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Abstract

A key assumption in quantum computation is the ability to efficiently generate arbitrary unitary
operators to high precision. However, it is often more reasonable to assume that we are only able
to implement a finite set of primitive gates, from which we need to efficiently generate good approx-
imations to any other single-qubit operation. Fortunately, the Solovay-Kitaev theorem shows that
for almost all sets of primitive gates, the required string length is only polynomial in the number
of bits of precision. In the first part of this thesis, we give a constructive proof of the theorem,
numerically evaluate its effectiveness and compare it with the performance guarantee that it gives.
In contrast with the polynomial cost of Solovay-Kitaev, elementary counting arguments give a lower
bound for string length that is only linear in the bits of accuracy. In the second part we give a
novel non-constructive proof that it is almost always possible to saturate this lower bound, and in
the third part, we demonstrate a particular set of primitive gates that shows promise in being able to
efficiently generate optimal compilations. We also discuss practical methods of realizing these gates
fault-tolerantly.
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Title: Associate Professor
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Chapter 1

Introduction

The insight that information is physical has given rise to a beautiful intersection of mathematics,
computer science, physics and engineering known as quantum computing. Though we are far from
being able to build a useful quantum computer, simply knowing that such a device is possible has
forced us to think about the physical meanings of information and computation in new and interesting
ways.

This thesis, like much other work in the field, begins with a fairly technical and specific problem in
quantum computation and ends with potentially new ways of looking at related fields such as quantum
control. The problem, which I call quantum compiling, is fairly simple to express: an experimenter
wishes to implement an arbitrary unitary transformation on a quantum system to a given precision,
but for whatever reason is only able to apply a small discrete set of unitary operations. How many
of these operations do we need to apply to achieve a precision ε? And how can we come up with this
string of operations in a computationally efficient fashion?

These questions have obvious practical importance for writing programs for quantum computers,
but can also be related to properties of the unitary groups that can apply to manipulating a wide
range of quantum systems.

1.1 Outline

The first chapter of this thesis is devoted to background material. Although it would be possible
to define quantum computation without reference to any more than elementary linear algebra, it is
often far more fruitful to view it as an outgrowth of either quantum mechanics or classical complexity
theory. With this is mind, the next two sections of the introduction will each derive the same definition
of quantum computing in quite different ways. The remainder of the chapter reviews some important
proofs related to quantum compiling. While the introduction surveys results that one cannot expect
to learn fully from my limited treatments of them, the rest of the thesis should require no more than
knowledge basic linear algebra and probability, and where it uses more advanced concepts, it proves
most of the necessary assumptions.

The second chapter concerns itself with the Solovay-Kitaev theorem, which to date is the only
substantial result in quantum compiling for a single qubit. I provide a constructive proof of the
theorem for a single qubit, discuss generalizations, numerically evaluate the algorithm’s effectiveness
and compare with theoretical performance guarantees. Source code is provided in the appendix.

The third chapter proves upper and lower bounds for generic compiling that are within a constant
factor of each other. Though these results are optimal, the upper bounds given are unfortunately not
constructive. To the best of my knowledge, this result is novel.

While most of the results of this thesis apply to almost any set of basic quantum gates, in the
fourth chapter I discuss a particular set of base single-qubit gates that are in many ways optimal.
Though I have not been able to develop an efficient algorithm that uses fewer of these gates than the
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generic Solovay-Kitaev approach, I report partial progress on an algorithm that would asymptotically
achieve the lower bound and discuss what more is necessary.

The final chapter considers generalizations and discusses the major open questions that remain.

1.2 Quantum Mechanics

Anybody who is not shocked by quantum theory has not understood it –Niels Bohr

1.2.1 Axioms of quantum mechanics

Although most of what is presently known about basic quantum mechanics was worked out in the
early twentieth century, we are far from having worked out all of the implications. The quantum
mechanical picture of particles and wave functions is profoundly counter-intuitive and despite its
universal acceptance, there are few people who are truly comfortable with it. One of the most
striking examples of this quantum weirdness is superposition, the ability of quantum systems to exist
in arbitrary linear combinations of allowable classical states. This accounts for, among other things,
the fact that we observe interference patterns in the double-slit experiment even when only a single
photon passes through at a time.

Mathematically, we say that the state of a system exists as a unit column vector in the Hilbert
space CN , where N can be thought of as being loosely related to the number of possible classical
states if every continuous variable were quantized. In the Dirac formalism, a column vector is called
a ket and denoted |ψ〉, while its adjoint (or conjugate transpose) is a bra (or row vector), which is
written as 〈ψ|. This suggests writing the inner product between two vectors |ψ〉 and |ϕ〉 as 〈ψ|ϕ〉,
with respect to the canonical form, or as 〈ψ|Q̂|ϕ〉, for the inner product with respect to an arbitrary
Hermitian form Q̂. For such a Hermitian form, its expectation (with respect to some state |ψ〉 is
represented 〈Q〉, and is defined to be 〈ψ|Q̂|ψ〉. Outer products are also written the way one would
expect, as |ψ〉〈ϕ|, and their action on an arbitrary vector |n〉 is defined to be |ψ〉〈ϕ|n〉 = 〈ϕ|n〉|ψ〉 , as
one would expect from simply writing the terms next to each other. The tensor product of |ψ〉 ∈ CM
and |ϕ〉 ∈ CN is written |ψ〉 ⊗ |ϕ〉 ∈ CMN , or when context permits, |ψ〉|ϕ〉. If |ψ〉 =

∑
m am|m〉 and

|ϕ〉 =
∑
n bn|n〉, then

|ψ〉 ⊗ |ϕ〉 ≡
M−1∑
m=0

N−1∑
n=0

ambn|mN + n〉, (1.1)

where the basis states of Cd are represented by |0〉, . . . , |d− 1〉. Most of this treatment can be found
in elementary textbooks on quantum mechanics (such as [Grif] and [Gas]) and linear algebra ([Axl]
and [Art]).

For quantum computing, we often use the two-dimensional Hilbert space corresponding to the
spin of a spin-1/2 particle. If we have n spin-1/2 particles, then the resulting Hilbert space is

n︷ ︸︸ ︷
C

2 ⊗ C2 ⊗ · · · ⊗ C2 or CN , where N = 2n. An immediate consequence of this is that representing the
state of a quantum system requires exponentially more information (i.e. N complex numbers) than
the logN bits it would take to represent a classical system that can occupy only one of N possible
states. Since N is typically exponential in the size of the system, this has important practical
implications for simulating quantum dynamics on classical computers. This curious gap, between the
size of the actual quantum system and the exponentially larger size of the classical computer necessary
to simulate its behavior led Feynman and other physicists to propose instead performing quantum
simulations on some sort of quantum computer.[Fey82] After all, there shouldn’t be any fundamental
differences between the local Hamiltonians that nature applies and the sorts of Hamiltonians that
can be generated in the laboratory. This intuition was formalized in several different papers (see for
example [AL97]).
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Quantum simulation is only as powerful as the simulator, of course, and is predicated on the
assumption that Nature is governed by a Hamiltonian that can be easily represented within the
models of quantum computation currently being considered. This means that if our understanding of
quantum mechanics is revised, perhaps from the inclusion of gravity, then polynomial time simulation
may require some new and more powerful sort of quantum computer. In the meantime, though, we
content ourselves with describing the non-relativistic theories of quantum mechanics that the current
concepts of quantum computers are based on.

Deriving these quantum mechanical principles requires surprisingly few assumptions. If |n〉 indexes
an orthonormal basis of states and a measurement is performed in that basis, let the probability
that |ψ〉 is found in the state |j〉 be |〈j|ψ〉|2. The fact that this quantity is squared means that
L2 is the fundamental norm of quantum mechanics, a result that will have important implications.
Immediately, we see that any wave vector has to have L2 norm one, that multiplying the wave
vector by an arbitrary scalar eiφ has no effect, and that defining the expectation to be 〈ψ|Q̂|ψ〉
gives the correct answer, if measurement randomly gives an eigenvalue of Q̂ with the appropriate
probabilities. We say that an observable is represented by a matrix Q̂ that has all real eigenvalues
(so that measurements make physical sense) and is hermitian. Furthermore, for measurements to be
meaningful, they should be repeatable, so if a measurement returns the result λ, then the wave vector
should be projected onto the space of eigenvectors of the obserable with eigenvalue λ, which implies
that Q̂ must be diagonalizable and hence hermitian. So in principle we can measure the expected
eigenvalue of any hermitian matrix.

A more interesting question is to ask what transformations are possible on a wave vector. If we
assume linearity, then the requirement that our vectors remain normalized means that any change
over time can be expressed by a unitary matrix, and since overall phase is physically unobservable,
we can argue without loss of generality that the matrix has determinant one. The set of unitary
N × N matrices is called the unitary group and is denoted U(N) and the subset with determinant
one is known as the special unitary group or SU(N). Since the structure of SU(N) will be central to
the question of quantum compilation, it will be useful to review some facts about the group before
continuing.

1.2.2 The Special Unitary group

A matrix U is said to be unitary if U is invertible and U† = U−1, where † denotes conjugate transpose.
The product of two unitary matrices is also unitary and det(AB) = det(A) · det(B), so U(N) and
SU(N) are groups. An important property of unitary matrices is that they leave the standard inner
product invariant, i.e. ∀u, v ∈ CN ,M ∈ U(N), 〈Mu,Mv〉 = u†M†Mv = u†v = 〈u, v〉, or equivalently,
that they can be thought of as changes of complex orthonormal bases. To change the basis of a column
vector we multiply it on the left by our unitary matrix U and to change the basis of a matrix M we
conjugate it, i.e. U†MU .

In order to make these ideas more concrete, we consider the simplest possible unitary group,
U(1). This is simply the set of complex numbers with norm one, or equivalently, {eiθ|θ ∈ R}. A
more interesting example is SU(2), the set of transformations possible on a single two-level quantum
system, if we ignore overall phase. For any U ∈ SU(2), the conditions U†U = I and detU = 1 mean
that we can write U in the form,

U =
[

a+ ib c+ id
−c+ id a− ib

]
, (1.2)

with a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. Thus, SU(2) is homeomorphic to S3, the unit 3-sphere
in R4, which in turn is locally homeomorphic to R3, so we say that SU(2) has dimension 3. If we
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introduce the Pauli spin matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, (1.3)

then (??) can be rewritten as U = aI + biσz + ciσy + diσx. The {σx, σy, σz} square to one, and
multiplication among them is similar to the ordinary vector cross product, i.e. σiσj = δijI + iεijkσk,
where

εijk =

 1 for ijk an even permutation of 123
−1 for ijk an odd permutation of 123
0 otherwise

(1.4)

Let su(2) denote the set of all trace-zero skew-hermitian 2 × 2 matrices. Then we can consider
su(2) a real three-dimensional vector space with basis iσx, iσy, iσz. To make the correspondence
between su(2) and R3 more explicit, define

~σ = x̂σx + ŷσy + ẑσz, (1.5)

so that i~σ ·~v = v1iσx+v2iσy+v3iσz. Define the commutator (or Lie bracket) of two elements of su(2)
to be [v, w] ≡ vw − wv. It is straightforward to verify that su(2) is closed under commutation, and
that commutation fulfills all the requirements (bilinearity, skew symmetry and the Jacobi identity)
for su(2) to be considered a Lie algebra.

In fact, su(2) is also the Lie algebra of SU(2), formally defined to be the space of infinitesimal
vectors tangent to the identity matrix. For any matrix A, define eA by the same power series used
for scalars,

eA =
∞∑
n=0

An

n!
(1.6)

Any element of su(2) can be written as θi~σ ·~v, where θ ∈ R and |v| = 1. Now the matrix exponential
is simply eθi~σ·~v = cos θ+ i~σ ·~v sin θ, a form in which any element of SU(2) can be written. This allows
us to easily calculate the effects of conjugating by an element of SU(2). If we consider u and v to be
equivalently either matrices in su(2) or vectors in R3 then

e−θvueθv = u cos 2θ +
[u, v]

2
sin 2θ = ~u cos 2θ + (~u× ~v) sin 2θ (1.7)

Thus conjugation by eθv is equivalent to rotating by an angle 2θ about the ~v axis. This suggests a
natural homeomorphism from SU(2) to SO(3), the rotation group for R3, which is a double covering
because the angle is mapped from θ to 2θ.

Most of the same results generalize in straightforward fashion to SU(N). If U = eu, then one can
verify that

• detU = 1 if and only if Tr u = 0.

• U is unitary (UU† = I) if and only if u is skew-hermitian (u† = −u)

Thus su(N) is the set of all trace-zero skew-hermitian N×N matrices, which can be thought of as an
N2 − 1 dimensional real vector space. This is an easy way of seeing that SU(N) also has dimension
N2− 1, since in general we cannot make arguments as simple as our identification of SU(2) with the
3-sphere. In fact, a famous theorem in topology holds that no sphere other than S3 and S1 (which
is homeomorphic to U(1)) can have a group structure.

We will often find it useful to study the subgroups of SU(N). For any A1, . . . , Al ∈ SU(N),
denote the subgroup that they generate by 〈A1, . . . , Al〉. This is defined to be the smallest group
that contains A1, . . . , Al, or equivalently, to be group of all finite words (including the empty word
I) comprised of A1, . . . , Al, A

−1
1 , . . . , A−1

l . For SU(2), it has been known since the Greeks that any
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finite groups of this form are isomorphic to either S4, A4, A5, Cn, or Dn; either a cyclic or dihedral
group of any order, or the symmetries of a Platonic solid. Another common sort of subgroup is a
one-parameter subgroup, which is defined for any A ∈ su(N) to be {eAt : t ∈ R}. One-parameter
subgroups of SU(2) are isomorphic to U(1), but in general we can only conlude that one-parameter
subgroups are isomorphic to R+.

We will also need a notion of a norm, not just for elements of SU(N), but for linear operators in
general. First define the familiar Lk vector norm to be

‖v‖k ≡

(∑
i

|vi|k
)1/k

(1.8)

Unless otherwise specified we will always use the L2 vector norm. Taking the limit as k → ∞ gives
the L∞ norm, or ‖v‖∞ ≡ sup{|vi}. By analogy, we define the L∞ operator norm to be

‖M‖∞ = sup
{
‖vf‖

‖v‖ = 1
}
. (1.9)

The reason why we work with SU(N) instead of U(N) is that the overall phase of our sys-
tem is an irrelevant degree of freedom. However, using SU(N) does not completely eliminate this.
Though phase is no longer a continuous degree of freedom, elements of SU(N) can be multiplied
by exp(2πik/N) for any integer k and they will still have determinant one. The subgroup of
U(N) that has no phase information at all is the rarely-discussed projective special unitary group
PSU(N) ≡ SU(N)/C∗. However, SU(N) is often more convenient to work with – for one thing,
because it is a real algebraic group (it can be described as the locus of zeroes of a set of real polyno-
mials in its entries) unlike PSU(N) – and the small difference in size between the two groups usually
does not affect our results. However, in chapter two, though the theory uses SU(2), the performance
guarantees are slightly stricter than necessary, since most of the actual computations were performed
using PSU(2), a group equivalent to SO(3).

1.2.3 Quantum mechanics as computational resource

With the above formalism established, most of the important principles of quantum computation
have already been described. The canonical example of a quantum computer is a set of n spin-1/2
particles that can be coupled together or manipulated individually. If spin up and spin down are
labelled |0〉 and |1〉, then we can define the computational basis to be the set of all n-fold tensor
products of these two states. It is natural to express the basis states as n-bit binary numbers, or
simply as |0〉, |1〉, . . . , |N − 1〉, where N = 2n is the dimension of the Hilbert space.

To use such a quantum computer, there are four basic requirements. First, one must be able to
initialize the system to a ground state, which we call |0〉. Then, it must be possible to implement a set
of local Hamiltonians that are computationally universal for reasonably precise amounts of time. We
will return to computational universality, but for now assume that one ought to be able to implement
any Hamiltonian that is in the tensor product of su(4) with n− 2 copies of the 2× 2 identity matrix.
In other words, any unitary transformation on two neighboring spins. The system must also resist
decoherence and other sources of errors, a subject which we will largely avoid discussing. Finally, one
must be able to perform a measurement in the computational basis, or equivalently, one should be
able to measure each spin individually.

The above description says little about the computational power of such a device, and without
making the notion of computational power more precise it will be difficult to do so. Nevertheless
there are still a few strengths of quantum computation that we should be able to have intuition for
at this point. One that has already been mentioned is quantum simulation. If we can effect any
local Hamiltonian, then we should be able to simulate any quantum system that has entirely local
dynamics, a problem which is generally thought to be computationally hard for classical computers.
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Another problem where quantum computers outperform classical computers, this time provably
so, is in unstructured search. Suppose we have a function f : {0, 1}n → {0, 1}, which we can compute
but not analyze. The problem is to find a value of x such that f(x) = 1. It is easy to see that
for a classical computer, we cannot do better than evaluating f(0), f(1), f(2), . . . until f returns a
one, since no ordering is better than any other and when f returns zero we gain no information. In
the worst case, when f(x) = 1 only for a single value of x, this takes N/2 evaluations of f(x) on
average. Using a method known as Grover’s algorithm, however, quantum computers can find x such
that f(x) = 1 in only O(

√
N) steps. The algorithm first prepares the quantum system in a even

superposition of all of the computational basis states, i.e.

|ψ〉 = N−1/2
N−1∑
x=0

|x〉 (1.10)

This can be accomplished by applying a Hadamard transformation,

H =
i√
2

[
1 1
1 −1

]
(1.11)

to each qubit. Note that the leading term is N−1/2 so that we will have 〈ψ|ψ〉 = 1. Though we
will not prove the effectiveness of the algorithm, the basic idea is that for every evaluation of f(x)
followed by an appropriate unitary transformation, we can increase the amplitude of the |x〉 state (for
some x with f(x) = 1) by a roughly constant amount. Since the probabilty of finding the system in a
state is the squared magnitude of the amplitude of that state, we only need O(

√
N) to have an O(1)

chance of success.
The key of this quadratic speedup is the L2 norm used in quantum mechanics and it is not

surprising that quantum systems (or even phase-coherent classical systems) often exhibit this sort of
improvement in dealing with highly general problems.

To better define the sorts of problems that we will solve with quantum computers, we will now
turn to computer science.

1.3 Complexity Theory

Quantum computation can also be considered completely formally, as an extension of theories of
classical computation. Instead of thinking of quantum computers as quantum systems for which we
are able to control the Hamiltonian and apply measurement operators, it is sometimes fruitful to
instead consider them to be phase-coherent randomized Turing machines.

1.3.1 Classical Complexity Theory

Complexity theory, broadly speaking, is the study of how easily certain problems can be solved
with entirely mechanical techniques. The space of problems is fairly simple to describe; determining
whether a particular string is a member of a set of strings (or language) is easily general enough. What
makes the field possible is that most mechanical methods of solving problems, from using Pentiums
to billiard balls, are loosely equivalent.

The generally accepted formalism for unifying classical computation is the Turing machine. A
Turing machine has a set of states Q, three of which are marked start, accept, or reject, an alphabet
Σ, which it uses for both its input and for a read/write work space, and a transition function f :
Q × Σ × Σ → Q × Σ × {L,R}. This function represents one step of running the machine; it maps
the machine’s state (in Q), the next character of the input stream (in Σ) and the current character
of the tape (also Σ) onto a new state (in Q). It also indicates a character (in Σ) for the machine to
write on the old tape location and a direction (either L or R) to move the tape head by a step. The
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machine halts only when it reaches an accept or reject state. We say that a Turing machine decides
a language if it accepts strings that are in the language and rejects strings that are not, all within a
finite amount of time.

This mode of computation seem a little abstruse and rather inefficient; performing most com-
putationally interesting tasks requires an immense amount of zipping back and forth on the tape.
However, the weak Turing-Church thesis holds that Turing machines are computationally universal,
meaning that any other imaginable method of computing can be simulated by a Turing machine. It
is of course impossible to prove this in general without a complete description of the physical laws
governing the universe, but a counter-example has never been found. Turing machines that have
multiple tapes, or that have registers and random-access memory like modern computers or even that
can branch non-deterministically and accept if any computational branch accepts, are all provably
equivalent to the basic model of a Turing machine. This is of course a fairly loose equivalence: the
class of decidable languages is the same, but the time and space required to do so can vary wildly
based on implementation.

For practical questions about computing, we need a notion of the time complexity (or sometimes
space complexity) of an algorithm or a language. The time complexity of an algorithm is said to
be O(f(n)) if there exists a constant c such that on any input of length n, the algorithm takes no
longer than cf(n) time to halt. Space complexity is similarly defined in terms of the total amount
of tape that the Turing machine accesses. This allows us to define time (and space) complexity
classes TIME(f(n)) (and SPACE(f(n))) to be the set of all languages that are decided by a Turing
machine in time (or space) f(n). The complexity class that is loosely equivalent to what is practically
computable is generally held to be P, the class of languages computable in polynomial time, or
P = ∪kTIME(nk). We often call these languages polytime computable, or even simply efficiently
computable. In contrast computationally hard problems are thought (but usually not proved) to
require super-polynomial time or often exponential time. The much powerful class of polynomial
space languages is analogously defined to be PSPACE.

By adding more capabilities to polynomial-time Turing machines we can obtain other interesting
complexity classes. One fairly practical feature is the ability to generate random bits. The class of
bounded-error probabilistic polynomial-time languages is denoted BPP and consists of the languages
that are decided with error no greater than 2/3 by poly-time Turing machines with access to random
bits. This is thought to most accurately describe classical computing capabilities, and it is an open
question whether BPP = P. Note that the 2/3 success rate is a somewhat arbitrary cut-off; if our
probability of success if 1

2 + 1
p(n) for some polynomial p(n) in the size of the input, then in a polynomial

number of steps we can amplify our probability of success exponentially close to one. However, what
if our criterion for success was simply that the machine always rejected bad inputs, but had some
non-zero probability (perhaps exponentially small) of accepting on any good input? This is known
as non-determinism, as it can equivalently be thought of as having the ability to simultaneously
try all possible values of the random bits and accept if any setting of them results in an accepting
computation. The class of languages decided by such machines is known as NP. Its complement,
coNP, can be thought of as the class of languages decided by a random Turing machine that always
accepts members of the language and has a non-zero probability of rejecting any string not in the
language.

The concept of polynomial time is central enough that it is often useful to speak of polynomial
time reducibility. A language A is polynomial time reducible to a language B (denoted A ≤P B) if
there exists a polynomial time Turing machine M whose output is a member of B if and only if its
input is a member of A. Thus, if B is solvable in polynomial time, then A is as well. This is a useful
way of showing that languages are roughly equally difficult. For example, the Cook-Levin Theorem
holds that any language in NP is polynomial time reducible to SAT, which is the language of boolean
formulas such as (x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x4) which are true for some assignment of the xi. The
proof involves writing the computational history of a polytime verifier as a polynomial size boolean
formula which has a satisfying assignment if and only if there exists a certificate which can cause the
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verifier to accept. Armed with this, we say that a language L is NP-complete if 1) L ∈ NP and 2)
SAT (and hence any language in NP) is polytime reducible to L. A language is NP-hard if only the
second condition is met.

Proving languages to be NP-complete is useful because if a single NP-complete language is
decidable in polynomial time, then P = NP, which is generally considered to be a most improbable
state of affairs. If we give up on NP-complete languages, though, then there are still several interesting
problems thought to be in NPand not P, such as factoring a large composite number or determining
whether two graphs are isomorphic. Such problems are informally said to constitute the class NPI,
and are loosely thought to be the area where we can expect the most improvement on quantum
computers.

Before formally defining quantum computation, we introduce the classical notion of circuit com-
plexity. A circuit has a fixed number of input wires and some number of gates (either AND, OR, or
NOT) that take as inputs either input wires or other gates. One gate is designated output, and the
circuit is said to accept or reject its input based on the value taken on by the output gate. A nearly
equivalent definition of a circuit, which we will use interchangeably, is to say that there are input bits
and work bits (one of which is marked as output) and that the circuit runs by executing a fixed series
of gates, each of which takes inputs either from the input bits or the work bits and writes its output
to a work bit. This second definition has the advantage of being easily expressible in terms of linear
algebra. If there are a total of N input and work bits, then there are 2N different possible states,
and we can represent a state |ψ〉 by a column vector in Z2N

2 with a single entry equal to one and the
rest filled with zeroes. This is equivalent to saying that states have L1 norm one. Every gate Gi can
then be expressed as a matrix of zeroes and ones with exactly one non-zero term in each column.
The result of the final check of the output bit can be expressed as ‖Q|ψ〉‖1, where Q is the matrix
that projects onto the subspace of accepting final states. Thus the entire computation is expressed
by ‖QGn · · · G1|ψ0〉‖1.

Expressing a simple circuit in terms of exponentially large matrices made up entirely of zeroes
and ones may seem a little pointless right now, but this formalism will allow for some interesting
generalizations. For example, to add randomness to a circuit, we consider our state space to instead
be all vectors in R2N whose entries sum to one and we allow our gates to be composed of nonnegative
real numbers, requiring only that each column sum to one. Our measurement stays the same, but
the result is now interpreted as the probability that the circuit accepts. Nondeterministic circuits are
defined the same way, but now the criteria for deciding a language are that the machine always reject
inputs not in the language and have a nonzero probability of accepting inputs in the language.

In general, circuits can solve the same sorts of problems that Turing machines can, but suffer
from the drawback of only handling input of a fixed size. To address this we consider circuit families
{Cn}n≥1, where Cn is a circuit with n inputs. We say that a circuit family is polynomial size if there
exists a polynomial p(n) such that Cn contains no more than p(n) gates. A circuit family {Cn} is
said to decide a language if any word of size n is in the language if and only if it is accepted by Cn.
Finally, define a uniform circuit family to be a family {Cn} such that there exists a Turing machine
M that, given a read-only input tape, a work tape that is size O(log n) and a write-only output
tape, will output a description of Cn on input n. Such a Turing machine is known as a log-space
transducer. Now it is possible to show that P is equivalent to the set of the languages decidable by
polynomial-size uniform circuit families.

1.3.2 Quantum Complexity Theory

This leads naturally to one of the most common ways to think about quantum computation: the
quantum coprocessor model. Here a language is decided by a standard classical polytime Turing
machine (sometimes also restricted to log-space) which can construct a quantum circuit, prepare its
input, run it one or more times, and measure its output and use it to help decide the problem. We will
clarify in a moment exactly what a quantum circuit is, but for now we can define three complexity
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classes: EQP, BQP and NQP. For all three the classical Turing machine is restricted to polynomial
time, and the number of gates of the quantum circuit (and by extension its number of bits) can only
be polynomial size. The differences between the three complexity classes concern the acceptance
criteria. If a language can be decided by a polynomial-size uniform quantum circuit family (or simply
a quantum algorithm) with zero probability of error, then it belongs in EQP. For a number of reasons,
some of which will become apparent in the next few sections, this class is not particularly useful to
consider. If the probability of error is less than 1

2 −
1

p(n) for some polynomial p(n), then the language
is in BQP and if the quantum algorithm always rejects strings not in the language and has a non-zero
probability of accepting strings in the language, then we say the language belongs to NQP.

In defining a quantum circuit, we have somewhat more latitude than with classical circuits. Instead
of an operation being represented by a truth table, a quantum gate on k qubits is an element in
SU(2k). Just as the Toffoli gate (flip bit 3 if bits 1 and 2 are set) is univeral for classical reversible
computation ([Ben89]), arbitrary single qubit operations and a CNOT (flip bit 2 if bit 1 is set) can
be shown to be computationally universal for quantum algorithms. With these operations available
as fundamental quantum gates, it is straightforward to show that BPP∈BQP and that NP∈NQP.

1.4 Fault Tolerance

Error rates for solid-state electronics are on the order of 10−22 per gate per second, so for all practical
purposes idealizing classical computers as Turing machines is fairly reasonable. Unfortunately, the
intrinsic fault-tolerance of classical computers relies on continually dissipating enormous amounts of
information in ways that are difficult to imagine for most schemes of quantum computation. As
a result, dealing effectively with errors and decoherence is one of the primary experimental and
theoretical challenges in quantum computing. We will survey a few of the main principles of fault-
tolerant computing, since they provide a framework for the compiling problem.

1.4.1 Effects of small perturbations

An obvious approach to fault-tolerance is to devise fault-tolerant schemes for each individual operation
and hope that the errors do not grow too large by the end of the quantum circuit. Fortunately,
even imperfect quantum gates are generally unitary and so will at worst preserve the size of any
perturbation to one element of the circuit even if each gate has a small error. This intuitive claim
was formalized by Bernstein and Vazirani ([BV97] and [Vaz98]). However, our statement of the result
oversimplifies slightly. Errors quantum gates can also take the form of decoherence or coupling with
the environment, which can result in dissipative and non-unitary processes, about which all we can
conclude is that their operator norm is at most one. This requires the following result:

Theorem 1 (Bernstein and Vazirani) If U1, . . . , Um, V1, . . . , Vm are N × N matrices such that
‖Ui‖, ‖Vi‖ ≤ 1 and ‖Ui − Vi‖ < δ, then ‖Um · · ·U2U1 − Vm · · ·V2V1‖ < mδ.

Proof The idea is that if we replace a single Ui in the product Um · · ·U1 with Vi, then the en-
tire operator will still change by only δ. Changing one operator at a time and using the triangle
inequality will then give us the desired result. More formally, since we are interested in the L∞

operator norm, we will bound the largest possible discrepancy for any starting state |φ0〉. Let
|φk〉 ≡ Uk · · ·U2U1|φ0〉 denote our state after we have acted on it with the first k of the U gates
and let |ψk〉 ≡ Vm · · ·Vk+1Uk · · ·U1|φ0〉 = Vm · · ·Vk+1|φk〉 be the kth step in a series of “hybrid”
states where the Ui are replaced by Vi one at a time. The so-called hybrid argument is named after
a similar technique from cryptography. Note that

‖Um · · ·U1 − Vm · · ·V1‖ = sup
{
‖|ψm〉 − |ψ0〉‖

‖φ0‖ = 1
}

(1.12)

17



Aram Harrow Quantum compiling

Further, for any k,

‖|ψk〉 − |ψk−1〉‖ = ‖Vm · · ·Vk+1UkUk−1 · · ·U1|φ0〉 − Vm · · ·Vk+1VkUk−1 · · ·U1|φ0〉‖ (1.13)
= ‖(Vm · · ·Vk+1) (UkUk−1 · · ·U1|φ0〉 − VkUk−1 · · ·U1|φ0〉) ‖ (1.14)
≤ ‖UkUk−1 · · ·U1|φ0〉 − VkUk−1 · · ·U1|φ0〉‖ = ‖(Uk − Vk)|φk−1〉‖ (1.15)
≤ ‖Uk − Vk‖ ≤ δ (1.16)

By the triangle inequality,

‖|ψm〉 − |ψ0〉‖ ≤
m∑
k=1

‖|ψk〉 − |ψk−1〉‖ ≤ mδ, (1.17)

completing the proof.

The hybrid argument is a general and broadly useful technique. A slightly more sophisticated use
of it can prove that the square-root speedup of Grover’s algorithm is optimal, and thus that there
exists an oracle A such that NPA 6⊆ BQTIME(o(2n/2))A ([Vaz98]).

To apply this to a quantum algorithm, we need to relate the operator distance to the total variation
distance, which is defined to be the largest difference in probability distributions that can result from
applying the two operators. We state without proof another simple result due to Bernstein and
Vazirani:

Lemma 2 Let |ψ〉, |φ〉 ∈ CN such that 〈ψ|ψ〉 = 〈φ|φ〉 = 1 and ‖|ψ〉−|φ〉‖ ≤ ε. Then no measurement
can distinguish |ψ〉 and |φ〉 with probability greater than 4ε.

1.4.2 Error-correcting codes

In ways analogous to classical error-correcting codes, we can encode qubits in ways that can reliably
reject small independant errors. On its face, this would seem unbelievable: not only do quantum
computers encode analog data, but measuring them to see if an error has occured destroys their
information! It turns out that these two seeming problems actually resolve each other. By perform-
ing suitable transformations prior to measurement, we can measure the error without gaining any
knowledge about the data. This measurement forces an outcome where there is either no error, or a
known and correctable error.

The theory behind this is remarkably deep, but for this paper we are interested only in the
implications of error-correction for compiling. Once we have encoded our qubits with quantum error-
correcting codes, we need to modify our gates suitably both to work in the new representation and
to be able to automatically reject small errors. In order to do so, it will turn out that any error-
correcting code only allows a finite set of gates to be performed fault-tolerantly. A typical set of gates
might be CNOT, the three Pauli gates and the S, T and H gates, which are defined by

S =
[
eiπ/4 0

0 e−iπ/4

]
, T =

[
eiπ/8 0

0 e−iπ/8

]
and H =

i√
2

[
1 1
1 −1

]
(1.18)

These fault-tolerant gates must comprise only a discrete set, since if they were to form a continuum
then we would have no guarantee that any gate we applied wasn’t off by a slight amount. This means
that even though physical systems typically have terms in their Hamiltonian that can be turned on
and off for discrete amounts of time, by the time we are dealing with protected quantum data we
only have a finite repertoire of unitary transformations available to us.

The payoff, however, is immense. The simple, but important, threshold theorem says that we can
perform arbitrarily long computations if our error rate is below some constant that depends on our
physical assumptions but that is often thought to be roughly between 10−4 and 10−6 per gate.
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1.5 Universal quantum gates

Either because error-correcting codes restrict us to a discrete state of possible quantum operations,
or because our quantum computer’s implementation only allows certain Hamiltonians, we often find
ourselves only able to apply a limited set of unitary transformations. Since quantum algorithms are
typically written with the assumption that CNOTs and arbitrary single-qubit operations are possible,
it is often necessary to build up reasonable approximations to the algorithm we want out of strings
of the gates that we are able to apply. This is the general problem of quantum compiling.

Before discussing questions of compiling efficiently, we first need to establish when it is even
possible. Certainly if the only single qubit operations we are able to apply form some finite subgroup
of SU(2), then there will be a limit to how well we can approximate certain elements of SU(2),
regardless of how long a string of base gates we compose. To make things more concrete, say that
we are able to perform base gates A1, . . . , Al and their inverses. Then 〈A1, . . . , Al〉 is the set of
operations that we are able to perform. We say that A1, . . . , Al is a computationally universal set of
base gates if 〈A1, . . . , Al〉 is dense in SU(2), or equivalently if for any U ∈ SU(2) and any ε > 0, we
can approximate U to within a distance ε with some string of base gates.

Fortunately, almost all sets of base gates turn out to be computationally universal, as shown
independently by [Llo95] and [DBE95]). Here almost all means all but a set of measure zero.

Proposition 3 Almost any set of gates is computationally universal.

Proof Following [Llo95], we will prove the result only using the first two gates in the set. Call them
A and B and let them equal ea and eb for some a, b ∈ su(N). Let L denote the algebra generated by
a and b through commutation. Consider the set of matrices of the form

U = eat1ebt2eat3ebt4 , · · · (1.19)

for some finite number of tk. As each additional term is added, the dimension of the submanifold
that can be reached by varying t1, t2, . . . increases by one until it reaches the dimension of L. If
dim L = dim SU(N), then the space of transformations that can be reached in dim L has non-zero
measure, and since SU(N) is compact, the entire group can be reached within a finite multiple of
dim L steps.

For generic A and B, what is the dimension of L? The only way it can fail to be dim SU(N) =
N2 − 1 is if eat and ebt both lie in the same (N2 − 1)-dimensional representation of some other Lie
group with fewer generators. The classification of these Lie groups depends on N , but in general
each one has only a finite number of inequivalent representations. Since each such representation has
measure zero, then with probability one eat and ebt generate all of SU(N).

However, we only have access to a discrete set of gates which we cannot apply for continuous
amounts of time. With probability one, this turns out not to restrict us. For there to exist m such
that ‖Am − eat‖ < ε it is only necessary that the eigenvalues of A have phases that are irrational
multiples of π, and likewise for B. This is the problem of simultaneous Diophantine approximation,
and for almost all choices of A there is a solution with m of order εN−1. Since there are O(N2)
terms in (??) and we can choose our errors to roughly cancel out, we require O(N2εN−1) gates to
approximate an arbitrary gate in SU(N) to a precision ε.

If we assume that quantum algorithms are written in terms of CNOTs and single-qubit operations
then we can apply the above result to show the total cost of compiling. On the other hand, if we
simply have a universal family of two-qubit operations from which we need to simulate CNOTs then
the cost will be somewhat higher.

Proposition 4 Any n-gate quantum algorithm that has k bits of output can be simulated with error no
greater than ε in O(n4 log k/ε) gates from any universal family of two-qubit gates or with O(n2 log 1/ε)
gates from a universal family of single-qubit gates together with a CNOT.
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Proof If we approximate each gate to an accuracy of 1/12n, then by the hybrid argument (theorem
??) and lemma ??, the total program will fail no more than 1/3 of the time. If we need to generate
arbitrary gates in SU(4) to do so, then this will multiply our program length by O(n3) and if we
have a CNOT and only need to generate arbitrary gates in SU(2), then this step will only multiply
our number of gates by O(n). Now we can simply repeat the program O(log k/ε) times and have the
controlling classical computer set each bit of the final answer to whatever value that bit of the answer
was set to more often in the O(log k/ε) separate runs. Using a Chernoff bound, it is possible to show
that this results in an error rate for each bit of the final answer of O(ε/k) or a probability of getting
any bit wrong no greater than O(ε).

This polynomial slowdown eliminates the benefit of Grover’s algorithm and often makes algorithms
far too long to be practical, but at least it preserves BQP. As a first stab at quantum compiling,
this has been a failure, but not a hopeless one.

1.5.1 Free subgroups

The above construction doesn’t use nearly all of the words available to us. Define a reduced word in
〈A1, . . . , Al〉 to be a word that contains no substrings of the form AiA

−1
i or A−1

i Ai. In general there
are (2l)(2l− 1)n−1 reduced words of length n with l generators. An interesting question would be to
ask how many of them are typically distinct? It turns out that with probability one every reducted
word is different. When this occurs, and the only relations among A1, . . . , Al are the trivial ones
AiA

−1
i = A−1

i Ai = I, then we say that 〈A1, . . . , Al〉 is a free group.

Proposition 5 If there exists a single free subgroup of SU(N) with l generators, then for A1, . . . , Al ∈
SU(N) chosen uniformly at random, 〈A1, . . . , Al〉 is free with probability one.

Proof Fix a reduced word w(A1, . . . , Al) of length m comprised of A1, . . . , Al, A
−1
1 , . . . , A−1

l and let
it act as a function from SU(N)l to SU(N). If we examine the domain and range term-by-term, then
w can be expressed as N2 polynomials, wij(A11

1 , . . . , A
NN
1 , . . . , A11

l , . . . , A
NN
l ) of degree no higher

than m in any variable, after we remove all relations among the Aijk that come from belonging to
SU(N). Obviously if A1 = · · · = Al = I, then w = I. On the other hand, since there exists a free
subgroup of SU(N), there exist A1, . . . , Al ∈ SU(N) with no relation among them, implying that
w(A1, . . . , Al) 6= I. Thus w is not constant and at least one of the wij is a nonconstant polynomial of
degree at most m. For w to equal I, we must have that wij is one if i = j or zero otherwise. However,
this occurs on a set of measure zero, since it corresponds to the set of solutions of a nonconstant
polynomial. Thus, any finite word w evaluates to the identity on a set of measure zero.

Since there are only countably many such words, the set of A1, . . . , Al for which any non-trivial
word evaluates to the identity is a countable union of measure zero sets, which also has measure zero.
Thus with probability one, a random set of l elements from SU(N) together with its inverses has no
relations (other than of the form AiA

−1
i = I) and thus generates a free subgroup of SU(N).

In Chapter 4, we will demonstrate a free subgroup of SU(2) and by extension SU(N). ?? This
will allow us to conclude that

Corollary 6 Almost all sets of elements of SU(N) generate free subgroups.

However, products of uniform random matrices are not themselves uniform or even pairwise
independant, so knowing that most matrices generate free groups doesn’t give us any important
information about the distribution of their strings.

Moreover, generators that are not free are dense in SU(N)l. This is because every matrix is
arbitrarily close to some matrix whose eigenvalues have phases that are rationally related to π.
Though we will not explore this line further, it has interesting implications for the eigenvalues of the
mixing operators that we use in chapter 3.
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It is interesting to note that the above proof does not hold for infinite words. Define the group
commutator [U, V ] by [U, V ] = UV U−1V −1. Now for any A0, B0, C0 ∈ SU(N), define for all k ≥ 1,
Ak = [Bk, Ck], Bk = [Ak, Ck], and Ck = [Ak, Bk]. As k → ∞, Ak, Bk and Ck all approach the
identity for a set of A0, B0, C0 with non-zero measure. The proof of this follows trivially from the
Solovay-Kitaev theorem in the next chapter; in fact, constructing sequences of strings that converge to
the identity on a set of non-zero measure is the underlying principle behind the sort of approximation
performed by the Solovay-Kitaev theorem. Unfortunately, as we will later see, this approach is
unlikely to improve on the polylogarithmic string length achieved by Solovay-Kitaev.

1.5.2 Multi-qubit compiling

For most of this paper we will discuss compiling for an arbitrary fixed number of qubits (or rather
for SU(N) for constant N), but with the assumption that we are only discussing one or two qubits.
This is because compiling algorithms that scale to an arbitrary number of qubits have to be treated
in a fundamentally different way. For one thing for n qubits the matrices and vectors involved are
exponentially large in n, so we can never efficiently write down or examine more than a polynomial
fraction of them. Moreover, efficient generic compiling is no longer a reasonable idea. This is seen
most easily by restricting ourselves only to classical functions from n bits to 1 bit, something clearly
simpler than a quantum algorithm. Such functions are defined on 2n different inputs and thus there
are a doubly exponential number of truth tables necessary to represent all such functions. This means
that representing one function take 2n bits no matter how we describe it: by writing out the truth
table, by making a circuit of NAND gates, or by describing a quantum algorithm. Doing generically
better than this would require universally compressing data, which is of course impossible.

Perhaps we could abandon the idea of generic unitary transformations and discuss only programs
that can be written out in terms of a polynomial number of elementary gates. Then perhaps we
could attempt to find a shorter program that did the same thing, or one that accomplished the same
thing using our restricted set of gates, but that did so in a way that was more efficient than simply
compiling each one and two qubit gate separately. It turns out that most of the simplest things that
we would want our compiler to do, such as determine whether our compiled code always works the
same way as the code we were given, are NP-complete for classical algorithms, and NQP-complete
for quantum algorithms.

Of course, normal computers compile large programs and optimize code all the time. The key
is not to look at programs as large matrices or to try to make enormous improvements, but to
simply use a number of local heuristics that can be locally shown to leave the results of an algorithm
unchanged. This brings up the real reasons that this paper does not discuss compiling for many qubits,
though it may turn out to be an interesting problem. First, because we have to look at programs
in fundamentally different ways, which depend far more on the algorithm being implemented, and
second because this form of quantum compiling is not particularly different from many kinds of
classical compiling, which have been worked on in some form or another for decades.

With that in mind, we will now give a constructive proof of one of the main results in quantum
compiling to date, the Solovay-Kitaev theorem.
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Chapter 2

The Solovay-Kitaev theorem

The constructions given for compiling in the last chapter are in many ways quite desirable: they work
for any dense set of gates, can be efficiently computed on a classical Turing machine and only result
in a polynomial slowdown (thus preserving the complexity class BQP). However, this polynomial
slowdown is rather irksome. For one thing, it renders useless the quadratic speedup of quantum
computers for unstructured or black box problems. For another, we know it is possible to do far
better than O(1/ε) basic gates for a precision of ε. From counting the number of different ways to
string together basic gates, we obtain a lower bound that is exponentially better, O(log 1/ε); moreover,
in the next chapter, we demonstrate non-constructively that it is always possible to saturate this lower
bound up to a constant factor.

Although achieving the O(log 1/ε) lower bound appears to be quite difficult, we can still do
much better than O(1/ε) by exploiting the nonabelian structure of SU(N). Using some simple
observations about commutators, the Solovay-Kitaev theorem demonstrates that it is possible to
generically compile to precision ε with O(logc(1/ε)) gates, where c is a constant that varies between
2 and 4 depending on the implementation. This polylogarithmic slowdown is often a quite reasonable
cost, as it leaves any polynomial quantum speedup intact.

2.1 Statement of the theorem

The theorem was proved independently by Solovay (in an unpublished manuscript) and Kitaev
([Kit97]). One other derivation exists in [NC00] and elaborated in unpublished work done by this
author with Xinlan Zhou, Ben Recht and Isaac Chuang. For the most part, this is the one that we
follow. The precise statement of the theorem is as follows:

Theorem 7 (Solovay-Kitaev) For any A1, . . . , Al ∈ SU(N) such that 〈A1, . . . , Al〉 is dense in
SU(N), there exists a constant C and a procedure for approximating any U ∈ SU(N) to precision ε
with a string of A1, . . . , Al and their inverses of length no greater than C logc(1/ε), where c ≈ 4 and
C is independant of U and ε. This procedure can be implemented in time polynomial in log(1/ε).

We will prove this theorem backwards, beginning with its implications, an overview of its proof
and the resulting algorithm, and then proceeding backwards into the gritty details and lemmas that
constitute it and verify its correctness. First we state a corollary about what the theorem means for
quantum circuits.

Corollary 8 For any family of universal gates, there exists a constant C such that any quantum
circuit with n arbitrary gates can be constructed from fewer than Cn logc(n) log(1/δ) universal gates
if the probability of error is δ.
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Proof The corollary is proved in the same way as proposition ??. After reducing the error per
gate to O(1/n) with a now polylogarithmic cost, the error for the entire circuit becomes O(1) and
classical probability amplification becomes possible.

The highest-level picture of the Solovay-Kitaev theorem is that of successive approximation. We
will use a crude constant-time strategy to make an initial approximation to our desired gate, then will
attack the remaining distance with techniques that rely on being near the identity. Specifically, near
the identity the group commutator (which is easily expressible with strings of matrices) approaches
the algebra commutator (which is easily calculable), and by moving back and forth between these
two ways of looking at operators we can express precise matrices near the identity as strings of less
precise matrices that are farther from the identity.

Before continuing, we need to define a few terms. If A and B are sets of points, then say that
A is an ε-net for B if ∀b ∈ B,∃a ∈ A such that |a − b| < ε. Define S(ε) to be the set of matrices
within a distance ε of the identity. To make our analysis more concrete we will prove the theorem
for the SU(2) case. To this end, define u(~x) ≡ ei~σ·~x. Also, since SU(2) is a finite dimensional space,
all norms can be related to each other by constant factors. Instead of the L∞ norm, we will find it
more convenient to work with the L2 or trace norm, defined to be ‖M‖ = Tr

√
MM†. If elements

of SU(2) are associated with points on the surface of the 3-sphere, then this is simply equivalent to
twice the Euclidean distance. This implies a natural operator distance D(U, V ) ≡ ‖U −V ‖, which we
will often refer to simply as precision. Finally, we will use the commutator [U, V ] ≡ UV U†V † both
for members of SU(2) and su(2).

2.2 Algorithm

We are now ready to begin a constructive proof of the theorem. The strategy will be to construct a
series of epsilon nets, Γ0,Γ1, . . . such that Γ0 is an ε0-net for SU(2) and for k > 0, Γk is an ε(k)2-net
for S(ε(k)). For consistency, let ε(0)2 = ε0. The initial net Γ0 can be created in constant time
and below we will discuss the details of doing so. Afterwards, every other net can be constructed
recursively, by defining Γk = {ABA†B†|A,B ∈ Γk−1}. We will prove tighter bounds below, but in
general each iteration squares the epsilon of the net and multiplies its string length by four, so Γk has
strings of length O(4k) and ε(k)2 = O(ε2

k

0 ). This suggests an obvious means of performing successive
approximation: as long as ε(k) > ε2(k − 1) we can find the closest gate in Γ0 to our target, then
the closest gate in Γ1 to the remaining difference, and so on, until after k steps we have a string of
length O(4k) and an approximation of accuracy O(ε2

k

0 ). Thus k must be O(log log(1/ε)). This indeed
obtains a polylogarithmic string length for generic sets of gates, but there is a hidden exponential
computational cost. Since the amount of volume in a small ball of SU(2) scales roughly as r3, an
ε-net for S(δ) cannot contain any fewer than O((δ/ε)3) points. Since Γk is an ε2(k)-net for S(ε(k)),
it must contain O(ε3(k)), or O(ε3·2

k

0 ) points. For k = O(log log(1/ε)), this is a number of points
exponential in log(1/ε), even if we only take as few commutators as are necessary to fill the patch
that we need to guarantee convergence.

The key trick in constructing an efficient algorithm is to note that since the Γk are constructed
recursively, we can generate elements of them on the fly instead of precomputing all the points in the
net. This is accomplished by the following procedure:

Subroutine FACTOR(C) returns A,B such that ~a × ~b = ~c and ~a ⊥ ~b, where A = u(~a),
B = u(~b) and C = u(~c).

Procedure [A,B] =FACTOR(C)
Write ~c = (c1, c2, c3) in polar coordinates
c1 = c sin(θ) cos(φ), c2 = c sin(θ) sin(φ), c3 = c cos(θ)
Then let ~ap ≡ (

√
c, θ + π/2, φ) and ~bp ≡ (

√
c, π/2, φ+ π/2)
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Return [u(~a), u(~b)]

The correctness of this will be proved below. For now note that ‖u(~x)− I‖ = 2 sin(|x|/2).
We will also need define a procedure ε0-APPROX(U) that takes constant time and returns a string

of bounded length that is an ε0 approximation to U . Note that this is the only place in the algorithm
where we reference the base gates that we are working with; from now on they are abstracted away
as simply generators of an ε0 net.

Now we can finally define the main procedure:

Function SK(U, n) takes in any U ∈ SU(2) and returns V ∈ 〈A1, . . . , Al〉 such that ‖U −
V ‖ < ε2(n).

Function V =SK(U, n)
If n = 0

V = ε2(0)-APPROX(U,GI).
Else

W = SK(U, n− 1)
[A,B] =FACTOR(UW †)
V = [SK(A,n− 1),SK(B,n− 1)]W

End
Return V .

We claim that this algorithm will work correctly if ε(k)2 < ε(k + 1) for all k, which will always
hold when ε0 < εc for some critical value εc. Continuing to work backwards, we will defer choosing
εc until the end of the proof.

By definition SK(U, 0) returns a ε2(0)-approximation to U . The proof of the algorithm’s correctness
now proceeds by induction. Assume SK(U, n− 1) returns an ε2(n− 1)-approximation of U . We now
want to show that SK(U, n) is an ε2(n)-approximation of U , where ε2(n) = Cε3(n − 1) for some
constant C. Note when W =SK(U, n − 1), ‖UW † − I‖ < ε2(n − 1). Let u(~c) = UW †, and using
‖u(~c) − I‖ = 2 sin(c/2), we have c < ε2(n − 1) + O(ε6(n − 1)). Let [A,B] =FACTOR(UW †), and
u(~a) = A, u(~b) = B. It follows that a, b =

√
c < ε(n−1)+O(ε5(n−1)). Let u(~a′) = A′ =SK(A,n−1),

and u(~b′) = B′ =SK(B,n−1). Since A′, B′ are the ε2(n−1)-approximations to A and B respectively,
we have a′, b′ < ε(n− 1) + ε2(n− 1). The output from SK(U, n) is [A′, B′]W , and

‖[A′, B′]W − U‖ (2.1)
= ‖[A′, B′]− UW †‖ (2.2)

= ‖[u(~a′), u(~b′)]− u(~c)‖ (2.3)

≤ ‖[u(~a′), u(~b′)]− u(~a′ ×~b′)‖+ ‖u(~a′ ×~b′)− u(~c)‖ , (2.4)

Using the facts (proved in the next subsection) that given a, b < δ,

‖[u(~a), u(~b)]− u(~a×~b)]‖ ≤ d1δ
3 +O(δ4) , (2.5)

‖u(~a)− u(~b)‖ ≤ ‖~a−~b‖+ d2δ
3 +O(δ4) < ‖veca−~b‖ , (2.6)

for some constants d1 > 0 and d2 < 0, we have

‖[u(~a′), u(~b′)]− u(~a′ ×~b′)‖ = d1ε
3(n− 1) +O(ε4(n− 1)) (2.7)
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and

‖u(~a′ ×~b′)− u(~c)‖ = ‖u(~a′ ×~b′)− u(~a×~b)‖ (2.8)

= ‖~a′ ×~b′ − ~a×~b‖+O(ε6(n− 1)) (2.9)
= 2ε3(n− 1) +O(ε4(n− 1)) (2.10)

Therefore,
‖U − [A′, B′]W‖ ≤ (d1 + 2)ε3(n− 1) +O(ε4(n− 1)) . (2.11)

By choosing C = d1 + 2, ε2(n) = Cε3(n− 1), SK(U, n) returns an ε2(n)-approximation of U ∈ SU(2).

2.3 Efficiency of the algorithm

In this subsection, we analyze the efficiency of the above algorithm. We first show that when the
algorithm converges, finding an ε-approximation to any U ∈ SU(2) requires O(logα(1/ε)) calls to
ε0-APPROX with α ≈ 2.7.

SK(U, n) is an recursive algorithm. When n > 0, SK(U, n) calls SK(U, n−1) three times, and SK(U, 0)
calls ε0-APPROX once. Thus, to compute SK(U, n), it requires 1 + 3 + 32 + · · ·+ 3n = (3n+1 − 1)/2
calls to ε0-APPROX.

Given ε2(n) = Cε3(n− 1), we have

ε(n) =
(Cε(0))(3/2)k

C
. (2.12)

For ε2(n) ≤ ε, it is sufficient to choose n such that(
3
2

)n
≥ log(C2ε)

2 log(Cε(0))
(2.13)

Thus, the running time is proportional to 3n+1 =
[

log(C2ε)
2 log(Cε(0))

]log 3/ log(3/2)

= O(logα(1/ε)) with
α = log 3/ log(3/2) ≈ 2.7.

Next we show that the algorithm returns an ε-approximation of U ∈ SU(2) using O(logβ(1/ε))
basic gates with β ≈ 4.0. Let 〈A1, . . . , Al〉l0 be an ε2(0)-net for SU(2), and ln be the maximum length
of the gate returned by SK(U, n). Then ln ≤ 5ln−1 ≤ 5nl0. Using n satisfying Eq. (??), we have

ln(ε) ≤ 5nl0 ≤ l0
[

log(C2ε)
2 log(Cε(0))

]log 5/ log(3/2)

= O(logβ(1/ε)), (2.14)

where β = log 5/ log(3/2) ≈ 4.0.
Thus, the proposed algorithm is efficient in both the time resource and the length of the approx-

imation.

2.4 The initial epsilon net

For the algorithm to converge, the initial ε0-net should have ε0 sufficiently small, such that ε(n)
decreases quickly with increasing n. From Eq. (??), this requires Cε(0) < 1. In this section, we find
the sufficient value of ε(0) for the algorithm to converge.

Lemma 9 Given a, b < δ,

‖[u(~a), u(~b)]− u(~a×~b)]‖ = d1δ
3 +O(δ4) , (2.15)
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with d1 ≤ 4
3
√

3
.

Proof Let A = i~σ · ~a and B = i~σ · ~b. Then e−iA = u(~a) and e−iB = u(~b). Also note that
e−[A,B] = u(~a×~b). Then given a, b < δ

[e−iA, e−iB ] = e−iAe−iBeiAeiB (2.16)

= I − [A,B] +
i

2
[A+B,A2 + 2AB +B2] +O(δ4) (2.17)

and
e−[A,B] = I − [A,B] +O(δ4) (2.18)

Therefore,

M ≡ [e−iA, e−iB ]− e−[A,B] (2.19)

=
i

2
[A+B, [A,B]] +O(δ4) (2.20)

= −1
8

[(~a+~b) · ~σ, (~a×~b) · ~σ] +O(δ4) (2.21)

= − i
4

[(~a+~b)× (~a×~b)] · ~σ +O(δ4), (2.22)

where ~σ is defined to be x̂σx + ŷσy + ẑσz. Let λ1,2 be the two eigenvalues of M . |λ1,2| = 1
4‖(~a+~b)×

(~a×~b)‖+O(δ4) ([HJ]) Let the angle between ~a and ~b be θ. Therefore

‖(~a+~b)× (~a×~b)‖ = ‖(~a+~b)‖ab| sin(θ)| (2.23)

=
√
a2 + b2 + 2ab cos(θ)ab| sin(θ)| (2.24)

≤
√

2δ3
√

1 + | cos(θ)|| sin(θ)| (2.25)

≤ 8
3
√

3
δ3 , (2.26)

and

‖[u(~a), u(~b)]− u(~a×~b)‖ (2.27)

= tr|
√
MM† = |λ1|+ |λ2| ≤

4
3
√

3
δ3 +O(δ4) (2.28)

Thus, d1 ≤ 4
3
√

3
≤ 0.77.

Since C is chosen to be d1 + 2 ≤ 2.77, for Cε(0) < 1, it is sufficient to have ε(0) < 1/C = 0.361.
Thus, an initial ε2(0)-net with ε2(0) ≤ εc = 0.13 is sufficient for the approximation algorithm to
converge.

Finally we prove a lemma used in the last section.

Lemma 10 Given a, b < δ,

‖u(~a)− u(~b)‖ ≤ ‖~a−~b‖+ d2δ
3 +O(δ4) , (2.29)

for some constant d2 < 0.
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Proof:

M = u(~a)− u(~b) (2.30)

= −i(A−B)− A2 −B2

2
+ i

A3 −B3

6
+O(δ4) (2.31)

= −i(A−B)− (a2 − b2)I
8

+ i
a2A− b2B

24
+O(δ4) , (2.32)

where we have used (2A)2 = (~a · ~σ)2 = a2I. Thus

MM† = (A−B)2 − (A−B)(a2A− b2B)
24

(2.33)

− (a2A− b2B)(A−B)
24

+
(
a2 − b2

8

)2

I +O(δ5) (2.34)

= (
1
4
‖~a−~b‖2 + β)I +O(δ5) , (2.35)

where β = −a
4+b4

3·24 + (a2−b2)2

26 − (a2+b2)~a·~b
3·24 ≤ 0. Let α = ‖~a−~b‖, and

√
MM† =

√
( 1

4α
2 + β)I +O(δ5)).

Then ‖u(~a) − u(~b)‖ = tr|
√
MM†| = α

√
1 + 4β/α2 +O(δ3) Since β ≤ 0, we obtain ‖u(~a) − u(~b)‖ ≤

α+ d2δ
3 +O(δ4), where d2 ≤ 0.

2.5 Determining Epsilon

The above arguments prove the convergence of our algorithm given the assumption that ε0-APPROX(U)
will always return an approximation that is accurate to within ε0. Since ε0-APPROX(U) simply
searches through an ε-net G for the closest operator to U , an equivalent problem is to determine ε,
given G, and verify that ε < εc. More formally, if G = {g1, . . . gn}, then we define

f(x) ≡ inf
i
|x− gi| and ε = sup

x∈SU(2)

f(x) (2.36)

Since our methods for constructing G do not easily lend themselves to analytic calculations of ε,
we will resort to proving that G is an ε-net by computerized enumeration of cases. On its face, finding
the maximum value of f(x) does not seem particularly straightforward, as there are a continous range
of choices for x ∈ SU(2) to check. However since SU(2) is compact, it will suffice to check all the
local maxima of f(x) and since f(x) is differentiable (along some direction) almost everywhere, we
expect the local maxima to have measure zero and likely be a finite set. Say that x is an extreme
point if it is a global maximum, i.e.

∀y ∈ SU(2), f(x) ≥ f(y) (2.37)

With the following lemma, we prove that the extreme points are all contained within a set of size(
n
4

)
.

Lemma 11 Any extreme point is equidistant from its four closest neighbors in G.

Proof Let x be an extreme point. Order the elements of G by their distance to x, so that f(x) =
|x−g1| ≤ |x−g2| ≤ . . .. First, we proceed by contradiction and suppose that |x−g2| = |x−g1|+δ, for
some δ > 0. Define B(a, ε) to be the open ball of radius ε centered on a. Then for all x′ ∈ B(x, δ/2),
|x′− g1| = infi |x′− gi| = f(x′). However, since distance to g1 has a local minimum only at g1 (which
must be different from x if x is to be an extreme point), there must exist some x′ ∈ B(x, δ/2) such
that |x′− g1| > |x− g1|, which is impossible, since x is an extreme point. Thus, our assumption that
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|x − g2| 6= |x − g1| must have been false, and we have that all extreme points are equidistant from
their two closest neighbors.

Similar arguments will also apply to g3 and g4. If we consider elements of SU(2) to be points on
the unit 3-sphere, then the set of points equidistant from g1 and g2 is simply the hyperplane given by

E(g1, g2) ≡
{
y
|y − g1| = |y − g2|

}
=
{
y
y · (g1 − g2) =

(
g1 + g2

2

)
· (g1 − g2)

}
(2.38)

Now, if |x− g3| = |x− g1|+ δ, we consider distance from g3 on the domain E(g1, g2)∩B(x, δ/2) and
again find that δ must be zero. Thus, x is located on E(g1, g2, g3), the plane that is equidistant from
g1, g2 and g3. Repeating this process one last time, we find that x is in E(g1, g2, g3, g4), which is a
line passing through the origin. However, x is also on the unit sphere, which when intersected with
E(g1, g2, g3, g4) will constrain x to a pair of points. Since we can no longer construct an open ball
within E(g1, g2, g3, g4), we stop here.

This suggests an obvious algorithm for determining ε. For every different way that we can select
four points, consider the x and −x that are equidistant from all four as possible extreme points.
Verify that these possible extreme points are indeed closer to the four points that they’re equidistant
from than to any other points in the net and then ε will be the greatest minimum distance of any
extreme point. Since there are O(n4) ways to choose 4 points and for each possible extreme point
we need to check its distance against every point in the net, the total running time is O(n5). This is
polynomial time and exact, but not really feasible for n > 100 or so.

In order to make this more efficient, we instead divide up SU(2) into p different patches and
iterate through each patch, considering only extreme points that fall inside it. This allows us to run
smaller versions of the O(n5) check on only the points that are close enough to the patch to make a
difference. To determine this, we still need to check each point’s minimum distance to a patch, so the
total running time is O(p(n+m5)), where m is the average number of points that are near a patch.
On the other hand, if we already have a lower bound on ε, say from examining a small number of
extreme points, then whenever an entire patch is within ε of some point in our net, then we know
that no extreme point within the patch can affect ε and we can skip the entire patch.

The final algorithm is then as follows. Initialize ε to zero and increase it whenever we find an
extreme point that achieves a higher value of ε. For each patch, loop through all points in the net
and compute upper and lower bounds on their distance to the patch. This part of the algorithm takes
O(pn) time. If any point’s upper bound for distance to the patch is less than ε then reject the entire
patch. If the upper bound for point A is less than the lower bound for point B then we can safely
reject point B. To perform this efficiently, we make a single sweep through all n upper bounds and
record the lowest one; call it d. Then we make another sweep through all n points, rejecting those
with lower bound greater than d. This processing is still part of the O(pn) part. At this point, if there
are m points left, then we perform an O(m5) check on them, considering only extreme points that
fall within the patch we are currently considering. This step can loosely be said to have a running
time of O(pm5), although of course m varies from patch to patch.

This implementation also lends itself readily to parallel processing. A server can allocate different
patches to different machines, which need only communicate the indices of extreme points that achieve
new values of epsilon. Since total execution time can vary wildly based on CPU speed, process priority
and the number of clients for a particular ε-net, we instead measure execution time in terms of the
number of calls to the distance function. As the number of points grew from 4,000 to 100,000 the
number of distance calls ranged from a little over a billion to over 500 billion, which demonstrates
roughly quadratic asymptotic behavior.
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2.6 Results

Before running the Solovay-Kitaev algorithm, we need to construct an intial epsilon net. This was ac-
complished by generating all strings of bounded length made up of T and H gates, which were defined
in (??). We then calculated ε for each net. As loosely predicted in the next chapter, we found that ε de-

creased exponentially with string length.

Given an initial epsilon net, we then ran the algorithm on a number of random matrices to different
levels of recursion and plotted the resulting string length against the approximation accuracy achieved.
We expect a polynomial dependence of string length on log 1/ε and this is confirmed a the linear fit on
the log plot with a slope of roughly 4. The final data points on this plot are below the fit because of the
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limitations of machine precision.

2.7 Generalization

Although the proofs and algorithms in the section are specialized to the SU(2) case, this was largely
done in order to achieve precise results for the constant factors involved. Everything generalizes
readily to SU(N) and indeed to any compact Lie group with the same group/algebra commutator
property as SU(N), although there is a prefactor that is exponential in N corresponding to the cost
of creating the inital ε0-net.

Kitaev proposed a different algorithm, which is asymptotically more efficient; it uses O(log2(1/ε))
gates. However, the constant prefactors are enough to make the requisite level of computation
impractical for modern computers. This chapter was intended to be a proof of principle. Any
actual quantum computer will likely use some more complicated compiler that takes into account
the limitations of the actual system instead of being generically and asymptotically powerful. Still,
generic results such as the Solovay-Kitaev theorem are a useful starting place for any such technique.
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Chapter 3

Almost all quantum gates are
efficiently universal

The Solovay-Kitaev theorem proves that almost all families of quantum gates can cover SU(N) with
a cost polylogarithmic in 1/ε, but it makes no claims about whether we can do better. On the other
hand, we will demonstrate a family of the gates in the next chapter that achieves a provably optimal
string length that is only logarithmic in 1/ε. The goal of this chapter will be to close the gap between
the upper and lower bounds for generic families of quantum gates. We find that that all dense families
of gates can achieve an ε-net with string length O(log 1/ε), but that it is impossible to bound the
prefactor with probability one.

3.1 Background

Proving the main result of this section will use some basic principles from functional analysis, reviews
of which can be found in [AG] and [Halm]. Much of finite-dimensional linear algebra is directly
applicable to dealing with linear operators on Hilbert spaces, but there are a few places where we
need to be careful. This section will review some of these principles and lay out the definitions used
in the rest of the chapter.

Define dg to be a Haar measure on SU(N) normalized so that
∫
dg = 1. Consider the Hilbert

space L2(SU(N)) with norm defined by the usual inner product 〈ψ,ϕ〉 ≡
∫
ψ̄(g)ϕ(g)dg. We denote

the set of linear transformations (or endomorphisms) on L2(SU(N)) by End(L2(SU(N))). Using the
L2 Hilbert space norm we define an L∞ operator norm for End(L2(SU(N))) (linear operators on
L2(SU(N))) by

‖M‖∞ = sup
{
‖Mf‖

f ∈ L2(SU(N)), ‖f‖ = 1
}

(3.1)

Let ∆ be the usual Laplacian operator on L2(SU(N)), defined by ∆f(~x) =
∑
i
∂2f(~x)
∂2xi

. Under
∆, our Hilbert space decomposes into a countable direct sum of finite-dimensional orthogonal invari-
ant eigenspaces, which for L2(SU(2)) are just copies of the familiar spaces of spherical harmonics.
This means that any M ∈ End(L2(SU(N))) that commutes with ∆ will also leave these subspaces
invariant. Since M can be considered a direct sum of its restrictions to a series of finite-dimensional
vector spaces, then we can analyze it with techniques that apply to finite dimensional matrices. In
particular, if M is also hermitian then M is diagonalizable on each subspace and its L∞ norm is
simply the supremum of its spectrum. So,

‖M‖∞ = sup
{
|λ|
∃f 6= 0 s.t. Mf = λf

}
(3.2)

and as a result,
‖Mn‖∞ = ‖M‖n∞ (3.3)
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For any U ∈ SU(N), let Ũ be a linear functional on L2(SU(N)) defined by Ũf(x) = f(Ux).
Note that Ũ fixes the constant function, commutes with ∆, is hermitian and has no eigenvalues
with norm greater than one, so ‖Ũ‖ = 1. For any A1, . . . , Al ∈ SU(N), define the mixing operator
T (A1, . . . , Al) ∈ End(L2(SU(N))) by

T (A1, . . . , Al) =
1
2l

l∑
i=1

Ãi + Ãi
−1

(3.4)

All such T are hermitian, commute with ∆, and by the triangle inequality have no eigenvalues greater
than one. Where there is no ambiguity, we will often simply write T instead of T (A1, . . . , Al).

Denote the set of words of length n made up of A1, . . . , Al, A
−1
1 , . . . , A−1

l by Wn(A1, . . . , Al), or
when the A1, . . . , Al are understood, sometimes simply Wn. This set has (2l)n elements, though
not all are distinct, since substrings such as A1A

−1
1 and A2A

−1
2 are equivalent. For any integer n,

expanding Tn gives

Tn =
∑
w∈Wn

w̃

(2l)n
(3.5)

Define P ∈ End(L2(SU(N))) to be the integration operator on L2(SU(2)), or the projection
operator onto the space of constant functions, i.e.

Pf(g) =
∫
SU(N)

f(g)dg (3.6)

Clearly P is also hermitian and commutes with T . In fact, TP = P and P 2 = P , so

(T − P )n = Tn +
n∑
k=1

(
n

k

)
(−1)kP and 0 = (P − P )n =

n∑
k=0

(
n

k

)
(−1)kP (3.7)

Subtracting the second equation from the first gives that

(T − P )n = Tn − P (3.8)

Finally, we define Λ(A1, . . . , Al) by

Λ(A1, . . . , Al) = ‖T (A1, . . . , Al)− P‖∞ (3.9)

3.2 Some gates are efficiently universal

Lemma 12 (Lubotsky, Phillips and Sarnak) Let

V1 =
1 + 2iσx√

5
, V2 =

1 + 2iσy√
5

and, V3 =
1 + 2iσz√

5
. (3.10)

Let d = Λ(V1, V2, V3). Then d =
√

5
3 < 1.

Proof The proof is due to Lubotsky, Phillips and Sarnak ([LPS86] and [LPS87]). It relies on
Deligne’s proof of the Weil conjecture regarding asymptotic coefficients of modular forms and is
somewhat beyond the scope of this paper, though some of the number theoretic background will be
discussed in the next chapter.

This shows that there exists a family of quantum gates for SU(2) whose mixing operator T has a
second largest eigenvalue that is strictly less than one. We will later demonstrate that this means that
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almost all families of quantum gates in SU(2) require only O(log 1/ε) gates to approximate anything
else. However we will require slightly more effort to extend the result to SU(N). To this end, if Ik
denotes the k × k identity matrix, then, for any U ∈ SU(2) and 2 ≤ j ≤ N , define β(N)

j (U) to be

β
(N)
j (U) =

 Ij−2 0 0
0 U 0
0 0 IN−j

 ∈ SU(N) (3.11)

We will typically omit the N where it is understood.

Lemma 13 (Diaconis and Shahshahani) Let {Gij}, 1 ≤ i < j ≤ N be a series of
(
n
2

)
independent

random matrices in SU(2) that are chosen uniformly according to a Haar measure. Then(
βn(G1

n) · βn−1(G1
n−1) · · ·β2(G1

2)
)
· · ·
(
βn(Gn−2

n ) · βn(Gn−1
n )

)
βn(Gn−1

n ) (3.12)

is uniformly distributed in SU(N).

Proof The idea behind the proof is fairly straightforward. In R3 one can generate a uniform SO(3)
rotation by first performing a random rotation in the (x, y) plane and then rotating the z axis by a
random amount. The generalization of this intuition to complex numbers and N dimensions is found
in [DS87].

Proposition 14 Let V1, V2, V3 be defined as in (??). For any N > 2, let k = 3(N − 1) and define
U1, . . . , Uk by

U1 = β2(V1), U2 = β2(V2), U3 = β2(V3),
U4 = β3(V1), U5 = β3(V2), U6 = β3(V3),

...
...

...
Uk−2 = βn(V1), Uk−1 = βn(V2), Uk = βn(V3).

(3.13)

Then Λ(U1, . . . , Uk) < 1.

Proof For 2 ≤ j ≤ N , define the set γj by

γj ≡
{
U3(j−2)+1, U3(j−2)+2, U3(j−2)+3, U

†
3(j−2)+1, U

†
3(j−2)+2, U

†
3(j−2)+3

}
(3.14)

Using this, we define Rm to be the subset of Wm(n2) where all words have the form given in lemma
??. In other words,

Rm =
{
G1,1
n · · ·G1,m

n G1,m
n−1 · · ·G

1,m
n−1 · · ·G

1,1
2 · · ·G

1,m
2 G2,1

n · · ·Gn,mn
Gi,mj ∈ γj

}
(3.15)

From lemma ?? we have that ‖Tn(U3j+1, U3j+2, U3j+3) − βj+2(P )‖ = ‖T (V1, V2, V3) − P‖ = dn for
some d < 1. Thus, using the hybrid argument (theorem ??) and lemma ?? gives that

Λ(Rm) =

∥∥∥∥∥ ∑
w∈Rm

w̃

|Rm|
− P

∥∥∥∥∥ ≤
(
n

2

)
dm (3.16)
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Now,

(Λ(U1, . . . , Uk))m(n2) = ‖T (U1, . . . , Uk)− P‖m(n2) = ‖(T (U1, . . . , Uk)− P )m(n2)‖ (3.17)

= ‖Tm(n2)(U1, . . . , Uk)− P‖ =

∥∥∥∥∥∥∥
∑

w∈W
m(n2)

w̃ − P
(2l)m(n2)

∥∥∥∥∥∥∥ (3.18)

≤ 1

(2l)m(n2)

 ∑
w 6∈Rm

‖w̃ − P‖+

∥∥∥∥∥ ∑
w∈Rm

(w̃ − P )

∥∥∥∥∥
 (3.19)

≤
(2l)m(n2) − |Rm|+

∥∥∑
w∈Rm(w̃ − P )

∥∥
(2l)m(n2)

(3.20)

= 1− |Rm|
(2l)m(n2)

(1− Λ(Rm)) = 1−
1−

(
n
2

)
dm

(2l)m(n2)
(3.21)

If we choose m large enough so that
(
n
2

)
dm < 1, then this will be less than one, and we will have

Λ(U1, . . . , Uk) < 1.

3.3 Almost all gates are efficiently universal

It should be fairly clear that if the mixing operator for a set of gates has all but one eigenvalue
bounded by a constant less than one, then powers of it will converge exponentially to a uniform
distribution. This intuition will be formalized in a moment, though first we need to show that this
property holds for most choices of base gates.

Lemma 15 Suppose there exists U1, . . . , Uk ∈ SU(N) such that Λ(U1, . . . , Uk) = d < 1. Then for
any A1, . . . , Al ∈ SU(N) such that 〈A1, . . . , Al〉 is dense in SU(N), Λ(A1, . . . , Al) < 1.

Proof Since 〈A1, . . . , Al〉 is dense in SU(N), we have ∀M1, . . . ,Mk ∈ SU(N),∀ε > 0, ∃n ∈
Z, q1, . . . , qk ∈ Wn(A1, . . . , Al) such that |qi −Mi| < ε for 1 ≤ i ≤ k. Since Λ is continuous, there
exists some other value of n, with corresponding q1, . . . , qk ∈Wn(A1, . . . , Al) such that

|Λ(q1, . . . , qk)− Λ(M1, . . . ,Mk)| < ε (3.22)

Choose U1, . . . , Uk as in (??), let ε = (1 − Λ(U1, . . . , Uk))/2 and obtain n and q1, . . . , qk so that
(??) holds. If necessary, reduce ε to ensure that ε is less than half the distance between any pair of
Ui or U−1

i , so q1, . . . , qk are necessarily distinct. Now we apply a similar technique to the one used
in the last proposition.

(Λ(A1, . . . , Al))
n = ‖T − P‖n = ‖(T − P )n‖ = ‖Tn − P‖ (3.23)

=

∥∥∥∥∥ ∑
w∈Wn

w̃ − P
(2l)n

∥∥∥∥∥ ≤ (2l)n − 2k +
∥∥∥∑k

i=1(qi + q−1
i )− 2kP

∥∥∥
(2l)n

(3.24)

= 1 +
2k

(2l)n
(Λ(q1, . . . , qk)− 1) ≤ 1 +

2k
(2l)n

(Λ(U1, . . . , Uk) + ε− 1) (3.25)

= 1− 2k
(2l)n

ε < 1 (3.26)
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In their paper referenced earlier, Lubotsky, Phillips and Sarnak raised the question of whether
the spectrum of T − P had one as an accumulation point for almost all randomly chosen A1, . . . , Al.
This settles the question in the negative. Now we are ready to prove our main result.

Theorem 16 For any A1, . . . , Al ∈ SU(N) such that 〈A1, . . . , Al〉 is dense in SU(N), ∃c such that
∀U ∈ SU(N), ε > 0,∀n > c log 1/ε,∃w ∈Wn such that |w − U | < ε.

Proof Define T = T (A1, . . . , Al) as above and consider (Tn − P )Ũ−1. Since U is unitary, Ũ−1 is
unitary as well, and

‖(Tn − P )Ũ−1‖ = ‖Tn − P‖ = ‖(T − P )n‖ = ‖T − P‖n = Λ(A1, . . . , Al)n < αn (3.27)

for some α(A1, . . . , Al) < 1.
Define χ ∈ L2(SU(N)) by

χ(x) =
{

1 for |x− I| < ε/2
0 otherwise (3.28)

Let V = ‖Pχ‖ = ‖χ‖2 be the measure of the ball around the identity of radius ε/2. We won’t perform
this integration, but it suffices to note that there exists a constant k such that V > kεN

2−1, since
SU(N) is an (N2 − 1)-dimensional manifold.

Now we use the Cauchy-Schwartz inequality to give∣∣∣〈χ, (T − P )nŨ−1χ
〉∣∣∣ ≤ ‖χ‖‖(T − P )nŨ−1χ‖ ≤ ‖χ‖2‖(T − P )nŨ−1‖ < αnV (3.29)

Another way to compute the same inner product is〈
χ, (Tn − P )Ũ−1χ

〉
=
〈
χ, TnŨ−1χ

〉
−
〈
χ, P Ũ−1χ

〉
=
〈
χ, TnŨ−1χ

〉
− V 2 (3.30)

Combining these gives that
∣∣∣〈χ, TnŨ−1χ〉 − V 2

∣∣∣ < αnV . This means that there exists c which

depends only on A1, . . . Al such that if n > c log 1/ε then 〈χ, TnŨ−1χ〉 > 0. Specifically, we must
choose

n >
N2 − 1

log(1/α)
log(1/ε) + log k (3.31)

When this occurs it means that ∫
χ(g)

∑
w∈Wn

χ(wU−1g)
(2l)n

dg > 0, (3.32)

which implies that ∃x ∈ SU(N) and w ∈ Wn such that χ(x) 6= 0 and χ(wU−1x) 6= 0. Thus
|x − I| < ε/2 and |wU−1x − I| < ε/2, implying that |w − x−1U | < ε/2. Combining these and using
the triangle inequality gives |w − U | < ε.

3.4 Optimality of the result

This proves the theorem, but can we do any better? Note that an ε-ball in SU(N) has measure of
order εN

2−1, so if we expect to cover all of SU(N) with strings of length n, then we will require
(2l)nkεN

2−1 > 1, or equivalently,

n =
N2 − 1
log 2l

log 1/ε+ k (3.33)
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Thus, up to the constant α, the result is optimal. Eliminating the constant linear factor is unlikely,
but it would be nice to find a value of α that did not depend on A1, . . . , Al.

It turns out that this is also impossible. Recall from the introduction that the sets of base gates
that do not generate dense subgroups of SU(N) have measure zero in SU(N)l. Now consider the
base gates that are dense but are very close to base gates that are not dense. More formally, define

B(δ) = {(A1, . . . , Al)
 〈A1, . . . , Al〉 is dense, ∃A′1, . . . , A′l,
〈A′1, . . . , A′l〉 is not dense and |Ai −A′i| < δ} (3.34)

Since non-dense base gates exist, but have measure zero, B(δ) has non-zero measure for all δ > 0.
Now, from theorem ?? it follows that for (A1, . . . , Al) ∈ B(δ), everything in Wn(A1, . . . , Al) lies
within nδ of some non-dense subgroup. An example might be a one-parameter subgroup. Since we
can make δ arbitrarily small, any value of α that does not depend on the base gates will fail on a set
with non-zero measure.

Note that unlike most results about quantum compiling, this argument also holds if the base gates
are parametrized; say, A1, . . . , Al are elements of the algebra su(N) and a single operation now has
the form e±Ait, for any t > 0. Clearly the above proof demonstrates that there exist sets with non-
zero measure which requires arbitrarily many steps, even if they are continuous. If we measure cost
not in terms of number of steps, but by the total time taken, then we have to modify the argument
slightly. For small values of t, |eAit − eA′it| is on the order of tδ, but for large t the difference never
gets any higher than δ. This means that no matter how many steps we take, in time t, we will stay
within tδ of some non-dense subgroup and the same result holds.

Most of the above lower bounds could be proved more easily by simply taking the A1, . . . , Al to
be infinitesimally small. However, the more general problem of operators that very nearly commute
or very nearly generate finite subgroups is important to consider.
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Chapter 4

A class of gates that allows optimal
compiling

In many ways, the results of the previous two chapters represent the limits of their respective ap-
proaches. At its heart, the Solovay-Kitaev theorem relies on successive approximation to compile
using any universal set of gates. It might seem as though we could find a better method of successive
approximation, since using the commutator technique to generate finer and finer epsilon-nets multi-
plies the string length by four each time and only uses a vanishingly small fraction of the total number
of possible strings. However, suppose that instead of repeatedly quadrupling our string length, we
had available a nonunitary superoperator σ that would shrink a single unitary matrix halfway towards
the identity. Then applying σn would turn a ε-net for S(2ε) into a 2−nε-net for S(2−(n−1)ε). This ob-
viously extends into a method of compiling that requires O(log2(1/ε)) gates, which is asymptotically
no better than Kitaev’s version of the algorithm. This example is rather artificial, but it illustrates
the problems of any successive approximation scheme. First, by the arguments of the last chapter, we
know that ε-nets generally require at least log 1/ε gates. Second, in order for the compiling technique
to be polynomial time computable, we need the size of the region covered by the ε-net to stay roughly
proportional to ε, or at worst, grow relative to ε as logc(1/ε). This means that we need to progress
through roughly log 1/ε different epsilon-nets, which range in number of gates per point from O(1)
to O(log 1/ε), resulting in a cost quadratic in log 1/ε. Thus, successive approximation is unlikely to
offer us any asymptotic improvements at this point, although it is quite difficult to prove that no new
creative method could ever perform asymptotically better in polynomial time.

The generality of the Solovay-Kitaev algorithm also makes it difficult to improve. Recall that
after the initial ε0-net is created, the base gates are abstracted away into the ε0-APPROX procedure.
Although this cannot be a very strict black box, since its contents can be completely determined in
constant time, treating ε0-APPROX as a black box means only needing to know about the starting
gates to O(ε0), which also suggests that this method will have trouble achieving optimal results.

The results of the third chaper suffer from the opposite flaws. Though asymptotically optimal,
they offer no guidance in coming up with any sort of constructive method of achieving the O(log 1/ε)
upper bound. In fact, since there is no practical way of evaluating ‖T − P‖, we do not even have a
constructive way of determining what prefactor is necessary for any particular set of gates.

Both are unhelpful in our goal of efficiently saturating the lower bound in large part because they
have to work with arbitrary base gate sets, which we have no way of putting stronger conditions on
other than that they generate dense subsets, or comprise ε-nets. If we are to make progress, then it
may be necessary to specialize our arguments to a particular set of base gates. In this chapter, the
gates we will consider will be SU(2) matrices corresponding to rotations by arccos (± 3

5 ) about the
X, Y , and Z axes.
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4.1 Quaternions

To understand the motivation for this choice of gates, we will first need to develop some basic number
theoretic concepts. Most of this section is taken from [LPS87].

Let H[Z] denote the ring of quaternions with integer entries, i.e.

H[Z] =
{
a+ biσx + ciσy + diσz

a, b, c, d ∈ Z} (4.1)

For α ∈ H[Z], define ᾱ = α† = a − biσx − ciσy − diσz to be its conjugate and N(α) = αᾱ =
a2 + b2 + c2 + d2 ∈ Z to be its norm.

There is a natural homomorphism ϕ from the non-zero quaternions into SU(2). It is given by

ϕ(α) =
α√
N(α)

(4.2)

From this it is easy to see that the units in the quaternion ring are the eight elements with norm
one, namely ±1,±iσx,±iσy,±iσz. A well-known result from number theory (see [Har]) holds that
the number of ways to express a positive number n as the sum of four squares is

r4(n) = 8
∑
d|n
4 6|d

d (4.3)

Equivalently, r4(n) is the number of α ∈ H[Z] with N(α) = n.
For p a prime, with p ≡ 1 (mod 4), we will consider the set of α ∈ H[Z] such that N(α) = p.

Since squares are congruent to either 0 or 1 mod 4, only one of a, b, c, d can be odd. This means
that every α′ with N(α′) = p has a unique associate α = εα′, for some unit ε such that N(α) = p,
α ≡ 1 (mod 2) and a > 0. By (??) there are p+ 1 such α and we can divide them into σ = (p+ 1)/2
conjugate pairs which are denoted

{α1, ᾱ1, α2, ᾱ2, . . . , ασ, ᾱσ} = Sp (4.4)

The example that we will typically work with is

S5 = {1 + 2iσx, 1− 2iσx, 1 + 2iσy, 1− 2iσy, 1 + 2iσz, 1− 2iσz}, (4.5)

which ϕ maps to the V1, V2, V3, V
†
1 , V

†
2 , V

†
3 of (??).

Let Rm(α1, ᾱ1, . . . , ασ, ᾱσ) denote a reduced word of length m, which, like the reduced words we
introduced in chapter 1, is defined to mean a word in α1, . . . , ᾱm that contains no subwords of the
form αiᾱi or ᾱiαi. The number of such words of length l is (p+ 1)pl.

Quaternions are interesting because they have properties both of SU(2) and of the integers. The
one that we will find most useful is unique factorization.

Proposition 17 Every β ∈ H[Z] with N(β) = pk has a unique representation

β = plεRm(α1, . . . , ᾱσ) (4.6)

where l ≤ 1
2k,m+ 2l = k, and Rm is a reduced word of length m in α1,. . . , ασ.

Proof First we prove that such a factorization exists. It can be shown (see [Dic]) that quaternions
with odd norm form a left and right Euclidean ring. Moreover, α ∈ H[Z] is prime if and only if
N(α) is a prime integer. Since N(β) = pk ≡ 1 (mod 2), we can write β = γδ, where N(γ) = pk−1

and N(δ) = p. We can in turn write δ = εα for some unit ε and some α ∈ Sp, yielding β = γεα.
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Proceeding by induction we obtain β = εs1s2 · · · sk with sj ∈ Sp. Finally, we cancel where appropriate
to give the desired factorization.

To prove uniqueness, we count the number of factorizations in two ways. Summing over all possible
values of l gives

8

 ∑
0≤l<k/2

(p+ 1)pk−2l−1 + δ(k)

 (4.7)

where δ(k) = 1 if k is even and δ(k) = 0 if k is odd. This expression simplifies to 8(pk+1− 1)/(p− 1).
But from (??) we have that the number of quaternions with norm pk is 8(1+p+p2+· · ·+pk = 8(pk+1−
1)/(p − 1), so there is a one-to-one correspondence between quaternions of pk and factorizations in
the form described.

One immediate consequence of this lemma is that no reduced word with non-zero length can equal
a multiple of 1. Thus the V1, V2, V3 of (??) generate a free group in SU(2), and from proposition ??,
almost all sets of elements of SU(N) generate free groups.

4.2 A Factoring Algorithm

An immediate corollary of unique factorization existing for quaternions of norm pk is that we can find
this factorization in time O(pk). The algorithm is as follows. Given β ∈ H[Z] such that N(β) = pk,
successively try dividing β (on the right) by each element of Sp. Recall that β can be expressed as
β = γεα, for ε a unit, α ∈ Sp, and N(γ) = pk−1. Clearly, dividing on the right by α will still leave
an integer quaternion. Conversely, if dividing β on the right by any other α′ ∈ Sp resulted in an
integer quaternion (or equivalently, in no remainder), then we could write β = γ′ε′α′, for ε′ a unit
and N(γ′) = pk−1. Factoring γ and γ′ would now give two factorizations of β which differed in the
last position (since α 6= α′), which contradicts the proposition that β had a unique factorization.
Thus every time we test every element of Sp we are guaranteed to correctly find exactly one divisor
of β. Then we can divide and continue until N(β) = p.

This would seem to lend itself well to an efficient approximation scheme for elements of SU(2).
The missing step is the following:

Procedure [β, k]=QUAT-APPROX(U, ε)

Given U ∈ SU(2) and ε > 0.
Find β ∈ H[Z] and k ∈ Z.
Such that:

• k = O(log 1/ε)

• |U − β/5k| < ε

• N(β) = 52k

Clearly, if QUAT-APPROX were possible to implement in polynomial (in log 1/ε) time, then efficient
O(log 1/ε) factoring would be possible. Unfortunately there is no known method for doing so, or even
of performing substantially better than a blind search of integer quaternions in the neighborhood of
5kU (for some reasonably large k). To evaluate the cost of this strategy, note that the surface of a
3-sphere with radius 5k is three-dimensional and hence has surface volume O(53k). However, from
(??), the number of integer quaternions on the surface of this 3-sphere is O(52k), so we can expect
to have to search a volume of O(5k). From |U − β/5k| < ε, we have that k must generically be at
least O(log 1/ε), so blind search has a cost that is exponential in O(log 1/ε).

At the heart of QUAT-APPROX is the problem of finding integer lattice points on a large and fairly
loosely defined region of the surface of a 3-sphere, which has connections to a several active areas of
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research in mathematics. Number theory, for example, has been applied to results such as Malyshev’s
(described below), of which unfortunately almost all are non-constructive and asymptotic. Finding
integer solutions to systems of polynomial equations is often dealt with in algebraic geometry, but
rarely with the same notions of distance that are vital here. It would seem that new mathematical
tools will be necessary to solve this problem.

Even if we have no idea of how to efficiently find solutions to QUAT-APPROX, we at least know that
such solutions exist.

Proposition 18 Procedure QUAT-APPROX has valid solutions for any U and ε.

Proof For any region Γ of a 3-sphere of radius R = 5k delimited by a finite number of half-planes
(such as most of the region within Rε of RU ), let a be the fraction of integer points on the surface of
the 3-sphere to fall within Γ, and b be the fraction of surface volume of the 3-sphere that belongs to
Γ. A theorem due to Malyshev (see [Lin] or [Mal62]) holds that the difference between a and b grows
more slowly than any polynomial in R. If k ≥ c(log 1/ε)/(log 5), then R = 5k ≥ ε−c for any constant
c that we wish. The region of the 3-sphere where we can find valid β is the intersection of its surface
with the ball of radius Rε around RU , which has volume O((Rε)3) = O(ε3(1−c)). From Malyshev’s
theorem and the scaling arguments of the last paragraph, we have that the density of points is at
least O(R−1−δ) = O(εc(1+δ)) for any δ > 0 that we please. Thus, it suffices to choose c such that

O(1) < O(ε3(1−c)εc(1+δ)) = O(ε3−c(2−δ)) (4.8)

Thus choosing c > 2 will be asymptotically sufficient.

This gives an alternate proof of theorem ??, though for a specific set of gates instead for a set of
measure one.

4.3 Implementation Concerns

Although most fault-tolerant schemes do not directly permit constructing rotations by arccos 3/5
about the axes, there is a fairly simple method due to Preskill of implementing them from S, H and
Toffoli gates together with measurment and and classical feedback ([NC00]). The construction is
as follows. Initialize a two qubit to be |00〉. Apply a hadamard transformation (H) to each qubit
to obtain (|00〉 + |01〉 + |10〉 + |11〉)/2. Perform a Toffoli gate with a third qubit |ψ〉 as the target,
resulting in

(|00〉|ψ〉+ |01〉|ψ〉+ |10〉|ψ〉+ |11〉σx|ψ〉)/2 (4.9)

Now apply an S gate to |ψ〉, apply another Toffoli gate from the first two qubits upon the third,
apply hadamard gates to the first two qubits and measure them in the computational basis. Working
through the algebra shows that if the value 00 is measured, then |ψ〉 will have been rotated about
the Z axis by arccos 3/5, as desired. This has a 5/8 probability of occuring. If it does not, then a
σz gate will have been applied to |ψ〉, which we will need to undo before attempting the arccos 3/5
rotation again. The expected number of times that we need to repeat this process is 8/5.

The constructions for rotations by arccos 3/5 are similar. Thus with most fault-tolerant methods
of computing, we can implement the gates in S5 exactly in expected constant time.
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Chapter 5

Conclusions and further directions

We have demonstrated a constructive proof of the Solovay-Kitaev theorem, tightened the upper and
lower bounds for compiling to within a constant factor of each other and demonstrated a class of
gates that shows promise for efficiently compiling to within a constant factor of optimal. In many
ways, these sorts of analyses are only the start of a method of looking at SU(N) that can have broad
applications.

At the end of chapter three, we concluded that almost every family of gates covered SU(N) in
a way that was asymptotically exponential, but that always had a prefactor α. Finding general
techniques of determining α seems to be a difficult but quite interesting problem.

This is a largely unanswered question and to best of our knowledge, the only calculations that have
been made are on the two extremes: the base gates in lemma ?? are provably optimal for number-
theoretic reasons, and B(δ) (from (??)) captures what are probably the worst possible base gates,
for reasons related to the subgroup structure of SU(N). This question also has practical significance.
Many physical implementations of quantum computers exist in low-coupling limits, where many-qubit
operations are much slower than single-qubit operations because the available Hamiltonians are very
close to completely separable Hamiltonians.

For example, in an two-spin NMR system, a good approximation for the Hamiltonian is

H = ω1σz ⊗ I + ω2I ⊗ σz + Jσz ⊗ σz + RF1 ⊗ I + I ⊗ RF2, (5.1)

where ω1 and ω2 are hundreds of megahertz, J is somewhere from 1 to 100 Hz, and RF1 and RF2 are
arbitrary elements of su(2) that are on the order of ω1 and ω2 respectively. This Hamiltonian clearly
allows us to achieve any transformation in SU(4), but in practice the speed at which we can do so is
limited by J . This can be represented formally by saying that all of the basic unitary transformations
that are available to us lie within some small neighborhood of the subgroup SU(2)× SU(2).

If this sort of analysis could be formalized and generalized, then it could have quite useful con-
clusions for our ability to effect quantum control in general. In the future, when deceptive quantum
computer manufacturers play up their single-qubit Megahertz, it might be nice to be able to derive
a value of α that determines bounds on their speed in practice.

Compiling in SU(N) is also useful for more than strictly simulating algorithms with a fixed set of
gates. A common problem in quantum computing is that “qubits” are not actually two-level systems,
but have several other accessible energy states that our perturbations will sometimes send them into.
Rather then treating this with the usual techniques of error-correction, Tian and Lloyd noted that
this leakage into other dimensions simply calls for compiling single-qubit operations in SU(N) to take
into account the effects of transitions in and out of the two energy levels being used for computation.
This is a difficult problem, but one that it will be increasinly necessary to solve in the future.

Finally, this work also poses some interesting open mathematical questions. There have been
remarkably few studies of decomposing matrices into approximate products of a fixed set of matrices,
and any algorithm that generically compiled gates to strings of length O(log 1/ε) would likely have
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to come up with some new mathematical techniques to do so. The problem of implementing the
procedure QUAT-APPROX in polynomial time is also deeper than it might seem at first and is surprisingly
challenging.

Optimizing quantum compilers is a problem that in many ways parallels the entire field of quan-
tum computation. Although it is uncertain whether we will actually reach our goal, or what the
implications will be once we get there, all we can know is that along the way we will develop a
powerful set of broadly useful tools, and encounter a fascinating array of difficult problems.
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Appendix A

Source code

Although it is traditional to include all the source code used in a thesis, it would not be practical
to list here the more than 5000 lines of functional code used for the project. Instead, only three
files are included. The first, su2.h, contains the definitions, but not the full source code, for the
general-purpose functions dealing with SU(2) that are used in the other two files. The second, sk.cc
implements the Solovay-Kitaev algorithm, and calls an external program th net to create the initial
epsilon net simply by using a few heuristics to print all distinct strings of T and H gates up to a
particular length. Finally epsilon.cc is the program to determine the value of ε for a given ε-net. It
is the most computationally intensive, and as a result of its optimizations, by far the longest. The code
listed only implements the client side, however the operation of the server is fairly straightforward,
and can easily be implied by the behavior of the client.

A.1 Common functions

/*

SU2 utility stuff

Aram Harrow, Jan-May 2001

*/

#ifndef __SU2_H

#define __SU2_H

#define PI 3.1415926535897932384626

#define MAX_DIST 2.0

#define MAX_DIST_SQR 4.0

#define del(x) do {if (x) delete x; x=NULL;} while(0)

inline double sqr(double x) {return x*x;}

template <class T> inline int sgn(T x)

{return (x>0) ? 1 : ((x<0) ? -1 : 0);}

template <class T> T MAX (T a,T b)

{return (a>b)?a:b;};

template <class T> T MIN (T a,T b)

{return (a<b)?a:b;};

47



Aram Harrow Quantum compiling

template <class T> T RESTRICT(T x, T lb, T ub)

{return (x<lb) ? lb : (x>ub ? ub : x);}

/* return a random number uniformly distributed between 0 and 1 */

double uniform();

/* determine the L2 norm of a length-n vector */

double vec_norm(double *v, int n);

/* print a vector in matlab format */

void print_vec(char *name, double *vec, int n);

/* make a 4-vector into a unit vector */

double normalize(double mat[4]);

/* make a orthogonal to b, where b is a unit vector */

void subtract_off(double a[4], double b[4]);

/* given a time in seconds return a string of the form "4h 22m 37s" */

char *time_str(int time);

/*

Two formats are used to represent elements of SU(2), usually called

"mat" (for matrix) and "param" (for parameterized).

mat format means four numbers (a,b,c,d) such that

U = a + biZ + ciX + diY

where X = [0 1] Y = [0 -i] Z = [1 0]

[1 0] [i 0] [0 -1]

param format is (x,y,z) s.t. for random points on the 3-sphere they

are independant and uniformly distributed from 0 to 1

The relation is

a = sqrt(x) * cos(2 * pi * y)

b = sqrt(x) * sin(2 * pi * y)

c = sqrt(1-x) * cos(2 * pi * z)

d = sqrt(1-x) * sin(2 * pi * z)

Distance is Euclidean.

*/

void param_to_mat(double *param, double *mat);

void mat_to_param(double *mat, double *param);

double param_dist(double *p1, double *p2);

double mat_dist_sqr(double *m1, double *m2);

double mat_dist(double *m1, double *m2);

/* computes C = A*B, where the matrices are in mat format */

void matrix_mult(double *a, double *b, double *c);

/* find A and B s.t. [A,B] is close to U and |A-I|, |B-I| are small */

void factor(double *U, double *a, double *b);

/* for U in mat format, this computes the v in the Lie algebra such

that e^v = U. v is represented as a 3-vector. */

void mat_to_vec(double *U, double *v);

/* given v in the Lie algebra, computes U = e^v in mat format */
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void vec_to_mat(double *v, double *U);

/* converts from cartesian to spherical coordinates */

void cart_to_sph(double *cart, double *sph);

/* converts from spherical to cartesian coordinates */

void sph_to_cart(double *sph, double *cart);

/* set a matrix to the identity */

void set_identity(double *U);

/* Generates a random matrix in mat format. */

void rand_mat(double *mat);

/* Generates a random matrix in param format. */

void rand_param(double *param);

/*

* str is a string made up of ’XYZTH’.

* Each character represents a primitive matrix (lowercase means inverse).

* U is set to the product of all the primitive matrices.

*/

void eval_str(char *str, double *U);

/* turn a matrix into its inverse */

void invert(double *U);

/* reflect a matrix onto the upper half-sphere */

void reflect(double *U);

/*

* Invert a string of matrices.

* This is equivalent to reversing the order and exchanging uppercase

* and lowercase.

*/

void invert_str(char *str);

/* maximum distance from the center of a patch to any corner */

double param_patch_radius(double low[], double high[]);

/*

* returns min_{x,y,z in [low, high]} |(x,y,z)-pt|

* where everything is in param format.

* This is used to reject points that are far from a patch before

* performing the O(m^5) check.

*

* Recall that the distance between x1,y1,z1 and x2,y2,z2 is

* sqrt(2 * (1 - sqrt(x1*x2) * cos(2*pi*(y1-y2)) -

* sqrt((1-x1)*(1-x2) * cos(2*pi*(z1-z2)))))

*

*/

double min_dist_to_patch(double pt[], double low[], double high[]);

/* whether to ignore sign when computing distance */

extern bool so3_dist;
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#endif /* __SU2_H */

A.2 Solovay-Kitaev implementation

/*

Solovay-Kitaev implementation

Aram Harrow Jan 2001

*/

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <math.h>

#include <unistd.h>

#include <vector>

#include "su2.h"

int dist_count = 0;

bool laconic = true;

double *dbl_index_comp_array;

int dbl_index_comp_func(const void *a, const void *b)

{

double d=dbl_index_comp_array[*(int*)a]-dbl_index_comp_array[*(int*)b];

return d<0 ? -1 : d>0 ? 1 : 0;

}

/* this class represents our initial epsilon net */

class fixed_net

{

public:

char *approx(double *U);

void create(int hash_size);

void save(char *fn);

bool load(char *fn);

fixed_net() {n=0; strings=NULL; string_data=NULL; matrices=NULL;}

~fixed_net()

{

n=0;

if (strings) delete strings;

if (string_data) delete string_data;

if (matrices) delete matrices;

}

private:

char **strings;

char *string_data;

int str_data_len;

double *matrices;

double *dist_to_id;

int n;

double epsilon;

} global_net;
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void fixed_net::create(int hash_size)

{

char fn[80], cmd[200], buf[100];

double m[4];

int i, ptr, len, *order;

FILE *pipe;

double eye[4], *_dist_to_id;

vector<double> _matrices;

vector<int> _strings;

vector<char> _string_data;

/* check for already saved net */

sprintf(fn, "precomputed-net-%d.txt", hash_size);

if (load(fn)) return;

/* create covering with hash_size^3 patches */

sprintf(cmd, "./covering %g 1 1 1", 1.0 / hash_size);

if (!laconic) printf("%s\n", cmd);

pipe = popen(cmd, "r");

assert(pipe);

ptr = 0;

while (!feof(pipe))

{

fscanf(pipe, "%lf%lf%lf%lf%d%*[ ]%[a-zA-Z]",

&m[0], &m[1], &m[2], &m[3], &len, buf);

if (!len) buf[0] = 0;

assert(len == (int)strlen(buf));

_matrices.push_back(m[0]);

_matrices.push_back(m[1]);

_matrices.push_back(m[2]);

_matrices.push_back(m[3]);

_strings.push_back(ptr);

ptr += len + 1;

for (i=0 ; i<len ; i++)

_string_data.push_back(buf[i]);

_string_data.push_back(0);

}

fclose(pipe);

n = _matrices.size() / 4;

/* order by distance to the identity */

assert(_dist_to_id = new double[n]);

set_identity(eye);

for (i=0 ; i<n ; i++)

_dist_to_id[i] = mat_dist(eye, &_matrices[i*4]);

dbl_index_comp_array = _dist_to_id;

assert(order = new int[n]);

for (i=0 ; i<n ; i++) order[i] = i;

qsort(order, n, sizeof(int), dbl_index_comp_func);

/* convert from vectors to arrays and reorder */

assert(dist_to_id = new double[n]);

assert(matrices = new double[4 * n]);

assert(strings = new (char *)[n]);

assert(string_data = new char[str_data_len = _string_data.size()]);
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memcpy(string_data, _string_data.begin(), str_data_len);

for (i=0 ; i<n ; i++)

{

strings[i] = string_data + _strings[order[i]];

dist_to_id[i] = _dist_to_id[order[i]];

memcpy(&matrices[i<<2], &_matrices[order[i]<<2], 4 * sizeof(double));

}

delete order;

delete _dist_to_id;

/* sanity check */

for (i=0 ; i<n ; i++)

{

double test[4];

eval_str(strings[i], test);

assert(fabs(double(mat_dist(eye, &matrices[i*4]) - dist_to_id[i]))

< 1e-9);

assert(double(mat_dist(test, &matrices[i*4])) < 1e-6);

if (i) assert(dist_to_id[i-1] <= dist_to_id[i]);

}

/* determine epsilon */

FILE *temp_file;

char temp_fn[30] = "sk-to-epsilon-XXXXXX";

double eps;

close(mkstemp(temp_fn));

temp_file = fopen(temp_fn, "wt");

assert(temp_file);

for (i=0 ; i<4*n ; i++)

fprintf(temp_file, "%g%c", (double)matrices[i], ((i+1)&3) ? ’ ’ : ’\n’);

fclose(temp_file);

sprintf(cmd, "./epsilon -laconic -load %s", temp_fn);

if (!laconic) printf("%s\n", cmd);

pipe = popen(cmd, "r");

assert(pipe);

fscanf(pipe, "%lf", &eps);

fclose(pipe);

unlink(temp_fn);

/* save for future use */

save(fn);

}

/* return the best approximation to a matrix U */

char *fixed_net::approx(double *U)

{

int i, closest=0;

double d, best=4.0, eye[4], U_to_id;

set_identity(eye);

U_to_id = mat_dist(eye, U);

for (i=0 ; i<n ; i++)

{

dist_count++;

d=mat_dist(U, &matrices[i*4]);

if (d < best)

{
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best = d;

closest = i;

}

else

if (dist_to_id[i] > U_to_id + best)

break; /* it’s only downhill from here */

}

return strings[closest];

}

void fixed_net::save(char *fn)

{

FILE *out = fopen(fn, "wt");

int i;

fprintf(out, "%d %d\n", n, str_data_len);

for (i=0 ; i<n ; i++)

fprintf(out, "%s\n", strings[i]);

fclose(out);

}

bool fixed_net::load(char *fn)

{

FILE *in = fopen(fn, "r");

double eye[4];

char *ptr;

int i;

if (!in) return false;

if (3 != fscanf(in, "%d%d\n", &n, &str_data_len)) return false;

if (!laconic)

printf("Reading %d strings from %s\n", n, fn);

assert(matrices = new double[n * 4]);

assert(dist_to_id = new double[n]);

assert(strings = new (char *)[n]);

assert(ptr = string_data = new char[str_data_len]);

set_identity(eye);

for (i=0 ; i<n ; i++)

{

assert(!feof(in));

strings[i] = ptr;

while (isalpha(*ptr++ = getc(in))) ;

ptr[-1] = 0;

//for (j=0 ; j<4 ; j++) fscanf(in, "%lf ", &matrices[i*4 + j]);

eval_str(strings[i], &matrices[i*4]);

dist_to_id[i] = mat_dist(&matrices[i*4], eye);

/*printf("’%s’ %g %g %g %g\n", strings[i], matrices[i*4],

matrices[i*4 + 1], matrices[i*4 + 2], matrices[i*4 + 3]);*/

}

fclose(in);

assert(ptr == string_data + str_data_len);

return true;

}

/* strings that can grow dynamically */

struct long_string
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{

char *str;

int len, max;

void append(char *s);

void init(int M) {assert(str=new char[max=M]); len=0;}

};

/* round x up to the nearest power of 2 */

int roundup(int x)

{

int n=0;

while (x>>=1) n++;

return (1 << (n+1));

}

void long_string::append(char *s)

{

int extra = strlen(s)+1;

if (len + extra >= max)

{

char *temp = new char[max = roundup(len+extra+1)];

memcpy(temp, str, len);

delete str;

str = temp;

}

memcpy(str + len, s, extra);

len += extra - 1;

}

/*

sk(U, n) returns a eps(n)^2 approximation to U.

The calling procedure has the responsibility for deleting the result.

*/

char *sk(double *U, int n)

{

long_string result;

char *initial, *a_str, *b_str;

double V[4], W[4], A[4], B[4];

if (!n)

{

initial = global_net.approx(U);

result.init(roundup(strlen(initial)));

result.append(initial);

return result.str;

}

initial = sk0(U, n-1);

eval_str(initial, W);

invert(W);

matrix_mult(U, W, V);

reflect(V);

factor(V, A, B);

a_str = sk0(A, n-1);
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b_str = sk0(B, n-1);

result.init(strlen(initial) + 2 * (strlen(a_str) + strlen(b_str)) + 10);

result.append(a_str);

result.append(b_str);

invert_str(a_str);

invert_str(b_str);

result.append(a_str);

result.append(b_str);

result.append(initial);

delete a_str;

delete b_str;

delete initial;

return result.str;

}

void sk_results(double *U, int depth, bool raw)

{

double dbl;

char *temp;

double V[4];

dist_count = 0;

temp = sk(U, depth);

if (!raw)

{

eval_str(temp, V);

dbl = mat_dist(U, V);

printf("%d %d %g\n", strlen(temp), dist_count, dbl);

}

else

printf("%s\n", temp);

fflush(stdout);

delete temp;

}

void print_help()

{

printf("format is sk <options> \n");

printf(" -size <n>: set the size of the starting epsilon-net (def: 40)\n");

printf(" -rand <depth> <n>: evaluate n random points to a given depth\n");

printf(" -raw: output full string instead of length, eps and # compares\n");

printf(" -prolix: print stupid status messages\n");

exit(1);

}

int main(int argc, char **argv)

{

double U[4];

int size = 40, n=1, depth = 2, i;

bool rand = false, raw = false;

so3_dist = true;

for (i=1 ; i<argc ; i++)

{
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if (!strcmp(argv[i], "-size"))

{

if (++i == argc) print_help();

if (!(size = atoi(argv[i]))) print_help();

continue;

}

if (!strcmp(argv[i], "-rand"))

{

if (++i == argc) print_help();

depth = atoi(argv[i]);

if (++i == argc) print_help();

n = atoi(argv[i]);

rand = true;

if (depth < 0)

depth = -depth;

else

srand(time(0));

continue;

}

if (!strcmp(argv[i], "-raw"))

{

raw = true;

continue;

}

if (!strcmp(argv[i], "-prolix"))

{

laconic = false;

continue;

}

print_help();

}

global_net.create(size);

if (rand)

while (n--)

{

rand_mat(U);

sk_results(U, depth, raw);

}

else

/* take requests from stdin */

while (cin.good())

{

cin >> U[0] >> U[1] >> U[2] >> U[3] >> depth;

assert(fabs(double(vec_norm(U, 4)) - 1) < 1e-6);

sk_results(U, depth, raw);

}

return 0;

}

A.3 Epsilon finding

/*
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Given an epsilon-net, or set of points (stars) on the 3-sphere

such that all points on the 3-sphere are within epsilon of some

star, we wish to determine epsilon. The basis behind the

algorithm is that we only need examine points that are

equidistant from the four closest stars.

Aram Harrow Jan-May 2001

spiritual guidance and network code from Jason Taylor

*/

#include <time.h>

#include <string.h>

#include <math.h>

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <iostream.h>

#include <unistd.h>

#include <dirent.h>

#include <signal.h>

#include "su2.h"

#include "utils.h"

bool laconic = false, expand = false;

/* helper functions for qsort */

int int_comp_func(const void *a, const void *b)

{return sgn(*(int*)a - *(int*)b);}

double *dbl_index_comp_array;

int dbl_index_comp_func(const void *a, const void *b)

{

double d=dbl_index_comp_array[*(int*)a]-dbl_index_comp_array[*(int*)b];

return d<0 ? -1 : d>0 ? 1 : 0;

}

int dbl_index_comp_func_3(const void *a, const void *b)

{return sgn(dbl_index_comp_array[*(int*)a*3] -

dbl_index_comp_array[*(int*)b*3]);}

int *int_index_comp_array;

int int_index_comp_func(const void *a, const void *b)

{

int i=int_index_comp_array[*(int*)a]-int_index_comp_array[*(int*)b];

return i<0 ? -1 : i>0 ? 1 : 0;

}

/*

Implements a 3-D space-filling hilbert curve.

It uses int_index_comp_array, to which we assume inv_gray has already

been applied. This is used to attempt to make neighboring points

approximately near each other.

*/

int gray_triple_compare(int x, int y)

{
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int i, j, bit, diff;

for (i=0 ; i<3 ; i++)

for (bit=512<<(i*10), j=0 ; j<10 ; bit>>=1, j++)

if ((diff = sgn((x & bit) - (y & bit))) != 0)

return diff;

return 0;

}

/* if the bits of a are written a[1], a[2], ... a[10], then return

a number of the form a[1], b[1], c[1], a[2], ... c[10] */

/* helper define */

#define GO(x,bit,offset) ((x&(1<<bit))<<(2*bit+offset))

int gray_order(int a, int b, int c)

{

return GO(a,0,0) + GO(a,1,0) + GO(a,2,0) + GO(a,3,0) + GO(a,4,0) +

GO(a,5,0) + GO(a,6,0) + GO(a,7,0) + GO(a,8,0) + GO(a,9,0) +

GO(b,0,1) + GO(b,1,1) + GO(b,2,1) + GO(b,3,1) + GO(b,4,1) +

GO(b,5,1) + GO(b,6,1) + GO(b,7,1) + GO(b,8,1) + GO(b,9,1) +

GO(c,0,2) + GO(c,1,2) + GO(c,2,2) + GO(c,3,2) + GO(c,4,2) +

GO(c,5,2) + GO(c,6,2) + GO(c,7,2) + GO(c,8,2) + GO(c,9,2);

}

#undef GO

int gray_triple_comp_func(const void *a, const void *b)

{

int x, y;

x = int_index_comp_array[*(int *)a];

y = int_index_comp_array[*(int *)b];

return gray_triple_compare(x, y);

}

/*

* This data structure stores the net of points for which we want to

* compute epsilon and contains most of the core functionality of the

* code except for communication with other processes.

*/

struct net

{

/* points represented in both formats */

double *param, *mat;

int no_pts;

/* hash size */

int hs[3];

/* hash multiplier: hm[i] = 1.0 / hs[i] */

double hm[3];

/* keep track of the hash indices of each point */

int *hash_order;

net()

{

param = mat = NULL;

no_pts = -1;
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hash_order = NULL;

}

~net() {reset();}

/* most of these are explained in the print_help() function */

bool sanity_check();

void random_points(int n);

void skewed_random(int n);

void uniform_param(int n);

bool load_points(char *fn, bool skip=false);

bool load_web(char *url, char *cache_fn);

bool load_cache(char *fn, char *url);

void process_loaded_points();

void process_points();

void save_points(char *fn);

void print_nearest();

double check_distance(double m[], bool silent=false);

double check_random(int n);

double check_ga(int iter, int n=1000);

double check_slide(int n);

double compute_midpoint(double *mid, int *indices);

void set_no_blocks(int no_blocks);

double find_epsilon();

void print_points();

int hash_val(double *p);

void reset();

};

/*

* parallel is a base class which handles the parallelism (or lack

* thereof) of the epsilon finder. It is responsible for returning

* which block should be checked, when the program is finished and

* keeping track of epsilon and a 4-tuple of verifying points. Its

* descendants are file_parallel (for parallel processes that

* communicate via a shared directory) and web_parallel (for processes

* that use the eps-server.cc web server to coordinate themselves.)

* The base class parallel will cause the program to run alone

* (i.e. no parallelism).

*/

struct parallel

{

/* total number of blocks to be processed */

int no_blocks;

/* current block */

int cur;

/* highest value of epsilon seen so far */

double epsilon;

/* indices of four points that prove this */

int verify[4];

/* last time we’ve checked for a new value of epsilon with read_world() */
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time_t last_time;

/* how long to wait before calling read_world() */

int time_between_checks;

/* the epsilon net controlling the process */

net *net_ptr;

/* whether someone else finished the block we’re currently working on */

bool scooped;

/* count the amount of computation done */

long long int dist_count;

int m5_count, pt_count;

/* create a unique identifier for each net/hash combination */

char consistency_check[6];

parallel()

{

verify[0] = verify[1] = verify[2] = verify[3] = 0;

cur = -1;

no_blocks = 0;

epsilon = 0.0;

last_time = 0;

time_between_checks = 10;

net_ptr = NULL;

scooped = false;

dist_count = 0;

m5_count = pt_count = 0;

consistency_check[0] = 0;

}

virtual ~parallel() {reset();}

virtual void init(int size, net *data);

virtual void read_world() {last_time = time(0);}

virtual int next_block() {cur++; return cur=((cur==no_blocks)?-1:cur);}

virtual void finish_block() {}

virtual void report_results() {}

virtual void finish_all() {}

virtual void describe(int hash_size, int no_pts, char *desc) {}

virtual void reset() {}

/* check things every once in a while */

void check_world() {if (time(0)-last_time>time_between_checks) read_world();}

/* try to update epsilon from another process */

void update_eps(double eps, int ver[4]);

} *multi = NULL;

/* All processes share a directory and each one has a seperate file

* that shows its progress. The filenames contain the consistency check

* (to determine who shares with whom) and a unique host identifier to

* avoid filename collisions.

*/
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struct file_parallel : public parallel

{

/* 0 untouched, 1 claimed, 2 finished */

int *blocks;

bool all_claimed;

char *dir;

char *fn1;

FILE *file1;

file_parallel() : parallel()

{

blocks = NULL;

dir = fn1 = NULL;

file1 = NULL;

}

virtual void init(int size, net *data);

virtual void read_world();

virtual int next_block();

virtual void finish_block();

virtual void report_results();

virtual void reset();

};

/* file parallel functionality omitted for brevity */

/*

* Parallelism is handled by a central server which allocates blocks

* and saves a common set of verifying points. This code is in

* eps-server.cc.

*/

struct web_parallel : public parallel

{

char *url1, *url2;

int client_id;

web_parallel() {client_id = -1; url1 = url2 = NULL;}

~web_parallel();

char *wget_trap(char *addr, char *fn);

char *wget_cmd(char *cmd, bool no_trap=false);

virtual void describe(int hash_size, int no_pts, char *desc);

virtual void init(int size, net *data);

virtual void read_world();

virtual int next_block();

virtual void finish_block();

virtual void report_results();

virtual void finish_all();

virtual void reset();

};

char base64(int from)

{

from &= 63;
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return (from < 10) ? ’0’ + from :

((from < 36) ? ’a’ - 10 + from :

(from < 62) ? ’A’ - 36 + from : ’_’);

}

void parallel::init(int size, net *data)

{

int i, consistency;

no_blocks = size;

net_ptr = data;

/* create a consistency check from the data and number of blocks */

consistency = no_blocks;

hash_ints(net_ptr->hash_order, net_ptr->no_pts, &consistency);

for (i=0 ; i<5 ; i++)

{

consistency_check[i] = base64(consistency);

consistency >>= 6;

}

consistency_check[5] = 0;

printf("consistency check: %s\n", consistency_check);

}

void parallel::update_eps(double eps, int ver[])

{

double eps_real;

int i;

if (eps > epsilon + 3e-6)

{

eps_real = net_ptr->compute_midpoint(NULL, ver);

if (fabs(eps - eps_real) > 1e-2)

printf("false witness!! eps_real=%f eps=%f points=%d %d %d %d\n",

eps_real, eps, ver[0], ver[1], ver[2], ver[3]);

else

{

epsilon = eps_real;

for (i=0 ; i<4 ; i++) verify[i] = ver[i];

printf("from another process, epsilon is now %f\n", epsilon);

}

}

}

char *web_parallel::wget_trap(char *addr, char *fn)

{

char *buf;

int failure = 0;

while (1)

{

buf = wget(addr, fn);

if (!buf)

{

assert(buf = new char[200]);

sprintf(buf, "#Couldn’t connect to host %s\n", addr);

}

if (buf[0] != ’#’) return buf;
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printf("Server error:\naddr=%s\nfn=%s\nerror=%s\n", addr, fn, buf+1);

delete buf;

if (++failure == 6)

{

printf("Six failures, time for closing. Arrr.\n");

exit(1);

}

sleep(failure);

}

}

char *web_parallel::wget_cmd(char *cmd, bool no_trap)

{

char *buf, *result;

buf = new char[strlen(url2) + strlen(cmd) + 100];

sprintf(buf, "%s?%s+%d+%s", url2, consistency_check, client_id, cmd);

result = no_trap ? wget(url1, buf) : wget_trap(url1, buf);

delete buf;

return result;

}

void web_parallel::describe(int hash_size, int no_pts, char *desc)

{

char *buf = new char[strlen(desc)*3 + 100];

sprintf(buf, "describe+%d+%d+", no_pts, hash_size);

copy_web_str(buf + strlen(buf), desc);

wget_cmd(buf, false);

delete buf;

}

web_parallel::~web_parallel()

{

reset();

del(url1);

del(url2);

}

void web_parallel::reset()

{

char *temp = wget_cmd("stop", true);

del(temp);

}

void web_parallel::init(int size, net *data)

{

char buf[100], *result;

int no_proc;

parallel::init(size, data);

client_id = -1;

sprintf(buf, "start+%d", size);

result = wget_cmd(buf);

sscanf(result, "%d%d", &client_id, &no_proc);

printf("%d other processes running with consistency check %s.\n",
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no_proc, consistency_check);

if (!no_proc) printf("Either you are the first process or you’re doing something differently from everyone else.\n");

delete result;

}

void web_parallel::read_world()

{

char *result;

double eps;

int ver[4], x;

result = wget_cmd("status");

sscanf(result, "%lf%d%d%d%d", &eps, ver, ver+1, ver+2, ver+3);

update_eps(eps, ver);

delete result;

if (cur != -1)

{

result = wget_cmd("scooped");

sscanf(result, "%d", &x);

delete result;

scooped = x;

}

last_time = time(0);

}

int web_parallel::next_block()

{

char *result = wget_cmd("request");

sscanf(result, "%d", &cur);

scooped = false;

delete result;

return cur;

}

void web_parallel::finish_block()

{

delete wget_cmd("finish");

report_results();

}

void web_parallel::report_results()

{

char buf[200];

sprintf(buf, "update+%f+%d+%d+%d+%d+%lld+%d+%d", epsilon,

verify[0], verify[1], verify[2], verify[3],

dist_count, m5_count, pt_count);

delete wget_cmd(buf);

}

void web_parallel::finish_all()

{delete wget_cmd("stop");}

void net::reset()

{
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no_pts = -1;

if (param) delete param;

if (mat) delete mat;

if (hash_order) delete hash_order;

}

bool net::load_points(char *fn, bool skip)

{

FILE *in = fopen(fn, "rt");

double *temp;

int max_pts, i=0;

if (!in)

{

fprintf(stderr, "Couldn’t open input file %s\n", fn);

return false;

}

assert(mat = new double[max_pts = 512]);

no_pts = 0;

while (!feof(in))

{

fscanf(in, "%lf ", &mat[no_pts]);

if (skip && ((i++ & 7) > 3)) continue;

if (++no_pts == max_pts)

{

assert(temp = new double[max_pts *= 2]);

memcpy(temp, mat, sizeof(double) * no_pts);

delete mat;

mat = temp;

}

}

fclose(in);

process_loaded_points();

process_points();

return true;

}

void net::save_points(char *fn)

{

FILE *out = fopen(fn, "wt");

int i;

for (i=0 ; i<no_pts*4 ; i++)

fprintf(out, "%f%c", mat[i], (i+1)&3 ? ’ ’ : ’\n’);

fclose(out);

}

void net::process_loaded_points()

{

int i;

if (!laconic)

printf("%d doubles loaded, %d points\n", no_pts, no_pts/4);

no_pts /= 4;

assert(param = new double[no_pts*3]);

for (i=0 ; i<no_pts ; i++)

{
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if (fabs(vec_norm(&mat[i*4], 4)-1) > 1e-3)

printf("error in line %d: %f %f %f %f not on sphere.\n",

i+1, mat[i*4], mat[i*4+1], mat[i*4+2], mat[i*4+3]);

mat_to_param(&mat[i*4], &param[i*3]);

}

}

bool net::load_web(char *url, char *cache_fn)

{

char *p1, *p2, *result, *tok;

vector<double> pts;

split_ip(url, &p1, &p2);

result = wget(p1, p2);

delete p1;

delete p2;

if (!result) return false;

no_pts = 0;

tok = strtok(result, " \n");

while (tok)

{

pts.push_back(atof(tok));

tok = strtok(NULL, " \n");

}

assert(mat = new double[no_pts = pts.size()]);

memcpy(mat, pts.begin(), no_pts * sizeof(double));

process_loaded_points();

process_points();

if (cache_fn) save_points(cache_fn);

return true;

}

bool net::load_cache(char *fn, char *url)

{

if (fexist(fn))

{

if (!laconic) printf("%s found, using cached version.\n", fn);

return load_points(fn);

}

else

{

if (!laconic) printf("%s not found, downloading from %s\n", fn, url);

return load_web(url, fn);

}

}

/* returns epsilon achieved or 0.0 if something else is closer */

double net::compute_midpoint(double *mid, int *indices)

{

double a1[4], a2[4], a3[4], a4[4], a4neg[4], dpos, dneg, m0[4], tm[4];

double a4param[3];

int i;

param_to_mat(&param[indices[0]*3], m0);

param_to_mat(&param[indices[1]*3], tm);
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for (i=0 ; i<4 ; i++)

a1[i] = tm[i] - m0[i];

param_to_mat(&param[indices[2]*3], tm);

for (i=0 ; i<4 ; i++)

a2[i] = tm[i] - m0[i];

param_to_mat(&param[indices[3]*3], tm);

for (i=0 ; i<4 ; i++)

a3[i] = tm[i] - m0[i];

normalize(a1);

subtract_off(a2, a1);

normalize(a2);

subtract_off(a3, a1);

subtract_off(a3, a2);

normalize(a3);

do

{

for (i=0 ; i<4 ; i++) a4[i] = uniform();

subtract_off(a4, a1);

subtract_off(a4, a2);

subtract_off(a4, a3);

}

while (sqr(a4[0])+sqr(a4[1])+sqr(a4[2])+sqr(a4[3])<1e-8);

normalize(a4);

dpos = mat_dist_sqr(a4, m0);

for (i=0 ; i<4 ; i++) a4neg[i] = -a4[i];

dneg = mat_dist_sqr(a4neg, m0);

if (dneg < dpos)

{

dpos = dneg;

for (i=0 ; i<4 ; i++) a4[i] = a4neg[i];

}

if (mid) memcpy(mid, a4, 4 * sizeof(double));

/* test to see that no point is closer */

dpos = sqrt(dpos);

dneg = dpos * 0.99999; /* use a relaxed inequality */

mat_to_param(a4, a4param);

for (i=0; i<no_pts ; i++)

if (param_dist(a4param, &param[i*3]) < dneg)

return 0.0;

return dpos;

}

void net::set_no_blocks(int no_blocks)

{

int i;

for (i=0 ; i<3 ; i++)

{

hs[i] = no_blocks;

hm[i] = 1.0 / hs[i];
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}

multi->init(hs[0] * hs[1], this);

}

/* For every x in our set, add the point -x, because we’re actually

* working with SO(3), not SU(2). Then remove all

* duplicates. Things are confusing, since we don’t ever actually

* allocate storage for the new points, but just index them implicitly.

*/

void net::process_points()

{

int i, j, k, midway, *hash_val, *temp;

double *m1, *m2, temp_m[8], p[3], *old_mat, *old_param, avg, d;

/* order the points by hash value */

midway = no_pts;

no_pts *= 2;

assert(temp = new int[no_pts]);

assert(hash_val = new int[no_pts]);

assert(hash_order = new int[no_pts]);

for (i=0 ; i<no_pts ; i++)

{

/* stupid legacy stuff */

memcpy(p, &param[(i%midway)*3], 3 * sizeof(double));

if (i>=midway)

{

p[1] = fmod(p[1] + 0.5, 1.0);

p[2] = fmod(p[2] + 0.5, 1.0);

}

/* hash as finely as possible to ensure duplicates are found */

hash_val[i] = inv_gray(int((p[2]-1e-9)*1024)) +

((inv_gray(int((p[1]-1e-9)*1024)) +

(inv_gray(int((p[0]-1e-9)*1024)) << 10)) << 10);

temp[i] = gray_order(inv_gray(int((p[0]-1e-9)*1024)),

inv_gray(int((p[1]-1e-9)*1024)),

inv_gray(int((p[2]-1e-9)*1024)));

hash_order[i] = i;

}

int_index_comp_array = temp;

my_qsort_int(temp, hash_order, no_pts);

i=j=0;

m1 = temp_m + 4; m2 = temp_m;

memcpy(m1, &mat[4*(hash_order[0]%midway)], 4*sizeof(double));

avg = 0;

while (1)

{

hash_order[j++] = hash_order[i++];

if (i == no_pts) break;

swap(m1, m2);

memcpy(m1, &mat[4*(hash_order[i]%midway)], 4*sizeof(double));

if ((hash_order[i]>=midway) != (hash_order[i-1]>=midway))

for (k=0 ; k<4 ; k++)

m2[k] = -m2[k];

d = mat_dist_sqr(m1, m2);
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avg += d;

if (d < 1e-10) j--;

}

no_pts = j;

if (!laconic)

printf("After processing, %d points remain.\n average distance = %f\n",

no_pts, avg/no_pts);

delete temp;

/* actually rearrange them according to the new ordering */

old_param = param;

assert(param = new double[no_pts * 3]);

old_mat = mat;

assert(mat = new double[no_pts * 4]);

for (i=0 ; i<no_pts ; i++)

{

j = hash_order[i];

k = (j>=midway);

if (k) j -= midway;

memcpy(&mat[i*4], &old_mat[j*4], 32);

memcpy(&param[i*3], &old_param[j*3], 24);

if (k)

{

for (k=0 ; k<4 ; k++)

mat[i*4 + k] = -mat[i*4 + k];

param[i*3 + 1] = fmod(param[i*3 + 1] + 0.5, 1.0);

param[i*3 + 2] = fmod(param[i*3 + 2] + 0.5, 1.0);

}

hash_order[i] = hash_val[hash_order[i]];

}

delete old_mat;

delete old_param;

delete hash_val;

}

/* the patch-based method of finding epsilon:

time = O(p * (n + m^5)), where p is the number of patches, n is the number

of points and m is the typical numbers of neighbors of each patch */

double net::find_epsilon()

{

int *nearby, no_nearby, expand_by;

int x, y, z, i, j, k;

double loc[3], loc2[3], center[3], b4param[3], rad, dist, closest=0, *min_dist;

double b1[4], b2[4], b3[4], b4[4], dpos, mata1[4], temp_mat[4];

double b4neg[4], dneg, dtest;

int a1, a2, a3, a4, a5;

bool fuckit;

long long int last_dist_count = 0;

int good_count = 0, within_count = 0;

int nearby_aborted = 0, none_nearby = 0, patch_count = 0;

multi->epsilon = 0.0;
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assert(nearby = new int[no_pts]);

assert(min_dist = new double[no_pts]);

expand_by = MAX(5, no_pts / 1000);

delete mat;

mat = new double[0];

multi->read_world();

/*

The main algorithm: iterate through all patches and look for

extremal points inside, resulting from nearby 4-tuples.

*/

for (multi->next_block() ; multi->cur!=-1 ; multi->next_block())

{

x = multi->cur / hs[1];

y = multi->cur % hs[1];

loc[0] = x * hm[0];

loc2[0] = loc[0] + hm[0];

center[0] = loc[0] + hm[0] / 2;

loc[1] = y * hm[1];

loc2[1] = loc[1] + hm[1];

center[1] = loc[1] + hm[1] / 2;

for (z=0, loc[2]=0.0 ; z<hs[2] ; z++, loc[2]=loc2[2])

{

multi->check_world();

if (multi->scooped) break;

patch_count++;

loc2[2] = loc[2] + hm[2];

center[2] = loc[2] + hm[2] / 2;

/* 1) compute patch radius */

rad = param_patch_radius(loc, loc2);

multi->dist_count++;

fuckit = false;

/* 2) first look at nearby points */

closest = MAX_DIST;

i = k = 0;

j = no_pts;

a1 = inv_gray(int((center[2]-1e-9)*1024)) +

((inv_gray(int((center[1]-1e-9)*1024)) +

(inv_gray(int((center[0]-1e-9)*1024)) << 10)) << 10);

while (i<j)

{

k = (i + j) >> 1;

a2 = gray_triple_compare(hash_order[k], a1);

if (a2 > 0)

j = k;

else

i = k + 1;

}
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i = MAX(0, k - expand_by);

j = MIN(no_pts, k + expand_by);

for ( ; i<j ; multi->dist_count++, i++)

if ((dist = param_dist(&param[i*3], center)) < closest)

if ((closest = dist) + rad < multi->epsilon)

fuckit = true;

/* 3a) now iterate through all points, discarding those

whose minimum distance is greater than closest + rad */

no_nearby = 0;

for (i=0 ; !fuckit && i<no_pts ; i++)

{

dist = min_dist_to_patch(&param[i*3], loc, loc2);

multi->dist_count++;

if (dist < closest + rad)

{

/* add this point to the list of nearby candidates */

min_dist[no_nearby] = dist;

nearby[no_nearby++] = i;

dist = param_dist(&param[i*3], center);

if (dist < closest)

if ((closest = dist) + rad < multi->epsilon)

fuckit = true;

multi->dist_count++;

}

}

/* if we’re never going to affect epsilon, then don’t try */

if (fuckit) continue;

/* 3b) once we have the best value of closest that we’ll get,

go back through and cull as many points as possible */

closest += rad;

for (i=j=0 ; i<no_nearby ; i++)

{

min_dist[j] = min_dist[i];

nearby[j] = nearby[i];

if (min_dist[i] < closest) j++;

}

no_nearby = j;

/* 4) do the O(m^5) part - iterate through all 4-tuples and

check if the point falls in the patch and has no closer points

*/

if (no_nearby > 500)

printf("m=%d\n\n The horror! The horror!\n", no_nearby);

multi->m5_count++;

for (a1=0 ; a1<no_nearby ; a1++)

{

param_to_mat(&param[nearby[a1]*3], mata1);

for (a2=a1+1 ; a2<no_nearby ; a2++)

{
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param_to_mat(&param[nearby[a2]*3], temp_mat);

for (i=0 ; i<4 ; i++)

b1[i] = temp_mat[i] - mata1[i];

if (normalize(b1) < 1e-9) continue;

for (a3=a2+1 ; a3<no_nearby ; a3++)

{

param_to_mat(&param[nearby[a3]*3], temp_mat);

for (i=0 ; i<4 ; i++)

b2[i] = temp_mat[i] - mata1[i];

subtract_off(b2, b1);

if (normalize(b2) < 1e-9) continue;

for (a4=a3+1 ; a4<no_nearby ; a4++)

{

/* this whole inner loop kind of hurts */

multi->dist_count += 5;

multi->pt_count++;

fuckit = false;

param_to_mat(&param[nearby[a4]*3], temp_mat);

for (i=0 ; i<4 ; i++)

b3[i] = temp_mat[i] - mata1[i];

subtract_off(b3, b1);

subtract_off(b3, b2);

continue;

}

do

{

for (i=0 ; i<4 ; i++) b4[i] = uniform();

subtract_off(b4, b1);

subtract_off(b4, b2);

subtract_off(b4, b3);

}

while (normalize(b4) < 1e-9);

dpos = mat_dist(b4, mata1);

/* either b4 or -b4 is the point we want */

for (i=0 ; i<4 ; i++) b4neg[i] = -b4[i];

dneg = mat_dist(b4neg, mata1);

if (dneg < dpos)

{

dpos = dneg;

for (i=0 ; i<4 ; i++) b4[i] = b4neg[i];

}

/* test to see if it’s in the patch */

mat_to_param(b4, b4param);

for (i=0 ; i<3 ; i++)

if (b4param[i] < loc[i] || b4param[i] > loc2[i])

fuckit = true;

if (!fuckit) within_count++;

/* test to see that no point is closer */

for (a5 = 0; a5<no_nearby ; a5++)

if (param_dist(b4param,&param[nearby[a5]*3])
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< dpos*0.99999)

{

fuckit = true;

break;

}

multi->dist_count += a5;

if (fuckit) continue; /* for a4=... */

good_count++;

if (dpos > multi->epsilon)

{

multi->epsilon = dpos;

if (!laconic)

{

printf("Epsilon is now %f\n", multi->epsilon);

fflush(stdout);

}

multi->verify[0] = nearby[a1];

multi->verify[1] = nearby[a2];

multi->verify[2] = nearby[a3];

multi->verify[3] = nearby[a4];

multi->report_results();

dneg=MAX_DIST; j=0;

for (a5=0;a5<no_pts;a5++)

if ((dtest=param_dist(param + a5*3, b4param))<dneg)

{dneg=dtest; j=a5;}

if (fabs(dneg-dpos)>1e-4)

{

printf("bad extreme point.\n");

print_vec("loc", loc, 3);

print_vec("loc2", loc2, 3);

printf("rad=%f, closest=%f\n", rad, closest);

for (i=0;i<no_nearby;i++)

{

char buf[40];

sprintf(buf, "pnear(%d,:)", i+1);

print_vec(buf, param + nearby[i]*3, 3);

}

printf("a1=%d; a2=%d; a3=%d; a4=%d\n",

a1+1, a2+1, a3+1, a4+1);

print_vec("b4", b4, 4);

print_vec("closest param", param+j*3, 3);

printf("min_dist_to_patch=%f\n", min_dist_to_patch(param+j*3, loc, loc2));

printf("dpos=%f, actual=%f\n", dpos, dneg);

assert(0);

}

}

}

}

}

}
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}

multi->finish_block();

if (!laconic && (multi->dist_count > last_dist_count + 10000000))

{

last_dist_count = multi->dist_count;

printf("%d patches, %d aborted nearby, %d full scans\n",

patch_count, nearby_aborted, none_nearby);

printf("%d O(m^5) checks, %lld distance checks, %d 4-tuples, %d closest\n",

multi->m5_count, multi->dist_count, multi->pt_count, good_count);

fflush(stdout);

}

}

delete nearby;

delete min_dist;

if (!laconic)

{

printf("%d patches, %lld distance checks, %d O(m^5), %d 4-tuples\n",

patch_count, multi->dist_count, multi->m5_count, multi->pt_count);

compute_midpoint(b4, multi->verify);

printf("%d %d %d %d\n", multi->verify[0], multi->verify[1], multi->verify[2], multi->verify[3]);

print_vec("An example of an extremal point is:\n x", b4, 4);

printf("\nThis point has a least distance of %f\n", multi->epsilon);

}

multi->finish_all();

return multi->epsilon;

}

/* This lists all the command-line options. Note that some of the

corresponding functions have been omitted from this code listing

for brevity */

void print_help()

{

printf("epsilon [options]\n");

printf("In case of trouble, make sure the parameters are in the listed order.\n");

printf(" -laconic: print only the final output\n");

printf(" -timer: set the random number seed to the system time\n");

printf(" -rand <n>: test n random points\n");

printf(" -skewed <n>: try to pick random points far from each other\n");

printf(" -uniform <n>: pick n^3 points uniformly in parameter space\n");

printf(" -load <fn>: load points for a file\n");

printf(" -load-skip <fn>: skip 2 out of every 4 lines\n");

printf(" -load-web <url>: load the points from a web site\n");

printf(" -load-web-cache <fn> <url>: only download the points once\n");

printf(" -hash <n>: hash into n intervals (default=100)\n");

printf(" -sanity: first make sure the primitives work correctly\n");

printf(" -check <a> <b> <c> <d>: check the distance for a point\n");

printf(" -check-ind <a> <b> <c> <d>: specify 4-tuple indices instead\n");

printf(" -print-ind <a> <b> ...: print out several points.\n");

printf(" -check-rand <n>: check the distance for n random points\n");

printf(" -check-ga <n>: do a GA distance check for n iterations\n");

printf(" -check-slide <n>: slide from random points to extreme points\n");

printf(" -expand: turn on a questionable optimization\n");

74



Aram Harrow Quantum compiling

printf(" -use-hash: another dubious optimization\n");

printf(" -parallel <dir>: many processes share the same directory\n");

printf(" -distributed <url>: parallel processes using a web server\n");

printf(" -nice <n>: reduce process priority with the nice command\n");

printf(" -master-skip <n>: skip first n lines of the master file\n");

printf(" -master <url>: load a list of commands from a master list\n");

exit(1);

}

/* if the program crashes, then try to tell the central server first */

/* signal-handling code due to Jason Taylor omitted to keep things short */

/* Most of the main function was also omitted.

Below is an example of how the interface is used */

int main(int argc, char **argv)

{

net N;

N.set_no_block(200);

N.load_points("filename");

printf("epsilon is %f\n", N.find_epsilon());

return 0;

}

75


