

MX
m=1

p(yjxf ; cm) p(xsjcm) p(cm) ; (15.2)

where xs and xf may be identical, overlapping in some dimensions or com-

pletely distinct.



15. Cluster-Weighted Modeling 369

The input distribution is taken to be a Gaussian distribution,

p(xjcm) = jP�1
m
j1=2

(2�)D=2
e
�(x��m)

T
�P
�1

m
�(x��m)=2

; (15.3)

where Pm is the cluster-weighted covariance matrix in the feature space.

It can be reduced to variances in each dimension, when computational

complexity is an issue.

The output distribution is taken to be

p(yjx; cm) =
jP�1

m;y
j1=2

(2�)Dy=2
e
�(y�f(x;�m))

T
�P
�1

m;y
�(y�f(x;�m))=2

; (15.4)

where the mean value of the output Gaussian is replaced by the function

f(x; �m) with unknown parameters �m. Again the o� diagonal terms in the

output covariance matrices Pm;y can be neglected if needed.

To understand this form, consider the conditional forecast of the expected

y given x,

hyjxi =

Z
y p(yjx) dy (15.5)

=

Z
y
p(y;x)

p(x)
dy

=

PM

m=1

R
y p(yjx; cm) dy p(xjcm) p(cm)PM

m=1 p(xjcm) p(cm)

=

P
M

m=1 f(x; �m) p(xjcm) p(cm)P
M

m=1 p(xjcm) p(cm)
:

We observe that the predicted y is a superposition of all the local func-

tionals, where the weight of each contribution depends on the posterior

probability that an input point was generated by a particular cluster. The

denominator assures that the sum of the weights of all contributions equals

unity.

Likewise we compute the conditional error in terms of the expected co-

variance of y given x

hPyjxi =

Z
(y � hyjxi)(y � hyjxi)T p(yjx) dy (15.6)

=

Z
(yyT � hyjxihyjxiT ) p(yjx) dy

=

PM

m=1

R
yy

T
p(yjx; cm)dy p(xjcm) p(cm)PM

m=1 p(xjcm) p(cm)
� hyjxihyjxiT

=

P
M

m=1[Pm;y + f(x; �m)f(x; �m)
T ] p(xjcm) p(cm)PM

m=1 p(xjcm) p(cm)
� hyjxihyjxiT



370 Bernd Schoner and Neil Gershenfeld

which equals the expected variance if only a single output dimension is

considered,

h�2
y
jxi =

P
M

m=1[�
2
m;y

+ f(x; �m)
2] p(xjcm) p(cm)PM

m=1 p(xjcm) p(cm)
� hyjxi2 :

There are two parameters to be determined beforehand: the number

of clusters M and the form of the local models f which together con-

trol the model resources and hence under versus over-�tting. We trade o�

the complexity of the local models against the complexity of the global

architecture, which is nicely illustrated in the case of a local polynomial

expansion(Equ.15.7): If we use locally constant models together with a large

number of clusters, the predictive power is determined by the number of

Gaussian kernels. If, alternatively, we use a high-order polynomial model

and a single kernel, the model reduces to a global polynomial model.

The choice of local models depends on the application. In general f ex-

presses prior beliefs about the nature of the data or insights in the mechan-

ics of a system and thus functions as a regularizer of the model. Machine

learning architectures and estimation algorithms typically depend on global

regularizers that handle prior beliefs about what is a good model. This is

problematic since global statements may not apply locally. For example,

the maximum entropy principle is good at handling discontinuities, but

has no notion of local smoothness, whereas integrated curvature is good

in enforcing local smoothness but rounds out discontinuities. In our ap-

proach the model is constrained only by the local architecture which may

enforce local smoothness but at the same time allows for discontinuities

where needed.

15.2.2 Model estimation

Non-linear function �tting uses models with linear coeÆcients �m and non-

linear basis functions f(x),

y(x) =

MX
m=1

�mfm(x) ; (15.7)

for example a polynomial expansion, or models that have the coeÆcients

inside the nonlinearities,

y(x) =

MX
m=1

fm(x; �m) ; (15.8)

for example a neural network. In the case of a generalized linear model

(Equ.15.7) only a single matrix pseudo-inverse is needed to �nd the set of

coeÆcients yielding the minimum mean-square error. However, the number



15. Cluster-Weighted Modeling 371

of coeÆcients in Equ.15.7 is exponential in the dimension of x. A model

with non-linear coeÆcients (Equ.15.8) has more expressive power, which

can reduce the number of coeÆcients needed for a given approximation

error to linear in the dimension of x [2]. Yet, the non-linear parameters of

Equ.15.8 require an iterative search [8].

CWM uses simple local models, which satisfy (15.7), to create globally

powerful models as described by (15.8) and hence combines the eÆcient

estimation of the former with the bene�ts of the latter models. We �t the

local model parameters by a matrix inversion of the local covariance matrix

and �nd the remaining cluster parameters in charge of the global weighting,

using a variant of the Expectation-Maximization (EM) algorithm [7]. EM

is an iterative search that maximizes the model likelihood given a data set

and initial conditions [16, 1]. We pick a set of starting values for the cluster

parameters and then enter the iterations with the Expectation step.

In the E-step we assume the current cluster parameters correct and eval-

uate the posterior probabilities that relate each cluster to each data point.

These posteriors can be interpreted as the probability that a particular data

was generated by a particular cluster or as the normalized responsibility of

a cluster for a point:

p(cmjy;x) =
p(y;xjcm) p(cm)

p(y;x)
(15.9)

=
p(y;xjcm) p(cm)P
M

l=1 p(y;xjcl) p(cl)
;

where the sum over clusters in the denominator causes clusters to interact,

�ght over points and specialize in data they best explain.

In the M-step we assume the current data distribution correct and �nd

the cluster parameters that maximize the likelihood of the data. The new

estimate for the unconditioned cluster probabilities is

p(cm) =

Z
p(cmjy;x) p(y;x) dy dx (15.10)

� 1

N

NX
n=1

p(cmjyn;xn) ;

Here the idea is that an integral over a density can be approximated by an

average over variables drawn from the density.

Next we compute the expected input mean of each cluster which is the



372 Bernd Schoner and Neil Gershenfeld

estimate of the new cluster means:

�m =

Z
x p(xjcm) dx (15.11)

=

Z
x p(y;xjcm) dy dx

=

Z
x
p(cmjy;x)
p(cm)

p(y;x) dy dx

� 1

N p(cm)

NX
n=1

xn p(cmjyn;xn)

=

PN

n=1 xn p(cmjyn;xn)P
N

n=1 p(cmjyn;xn)
(15.12)

The apparently formal introduction of y into the density as a variable to be

integrated over has the important result that cluster parameters are found

with respect to the joint input-output space. Clusters get pulled based on

both where there is data to be explained and how well their model explains

the data. In a similar way we can de�ne a cluster-weighted expectation of

any function �(x),

h�(x)im �
Z

�(x) p(xjcm) dx (15.13)

� 1

N

NX
n=1

�(xn)
p(cmjyn;xn)

p(cm)

=

P
N

n=1 �(xn) p(cmjyn;xn)P
N

n=1 p(cmjyn;xn)
;

which lets us update the cluster weighted covariance matrices,

[Pm]ij = h(xi � �i)(xj � �j)im (15.14)

It also lets us compute the matrices needed for the update of the local

models. The model parameters are found by taking the derivative of the

log of the total likelihood function with respect to the parameters,

0 =
@

@�

log

NY
n=1

p(yn;xn) : (15.15)

Considering a single output dimension y and a single coeÆcient �m, we



15. Cluster-Weighted Modeling 373

get:

0 =

NX
n=1

@

@�m

log p(yn;xn) (15.16)

=

NX
n=1

1

p(yn;xn)
p(yn;xn; cm)

yn � f(xn; �m)

�
2
m;y

@f(xn; �m)

@�m

=
1

Np(cm)

NX
n=1

p(cmjyn;xn)[yn � f(xn; �m)]
@f(xn; �m)

@�m

=

�
[y � f(x; �m)]

@f(x; �m)

@�m

�
m

Plugging (15.7) into (15.16) we obtain an expression to update �m,

0 = h[y � f(x; �m)]fj(x)im (15.17)

= hyfj(x)im| {z }
aj;m

�
IX

i=1

�m;i hfj(x)fi(x)im| {z }
Bji;m

;

) �m = B
�1
m � am ;

where the matrix inverse should be done by a Singular Value Decomposition

to avoid numerical problems with singular covariance matrices.

Considering the full set of model parameters we get

�m = B
�1
m

� Am ; (15.18)

with

[Bm]ij = hfi(x; �m) � fj(x; �m)im
[Am]ij = hyi � fj(x; �m)im :

(15.19)

Finally the output covariance matrices associated with each model are

estimated,

Py;m = h[y � hyjxi]2im (15.20)

= h[y � f(x; �m)] � [y � f(x; �m)]
T im :

Clusters should not be initialized arbitrarily because the algorithm is only

guaranteed to terminate in a local likelihood maximum. Also, initializing

clusters in places that are close to their �nal position saves time, since they

don't have to walk their way through the data set. We use a method that

performs well empirically: Choose 1=N as the initial cluster probabilities.



374 Bernd Schoner and Neil Gershenfeld

Pick randomly as many points from the training set as there are clusters

and initialize the cluster input means, as well as the cluster output mean

with these points. Set the remaining output coeÆcients to zero. Use the

size of the data set in each space dimension as the initial cluster variances.

It is also a good idea to normalize the training data to zero mean and unit

variance since arbitrary data values may cause probabilities to become too

small.

To summarize the model estimation process: (1) pick some initial con-

ditions; (2) then evaluate the probability of the data p(y;xjcm); (3) from
those �nd the posterior probability of the clusters p(cmjy;x); (4) then up-

date the cluster weights p(cm), the cluster-weighted expectations for the

input means �
new
m and variances �

2;new
m;d

or covariances Pnew
m , the maxi-

mum likelihood model parameters �new
m

, and �nally the output variances

�
2
m;y

n
ew; go back to (2) until the total data likelihood does not increase

anymore [7].

15.2.3 Error Estimation and Characterization

From the probability density of the training data set (15.1) several error

estimates and statistics can be derived, each of which provides useful in-

sights as well as a self-consistency check on the model. The density itself

indicates the model uncertainty in that we can't expect to obtain a valid

model where the data density is low. The certainty of the model estimate

is proportional to the data density in a subspace.

The conditional covariance (15.6) on the other hand indicates the pre-

diction uncertainty given an input x. It can be related to other charac-

terizations of uncertainty, such as entropy and Lyapunov exponents. The

di�erential entropy of a Gaussian process is H = log2(2�e�
2)=2. Because

only di�erences in a di�erential entropy matter, we ignore the additive

and consider H = log2(�). The asymptotic rate of growth of the entropy

with time is equal to the source entropy h, which in turn is equal to the

sum of positive Lyapunov exponents times the time lag � between samples,

h = �

P
�
+. Therefore, assuming that the prediction errors are roughly

Gaussian, the asymptotic value of the log of the output width as the input

dimension is increased provides a local estimate of the source entropy of

the system. The sum of the negative exponents can similarly be found by

analyzing the time series in reverse order (thereby exchanging positive and

negative exponents).

Because clusters �nd the subspace that is occupied by data, we can use

the cluster parameters to �nd the dimension of the data set even in a

high-dimensional space. Intuitively, the number of signi�cant eigenvalues

of the local covariance matrices provides an estimate of the dimensionality

of the data manifold. For example, we obtain three signi�cant eigenvalues

for the Lorenz attractor embedded in 6 dimensions (Fig.15.2). To quantify

this further we use the eigenvalues of the local covariance matrices Em =



15. Cluster-Weighted Modeling 375

−2−1012

−2

0

2

y
t

y
t−τ

y t+
τ

FIGURE 15.1. The plot shows the Lorenz set, embedded in a three

dimensional lag space. The dense dots show the embedded data. Be-

low it are the cluster means and covariances, and the derived input

density estimate; above it is forecasting surface shaded by the con-

ditional uncertainty, showing the maxima associated with the orbit

re-injection.

fe1;m; e2;m; :::; e3;mg to evaluate the radial correlation integral

Cm(r) =

Z
r

�r

:::

Z
r

�r

p(x1; : : : ; xDjCm) dx1 : : : dxD (15.21)

= erf

0
@ rq

2e21;m

1
A � � � erf

0
@ rq

2e2
D;m

1
A



376 Bernd Schoner and Neil Gershenfeld

1 2 3 4 5 6
0

0.5

1

Sorted Cluster Eigenvalues

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

Test Set Mean Square Error

Training Set Mean Square Error

2 4 6 8 10 12 14 16 18 20
0

0.5

1

Test Set Data Likelihood

Training Set Data Likelihood

FIGURE 15.2. Fitting the Lorenz set. Top: Data likelihood as a func-

tion of iterations. Middle: Mean square error as a function of iteration:

Bottom: Sorted eigenvalues of the local covariance matrices.

which in turn lets us compute the cluster's correlation dimension [8] as

�m =
@ logCm(r)

log r
(15.22)

=

DX
d=1

1

erf

�
rp
2e2
d;m

�
s

2

�e
2
d;m

e
�r

2
=2e2

d;m
r

In the limit r ! 0, this dimension is equal to the dimension of the space ,

because locally the curvature of the clustered space can not be seen. If it

is evaluated at r = 0:1�max, for the emax direction the contribution is still

0.997, but for a direction with variance emax=100 the contribution drops to

10�21. The expected dimension of the whole data set is �nally given by the

expectation

h�i =
MX
m=1

�m p(cm) (15.23)

Unlike a conventional O(N2) calculation of the dimension of a data set from

all the inter-point pairs, the clusters �nd the signi�cant places to evaluate

the dimension, as well as the appropriate length scale at which to test the

scaling.



15. Cluster-Weighted Modeling 377

15.3 Application: How to build a digital Strad

Mimic synthesis of musical instruments tries to infer models that behave

and sound like the original instrument ideally to the extend that original

and model become indistinguishable. Given this general goal there have

been a variety of di�erent modeling approaches. Global sampling, for ex-

ample, has been particularly successful in commercial keyboard synthesiz-

ers. Each single note of a piano is recorded at many di�erent volume levels

and with varying duration and these sounds are replayed during synthesis.

Since memory is cheap only very little interpolation between samples is

required and the sound quality is close to the original recordings. However,

the method works only for instruments with low dimensional control space,

namely keyboard instruments. Since the model does not know about the

instrument's internal state, but only reuses what it has seen before, there

is no notion of control on part of the player.

Another successful synthesis technique is physical modeling [21]. It is

based on �rst principles analysis of the acoustics of the instrument which

are implemented in numerical methods. This method provides a lot of ex-

ibility, for example it allows one to create new instruments that are de-

rived from physical mechanisms but could not be implemented physically.

However, the approach has also serious limitations. Current computers can

barely run a full-scale model of the violin as can be shown in a simple cal-

culation on a �nite element approximation of a violin. Assumed 10 body

modes per body axis and 10 �nite element nodes per cycle, we get 104 nodes

per violin plate and in the order of 105 nodes per instrument. If we multiply

this by a CD quality sample rate of 40 kHz, we end up with roughly 10

Giga instructions per second needed to run a model in real time.

As a further fundamental problem of physical models there is no system-

atic parameter search within a model structure and an instrument family.

Given a basic model of a violin there is no way to �nd the parameters that

distinguish a Guanerius from a Stradivarius instrument other than trying

out combinations of parameters in a high dimensional space.

The method we are presenting here lies conceptually in between the

sampling and the physical modeling approach and hence is best described

as a \physics-sampler". Although we infer our model from recorded data

and even use stored samples, we create a model that has the exibility of a

physical model, since we synthesize the physics of the instrument, not the

sound. At the same time we are doing computational compression on data,

since the physical device is represented in an eÆcient description.

It was mentioned before that the mechanics of violin playing involve

stochastic behavior. The stochastic aspects become clear when one consid-

ers player and instrument jointly. The violinist only partially controls her

instrument. While she has an idea of the spectral characteristics she wants

to achieve, she has no means to hear and control the phase of the produced

signal. Naturally there is a causal relationship between the player action



378 Bernd Schoner and Neil Gershenfeld

and the spectral content of the sound, whereas the phase of the di�erent

partials is random and hence unpredictable.

Fortunately, since phase is not perceived as a discriminating feature in

a typical playing situation, we may pick it arbitrarily as long as we avoid

discontinuities in the signal components. The general lesson to learn is

that we need to model the process, not an instantiation of a particular

process. While we can predict deterministic aspects of the signal, stochastic

behavior needs to be summarized in appropriate statistics such as the power

spectrum.

The violin, as most musical instruments, is characterized by slowly vary-

ing boundary conditions that map into a fast audio signal. The non-linear

interaction between bow and string causes the slow player motion to be

turned into the famous Helmholtz motion which contains the frequency

components of the �nal audio signal [6]. The slow and fast elements de-

scribe two di�erent times scales which, if mixed, confuse each other. In-

stead, fast and slow dynamics and the corresponding state variables need

to be treated di�erently. CWM provides the means to implement such dis-

tinction: The slowly varying boundary conditions are used to select the

domain of operation (cluster) in the con�guration space (Equ.15.3), while

the fast dynamics are handled by the local models and the associated state

variables (Equ.15.4).

The previous section introduced CWM as a machine learning framework

that allows one to predict and characterize arbitrary input-output data.

Given this inference tool we need to consider a second important aspect of

data analysis and prediction, which is data representation. Although linear

transforms such as Fourier or wavelet transforms do not change the in-

formation content of the data, it makes a considerable di�erence in which

domain we try to predict. CWM lets us embed a variety of speci�c lo-

cal representations. In this section we discuss Cluster-Weighted Spectral

Modeling and Cluster-Weighted Sampling as examples of two local imple-

mentations of CWM. We also introduce ways of higher order factorization

and show how the CWM structure can be included in a Hidden-Markov

Model to the end of explicitly encoding timing in the model.

15.3.1 Cluster-Weighted Spectral Modeling

It is our goal to build an input-output model of a violin given a data

set that contains physical input features measured on the bow and the

�nger-board along with synchronized audio data. In the training process

the network learns the mapping between the physical input and the sound.

After training the network knows how do generate appropriate audio, given

new input.

We decompose the audio training signals into spectral frames at a frame

rate that equals the sampling rate of the slowly varying physical input.

Each frame contains of the coeÆcients of a Short Term Fourier Transform



15. Cluster-Weighted Modeling 379

(STFT) applied to a �xed number of audio samples weighted by a Ham-

ming Window. The underlying assumption is that the player operates on

the spectral composition of the sound and that these spectral character-

istics do not change faster than the actual control. From those frames we

retain only the harmonic partials of the violin signal. The amplitudes of the

harmonic partials are taken to be the magnitude of the power spectrum in

the frequency bin, while precise frequency estimates are obtained from the

phase di�erence in closely spaced sample windows [13]. Given a total of P

partials the output vector y has 2P components.

The input vector x consists of physical input data, such as bow velocity,

pressure, �nger position, and bow-bridge position. Driven by the belief that

past input conditions the current state of the instrument the input vector

is augmented with respect to past input data. Adding time lagged input

samples to x, we balance the need to include the past and the burden of a

big input space. While the model scales linearly in the output dimension, it

is very sensitive to large input spaces, since the required amount of training

data increases exponentially the input data dimension. Also the model is

more sensitive to over-�tting given a bigger input space.

In training we use the set of vector pairs fyn;xngNn=1 to train a CWM

input-output model using simple linear local models of the form y = �m �x.
In the synthesis process the vector of spectral information y is predicted

from new input data x. Given the spectral data we compute the time

domain audio data by sinusoidal additive synthesis, where phase and am-

plitude of the partials are taken to be the predicted components, linearly

interpolating between frames [19]. The �nal signal is obtained from sum-

ming the di�erent components [18].

15.3.2 Cluster-Weighted Sampling

Global sampling has been a successful synthesis technique for instruments

with low dimensional control space, such as the piano [12]. However, the

technique is less appropriate for instruments with continuous complex con-

trol, such as the violin. In the violin case the amount of data required to

cover all possible playing situations is prohibitive, since control possibili-

ties are essentially unlimited. To overcome this problem we parameterize

the available sample material in an eÆcient way. CWM learns how to se-

lect the appropriate samples, but also to predict the parameters needed to

reassemble the sound from the raw material.

Clusters now have multiple output models covering sample selection,

amplitude prediction and pitch prediction. The �rst expert is a pointer

into sample space. The cluster that most likely generated a control data

takes over and its sequence of samples stand in for the particular playing

situation. The cluster is replayed until another cluster becomes more likely

and takes over with its own samples. We will come back to the issue of

sequencing time domain sound samples below.



380 Bernd Schoner and Neil Gershenfeld

a) −0.5

0

0.5

1

time [s]

au
di

o 
sa

m
pl

es

b)
0.2 0.4 0.6 0.8 1 1.2

−300

300

time [s]

po
si

tio
n

−100

100

sp
ee

d

−95

−85

fin
ge

r−
po

s 475

485

pi
tc

h

0

500

vo
lu

m
e

FIGURE 15.3. Cluster-weighted sampling: a) overlapping samples of

the string signal. b) input-output model, from the bottom: bow position;

bow speed; �nger position; predicted out-of-samples amplitude (solid)

and given sampled amplitudes (dashed); predicted out-of-samples

pitch (solid) and given sampled pitch (dashed); the doubled dashed

lines indicate overlapping sample windows: the old window is slowly

faded out while the new window is faded in, in such a way that the

total weight of data adds up to unity at any given moment.

The second output model is a pitch predictor. Given a control input that

typically includes the left hand �nger position on the �nger board a local

linear model predicts the appropriate pitch at any moment in time. The

samples selected for synthesis almost certainly won't match this desired

pitch exactly. Therefore they are re-sampled with respect to the predicted

target pitch. The resampling is done in real time according to

ŝ(t) =

n=NX
n=�N

s(n � Ts) hs(t� n � Ts) ; (15.24)

with

hs = (minfFs=F 0

sgsinc(minfFs; F 0

sgt) ; (15.25)

where Fs is the stored sampling frequency and F
0

s
is the target sampling

frequency [20]. Sample pitch and target should not di�er too much, since

big pitch shifts results in audible artifacts. However, resampling can easily



15. Cluster-Weighted Modeling 381

compensate for e�ects such as vibrato. Since we cannot hope to record

any possible vibrato sequence and frequency, we choose to superpose the

desired vibrato behavior on the sampled material.

The third output model predicts the sound volume at any moment in

time using, once again, simple locally linear predictors. The selected sam-

ples are re-scaled with respect to the target volume. Strong modi�cations

of the sample volume should be avoided in order for the correct timbre not

to be altered.

This approach requires a number of preprocessing steps that extract the

high level properties from the audio data. We need both pitch and volume

to label, parameterize and correct the audio data at any moment in time.

These properties are easier to obtain than it may seem. Although pitch

extraction is a problem that has not been solved in full generality, it turns

out to be surprisingly simple in our approach. Since we are measuring

physical input data, we have a rather good estimate of pitch to start with.

Given a certain �nger position, the possible pitch is within a very small

frequency interval which makes it practically impossible for a pitch tracker

to get confused in the audio analysis.

An important detail is the sequencing of pieces of audio when there is

looping within a sample interval or when a change of cluster occurs. We

choose to match samples by minimizing the least square error between the

old and the new samples. Additionally we fade out the old sound and fade

in the new sound using a Hamming window overlap-add.

Sine we re-sample the audio material anyway, we can increase the resolu-

tion of our �t allowing for non-integer alignment of sounds without increas-

ing the complexity of the synthesis algorithm. The success of the overlap-

add depends on the length of the permissible fading interval and on the

character of the sound. Fig.15.3 shows the overlap of two highly phase co-

herent pieces of the string signal of a violin describing a Helmholtz motion.

In that case the partials line up nicely with the fundamental and discon-

tinuities are not a problem. However, the sound signal loses its regularity

after the �ltering by the bridge and the resonant body of the instrument,

which makes it much harder to deal with.

15.3.3 Higher order factorization: Hierarchical mixture

models and Hidden-Markov Models

We have demonstrated a at network structure that is easily applied to

many problems and suÆciently complex for most applications. However,

there are cases where additional hierarchical structure is helpful if not cru-

cial. Identical models may want to be reused in di�erent areas in the con-

�guration space or systems may have long-term temporal dependences. [10]

introduce mixture models of arbitrary hierarchical depth. Similarly we can

add higher level factorization describing global states of our system. For



382 Bernd Schoner and Neil Gershenfeld

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

1 1

2 2

33
44

5

5

6
6

7
7

8

8

bo
w

 s
pe

ed
 in

 la
g−

sp
ac

e

0.5 1.0 1.5 2.0 2.5
0

0.5

1

st
at

e 
pr

ob
ab

ili
tie

s
200

600

time [s]
vo

lu
m

e

480

500

pi
tc

h

FIGURE 15.4. Hidden-Markov model, from bottom: cluster/model

input space, two clusters per state; state probabilities; predicted

out-of-samples amplitude (measured-dashed and predicted-line); pre-

dicted out-of-samples pitch (measured-dashed and predicted-line). Al-

though measured and predicted data are visibly di�erent, the recon-

structed audio sounds very similar to the original audio data, since

the spectral characteristics and the basic characteristics of the sound

envelope are preserved.

example, the top-level state of a violin model could distinguish global play-

ing conditions such as pizzicato and arco playing or the use of a particular

string. The probability density is then expanded as

p(y;x) =
X
k

X
m

p(y;x; cm;Modelk) : (15.26)

In the previous sections we used time lags of the input signal to encode

temporal structure and memory of the system. Another way of stating this

dependence is to say that the current state depends on the past state and

the current input. Hidden-Markov-Models (HMMs) have been developed to

precisely implement this dependence in a probabilistic framework [17]. If



15. Cluster-Weighted Modeling 383

we embed CWM in a HMM structure we obtain an input-output synthesis

model with an explicit time dependence built into it.

HMMs are typically de�ned in terms of the number of distinct states

q1; q2; :::; qN ; the state transition probability matrix A = fai;jg, where
ai;j denotes the probability that state i follows state j and the emission

probability bj(k), which denotes the probability that the system generates

observation k, given that it is in state j. We replace the discrete emission

probabilities by a continuous probability density function of the form of

p(x;yjqj), which means the cluster probabilities p(cm) become e�ectively

time dependent, conditioned on past system states.

A cluster (or more than one) now represents a speci�c state qj given a

set of possible states q1:::qN . The likelihood of a sequence of input-output

observations (X;Y) = fx1;y1;x2;y2; :::;xT ;yT g is
p(X;Y) =

X
Q

p(X;YjQ) � p(Q) ; (15.27)

with

p(Q) = �q1aq1q2aq1q2 :::aqT�1qT ; (15.28)

p(X;YjQ) = bq1(x1;y1) � bq2(x2;y2):::bqT (xT ;yT ) :
(15.29)

bqi(x;y) is the emission probability of a pair (x;y) given the state qi.

These probability densities may be simple clusters or themselves a sum

over clusters,

bqi(x;y) =

MX
m=1

p(yjx; cm) � p(xjcm) � p(cm) ; (15.30)

where the probability distributions are identical to (15.3) and (15.4).

The model estimation is more complicated but is based on the very

same probabilistic ideas as shown earlier. HMMs are typically trained in a

forward-backward procedure which is a special implementation of EM and

makes the estimation problem tractable. In synthesis the model is evaluated

in a forward procedure since output has to be generated causally [17]. The

output sequence at any moment in time is taken to be the expected value

of y given estimated past states and current observed input,

p(qj;t) =

P
N

i=1 p(qi;t�1) � aj;i � b(xtjqj)PN

j=1

PN

i=1 p(qi;t�1) � aj;i � b(xtjqj)
(15.31)

hytjxt; qt�1i =

NX
j=1

f(xt; �j) � p(qj;t) :

A particular sequence of states now reects a sequence of input gestures

and internal states of the violin. Fig.15.4 illustrates a state sequence for



384 Bernd Schoner and Neil Gershenfeld

simple d�etach�e bowing. We can follow a note from the attack, to the sus-

tained part, to the next bow change.

15.4 Summary

The valuable insights that are possible into signals from complex systems

have not penetrated into routine data analysis and engineering practice

because of algorithms with limited applicability or reliability. The Cluster-

Weighted Modeling framework that we have presented cannot of course

solve all problems, but it does handle nonlinearity and stochasticity in a

transparent fashion that provides a clear connection to past practice in a

domain (through the choice of the local models), with just a single hyper-

parameter (the number of clusters). A natural extension exists for problems

that require internal states in the model, without needing to incur the

architectural uncertainty of more general graphical probabilistic networks.

One of the most valuable consequences of this probabilistic setting is

the range of statistics that can be derived from the underlying model.

Rather than impose a cost function for a learning algorithm at the outset,

prediction questions can be answered directly from the density estimate.

This is possible with reasonable amounts of data because the estimate

is constrained by the local models. Further, the many possible kinds of

characterization of the data are done more reliably in a context that can also

make falsi�able predictions about the data, including internal consistency

checks such as predicting the model's own errors.

The resulting models are eÆcient in storage and computation because

the model resources are allocated only where there is data to describe, and

the out-of-sample generalization is limited to the reasonable behavior of the

local models. These features point to the possibility of broadly applicable

\physics sampling," building phenomenological models of driven systems

in the space of e�ective internal degrees of freedom, thereby enabling new

applications that �guratively and literally sound great.

Acknowledgments

We are grateful for support from the MIT Media Lab Things That Think

Consortium.

References

[1] Shunichi Amari. Information Geometry of the EM and em Algorithms for Neural

Networks. Neural Networks, 8(9):1379{1408, 1995.



15. Cluster-Weighted Modeling 385

[2] Andrew R. Barron. Universal approximation bounds for superpositions of a sig-

moidal function. IEEE Transactions on Information Theory, 39:930{945, 1993.

[3] W.L. Buntine. A guide to the literature on learning probabilistic networks from

data. IEEE Transactions on Knowledge and Data Engineering, 1996.

[4] Martin Casdagli. A dynamical systems approach to modeling input-output systems.

In M. Casdagli and S. Eubank, editors, Nonlinear Modeling and Forecasting, Santa

Fe Institute Studies in the Sciences of Complexity, pages 265{281, Redwood City,

1992. Addison-Wesley.

[5] W.S. Cleveland and S.J. Devlin. Regression analysis by local �tting. J. A. Statist.

Assoc., 83:596{610, 1988.

[6] Lothar Cremer. The Physics of the Violin. MIT Press, Cambridge, Massachusetts,

1984.

[7] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood From Incom-

plete Data via the EM Algorithm. J. R. Statist. Soc. B, 39:1{38, 1977.

[8] Neil Gershenfeld. The Nature of Mathematical Modeling. Cambridge University

Press, New York, 1999.

[9] D. Heckerman and M. Wellman. Bayesian Networks. Communications of the

Association Machinery. 1995.

[10] M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algo-

rithm. Neural Computation, 6:181{214, 1994.

[11] Michael Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge,

Massachusetts, 1998.

[12] Dana C. Massie. Wavetable sampling synthesis. In Mark Kahrs and Karlheinz

Brandenburg, editors, Applications of Digital Signal Processing to Audio and

Acoustics, pages 311{341. Kluwer Academic Publishers, 1998.

[13] R.J. McAulay and T.F. Quatieri. Speech analysis/synthesis based on a sinusoidal

representation. IEEE Transactions on Acoustics, Speech and Signal Processing,

ASSP-34 No.4:744{754, 1986.

[14] M.E. McIntyre and J. Woodhouse. On the fundamentals of bowed-string dynamics.

Acustica, 43(2):93{108, 1979.

[15] Radford M. Neal. Bayesian Learning for Neural Networks. Springer, New York,

1996.

[16] Radford M. Neal and Geo�rey E. Hinton. A new view of the em algorithm that

justi�es incremental and other variants, 1993.

[17] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77:257{286, 1989.

[18] B. Schoner, C. Cooper, C. Douglas, and N. Gershenfeld. Data-driven modeling of

acoustical instruments. Journal for New Music Research, 28(2):81{89, 1999.

[19] Xavier Serra and Julius O. Smith. Spectral modeling synthesis: A sound analy-

sis/synthesis system based on a deterministic plus stochastic decomposition. Com-

puter Music Journal, 14(4):12{24, 1990.

[20] J. Smith and P. Gosset. A exible sampling-rate conversion method. In Acoustics,

Speech, and Signal Processing, San Diego, volume 2, 1984.

[21] Julius O. Smith. Physical modeling using digital waveguides. Computer Music

Journal, 6(4), 1992.

[22] Floris Takens. Detecting strange attractors in turbulence. In D.A. Rand and L.S.

Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes

in Mathematics, pages 366{381, New York, 1981. Springer-Verlag.


