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ABSTRACT
The vision of programmable matter is to create a blob of material that can transform
itself into an arbitrary form. One promising approach for achieving programmable
matter is to construct a chain of identical nodes that can fold into arbitrary three-
dimensional shapes. Previous active electromechanical systems have demonstrated
this concept but are currently costly, complex, and not robust enough to scale to
smaller sizes or larger numbers of nodes.

The goal of this thesis is to explore methods of simplifying chain programmable matter
by removing the actuator from each node and, instead, putting energy into the system
externally through stochastic vibrations. Each node takes this random energy input and
rectifies it to produce motion towards the target position. We propose two variants of
this system: 1) smart clutches that can be reprogrammed in situ and fold through
arbitrary paths in configuration space and 2) ratchets that are programmed ahead of
time and are entirely passive. We developed a chain using the ratchet concept and also
constructed a new active, electromechanical chain with reduced cost and improved
speed and torque compared to previous electromechanical systems. Through
experimental and computer simulated studies, we determined that stochastic actuation
can simplify and reduce the cost of these systems. We have also identified how the size
of the increments of the ratchet, length of the chain, and the amplitude and frequency
of agitation affect the folding time and success rate. In addition, we show that passive
folding systems should improve in performance as the hardware scales down.
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CHAPTER

1
INTRODUCTION

1.1 Motivation: biology's manufacturing capabilities

Currently, almost all man-made manufacturing processes involve machines manipulating

substrates that are smaller than and typically as precisely constructed as themselves, in

a top-down fashion. In contrast, almost all manufacturing processes in biology are

bottom-up. Such biological processes can manufacture systems with extremely high

complexity at scales far below what is currently possible in artificial systems.

Even as some of the most advanced artificial manufacturing processes approach the

complexity of biological systems, they lack many of the useful features of the latter,

namely, self-reproduction, self-healing, and extreme adaptability in a system with

relatively simple external inputs. Though these features are best exemplified by

biology, they are not inherent to biology and can potentially exist in any system using

self-assembly.

Self-reproduction is useful for the obvious goal of producing more of a desirable object

without requiring any significant infrastructure other than the object itself. Self-

reproduction also allows for evolution. In systems that cannot reproduce themselves

entirely, minimizing the complexity and size of parts that cannot be self-reproduced can

result in increased self-healing and adaptability. Such traits are useful in man-made

systems operating in inaccessible or extreme environments such as in space exploration,

search and rescue, or the battlefield.



1.2 Programmable matter by chain folding

If it is possible to create self-assembling systems that can be externally programmed to

create desired shapes and even desired physical properties this would constitute

programmable matter. In light of how well biology implements self-assembly and all of

its positive characteristics, our research group is conducting a research program called

"Millibiology" to create life in engineered materials [1].
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b

Figure 1.1: Rendering of a dog constructed out of a continuous chain.

In Millibiology, our approach is to create arbitrary geometries through folding a

continuous string onto itself in a similar fashion to protein folding 12]. Figure 1.1

illustrates how the shape of a dog can be constructed out of a single continuous chain of

nodes. We are primarily exploring such systems with actuation built into each node.

The most obvious and reliable method for producing a self-folding chain is to implement

actuators (such as motors) in each node. We call this a fully active system, as all the

actuation is precisely controlled locally. Clearly, the benefit of such a system is that the

chain should be able to fold reliably according to the implemented folding algorithm.

We have developed multiple iterations of fully active chains, though we quickly found

that they are expensive and complicated to build and difficult to scale down. Such

challenges prompted us to consider other approaches. Would it be possible to construct

a system that is actuated through stochastic energy input externally, thereby removing

the most complex element, the actuator?



1.3 Proposed approach: Stochastic actuation

In facing the challenges of developing a fully active system, we decided to develop an

inherently different system that relies on external actuation (such as vibrating the entire

system) and local control of clutches-which can be much simpler to implement, less

expensive, and easier to scale down than actuators-to control node positions. In

contrast to a fully active system, we call this proposed system a passive one. This is in

some sense, a logical step in the context of Millibiology because this is of course how

proteins are actuated to fold into their final configurations.

1.3.1 Stochastic energy input

There is a challenge in simply mimicking what proteins do. In water, at room

temperature, a particle typically experiences over 1010 collisions per second 131.

Although these numbers are not typically reported in directed self-assembly research,

observations of videos show that typical collision rates in these systems are in the 1-100

Hz range. Essentially, this is limited by the fact that the maximum speed of particles in

these systems is either constant or decreasing as the objects scale up, while the distance

the particles have to travel to the next object increases (see Section 3.2 for an analysis).

This difference of many orders of magnitude significantly limits the rate of assembly.

One potential solution to this problem is to attempt to add longer range interactions to

self-assembly systems {4]. This can effectively increase the rate of interactions, and also

increase the success rate of interactions, but there are not always easy ways to

implement this. Instead, we need another method to guide the system towards its goal.

While stochastic energy input can be applied to our system via vibrations to cause the

chain to fold, there needs to be a way to control how the nodes move relative to each

other. We propose the use of local clutches to achieve local control: 1) a smart clutch



that utilizes sensing to control when the clutch engages /disengages to control when

motion occurs, and 2) an even simpler clutch, such as a ratcheted one-way bearing,

which guarantees only a single locked end position.

1.3.2 Smart clutches

Probably the most sophisticated and powerful mechanism to use in this passive system

is a clutch with some kind of torque or position sensing device to control the direction of

motion and to even hold a joint in a fixed position. Figure 1.2 shows a plot from a

simple simulation of joint angle over time in such a system for a single joint. The blue

line indicates the random torque input, while the orange line indicates the angular

position of the joint. In this simulation, the system is trying to reach the position

labeled by the target line. Here, the state of the clutch is indicated by the color of the

shaded vertical regions (green for open, red for closed).
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Figure 1.2: A plot of a simulation of random torque applied to a joint and the response
of its clutch. The red and green regions indicate when the clutch is closed and when it

is open, respectively.



1.3.3 Ratcheting

While a smart clutch would provide the ability to guide the system through arbitrary

motion profiles and reprogram it in situ an even simpler system can be constructed by

sacrificing these abilities.

In systems that have some kind of physical connection between units, as in the chain

mechanisms we are studying, there is another option to increase the success rate of

interactions, and that is ratcheting. Ratcheting is a mechanism that limits the motion

of a system through configuration space by changing the potential landscape as the

system moves through it.

Ratcheting can be implemented with mechanisms that are simpler than an actuator.

Figure 1.3 shows examples of a passive mechanical ratchet as seen in a one-way bearing

and a socket wrench. It is clear that both these mechanisms are purely mechanical and

are simple to construct.

Free

Engaged

Figure 1.3: Two different types of ratchet mechanisms: (left) a one-way bearing and
(right) a ratchet and pawl.

1.3.4 Continuum of controllability and complexity

Both a smart clutch and a purely passive ratcheting mechanism have advantages and

disadvantages. The latter system is the most simple, but it is not programmable in

situ, nor does it allow for programming of intermediate positions or paths through those

15



positions. Regardless, both of these systems are simpler to construct and have less

control than a fully actuated system. Thus, a hierarchy (illustrated in Figure 1.4)

emerges with increasing complexity allowing for increased control.

Smart cutch
~30 parts

Figure 1.4: Diagram illustrating a continuum of controllability and complexity in folding
chain systems.

1.4 Thesis overview

In Chapter 2, we introduce work from a range of fields including self-assembly, modular

robotics, and rectified Brownian motion to help illustrate how our work is motivated by

and relates to the state of the art.

In Chapter 3, we go through some basic analysis of how the physics of stochastically

actuated chains scale with size.

In Chapter 4, we discuss the design of passive chain programmable matter systems and

also present the design of a new active electromechanical system, the Bimillimotein,

which is later compared to our passive systems.

In Chapter 5, we show the results of physical and simulated experiments of a passive

ratcheting system to explore the effects of ratchet increment size and chain length as

well as how the amplitude and frequency of agitation affect the folding time and success

rate.

I

.Continuous ratchet

~10 parts



In Chapter 6, we summarize our results and suggest future directions for our work.



CHAPTER

2
BACKGROUND AND PREVIOUS WORK

2.1 Maxwell's demon and the 2"d Law of Thermodynamics

Figure 2.1: Diagram illustrating Maxwell's demon [5].

The system we are beginning to describe bears some resemblance to Maxwell's demon,

and this may be of some concern to the reader. Maxwell's demon (illustrated in Figure

2.1) is a thought experiment in which a microscopic demon controlling a microscopic

gate between two chambers opens the gate to allow high-temperature particles (red) to

pass to one side and low-temperature particles (blue) to pass the other. This system

seems to produce a temperature gradient without using any energy; the gate is very

small and there is no obvious reason why it should take more energy to operate than is

found in the particles. Of course, Maxwell's demon does not work in an equilibrium

system, so what about the proposed system? Our system constructed at the macro-scale

is not at equilibrium because the ratchet mechanism never becomes thermalized.



2.2 Rectified Brownian motion

2.2.1 Molecular biology

Rectified Brownian motion is a phenomenon behind many key biomolecular functions

including a variety of transport mechanisms 16] [7] and potentially the action of myosin

in muscle fiber [6]. For example, Ubiquinone is used to transport protons up an 8 kBT

electric potential across a membrane, but the ATP that provides the energy for this

does not act on the molecule directly; rather, it temporarily changes boundary

conditions at the membrane and Brownian motion becomes the actual driving

mechanism [6]. In general, it appears that rectified Brownian motion occurs so often in

biology, that it is used as a mechanism that allows for complex or long range motions in

a relatively simple fashion. This seems related to our idea to use it to reduce the

complexity of our Motein units.

2.2.2 Micro-scale machines

At the micro-scale, researchers have implemented Brownian ratchets that can cause

particles to diffuse preferentially in one direction by pulsing an anisotropic electric field

[8]. Though the electric field contributes to the forward motion, there is no

commutation or coordination with the motion of the particle. The field can be thought

of as simply reinforcing Brownian motion preferentially in one direction. These systems

have been successfully employed to manipulate small particles and to construct filters.

2.2.3 Macro-scale machines

At the macro scale, there have been experiments into implementing a so called

Feynman-Smulchowski ratchet. A Feynman-Smulchowski ratchet couples a microscale

ratchet to a paddle wheel in a heat bath, as in Figure 2.2. The motion of the particles

applies random forces to the paddle T1, but the ratchet T2 only allows motion in one



direction. A load can be applied to the shaft, thereby extracting work. This might

seem to be a working Maxwell's demon, but as Feynman showed, it fails in equilibrium

systems because the ratchet would vibrate and fail to prevent backward motion at the

precise rate that it achieves forward motion [9]. In the macro-scale constructions of the

Feynman-Smulchowski ratchet, researchers simulated a thermal bath with an

aggressively vibrated chamber filled with metal ball bearings and a one-way bearing for

the ratchet portion. As the researchers note, this heat bath is out of equilibrium with

the ratchet mechanism and the bath itself is not in thermal equilibrium as the

interaction of it and the paddle wheel develops a convective current that reinforces the

motion [10]. Nevertheless, this demonstrates the basic concept at the core of this thesis:

rectifying random motion is a means to move the actuator out of one part of the

system.

Pawl-

Figure 2.2: Schematic diagram of Feynman-Smulchowski ratchet [11].

2.3 Chain programmable matter and robots

One way to implement programmable matter is to use modules connected in a chain

architecture. By providing a permanent connection for transferring power and

information between nodes while also allowing significant flexibility close to that of



systems with non-connected nodes, this removes some of the difficulties often found in a

system with separate modules. Most early embodiments of this concept rely on many

small robotic modules that have mechanisms for detaching/ attaching to each other and

self-manipulating [12] [131. Requiring such capabilities typically adds bulk and reduces

the performance of the finished object. One way to avoid such losses is to use a

continuous chain of modules as the basic structure.

However, the chain structure introduces a new challenge. Now that the modules are not

arbitrarily reconfigurable, how does the system produce arbitrary configurations? In our

research, we have found a universal folding algorithm that can take any voxelized 3D

shape and find the necessary folds to make a chain fill that shape. Additionally, we

have built simulation environments capable of finding physically possible motion profiles

to fold one of these chain robots into a given shape [2]. Figure 2.3 provides an example

of an algorithm used to find a continuous folding path in two dimensions.

'AK /*

Figure 2.3: a) Decomposition of a 2D pixel shape into sub pixels and then a traverse of
those sub pixels by a continuous path b) A voxel-based 3D model that can be traversed

by the same algorithm [2].
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Figure 2.4: CAD rendering and photograph of a latching chain robot [12].

Another direction that researchers are pursuing is to remove the actuator in each node

and, instead, have a single actuated joint at the end of the chain to fold the chain while

each joint latches in position [12]. This is shown in Figure 2.4. This obviously bears

great similarity to the concept pursued in this thesis. The important difference is that

we implement the energy input stochastically without a specific dedicated structure.

This allows our system to potentially use different actuation sources, or scavenge energy

from the environment.



2.3.1 Moteins

Figure 2.5: Photo and CAD rendering of the Millimotein [14].

Under the Millibiology program, the MIT Center for Bits and Atoms has designed and

built several versions of active, electromechanical chain programmable matter. These

devices all shared the same geometry based on hexagonally bisected cubes, which is also

the same geometry used in the Molecubes project 1131. In comparison to other universal

folding geometries such as the right-angle hinged tetrahedron [15] this geometry allows

for a large volume inside each joint to place an actuator. Though there have been

several versions, the most developed by far has been the Millimotein [14]. The goal of

this project was to construct a system with nodes 10mm in diameter. This is a

significant feat because the system requires a high torque motor, bearings, and

electronic control in each node. This system uses a new type of motor called an

electropermanent motor in a wobble motor configuration, providing very high torque

and a gearing effect without the complexity of additional shafts or gears.

2.4 Materials-based actuators

Materials-based actuators fit naturally with the smart clutch concept, as they provide a

simple mechanism for implementing the clutch actuator while keeping the complexity

23



low. Because the clutch does not require as high force or power as an equivalent fully

active system, the limited performance of materials-based actuators may be adequate

here when they have failed in more traditional robotics applications.

There has been recent progress in materials-based actuators and their application to

robotics. One group is already demonstrating the advantages of materials-based

actuators by building a self-folding sheet that, because of its thinness, can only utilize

such actuators [161.

There are many instances of materials-based actuators in the literature, but we have

identified three that are of interest because they have already shown performance

sufficient for this application [17]. We also believe that these technologies have future

potential for other applications and are worth developing: dielectric elastomers,

electrolytic gas generation, and micro-valving with a conventional pressure source.

Dielectric elastomer actuators are interesting because across all parameters, they meet

or surpass the capabilities of mammalian muscle. They are also potentially adaptable to

many different configurations mimicking those found in natural muscle.

ab
Polymer film

Compliant electrodes (on z
top and bottom surfaces) Y

Voltage off Voltag on

Figure 2.6: a) Diagram of basic structure of a dielectric elastomer actuator [18] b) folded
dielectric elastomer actuator allowing fabrication of large actuators from thin films [19].

Electrolytic gas generation is promising because it has the potential for high forces and

strains with low actuation voltage [20]. One major drawback is the slow speed, which is



an important consideration for this application because the clutch should be able to

switch its state relatively rapidly.

Fluidic actuators at larger scales are capable of very high power/energy /force densities,

high strains and speeds, and relatively simple control. However, as we miniaturize them

one of the key limiting factors is miniaturizing the valve. The actuator can be kept

relatively simple by using a balloon or bellows architecture, but the valve typically

requires precision moving parts. Figure 2.7 illustrates a potential design for a micro-

hydraulic valve that is very simple. It simply requires a pipe with a special internal

shape, a ferromagnetic ball, and an electromagnet or electropermanent magnet. By

using relatively soft materials for the pipe, the precision requirements to achieve sealing

can be reduced.

a-

16 mm

OFF ON

Figure 2.7: Diagram and photograph of simple micro-hydraulic valve [141.

2.5 Clutch-controlled robots

Robotics researchers have also been exploring the use of clutches in simplifying their

machines by reducing the number of actuators required. These systems can have

effective degrees of freedom up to the number of clutches multiplied by the number of

actuators.



One instance of this system has the clutch mechanism at every joint. A single set of

actuators at the base of a serial kinematic chain of lockable joints can act as if there

were actuators at every clutch as shown in Figure 2.8.

Initial configuration: non-activated, rigid joints

P

Selectively activated
joints to achieve

complex geometry

Figure 2.8: Diagram of single actuator with variable stiffness joints [21].

In a variation of this system, a parallel kinematic mechanism with three locking joints

and a single actuator can provide three degrees of freedom

Figure 2.9: Photograph and rendering of solder clutch controlled crawling robot [22].

2.5.1 Molecular clutches

Clutches are useful for miniaturizing robotics, but how small can they be made?

Researchers have demonstrated a range of MEMS mechanisms that can be used as

clutches, but at the extreme small end of miniaturization, chemists have constructed

molecules that behave as clutches. These molecules have a moiety that is free to spin in

one state but not in the other state [23]. They can be switched from one state to the

other by simply being illuminated with a particular wavelength of light as shown in



Figure 2.10. Potentially, this moiety could be bonded to other structures to incorporate

the molecule into a larger system. A more serious issue would be to address individual

clutches in a system.

trans-cis isomerization

hv

brake off (rotation on) brake on (rotation off)
Figure 2.10: Schematic representation of pentipycene-derived molecular clutch [23].



CHAPTER

3
THEORY AND SCALING

3.1 Active chains in gravity

One of the key parameters that determines the functionality or usefulness of chain

programmable matter is the number of nodes-in a fully stretched out configuration-a

single node can lift in gravity. This is known as the "arm wrestling number" for the

system. Figure 3.1 illustrates this concept.

w nodes

TL1

TM
Figure 3.1: Illustration of forces involved in an active system lifting nodes in gravity.

The arm wrestling number indicates how mobile and active a chain robot can be.

Under the influence of gravity, the space of all possible motions is limited by the

requirement that moving nodes need to be able to lift their neighbors through gravity.

To ensure successful folding, a chain of n nodes needs an arm wrestling number of



approximately n/2 (half the chain on the ground and half being lifted in the air).

However, much smaller ratios of arm wrestling number to chain length can probably

yield useful amounts of mobility. This is especially true because an arch formed in the

middle of a chain is lifted from both ends, so the arch could be approximately twice as

long as the arm wrestling number. Additionally, if gravity is taken into consideration,

motion profiles can be slightly reconfigured to make large motions occur perpendicular

to gravity, or eliminated altogether.

While examining the utility of programmable matter for a wide range of applications, it

is useful to understand how a given system's arm wrestling number would change as the

design is scaled up or down. The following is an analysis of this:

We will use r to represent the size of the design. The motor has a gap with magnetic

field that applies a torque on the shaft. The field applies a force proportional to the

area of a gap, r 2, that then creates a torque proportional to the distance of the gap from

the center of the motor, r. Therefore, for a given motor design, the motor has a

maximum torque TM proportional to r 3 . This agrees with the analysis in [14].

Note that while we are specifically discussing electrical motors here, this analysis yields

the same basic relationship for other types of actuators including hydraulics and a

variety of materials-based actuators.

The torque applied by the load on the motor, TL, is the sum of the torques caused by

the weight of all the other nodes under gravity

W

TL = dimg (3.1)

where d is the distance of the node to the rotating node, m is the mass of a node, g is

acceleration due to gravity. Rewriting in closed form and with I = wr and with m

proportional to r3 .



TL cc n2,4 (3.2)

Setting TL = TM and solving for w

W (3.3)
r

So, the number of nodes that can be lifted against gravity increases as the size of the

nodes decrease. This is as expected as insects are known to be able to lift many times

their own weight, while the largest mammals cannot even support their own weight and

must live in buoyant environments.

In terms of the length of the chain of nodes being lifted, by multiplying both sides by r,

the relationship becomes

i 0 5 (3.4)

This also matches our intuition in that larger machines can move longer, unsupported

loads.

3.2 Passive chains

As we mentioned in the introduction (Section 1.3.1), one of the issues with self-assembly

processes at larger scales is that the rate of interactions, and thus the rate of assembly

seems to go down as the scale increases. Here, we present a simple analysis explaining

why this is true for our system.

To start with, we must understand why we cannot simply increase the rate of shaking

to increase the rate of folding. This is because there is a critical speed at which the

structures in the system will not be able to survive the impacts during folding. In a

chemical system, this corresponds to increasing temperature to increase the rate of

reaction until the temperature is so high that the product or reagents begin to break

down.



Assuming a completely inelastic collision, all of this energy must be absorbed by a node

or joint. For a given design, the amount of energy a part of the structure can absorb in

an impact is proportional to its volume. Therefore the shaking energy, E5, that joints

can sustain is proportional to the volume or r3

Es o r 3  (3.5)

With the inelastic collision assumption, the energy a node has to absorb is the kinetic

energy in another node:

E= - 1/ 2 mv2 (3.6)

With m oc r 3 , we get

Es oc 1/2 r3 2 (3.7)

For both (3.5) and (3.7) to be true, v must remain constant at any scale.

The distance a node is required to move to fold is inversely proportional to v, which is

constant, and proportional to the distance to travel. Hence,

t oc r (3.8)

Therefore, the folding rate increases as the system is scaled down. The analysis in the

previous section regarding gravity can be applied here to analyze the peak acceleration

(applied by vibrations). This peak acceleration, or the length of chain that can sustain

a given acceleration, also increases as the chain is scaled down.

Overall, this means that these systems are more "interesting" in that they can fold more

complex systems at smaller scale. Additionally, with our current fabrication methods,

as systems are scaled up, cost becomes more dependent on raw material costs than costs

due to complexity. This reduces the advantage of using passive systems.



CHAPTER

4
DESIGN AND CONSTRUCTION OF CHAIN

PROGRAMMABLE MATTER

4.1 Bimillimotein

To examine our new passive Moteins in relation to active electromechanical systems, we

needed a suitable system to compare to. The various existing Motein systems have all

been built with goals in addition to the goal of building an effective active Motein

system. In some cases, our systems were exploring very large Moteins, or novel

actuators, but none have been designed solely with the goals of improving performance

(speed, torque, and number of nodes) and reducing cost and complexity. Therefore, we

decided to design a new chain with these goals in mind.

One of the key parameters that affects the size of the largest structures a Motein can

fold is the arm wrestling number. As indicated in Chapter 3, this number increases for

a given design as the design is scaled down. This means that we want the new design

to be as small as possible. At the same time, to reduce cost and complexity we should

use commercial-off-the-shelf components as much as possible. For our electromechanical

systems, this eventually led to setting the size of the system based on the smallest easily

available DC gearmotors. The name "Bimillimotein" refers to the fact that it is twice

the size of the Millimotein which is the core platform of the Millibiology project.



Motor

Figure 4.1: (Left) CAD model and (right) early prototype of the Bimillimotein.

4.1.1 Mechanical design

The overall scale was determined by setting the smallest DC gearmotors with relatively

high reduction ratio (-100s:1). A 298:1 ratio metal gear motor was chosen and a shell

was designed to fit around it. Before continuing with the design, we constructed a

number of nodes only populated with motors to test the arm wrestling number of the

system. We found that this system was capable of an arm wrestling number of 7-8

without excessively heating the motor.

The shell was designed to be taken apart with two screws and the motor simply slid

into the shell. This allowed easy assembly and disassembly.

4.1.2 Electrical and control system

The Bimillimotein electronics system needed to provide communication along the chain

and closed-loop control of joint position. The other primary goal driving the design was

to miniaturize the system, reduce cost, and reduce complexity of assembly and

integration into the mechanical system.

The list of key features in the system is below:

* 12C bus for node to node communication



* RGB led for visual feedback

* H-bridge for speed and direction control of motor

* Current sensing and voltage sensing for motor H-bridge

" Custom analog Hall effect position sensing system

We explored many options for the position sensing system but did not find any

complete system (potentiometer, optical encoder, magnetic encoder, etc.) that fit the

small size requirements and the requirement that the device not be coaxial with the axis

of rotation (because the motor takes that position). As a result, we devised a system of

alternating polar magnets and a small, Hall Effect positioning system with integrated

signal conditioning to perform the sensing. This system is shown in Figure 4.2.

Node 1

Motor

Hall effect
sensor

Circular array of
alternating magnets

Node 2

Figure 4.2: CAD rendering of two connected Bimillimotein nodes. The rendering on the
right includes a transparent node to indicate the location of the Hall Effect sensor, motor,

and circular array of alternating magnets.

In principal, using the analog signal from the Hall Effect sensor should have allowed

accurately sensing within -100 intermediate positions per magnet, but this turned out

to be difficult to realize. Because of variations in fabrication of the magnets, and in



their positioning within the assembly, the signal from each magnet varied by t10%.

This significantly reduced the ability to use analog interpolation. One way to get

around this problem is by calibrating each node after installation of the magnets by

rotating through the entire range of motion. Instead, we chose simply to adjust the

hard-coded parameters to work with the entire range of magnet values. This reduced

the worst-case accuracy and resolution to -10 intermediate positions per magnet (-120

per revolution), which was sufficient for this application.

4.1.2.1 DC motor commutation sensing for position feedback

In early stages of the system design, we investigated position sensing based purely off

sensing commutation of brushes in the DC motor and knowledge of voltage and current

input into the motor. This would constitute a minimally complex and bulky sensing

solution. Though this method was not used in this system, we document it here for

future applications.

In general this technique is referred to as ripple counting and is a known technique for

sensing the motion of DC brushed motors [241. However, this technique does not appear

to be used for determining absolute position determination in robotics applications.

Through a combination of simulation and experimentation we tested circuit topologies

and algorithms to try to combine this technique with motor voltage and current sensing

to reliably determine absolute angle.

Figure 4.3 shows a plot generated by an LTSpice simulation of the circuit shown in

Figure 4.4. The spikes are pulses during which a brush breaks contact during

commutation so the speed of the motor is the inversely proportional to the distance

between spikes. An important feature of this system is that the Spice model simulates

the coupled electrical and mechanical aspects of the motor. In simulation, a load can be



applied to the motor. For example, the plot shows the motor spinning up to speed with

an inertial load and friction applied to it creating the characteristic, asymptotic ramp

up in speed.

The simulation accurately modeled most of the phenomenon exhibited in the real

system, and we were able to get the real system to track position reasonably well under

most conditions except when the motor was travelling at very slow speed.
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7 0 0 m V -. ................ .... .......... .............. .......- ----- ----- -- - -4 0 m A
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Figure 4.3: LTSpice plot of DC motor commutation simulation. The blue line is current

through the motor and the green line is voltage at one of the terminals. Spikes are

generated by brush commutation.
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4.1.3 Results

The Bimillimotein design met the goals of significantly increasing the arm wrestling

number. Additionally, it greatly improved the maximum speed achieved compared to

other Moteins. Table 4.1 lists all of the Moteins built to date with arm wrestling

numbers, arm wrestling numbers scaled to a 12mm system (according to the rule given

in Section 3.1), and maximum angular speed. Though the normalized arm wrestling

number should not solely be used to compare different designs, one should note that

much of the difference comes from the difficulty of employing large gear ratios at small

sizes. To account for this, a useful metric might be the scaled arm wrestling number

multiplied by the maximum angular speed.

Table 4.1: Comparison of Electromechanical Moteins

Arm wrestling number
System size (mm) Arm wrestling number scaled to 12 mm Max speed (rpm)

system

Skylar (450) 2 12.2 ~1

Kenny (76) 4 10.1 17

Max (24) 7 9.9 80

Ara (12) 1 1 -1

4.2 Stochastic Moteins

Though the bimillimotein design did meet many of our goals of increasing agility and

decreasing complexity when compared with earlier active Motein systems, it was still

too complex to achieve very long chains. Therefore, we continued to investigate more

passive systems to attempt to find an appropriate balance.



4.2.1 Smart clutch system

Although we did not implement the smart clutch system, we did consider how it could

be done. In particular, there are some interesting choices for implementing its sensing

and control system.

To review, this system functions by selectively applying a clutch to each node. The

system should open the clutch when the torque on the node is towards a desired target

and should close the clutch when the torque is away from the target. One way to

accomplish this is to directly monitor the torque with an appropriately placed strain

sensor or something similar. This system would also need some sort of position sensor

to determine which side of the target position the node is at. This could be a relatively

simple two-position sensor. However, if a high resolution sensor is implemented there is

another option for torque sensing.

If the system already has a high resolution position sensor, it may be possible to do

away with the torque sensor. In this scheme, a sort of instantaneous torque

measurement is made simply by opening the clutch, measuring which way the joint is

moving in, and then either closing or leaving the clutch open based on this information.

How well this system would work would depend crucially on the bandwidth of the

position sensing system, the bandwidth of the clutch, and the spectrum or

characteristics of the random energy input. If the clutch cannot respond fast enough or

the position sensor cannot sense quickly enough, ground would be lost during these

sampling periods, or the system could overshoot the target.

In addition to the node position control system, the smart clutch system presents

interesting challenges in higher-level coordinated control of all of the nodes in the chain

and path planning. Finding motion profiles for active Motein systems of significant

length and that do not intersect is already a challenge being explored by other



researchers [25]. The smart clutch system adds an additional challenge, because the

more precisely the system attempts to execute a profile, the longer it would take.

Because of the randomness of the motion, it can take arbitrarily long to reach a target

position, and the more positions that are added (in time and number of nodes) the

worse this problem becomes. Therefore it is desirable to specify the motion profile as an

envelope of motion profiles, or a motion profile with tolerances to allow the system to

fold faster. Calculating such a profile is a new, difficult problem for researchers

interested in the algorithms of this problem to tackle.

4.2.1.1 Expected performance of smart clutch system

Even without constructing a smart clutch system, we can estimate its performance from

a few calculations. For this analysis, we chose to design a system of size comparable to

the Millimotein as it would be ideal to use the advantages of the smart clutch system to

construct a small system. We also chose to evaluate an electropermanent magnet based

clutch, as the design and performance of these technologies are relatively well

understood. The design would look similar to the Millimotein except that the complex

stator portion of the motor would be replaced by a single large electropermanent

magnet, simplifying its construction. The electronics would also be simplified as there

would only be a single phase to drive.

The key performance metrics to understand are the torque that the clutch can sustain,

and the bandwidth of the clutch. Based on high speed video of the Millimotein, these

electropermanent magnets can actuate and close a gap in approximately -2ms. This

gives a bandwidth of approximately 250 Hz. This should be sufficient to control the

system effectively under the -10 Hz vibrations that we would apply to it.

The torque the clutch can sustain can be calculated from the pressure the

electropermanent magnet can exert and its area. Using a magnet pressure of 1 MPa, a
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coefficient of friction of 1, area of magnet of 30 mm2 and a lever arm of 4 mm (all

comparable to the Millimotein design), we get a clutch torque of 40 mNm. This

compares to the measured torque of the Millimotein motor of -1.1 mNm 114].

To understand how long of a chain this clutch could handle being agitated with without

slipping is a more difficult question. One simplistic answer is to do an analysis similar

to the arm wrestling number analysis in Section 3.1 but with a higher value for the

acceleration due to gravity. Using an acceleration due to gravity of 30 ms-2 , node mass

of 5 g, and node pitch of 12 mm, we calculate an arm wrestling number of

approximately 6.5 as compared to the Millimotein's 1.5. Finally, based on the results of

Chapter 5, we can expect folding times on the order of 10s of seconds. This is

comparable to the Millimotein.

4.2.2 One-way bearing system

The smart clutch system presents a number of new design and fabrication challenges. A

sensible first step to get to a working smart clutch system is to start with the passive

ratcheting systems. This will help us better understand what it takes to build systems

robust enough to survive the agitation, and learn more about the bandwidth

requirements of its sensors and actuators.

The first physical implementation of the passive ratchet concept was a chain using the

typical Motein/Molecube geometry with a locking roller type one-way bearing similar to

the one shown in Figure 1.3. Each node is composed of a few key parts:

1. The shell was printed on a 3D Systems Invision 3D printer

2. A 10 mm ceramic coated aluminum shaft pressed into the shell

3. A 10 mm internal diameter deep groove radial ball bearing pressed into the shell

4. A 10 mm internal diameter one-way bearing of a type often used in fishing reels



Figure 4.5: Photograph of one-way bearing stochastic Motein.

When a chain of this one-way bearing system was placed in a box and shaken lightly by

hand, it quickly (a few seconds) folded itself into the programmed shape. Because the

one-way bearings had zero visible backlash, and the ball bearings provided very free

rotation, it took very little acceleration to cause each joint to make progress.

Reprogramming was performed by removing each one-way bearing and installing it in

the reverse direction.

Though there are relatively few parts in this system, assembly, reprogramming, and

repair of chains proved difficult because all of the parts were press-fit into the brittle 3D

printed acrylic material which was susceptible to breaking. Additionally, the system

was not robust enough for repeated use and would begin to fall apart after a few cycles.

One of the reasons for this was the significant weight of each node because of the large

amount of metal in each part.



4.2.3 Single-position latching system

We believe it would have been possible to create a more robust system based on one-

way bearings, but because of a desire to explore even simpler systems, we pursued a

single-position latching system. The basic design we came up with, shown in Figure 4.6,

had the following parts:

1. Shell printed on a 3D Systems Invision 3D printer. These came in left and right

folding variations.

2. A small cap piece called the "mushroom" with a molded-in threaded insert

installed. Also 3D printed.

3. A screw to hold these parts together



Figure 4.6: Photograph and CAD rendering of cut-away view of single-position latching
stochastic Motein.

After a few revisions of the design to tune the latch mechanism, the device was

repeatable and reliable and each unit could survive many (10s) tests and resets.



CHAPTER

5
RATCHET PERFORMANCE STUDIES

Now that we understand the need for stochastic programmable matter and a few

potential instantiations of the design, we can explore how such a system performs.

Figure 1.2 shows a simple simulation of a random torque applied to a joint. The joint

senses this torque and opens and closes its clutch to try to ratchet the joint towards the

desired to angle (dashed line). When the clutch is open, the background is green, and

when the clutch is closed, the background is red. This plot is useful in illustrating two

things: 1) the importance of sensor and clutch bandwidth and input noise spectrum in

determining how fast and efficiently the joint can move. 2) The fact that motion profiles

across many joints cannot be precisely specified over time because the time to reach a

target position is unknown. These two questions are at the center of this thesis.

The basic experiment that we conducted was to agitate an un-folded chain until it

successfully folded into its desired position, and to measure the amount of time that this

operation took. This is illustrated in Figure 5.1. This chapter first describes the

simulation and experimental systems used to study these parameters and then delves

into examining the data.



5-200 seconds in shake box

Figure 5.1: Diagram illustrating stochastic folding experiment.

5.1 Description of simulation system

The simulation system uses a framework built by Jonathan Bachrach that uses the

Open Dynamics Engine (ODE) for physics simulation and OpenGL for rendering. ODE

uses a relaxation type algorithm to simulate rigid body interactions. Prior to settling on

this system, we also explored using the Unreal Engine (PhysX physics engine) and

Blender Game Engine (Bullet physics engine). Though these systems were quite easy to

get started with, we found that because they are both designed for building games, they

did not easily provide sufficient low-level access to certain parameters.

Jonathan Bachrach's framework primarily provides a system that quickly allows for

instantiating a physics setup with visualization provided by OpenGL. The physics

system is done directly through calls to ODE.



The parameters common to all of our simulations are given in Table 5.1. Note that the

physics simulation has no inherent units and it is up to the user to use consistent units.

It is recommended to use a unit system that keeps masses and lengths in the range of 1-

10 {26]. For all of this work, the units correspond to a centimeter, gram and second

system (CGS).

Table 5.1: Key parameters

Parameter

World update function

Mass of node

Length of node

Gravity

"Bounciness" factor

Amplitude of shaking

Frequency of shaking

of the simulation

Value

dWorldQuickStep, 20 iterations

15

2

-981

0.2

Varies, 1-10

Varies, 1-10



Figure 5.2: Screen captures of a run of the folding simulation. The color indicates how far
a node is from its target position.

Additionally, we wrote a short Python script that allows us to queue up many

simulations to do parameter sweeps and average data and also issues multiple

simultaneous simulations to take advantage of multi core machines. Simulations

typically ran at about 6 times faster than simulated time. Screen captures from a run

of the simulation are shown in Figure 5.2.

5.2 Description of mechanical system

To conduct the hardware tests, we used the single-position latching chain system

described in Section 4.2.3. Though the original goal was to use the one-way bearing

system described in Section 4.2.1, this system lacked the robustness and ease of

assembly to survive sufficient trials of chains of sufficient length. But, we believe that

O sec: 1.3 sec

2.1 se c, 3.0 se c



it would be possible to construct a similar one-way bearing system that would meet if

not exceed the robustness of the latching system used.

Additionally, we constructed a machine to tumble our chains in a repeatable manner.

This machine, shown in Figure 5.3, used a crank mechanism to move a box in the

vertical direction in an approximately sinusoidal pattern. The amplitude and frequency

could be controlled by changing the adjustable pin in the crank and by varying the

voltage input to the motor. The frequency was measured by counting the number of

cycles over a period of time.

Box containing chal

Linear actuator:
Motor + crank

Adjustable bar

Figure 5.3: Photograph of the shake box set-up, highlighting the motor-driven actuation
mechanism.

For all tests, the chain was placed in the box in a straight line configuration prior to

starting the shaking. The motor was turned on and a timer started. When the chain

appeared to be done folding, the timer was stopped, and the data was used if the chain

was confirmed to be folded correctly. All tests were halted at 240 seconds and the chain

was assumed to be stuck in a local minima from which it would not escape.



5.3 Configuration

Before we can delve into the other parameters affecting stochastic folding, we must

mention that many of the later results may be dependent on the specific configuration

of the folds. To examine this, we looked at two basic fold configurations that are as far

apart in folded configuration, and also far apart in configuration space of the folds.

These are the "cubic" and "spiral" configurations shown in Figure 5.4.

Figure 5.4: CAD models showing "cubic" fold geometry on left and "spiral" geometry on
right.

U 
O .C -

Experiment Simulation

Figure 5.5: Plot showing fold time versus fold geometry in experiment and simulation.



The results of this comparison, shown in Figure 5.5, was that the spiral and cube

configuration had comparable fold times. This result was somewhat unexpected as

observation of the tumbling motions of these two shapes suggested that the cube would

have more difficulty in successfully imparting energy into some nodes when it was

partially folded. But, by other analysis, this is the expected result. As both of these

shapes have only fully folded joints, they are equally far from the starting position in

configuration space. Additionally, at the relatively short lengths examined, shape may

not yet have come into play.

5.4 Length

Perhaps the most important parameter to explore is the length of a chain that can be

successfully folded and how long it takes to fold such a chain.

First, we tested in simulation and experiment the single-latch system (corresponding to

a ratchet increment of 4 radians). Figure 5.6 shows the results of this experiment. The

absolute experimental versus simulation time differ significantly. From observing both

simulation and experiment, this seems to be caused by an increased stickiness in the

physical simulation, not accurately modeled by friction in the simulation. This causes

the experimental setup to go through repeated bounces without changing configuration.

In both cases, the time sharply rises at approximately four folds. This is the point at

which it becomes likely to repeatedly bounce in a configuration without making

progress.
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Figure 5.6: Study of fold time versus number of joints folded. Each point represents a
single experiment where an unfolded chain is agitated until it is completely folded.

Simulated tests are in blue and experimental tests are in red.

Next, we conducted a two parameter study in simulation to see how the ratchet

increment size and length affect the maximum length of chain that will successfully fold

in simulation. The results are provided in Figure 5.6. One important thing to note

from this chart is that decreasing the ratchet increment increases the length of chain

that can be folded.
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Figure 5.7: Ratchet increment size and chain length versus fraction of trials that succeed
in simulation.

In simulation, the absolute longest chain that would fold reliably (at least 9 out of 10

trials succeed) was four folds for the maximum ratchet increment size and was at least

22 for small ratchet sizes (0.42 radians). For the small ratchet increment tests, this was

limited by the maximum length we were able to reliably simulate. At longer lengths,

the nodes would begin to self-intersect, breaking the accuracy of the simulation.

5.5 Amplitude and frequency

The amplitude and frequency that the system is agitated with obviously have a large

effect on performance of the folding process. To begin with, the peak acceleration of the

agitation must exceed the acceleration due to gravity to induce any kind of motion in

the chain. Beyond that, one might expect there to be an ideal frequency or amplitude

to excite motion in the chain. Figure 5.8 shows a two-parameter study looking at the



effect of frequency and amplitude of agitation on fold time. The black lines are contour

lines of constant peak acceleration. White areas have no data. The unusual shape of the

data region comes from the fact that the two parameters varied in the study were peak

acceleration and amplitude, which map onto the plot in this fashion. The area that

appears to have the lowest peak acceleration for the fastest times is somewhere around

an amplitude of 4-6 and a frequency of 4-6. From observations of the simulation, this

makes sense because this amplitude corresponds to motion where the chain is launched

in the air just enough to allow free motion of the joints without excessive time in free

fall where little movement happens.
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Figure 5.8: Plot showing folding time versus shake frequency and amplitude. Peak
acceleration of the shaking motion is shown with contour lines. Note that time is in a

logarithmic scale.
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CHAPTER

6
CONCLUSION

6.1 Brownian rectification for programmable matter

We have demonstrated an implementation of Brownian rectification in programmable

matter. This allows us to simplify our programmable matter system by removing the

major energy input mechanism from the programmable matter system. This comes at a

cost in the functionality of the system, but it represents a new region in the complexity-

functionality space that may be useful. In particular, this will prove more useful as

these systems are scaled down and become increasingly affected by unavoidable noise

and thermal energy in their environment.

6.2 Passive ratcheting chains

We primarily explored the simplest possible Brownian rectification mechanism for

programmable matter: passive ratchets programmed ahead of time with the desired

configuration. This allows making very simple nodes with as few as two or three parts

compared to the part counts on the order of 100 for active systems. We were able to

fold chains at speeds comparable to the smallest active Moteins built to date, on the

order of 60 seconds to a complete system. Additionally, we were able to fold chains as

long as the longest active systems folded to date, approximately 10 nodes. However, we

showed that there is a limit to the length of the chains of somewhere around 15 nodes,

as they begin to get stuck in local minimums caused by self-intersection during the fold.

This can be remedied by using smaller ratchet increments.
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6.3 Future work

One obvious direction for future work is to push the limits of miniaturization of these

ratchet systems. Because they are so simple, it should be possible to fabricate truly

small versions (several mm pitch length). These would have the benefits of being able

to fold faster and being more robust for a given number of nodes.

Having seen the limitations of passive systems, the next step is to fill in the main

remaining space in the continuum of active to passive chain programmable matter: the

smart clutch system. Though this now adds the complexity of communication and a

simple actuator, it will still be simpler than the actuated system while achieving nearly

the same level of control. There are a number of promising materials-based actuators

that can lend themselves to this application. In particular, dielectric elastomers and

micro-hydraulics are appropriate. We would also expand our simulation system to

handle the smart clutch system. The main difficulty here will not be implementing this

change, but getting the simulation to run robustly and quickly with the larger number

of nodes that we would like to simulate.

Another interesting direction to pursue is to apply this rectification mechanism to a

wider range of programmable matter such as sheet and volume geometries that other

groups have explored. Though the specific techniques reviewed in this work may not

translate directly very well, the basic principle of rectifying random motion has

potential.

Finally, a more theoretical direction would be to examine how this system behaves as it

is miniaturized and approaches thermal equilibrium. What are the limits in terms of

miniaturization or increasing the "temperature" of the vibrations? What is the

Feynman-Smulchowski limit where it stops working?
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