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Abstract

Engineering with digital materials, by discretely and reversibly assembling structure and
function from a mass-produced construction kit of parts, is indeed an exciting vision. The ability
to decouple conventionally linked material properties and reach new territory in parameter space
has already been demonstrated [12] by the fabrication of ultralight samples with extreme speci�c
sti�ness. Further, these material properties can be spatially varied, opening new possibilities in
engineering design. The discrete assembly process also frees us from constraints of monolithic
manufacturing and the corresponding supply chains. Thus, this approach o�ers compelling
promise for the design, manufacture, and deployment of large structures.

In this thesis, we argue that digital materials o�er a further bene�t in the power and accuracy
of simulation possible, as compared to modeling materials with less order. At the most general
level, this comes from mirroring the discrete nature of the structure in the mathematical model,
creating a hierarchical representation of the assembly and treating each level independently.
The results can reduce the cost to design and validate complex structures, in both the required
computational resources, as well as the time and testing cycles of human engineers.

We outline several techniques for structural modeling of such digital material assemblies,
focusing on work�ow �exibility and engineering empowerment through custom design tools. We
demonstrate two e�ective table-top part production techniques: one for producing many tightly-
toleranced parts for validating simulations and one for producing high performance, directionally
aligned composite parts in an out-of-autoclave process. We implement several structural tests
in hardware and software, comparing results from modeling with empirical data. We show that
at both the scale of individual parts, as well as of large assemblies, models synthesized from
beam bending equations outperform more complicated and computationally intensive �nite
element simulations. Finally, we undertake an ambitious design study using these tools, using
both simulation and physical testing to predict performance. The results suggest the feasibility of
building skinned, lighter-than-air digital material structures, capable of withstanding atmospheric
crush pressures and �oating under the lift generated by the displaced air.

Thesis Supervisor: Neil Gershenfeld

Title: Director, MIT Center for Bits and Atoms
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Chapter 1

Introduction

1.1 Digital Materials

The work of this thesis comes as a part of a research program in digital materials, where functional
devices are reversibly assembled by placing discrete parts into discrete positions and orientations.
In most instantiations, these positions and orientations are determined by kinematic connections
between parts. As an example, Figure 1.1 shows a stack of identical parts, each with four joining
locations. This joinery determines how the parts can be connected to create the lattice structure
shown. The word digital is used here in analogy with modern communication and computation,
where we perform operations with symbols, rather than with analog values of a global �eld (e.g.
voltage or displacement). Like Lego toys, building with digital materials gives the ability to detect
and correct errors, creating greater accuracy in the �nal assembly than was present in the assembly
device (child, skilled fabricator, or robot).

Figure 1.1: Discrete set of building blocks, assembled in discrete positions and orientations.

Due to their relative simplicity, digital material parts can be batch-produced at low cost and
with few manufacturing constraints. This allows a great degree of �exibility in material selection,
fabrication processes, and incorporation of functional elements. This also allows the �nal devices to
exhibit a great degree of structural hierarchy, a well known strategy for creating high performance
structures [26]. This claim has been demonstrated in the context of digital materials with the
production of ultralight cellular solids of extremely high speci�c sti�ness by discretely assembling
oriented carbon-�ber-reinforced-polymer (CFRP) parts [11] [12].

4



1.1. DIGITAL MATERIALS CHAPTER 1. INTRODUCTION

Because assembly is discrete, functional properties can also be varied over the spatial extent
of a part [38] to meet speci�c demands of an application. As an example, consider the design
study shown in Figure 1.2, where we create a structure that is sti� in axial compression, but can
deform along one bending axis. This behavior is determined by the design and placement of four
distinct parts, shown in the top left image. Two of the parts form a cross section with zero Poisson
ratio, allowing stretching without thinning. The other two parts create a sti� spine surrounded by
a �exible part layer. By superimposing these behaviors in perpendicular part planes, we create
a beam that can bend in excess of 60 degrees in one axis, but is sti� in the other bending axis,
as well as in compression. The parts have also been designed with features for internal tendon
routing for actuation, as shown in the top middle image. These tendons can be routed so motors
can control the bending at several locations along the beam. For instance, using two such tendon
pairs, we could produce the running gait shown in the lower image.

Figure 1.2: Assembling functionality: through assembly instructions four distinct part types determine a

bending degree of freedom in one direction, and sti�ness axially and in bending in the other direction.

While this example is structural in nature, digital material functionality can encompass much
broader physical phenomena, with precedents in electromagnetics, �uid dynamics, and thermal
processes. A good literature review of digital material approaches is given in [28].

The e�cacy of this research hinges on the development of human-augmented and fully-
automated assembly processes to scale these programmatic constructions to applications. Inter-
connect design is crucial to this development, as a small set of connection types can simplify the
required action set of an assembly robot. As an example, consider the digital material "zippers"
shown in Figure 1.3, inspired by [47]. The tapes shown have two joinery types (A) so that a
two-step cam motion (actuated by human �ngers) can zip the tapes together (B). Three such tapes
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1.1. DIGITAL MATERIALS CHAPTER 1. INTRODUCTION

can form a sti� beam (C and D), more tapes can create internal structure (E), and curved pro�les
can code for three dimensional geometry (F). Crucially, the simple motions required to assemble
the digital material allow for a repeatable process through human augmentation. One can imagine
completely autonomous devices to place digital material parts. Such a robot could use the existing
structure for locomotion and registration, placing new parts with simple moves. By parallelizing
this automated assembly, the promises of digital materials could scale to great numbers of parts.

Figure 1.3: Tape-based digital material system with automated assembly, material �exibility, structural

hierarchy, and capability for geometric complexity

Such discretely assembled structures also sidestep many of the size constraints of monolithic
manufacturing (e.g. composite autoclave processes), allowing the rapid fabrication of structures
much larger than the machines which made the parts. For instance, the expense of the massive
machines necessary to make airplane-sized composites creates convoluted supply chains in
the aerospace industry. We can imagine many of these facilities being replaced by factories
manufacturing digital material parts using more tame, agile processes.

This line of reasoning can be pushed even further: If we signi�cantly lower the performance
and assembly costs of joined components, the scale of the structures we can build increases
dramatically. Construction at such geological scales with discrete components has a precedent
with Dolos and Kolos (or "Jackstones") [10], as well as honeycomb sea walls [5]. Both systems
use a repeated, mass-manufactured element with interlocking geometry to �ll vast volumes and
mitigate the e�ects of coastal erosion. If digital material assembly processes were automated, one
can imagine replacing the raw mass of these systems with the structural gains of over-constrained
lattices. Such digital materials could also be designed to dissipate energy from incoming waves, a
key feature of the Dolosse. With orders of magnitude less mass, such systems could be deployed
quickly, in the face of an incoming natural disaster. Beyond such terrestrial applications, there
is huge demand for large structures in space that can be assembled on-orbit. Digital material
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1.2. MODELING DIGITAL MATERIALS CHAPTER 1. INTRODUCTION

systems for vast radio telescopes, solar collectors, and a variety of other infrastructure needs can
easily be imagined.

To fully capitalize on these promises, however, we also need new kinds of design and modeling
tools in the scope of digital materials. For instance, how might one optimize the bending behavior
of the structure shown in Figure 1.2? How could we design a seawall construction system that
dissipates the energy of an incoming wave? Given a volume to be �lled, how can we work
backward to determine the parts and connections that meet given speci�cations for the assembled
structure? As with most inverse problems like this, the �rst step of its solution is the clari�cation
and streamlining of the forward process. In this case, this means developing robust simulations
that predict performance of discretely assembled structures under global constraints and inputs.
It turns out that the discrete nature of digital materials is extremely helpful in this pursuit. As
explained in the next section, the topic of this thesis is clarifying the extent to which global
properties can be synthesized from the characteristics of such discretely assembled parts.

Figure 1.4: De�ning deformations of a �nite element in terms of nodal coordinates. Top left image from [45].

1.2 Modeling Digital Materials

At the most basic level, we seek to develop a modeling work�ow that scalably exploits the fact
that digital materials are composed of many copies of identical parts. That is, by spending work
understanding the behavior of a part, can we abstract our �ndings and synthesize global behavior
of the assembly? E�ective mathematical models tend to use only the information relevant to the
required answer, abstracting away the other unnecessary details [19]. To ask questions about the
behavior of assemblies, we seek a description of the part based only on how it interacts with other
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1.2. MODELING DIGITAL MATERIALS CHAPTER 1. INTRODUCTION

parts. Parts like those in Figure 1.2 use interlocking geometric features to enforce the assembly
constraints, interacting only through these nodal features. Thus, we build a mathematical model
for the forces and moments at nodal points only, disregarding the rest of the part.

In �nite element analysis (FEA) [9], the geometry to be modeled is subdivided into many small,
easy to analyze parts, like the tetrahedral mesh shown in Figure 1.4. We derive equations for
the physics to be modeled on these elements, and solutions are speci�ed by the displacements
of the element nodes. The contribution of each element to the model is usually encapsulated
in an element sti�ness matrix, kel. In the case of linear elasticity, this matrix relates the nodal
displacements ui with the nodal reaction forces ri. The matrices can be aggregated into a global
sti�ness matrix K , and the vector U of all nodal displacements is the solution to a linear system
KU = R, extremizing elastic strain energy.

Because we wish to simplify digital material parts to their nodal interactions, we can use
the same process to model digital materials. In the case of conventional �nite element analysis,
we usually use the fact that the elements are small to make approximations to the constitutive
equations and transform the partial di�erential equations into a linear system to solve. In the case
of digital materials, the elements are not vanishingly small, so we must turn to other methods to
derive the element sti�ness matrices. These approaches are detailed in chapter 2 and chapter 3. To
validate these approaches, in chapter 4 we produce many digital material parts. In chapter 5 we
develop tools for designing digital materials based on high level descriptions, creating inputs for
these simulations. In chapter 6, we build several assemblies of these parts and compare the results
of structural testing to the predictions of these methods. Finally, in chapter 7, we undertake an
ambitious design study to demonstrate the applications of a streamlined modeling work�ow.

This approach to modeling o�ers several advantages over meshed �nite element analysis of
digital materials in engineering applications. First, and most simply, there is a huge reduction
in the size of data structures and linear systems used to describe the problem. Correspondingly,
the analysis is less costly, and can be iterated more times in the design process. Further, because
the representation used to design and simulate is the same, these two stages of the engineering
process can be more closely coupled, even occurring within the same interface. Finally, due the
the reduction in complexity, physically meaningful design parameters can be pulled through the
simulation loop more easily, o�ering better handles for structural optimization.
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Chapter 2

Modeling part behavior

In chapter 1, we outlined a plan to create element sti�ness matrices for digital material parts,
abstracting away everything about the parts except the behavior of their nodes. In this section,
we review the mathematical details of this process and describe several ways of calculating these
matrices.

2.1 Finite element background

In its most general form, �nite element analysis computes a scalar or vector �eld over a region,
subject to a physical law and boundary conditions. In the case of structural analysis, we calculate
a displacement �eld by minimizing strain energy over the domain. To do this, we break up the
domain into small pieces, called elements, and specify a displacement �eld by its values at the set
of nodes ui de�ning the elements. The element can be thought of as a kind of spring connecting
its nodes, and we can calculate the relationship between the nodal forces and nodal displacements.
In this way, the physics is encapsulated in an element sti�ness matrix kel. Using this matrix, we
compute potential energy in the case of static linear elasticity as

wel =
1

2
u⊤kelu (2.1)

These element sti�ness matrices are aggregated into a global sti�ness matrix K =
∑

kel and
global potential energy is

W =
1

2
U⊤KU −R⊤U (2.2)

where U is the global nodal displacement vector, and R, the residual, incorporates boundary
conditions. For static analysis, the principle of virtual work implies that in stable equilibrium,
strain energy is minimized across the structure. Thus, computing structural deformation amounts
to solving the linear systemKU = R.

In the case of meshed �nite element analysis, these element sti�ness matrices are calculated
using shape functions which span the space of nodal deformations in which we are interested. The
simplest shape function is the linear hat function, a piecewise linear function de�ned to take the
value one on a particular node, and have value zero on all other nodes. Taking linear combinations
of such functions allows us to represent any piecewise linear deformation as the dot product of a
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2.1. FINITE ELEMENT BACKGROUND CHAPTER 2. MODELING PART BEHAVIOR

coe�cient vector and the vector of shape functions. Such shape functions give us a handle on the
otherwise in�nite-dimensional space of geometric deformations, and allow us to calculate the
sti�ness matrices directly by integrating the governing equations, using a numerical integration
scheme like Gaussian quadrature. By making the elements vanishingly small, we hope to capture
any relevant strain �eld, no matter how complex.

As mentioned in chapter 1, if we take digital material parts as �nite elements, they are not
vanishingly small and hence the approximations used to calculate sti�ness matrices in conventional
�nite element analysis are not readily applied. While this may seem like a big problem, there are
three redeeming facts about our physical �nite elements:

1. We build with many repeated copies of nearly identical parts instead of many uniquely
shaped elements. We can a�ord to spend some work understanding the part, because we
will reuse this work many times.

2. The parts tend to be simple, so we can analyze them with established engineering work�ows.

3. As the name implies, we have physical access to the parts. In a pinch, we can simply measure
them. This measurement can also serve as a calibration step on other methods of calculating
part behavior.

To calculate the sti�ness matrices, we �rst note that they are nothing more than relationships
between nodal displacements/rotations, and the nodal reaction forces/torques. Like the constant
in a spring equation, the sti�ness matrix just determines the proportionality constant between a
displacement and a force:

kelu = r (2.3)

So, if we want to probe the entries of kel, we could simply enforce a unit displacement in the ith

entry of u, setting all other entries to zero. This picks out the ith column of kel and shows it is
equal to the vector of reactions at the nodes of the element. This observation provides a method
to calculate each column of the matrix, no matter how we determine these nodal reaction forces.

For instance, one strategy is to represent the part as an assembly of solid mechanical models
for which the relationships between displacements and reactions can be determined analytically.
For instance, many of the digital material parts in this thesis can be reasonably represented as a
collection of beams connecting the nodes. In this case, we have sti�nesses corresponding to each
beam which can be synthesized to create the part sti�ness matrix. In section 2.2, we discuss the
details of this process.

If we have no such solid mechanical description, we could also appeal to a conventional �nite
element simulation of the part. In Figure 2.1 we see such a simulation, where we enforce displace-
ments in each of the six degrees of freedom at a node and measure the reaction forces and torques
at all the nodes. By simulating in these con�gurations, we can calculate the sti�ness coe�cients
for each node, and build up the full sti�ness matrix for the part. chapter 6 describes comparing
these tests to physical measurement. We performed the analysis in Figure 2.1 commercial �nite
element package ANSYS, but we also experimented with many other tools and methods, including
Abaqus, a custom-written 2D and 3D linear elastic �nite element simulation, and a pixel-based
simulator implemented using PETSc [7].

In addition, in chapter 3 we describe progress towards a simulation engine that operates
directly on a distance-based representation, without going through the meshing step required for

10



2.1. FINITE ELEMENT BACKGROUND CHAPTER 2. MODELING PART BEHAVIOR

Figure 2.1: Generating a sti�ness matrix through the force in�uence method: x̂, ŷ, ẑ, φx̂, φŷ, φẑ .

conventional FEA. Much of the pain and innacuracy of computer-aided engineering comes from
the many translation steps present in most simulation pipelines. Most of the designs in this thesis
were created with a CAD tool [24] that uses an adaptively sampled distance �eld to represent
geometry. Simulating directly in this representation could avoid some of the problems in these
work�ows.

Figure 2.2: Varying piece parameters under global assembly, constraint, and load.
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2.2. BEAM-BASED MODEL CHAPTER 2. MODELING PART BEHAVIOR

2.2 Beam-based model

If we can cleanly decompose a digital material part into well understood solid mechanical models
like beams, our job of creating sti�ness matrices is considerably easier. For instance, the part
shown in Figure 2.1 can be represented by four beams, joined into a circuit, connected by relatively
rigid regions. Using the same method described above to pick o� columns of a sti�ness matrix,
we can calculate the sti�ness matrix for a beam in three dimensions, taking into account forces
related to bending, extension, and torsion. For this calculation, we assume the beam is oriented
along the x̂ axis, an assumption we will relax shortly. As the beam has six degrees of freedom
at each of its ends (3 translations and 3 rotations), the sti�ness matrix will be 12× 12. Let xi, yi,
zi be the displacements of the ith node, and φx

i , φ
y
i , φ

z
i be the i

th node rotations about the x̂, ŷ, ẑ
axes. Using beam bending formulas, we calculate:
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(2.4)

where A is the cross sectional area, E is the elastic modulus, G is the shear modulus, J is the
torsional constant, L is the beam length, and Iy and Iz are the second area moments of inertia
about the ŷ and ẑ axes.

Now, if the beam is not oriented along the x̂ axis, we can perform a coordinate transformation
to align it. Thus to calculate the sti�ness matrix of an arbitrarily-oriented beam, we can conjugate
by the matrix of this transformation. Let T be a 3× 3 rotation matrix mapping the beam axis to x̂,
and a reference vector in the beam cross section (e.g., a vector from the central axis to a face of a
rectangular cross section) to ŷ. Denoting the matrix above as kel

x, we can form the beam sti�ness
matrix as

kel =









T⊤ 0 0 0
0 T⊤ 0 0
0 0 T⊤ 0
0 0 0 T⊤









kx
el









T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T









(2.5)

For a part with several such beams, we can add up the sti�ness matrix contributions for each,
summing entries for nodes shared between beams. In Figure 2.2, we show a simple test of the
beam behavior, where we stitch together 8 beams into an octahedron in this way. We solve the
assembled system for the linearized displacements and rotations at the nodes, and then plug these
into analytic expressions for the bends and twists of the elements in order to visualize the beams.

2.3 Assembling part models

Once we have a sti�ness matrix for a part, whether it comes from a collection of beams or from on
of the other methods described above, we are ready to begin simulating assemblies of parts. This
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Figure 2.3: A fanciful simulation.

process is exactly analogous to the synthesis of multiple beams, as we simply add the contributions
of each sti�ness matrix, identifying nodes which are the same between the parts. For identical
parts in di�erent orientations, we again conjugate by a transformation matrix between coordinates.
With this global sti�ness matrix, K , we can set up a linear system for the problem:

KU = R (2.6)

We add any traction boundary conditions to the residual R. We enforce essential boundary condi-
tions by modifying the matrix and right hand side to have a trivial solution for the corresponding
displacement, taking care to preserve the symmetry of the matrix [9][29].

A fancifully exaggerated loading of such an assembly is shown in Figure 2.3, illustrating this
process. The sti�ness matrix for each part is generated by modeling it as four connected beams.
The parts are then used to generate a global sti�ness matrix of the assembly. To impose boundary
conditions, the nodes along the base are constrained, and a load is applied to the loads on the top
face of the brick.

This assembly process need not use matrices from just a single part type. In Figure 2.4, we
use one sti� part and one part with a �exural degree of freedom. By placing these part types
on perpendicular planes, we can create a structure that exhibits anisotropy in �exural sti�ness.
The simulation shows the structure bending under a load in one direction, while remaining
considerably sti�er in the perpendicular direction. In this way, we can now perform predictive
simulation of structures like the digital material leg shown in Figure 1.2. While that structure was
designed in a largely qualitative way to generate the running behavior, this simulation now gives
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Figure 2.4: Placing two piece types in a beam can produce �exural anisotropy.

us the ability to quantitatively determine the characteristics of the part in terms of the bending
sti�nesses we desire in the �nal assembly.

For a shape as simple as this, it is not hard to write routines to distribute and orient the parts
and then transform and assemble their sti�ness matrices. As these lattices are periodic, however,
the process can be generalized to accommodate more complex lattice envelopes. In chapter 5
we discuss two work�ows to generating lattices for engineering applications, after which the
sti�ness matrix assembly is automatic. These tools could be used to implement and optimize the
full leg structure in Figure 1.2, drastically improving on the design tools available at the time of its
construction.

First, however, in chapter 3 we detail progress towards another method of determining part
sti�ness matrices, by simulating direction in the distance �eld representation in which they were
designed.

14



Chapter 3

Mesh-free simulation

This section describes work towards a mesh-free simulation framework based on a distance �eld
geometry representation. Many of the digital material parts designed for this thesis were created
in a CAD tool [24] using a functional representation to perform geometric operations. This
functional description and the implementation are described in [25].

To generate sti�nesses for the parts in this thesis, we have either assumed a decomposition
into more primitive elements like beams, or we have taken the geometry into a geometry pipeline
involving contouring, simpli�cation, translation to a boundary representation (e.g., STP format),
and �nally volumetric meshing. Such mesh-based work�ows, though commonly used in engineer-
ing design, impose signi�cant time costs on simulation iteration, often introduce human errors,
require each step in the process to function with incomplete information, and reduce work�ow
�exibility.

Alternative formulations of geometric �eld modeling for engineering date back to the 1930s
[23] and have received a recent revival due to work like [39], [40], [15], and [16]. In the pursuit of
end-to-end work�ows [37], we describe progress towards implementing such mesh-free modeling
using the same distance-based description as used in the CAD tools mentioned. In what follows,
we use the analysis of [16] quite closely, essentially applying it in the speci�c context of our design
work�ow.

3.1 Kantarovich’s method: 1-D example

In the method proposed by Kantarovich [23], to model physical �elds (e.g. elastic strain) over
designed geometry subject to boundary conditions, we can assume a solution of the form u =
u∗ +

∑

i ωχi. Here ω is a smooth function measuring distance to the boundary where an essential
condition is speci�ed, u∗ is a function de�ned on the entire domain interpolating the essential
boundary condition values, and χi are shape functions (like the linear hat functions described in
chapter 2) de�ned over the domain (but containing no information about the boundary).

To illustrate this representation, we reproduce the tensioned cable example of [16], the one-
dimensional analog of the linear elasticity problem we wish to solve. A cable with tension λ
runs from x = a to x = b and has an applied load of q over its span. The governing equation is
λ∂2u

∂x2 + q = 0, where u gives the height of the cable. We have �xed boundary conditions u(a) = u1

and u(b) = u2. To �nd an approximate distance function ω from the boundary, we construct it
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using the distances from each end of the interval, ω1 = x− a and ω2 = b− x. We take function
ω = ω2

1 + ω2
2 −

√

ω2
1 + ω2

2 as an approximate distance function to the full boundary.
We assume the solution has a form u = u0 + u∗ =

∑n
i=1 Ciηi + u∗, where u0 satis�es homo-

geneous Dirichlet boundary conditions, and u∗ is a function satisfying the boundary conditions.
We use the distance functions to construct these functions: u∗ = ω1u2+ω2u1

ω1+ω2

and ηi = ωχi, where
χi is any shape function.

To allocate the shape functions, we simply �ll an arbitrary interval [xi, xf ] containing [a, b].
We use n linear hat shape functions on this interval, resulting in a grid size of h = (xf − xi)/n.
In this way, the nodes of the shape function have no topological relationship with the domain
of integration. While this may not seem like a signi�cant simpli�cation in this one-dimensional
example, in two and three dimensions this avoids a great many headaches in meshing.

Figure 3.1: Following the one-dimensional example of [16], we can solve for the displacement of a tensioned

cable under load.

Using the assumed form of the solution, we plug this into the governing equation.

∫ b

a

(

λ

(

∂2u0

∂x2
+

∂2u∗

∂x2

)

+ q(x)

)

ηj(x)dx = 0, j = 1, ..., n

−
n

∑

i=1

Ci

∫ b

a

∂ηj
∂x

λ
∂ηi
∂x

dx = −
∫ b

a

q(x)ηj(x)dx+

∫ b

a

∂ηj
∂x

λ
∂u∗

∂x
dx j = 1, ..., n

That is, we have a linear system Ax = b where Aij = −
∫ b

a

∂ηj
∂x

λ∂ηi
∂x

dx, bi =
∫ b

a

∂ηj
∂x

λ∂u∗

∂x
dx −

∫ b

a
q(x)ηj(x)dx, and xi = Ci. Di�erentiating, we have

∂ηi
∂x

= ∂ω
∂x
χi + ω ∂χi

∂x
. Using ω as above, we

have ∂ω
∂x

= ω1−ω2√
ω2

1
+ω2

2

. Similarly, ∂u∗

∂x
= u2−u1

ω1+ω2

= u2−u1

b−a
. Using these de�nitions, in Figure 3.1 we
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plot the unscaled and scaled shape functions in the top left image. In the top right, we show the
distances from each boundary condition, as well as the boundary condition interpolation u∗. At
the bottom left, we build the scaled shape function derivatives, and at the bottom right, we plot the
computed solution u∗ +

∑

i Ciηi, taking care to exclude any shape functions completely outside
the integration domain from the solver.

3.2 Applying to geometry described with ASDF

The geometry engine in [24] facilitates the design used for the digital material parts in this thesis.
It uses a functional description of the geometry, where a mathematical formula evaluates to True
for all points contained in the volume of a part, and False everywhere else. This representation
provides an elegant method for implementing Booleans and many other operations, but for
rendering, toolpathing, and export, the functional representations must be e�ciently evaluated.

For this, [25] uses an adaptively sampled distance �eld (ASDF) data structure to limit the
number of distance evaluations necessary to produce arbitrarily-detailed reproductions of the
functionally-described geometry. Brie�y, the functional description is evaluated on an octree-like
spatial data structure. Starting with a bounding region, we subdivide and evaluate cell corners.
If a cell is fully contained on one side of the boundary (FILLED or EMPTY states), or if it is
smaller than a given threshold (LEAF states), we stop subdividing. LEAF cells are combined if
this operation does not exceed an interpolation error threshold. In Figure 3.2 at the left, we show
a two-dimensional slice of a digital material part represented with an ASDF data structure. The
larger cells do not intersect the part boundary, and so don’t need to be divided further.

Figure 3.2: A) A digital material part represented as ASDF, B) Two shape functions with intersecting supports,

and the distance �eld to a nodal boundary.

We explore using the functional description, as well as the ASDF data structure to create
distance functions, so we can scale our shape functions as in the one-dimensional example. At the
right in Figure 3.2, for example, we see the distance �eld describing essential boundary conditions
on two opposing nodes. We also plot the contours of two overlapping B-spline shape functions to
be scaled. These shape functions (more precisely, their derivatives) are used in the calculation of
solid mechanics integrals. Unlike the one-dimensional example, however, in three dimensions we
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must take more care to keep the problem tractable. In what follows, we outline progress towards
this goal.

As a problem statement, we assume we have geometry described by an ASDF data structure,
as well as a set of geometry descriptions for essential boundary conditions.

3.3 Shape Functions

As in the 1-D �eld modeling example, the �rst step is selection and allocation of shape functions
over the domain. We use B-splines, a �exible, multivariate class of shape functions that include
and generalize linear hat functions. They are easy to implement, have a solid theoretical basis,
and can be combined to represent a large set of functions. A good overview of their properties
and uses is given by [22].

Next, we must allocate the B-splines over the domain represented by the ASDF. In Figure 3.3,
we draw an algorithm for this process in two dimensions. We begin with a uniform grid of size
h and eliminate the B-splines whose support does not intersect a FILLED or LEAF cell. The
support for each remaining shape function is divided along each spatial axis, spawning eight new
shape functions of grid size h

2
. This process is repeated to create an array of shape functions that

is adaptive to the modeling geometry.

Figure 3.3: Shape function allocation and re�nement

The ASDF hierarchy o�ers interesting potential for shape function arrays with varying grid
sizes, but care must be taken to satisfy the interpolation conditions required of shape functions used
for �eld modeling. There has been considerable research on this topic, most notably Grinspun’s
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conforming, hierarchical, adaptive re�nement methods (CHARMS) [21]. For the scope of this work,
however, we only used uniformly sized shape functions.

3.4 Solid mechanics integrals

With the shape functions allocated, we need to calculate their contributions to the sti�ness matrix
and to the right hand side of the linear system. Assuming we have a number of essential boundary
conditions to enforce, we have a distance function ωi for each. For the sake of example, suppose
as in Figure 3.2 that we have two essential boundary conditions to enforce, given by distance
functions ω1 and ω2. The boundary conditions are given by displacement vectors U1 and U2 for
the bodies.

As in the one-dimensional case, we assume a decomposition of the solution into homogeneous
and inhomogeneous parts:

u =
∑

i

ηiCi + u
∗, ηi = ω

(

χi,x 0 0
0 χi,y 0
0 0 χi,z

)

, Ci =





Ci,x

Ci,y

Ci,z





where the distance function ω is zero on all essential boundary conditions and the function u
∗

interpolates the essential boundary condition displacements over the entire domain. We construct
ω using R-conjugation [39]:

ω = ω1 + ω2 −
√

ω2
1 + ω2

2

We construct u∗ as

u
∗ =

ω1U2 + ω2U1

ω1 + ω2

which, by inspection, interpolates the boundary condition values between the zero sets of ω1 and
ω2.

We plug these expressions into the weak form of the solid mechanics equations:

−
n

∑

i=1

∫

Ω

B[ηi]
⊤
DB[ηj]dΩ =

∫

Ω

B[ηj]
⊤DB[u∗]dΩ−

∫

Ω

ηjFdΩ (3.1)

where F is a body force, B is the strain-displacement matrix, andD is the stress-strain matrix:

B =













∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x













, D =







λ+2µ λ λ 0 0 0
λ λ+2µ λ 0 0 0
λ λ λ+2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ







for Lamé parameters λ and µ. We can also include a traction term on the right hand side of this
system, but for present purposes we omit it.

Thus, to calculate the linear system coe�cients, we need to di�erentiate the expressions
associated with the distance functions. Applying di�erentiation rules, we have:

∂

∂x
u
∗ =

ω1
∂ω2

∂x
− ω2

∂ω1

∂x

(ω1 + ω2)2
(U1 −U2)
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and
∂

∂x
ω =

∂ω1

∂x
+

∂ω2

∂x
−

ω1
∂ω1

∂x
+ ω2

∂ω2

∂x
√

ω2
1 + ω2

2

and similarly for the other coordinate directions. To implement these formulas, we use Python’s
sympy module [42] for symbolic manipulation and the contained ccode command to turn the
large expressions into code.

Figure 3.4: Functional description of boundary conditions, ASDF Sampling, MPU sampling

3.5 Distance functions

To implement the functions ωi, we can use a functional description if the boundary is simple
enough. The left most image in Figure 3.4 shows a distance function computed in this way, using
a combination of R-functions [39]. While we can construct such functions for more complex
boundaries [40], these descriptions can become expensive to evaluate many times. Thus, we pursue
methods to use the ASDF for distance evaluations. The middle image in Figure 3.4 shows the raw
distance information contained in the ASDF, based on trilinear interpolation of the distance values
stored at cell nodes.

To guarantee convergence of our solution, however, we require more smoothness in the
distance function. Thus, the naive use of the ASDF distance values will not su�ce. To triage
this situation, we bring in a technique from surface reconstruction: Multi-level Partition of Unity
(MPU) approximation [32]. This method is used to stitch together many local approximations
into a smooth function without requiring a global solving step (as with most radial basis function
approaches).

In our case, the trilinear interpolation Qi on each ASDF cell constitutes a local approximation
to the distance function. To stitch them together, we introduce a compactly-supported weight
function wi for each cell, so that the support of wi properly contains the cell. The global distance
function can then be approximated as

f(x) ≈
∑

i

wi(x)Q(i)
∑

j wj(x)
(3.2)

To implement this, we use a trivariate B-spline for each wi (and hence each ASDF cell), with
support equal to a dilation of the cell. The dilation factor controls the amount of smoothing
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Figure 3.5: Comparing the distance function contained in the ASDF and after MPU sampling.

present in the function approximation. With zero dilation, the method returns the same value as a
simple ASDF evaluation, but as we increase the dilation, the smoothness (and computational cost)
of the distance function increases.

To evaluate the MPU distance value at a point, we start by traversing the ASDF tree, accu-
mulating the values of

∑

i wi(x)Q(i) and
∑

j wj(x). If the point isn’t contained in the dilation of
current cell, we leave them unchanged. If the cell is LEAF, FILLED, or EMPTY, we calculate
wi(x) and Q(i) and add them to our accumulated values.

This implementation allows us to prune large sections of the ASDF tree that are irrelevant
to the point in question. It is also adaptive to the re�nements of the ASDF, smoothing with
�ner spatial resolution near the part boundary. In the right image in Figure 3.4, we compare
the functional, ASDF, and MPU distance functions. In Figure 3.5 we show a detail of the digital
material part, plotting the pure ASDF distance �eld and the MPU-smoothed �eld. Many of the
artifacts have disappeared, and the distance �eld appears smooth, even in this region of geometric
complexity.

3.6 Numerical Integration

With all the functions of the integrands in place, we must perform the integration in Equation 3.1
over the geometrically complex domain. Numerical integration is usually carried out by allocating
function evaluation points according to Gaussian quadrature rules and taking weighted sums
of their values. There are three-dimensional quadrature rules [41], but for smooth functions,
repeated one-dimensional integration is often used to compute integrals in multiple dimensions
[35]. The problem of integration over our complex domain, then, is a problem of allocating rays
over which to allocate one-dimensional Gaussian quadrature points.

Fortunately, the ASDF data structure provides an e�ective way to do this. The domain is
divided according to the cells of the ASDF. EMPTY cells make no contribution to the integral, while
FILLED cells can be integrated as a simple prism. Figure 3.6 shows a slice of a digital material part,
with integration points allocated in the FILLED cells according to repeated Gaussian quadrature.

LEAF cells straddling the boundary present a greater challenge. In [27], the importance of
proper coordinate system choice for computing integrals over such regions is stressed. As an
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Figure 3.6: Detail of a part, showing integration rules in two dimensions on �lled cells only.

illustrative example, the authors consider computing the integral of a constant over a quarter
circle using cartesian and polar coordinate systems:

∫ 1

0

∫

√
1−x2

0

1dydx =
π

4
=

∫ π/2

0

∫ 1

0

rdrdφ (3.3)

Symbolically, these integrals are identical, but numerically, the polar form integral converges must
faster due to better integration point placement.

Figure 3.7: Integration rules for leaf cells.

With this in mind, the authors suggest placing integration points along a boundary using rules
based on the marching cubes algorithm (drawn in Figure 3.7). If a face of LEAF cell is contained
in the part, the integration points are allocated by cartesian rules over this face, and along rays
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from each point to the boundary intersection. If only an edge is contained, points are allocated
along the edge, and rays to the boundary from each are laid out in cylindrical coordinates. If no
edge is contained, we pick a contained vertex and lay out rays by spherical coordinates from this
vertex to the boundary.

Figure 3.8: Testing numerical integration routines over the sphere

We implemented these integration routines for the ASDF data structure. As a test, we consider
integrating a unit integrand over the sphere. The result should converge to the sphere volume, so
we can evaluate the error. Figure 3.8 plots the error for this test, showing how each additional leaf
cell case increases integration accuracy for a given resolution.

3.7 Results and Future Work

With these integration routines in place, we can construct the linear system in Equation 3.1 and
solve the elasticity problem. In the scope of this thesis, we had hoped to use this as another
method for constructing the digital material sti�ness matrices. In reality, however, the results
produced by the implemented mesh-free simulation engine were not ready for such use. Extracting
well behaved linear systems was a challenge, and would likely bene�t from tuning and testing.
Further, to extract the sti�ness measurements needed for use in characterizing digital material
parts, additional surface integration routines were needed to calculate traction forces. In the
shortness of time, this mesh-free simulation engine was set aside as a direction for future work.
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Chapter 4

Part Production

With the models of part behavior and assembly modeling covered, we next turn to physical
fabrication of digital material parts. To validating the proposed hierarchical approaches for
modeling, we need an ample supply of parts to test and assemble. First, we demonstrate a work�ow
for quickly producing many parts, with tolerances su�cient for reversible, load-transferring node
connections. To simplify modeling part behavior, we require that these parts should be made from
material that behaves as a quasi-isotropic continuum down to length scales around 1mm.

Second, we demonstrate an out-of-autoclave, net-shape molding process for producing high-
performance, directionally-aligned composite parts, like those made by [12]. Using resin transfer
molding (RTM), we can automatically wind dry �ber into mold, adding strength and sti�ness
where it is needed, �nally pulling and curing resin to create a part that requires no post-cure
machining.

Figure 4.1: First proposed method for standardizing part interface

4.1 First steps

We fabricated the �rst potential part design for rapid production using a wire electric discharge
machining center. Attempting to multiplex part production, a stack of standardized interfaces
were cut from a large aluminum block (see Figure 4.1, left). These interfaces were then glued to
square tube stock and wafer-cut to create individual parts. This process allows a wide variety
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of stock to be used as the tendon material, while maintaining a standard, robust aluminum part
interface.

As shown in Figure 4.2, using .010" EDM wire, we cut connections from a 4" aluminum block.
These pieces were joined to a �berglass square tube using Loctite Hysol. The parts were cut from
this assembly using a precision wafering saw.

Figure 4.2: First experiments with standardizing part interface, using EDM machining.

Unfortunately, this process had several drawbacks. First, the wafering operation was too
time-intensive for a rapid prototyping process. Second, after cutting the parts, the glued patches
between �berglass and aluminum had too little area to stand up to the loads required of the these
parts. A barbed design could overcome this last drawback, but in light of the time-intensity, we
abandoned this fabrication process.

4.2 Milled Phenolic

Next, we turned to milling the parts on a desktop CNC router. To increase throughput, we
fabricated a custom vacuum �xture table, allowing higher cutting forces (and correspondingly
higher feeds) while keeping the required tolerances on loose parts. We considered two materials
for parts: a cotton-phenolic composite (.065" thickness) and medium quality baltic birch plywood
(3-ply at .0625" thickness). The phenolic was heavier (1.32 vs 0.52 g/cm3) and more expensive, but
was slightly sti�er and more uniform at small scales.

Figure 4.3: Milling with vacuum �xture, a pinned joint, and a microscope photograph of a node.

To decide between these materials, we milled coupons of each to determine modulus and
isotropicity. Using the Instron 4411 with a 500N load cell, we applied loads up to 400N at a rate
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of .25 mm/min. In tension, the phenolic had slightly higher modulus and was more isotropic
than the birch. The anisotropy of the birch is even more evident in bending (as opposed to
tension), since it has only three plies. These results suggested the phenolic was a better choice, but
proceeded to make some parts from both. These parts showed that the lattice from phenolic parts
was much easier to assemble without the risk of breaking parts as the features of the parts were
on the same magnitude of size as the grain of the birch. In light of this reasoning, we selected the
phenolic as the material for our structural testing.

4.3 Pins

To facilitate faster iteration times for testing assemblies, we also fabricated forming tools for
making custom pins to join the digital material parts together. Figure 4.4 shows a simple press for
bending .030" steel wire sections. We cut these sections in large numbers on a shear, and bent
them in groups of thirty at once using this press.

Figure 4.4: Pin press

4.4 Ganged Resin Transfer Mold

In addition to the milled phenolic parts for high throughput testing, we also developed work�ows
for higher-performance, directionally aligned carbon-�ber-reinforced polymer (CFRP) parts. This
parallel production technique was based on that of [11], but used plastic layers to build up a
resin transfer mold (RTM) for many identical parts, instead of machining them from a monolithic
part after curing. These interlocked mold layers provide the necessary compaction and vacuum
integrity for a quality out-of-autoclave (OOA) composite part, while also providing a sca�old
for dry �ber winding. This produces composite parts with controlled �ber �ll fractions, few
voids, and directional �ber alignment. In this way, we can achieve the directional sti�ness seen in
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Figure 4.5: A)Mold layer, ready for winding. B) Automated winding attachment in a 3 axis CNC machine.

C) Mold layer, dry wound. D) With male compression layer ready to insert. E) RTM with one resin inlet

and 3 vacuum outlets, E) Demolding layers of composite parts.

conventional �lament winding (e.g. for pressure vessels) with fewer constraints on geometry. The
chief di�erences between this method and that of [11] are that the parts are produced in their net-
shape form, eliminating the need for any post-cure machining, and that room-temperature-cure
resins can be used.

The process is outlined in Figure 4.5. First, layers of a mold are machined from an engineering
plastic. We used high-density polyethylene (HDPE), which machines well and provides the surface
�nish necessary for the molded surfaces. The �rst layer has a channel in the shape of our desired
composite part, but considerably deeper than the desired part thickness, to facilitate easy winding
and su�cient compaction.

Figure 4.6: A) Alternative instantiation of resin paths. B) Showing manifolds and ports for resin transfer.

Dry �ber is wound by hand or with a three-axis computer-controlled machine into this channel.
Figure 4.5 shows a custom attachment for a Shopbot Desktop holding a spool of 12k carbon �ber
tow. The tow is guided into the channel through silicon carbide loops mounted on a precision rod.
The programmed path can be designed to loop around features requiring more reinforcement,
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�lling in �ber where it is needed in the part.

Figure 4.7: All parts of the process (back to front): clamps, three types of mold pieces, three identical sample

composite parts from the mold assembled, automated winding attachment with 100 feet of 12k carbon �ber

tow to the spool, and tubing used for resin transfer.

When an appropriate �ber �ll fraction has been reached, the �ber is compacted using the
next mold layer. The next layer has a feature in the shape of the part, projecting from the bottom
surface. The height of this feature is less than the channel depth by precisely the desired thickness
of the part. This layer also seals the �ber, providing vacuum integrity for the resin transfer process.

Figure 4.8: Microscope photographs of �lament-would part nodes and a pinned joint.

Besides providing features to wind and compact the �ber, each mold layer also contains four
holes and small channels connecting the mold cavity to these holes (shown in Figure 4.6). With
many layers, these features make up the manifolds for the RTM process, connecting each part
cavity to the vacuum and resin reservoirs. The top mold layer accepts conventional plumbing
�xtures and the bottom layer is blocked o�. When a su�cient number of layers have been added,
resin is pulled through all the cavities with a vacuum pump in an RTM process. In the mold in
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Figure 4.7, we used a vacuum pressure of 7-10 psi to pull in West Systems 105 epoxy system, a
readily available, high-strength, room-temperature-cure resin.

This parallel production technique allows a large number of parts to be produced in a single
cure, the longest and most costly step in most composites production. As resin �ows much faster
through vacant channels than those �lled with dry �ber, a great number of parallel molds can be
ganged together without a�ecting time required for resin infusion. This technique also provides
�ne-tuned control over the infusion, as we can add as many vacuum manifolds as desired and use
external valves to control their relative pulls.

A critical feature of this technique is that each mold piece contacts the composite part along a
surface that parts along a single vector. This guarantees that there are no internal corners on any
mold piece which would cause problems during demolding. Because of this, complex geometry
can be created by molds that can be reused for many runs with little degradation.

Figure 4.9: Forming the stainess steel tube end, a scale comparison, and the tube in the winder

Figure 4.8 shows microscope images of the joints of these composite digital material parts,
where loops of the composite �ber are linked. Due to the �ber alignment, these parts exhibit
signi�cantly better sti�ness-to-weight performance than the milled, quasi-isotropic phenolic parts.

Figure 4.10: Without micro-tube-end forming, the winder slices and tangles the tow. With the lip, the tow

can pass smoothly.

To scale this production method, it was necessary to optimize the automated �ber winding
process. The winding attachment described above could not place �ber into channels as slim as
desired for our digital material parts. Because of this, we made several iterations on the tip of the
attachment, �nally settling on using a section of 1/16" diameter stainless steel tubing with .005"
wall (shown in Figure 4.9). The cross section of this tip was on the order of the cross section of
the tow to be wound, much smaller than the original tip with the silicon carbide guides.

With such thin-walled tubing, however, the edges would damage the tow as it was pulled
through the tube (see Figure 4.10. To �x this, we fabricated a set of three progressive micro-tube-
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end-forming tools. Using these forming dies from the motion system of a lathe, we were able to
reliably turn out and fold back the rib of the tubing, signi�cantly softening the edge, and allowing
the tow to pass unscathed.

The part production techniques detailed above provide means of producing both parts for
testing assemblies, as well as high performance parts for performance critical applications. In the
next chapter, we describe custom design tools for digitally specifying digital material designs with
high level descriptions.

30



Chapter 5

Design tools

Specifying lattices subject to geometric and performance constraints is a peculiar task not well
addressed by general CAD tools. Thus, to e�ciently generate digital models of lattices �lling
complex geometry, we built a set of specialized, custom tools. As described in chapter 2, if we
can use such tools to describe the lattice based on high level constraints and describe a part as a
sti�ness matrix, the simulation pipeline becomes reasonably automated.

5.1 Describing lattices

The �rst ingredient in a digital material design tool is an appropriate way to easily specify the
pattern of a lattice. Borrowing notions from crystallography, a lattice is simply a cell, usually
a simple cubic prism, that tiles space under the three unit translations. To de�ne a Lattice
object, then, we simply specify how parts are placed into this cell. In Figure 5.1, we show cells
with parts placed for a lattice of vertex connected octahedra (cuboct) and one of bi-truncated cubes
(Kelvin). These arrangements of parts can be tiled with spatial transformations to �ll space with
the lattices, as shown in Figure 5.2.

Figure 5.1: A) Cubuct lattice cell with square parts placed. B) Kelvin cell with parts placed.

We make two concessions from this very simple lattice de�nition. The �rst, illustrated by both
lattices, is the need for edge cases. If we were to build a structure from these cells, we would likely

31



5.1. DESCRIBING LATTICES CHAPTER 5. DESIGN TOOLS

want to place special edge cells to close o� the structure at its boundaries. Based on this desire,
we add to our Lattice object a cell de�nition for boundaries along one, two, and three spatial
directions. These correspond to the faces, edges, and vertices of the lattice envelope. This addition
also allows us to specify that particular part types should be placed at these boundaries, a useful
option for carrying surface loads and skinning the structure.

The need for the second concession is shown by the Cuboct lattice, where we alternate the
orientation of part overlap for consecutive cells in each spatial direction. To accommodate this,
we add to the cell de�nition an awareness of cell index number in each spatial direction, so we
can use this information in part layout (for instance, by o�setting by the part thickness times the
cell index modulo two).

Figure 5.2: Two lattice types: Cuboct (left) and Kelvin (right)

Using the sti�ness matrices inherited from the parts, transformed by their orientations within
their cell, we can assemble the global sti�ness matrix cell-by-cell, consolidating nodes lying on
cell boundaries. Once the lattice is speci�ed in terms of cells, this assembly process is e�cient
and easy to implement. The left image in Figure 5.3 shows an assembly of the square parts into a
3x3x3 cuboct brick (one of tests used in chapter 6), the middle shows loads and constraints, and
the right shows the deformed shape.

Figure 5.3: A) Parts placed in 3x3x3 test volume, B) Loads and constraints, C) The deformed shape.
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Figure 5.4: Filling a jumbo jet with a lattice.

5.2 Filling

We can leverage this cell-based description to create lattices �lling an envelope of our own design.
For example, in Figure 5.4, we show a lattice propagated over the shape of a jumbo jet. Starting
from an STL �le (a triangle mesh), we evaluated the distance function to the surface to determine
which cells were contained. To do this evaluation, we used the open-source geometry library
Geode [33]. Once we have the contained cells, we can test for the boundary cells and apply the
boundary rules supplied by the lattice de�nition to close the edges, skin the fuselage, or apply
greater load-carrying capacity to the wing surfaces.

Figure 5.5: Warping parts to �ll a NACA pro�le

5.3 Warping

We can also use the cell description to work backwards from envelope geometry to calculate
part shapes that conform to surfaces. As an example, Figure 5.5 shows how an arbitrary NACA
pro�le [30] can be used to generate parts that assemble to exactly match the boundary. This is
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di�erent from the �lling operation above, because we avoid stair-stepping phenomena and can
more precisely create the curved surfaces required by applications like building wings.

To do this, we use a parameterization of the top and bottom surfaces provided by the NACA
code. These can be combined to parameterize the volume to be �lled. We take the cells to be
equally spaced prisms in the parameter space, and apply the mapping to the geometry of the parts.

The trade-o� for creating such complex surfaces is a huge increase in the number of unique
parts required. An interesting direction for future work is write an optimization routine that
would allow a designer to explore the trade-o� curve between the number of unique pieces and
the �delity of the surface reproduction.
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Chapter 6

Testing

With the parts produced and the assembly design tools working, we now compare the results
of structural testing with the behavior predicted by the simulations. This testing will take place
on two scales: that of individual parts and that of large assemblies. The goals of testing parts
are to down-select the models of part behavior and to examine the e�ect of the joints between
parts. The goals of the assembly testing were to provide load conditions representative of typical
engineering applications, and to compare the measured results with simulation results. For this,
we chose two static tests to span the types of loading typically seen in applications. The �rst
test was a simple compression test, capable of determining an e�ective Young’s modulus for the
homogenous material model of the lattice. The second test was a three-point bend, a test used to
characterize bending sti�ness.

Figure 6.1: First prototype of instron �xture to verify piece level model.

6.1 Infrastructure

6.1.1 Fixturing

For the part tests, we used the Instron 4411 material characterization machine with 500N load cell.
The �rst prototype testing �xture for parts was designed to measure sti�ness in multiple degrees
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of freedom of the part. Figure 6.1 shows this �xture, with two loading conditions composited. The
left con�guration is designed to impose a pure stretch of the part while allowing rotation at the
nodes about the transverse axis. Careful inspection of the image markers shows that this pure
stretch does transmit a torque about this constrained axis. The con�guration on the right applies
di�erential force to left and right nodes, imposing a bend on the piece.

Figure 6.2: Measuring part sti�nesses, tensile test.

We determined this �xture created more confounding variables than were warranted by its
generality. The method we settled on instead uses the same method to �xture the part as is used
to join the parts together in the digital material assembly. To do this, we waterjet-cut aluminum
pads with phenolic joint pieces glued in. These phenolic joints attach to the structure like another
digital material piece, and are pinned in place (see Figure 6.2). The pads required many M3 holes
to be drilled and tapped, so to facilitate this we used a Tapmatic tapping head and a Bridgeport
mill with conversational programming. To test the parts, these aluminum pads are bolted to a
standard �xture in the load string, which in turn is held by wedge-action specimen holding jaws.

For the assembly testing, we used an Instron 5985 with a 250 kN load cell. To �xture the test
samples to the instron, we used the same aluminum pads as above to interface with the lattice
structure. The aluminum pads are bolted to large end plates, which in turn are �xtured to the
Instron. To make the aluminum plates, we used the OMAXwaterjet in combination with a Shopbot
Desktop CNC mill for pocketed features.

6.1.2 Material Properties

All of the structural simulations used in this thesis require material data as input. We determined
this empirically to avoid discrepancies between our materials and published values. The density
and elastic modulus of the phenolic composite were determined empirically (Figure 6.3) to be
roughly 1320 kg/m3 and 3.2 GPa, respectively.
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Figure 6.3: Determining elastic modulus and isotropicity of phenolic coupon

6.2 Testing Parts

6.2.1 Slender array

With testing infrastructure in place, we set up several part tests. First, to generate a dataset for
comparing models of behavior, we machined an array of digital material parts, sweeping over the
slenderness ratio, s, of the tendons. This ratio is de�ned as the tendon length ℓ over the tendon
width w. For this test, we used a stock with a constant thickness t of .065", a constant tendon
length ℓ = (

√
2)” (corresponding to 2" pitch), and let w range so s takes values from 10 to 25. The

image at left in Figure 6.4 shows an array of six parts with varying slenderness.

Figure 6.4: Slenderness array testing.

Each part was subjected to a tension test on two opposing nodes, while the other nodes
remained free, as shown in Figure 6.2. We ramped the extension at .25mm/min to a maximum
of 25N . The sti�ness results are shown in Figure 6.4 at right.
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Figure 6.5: Simulation mesh and stress.

To generate simulated predictions for this test, we examined three separate approaches. First,
we used ANSYS, a commercial �nite element simulation package, to implement the test. For fast
design iteration, we represented the part design in a volumetric form (using [24]), but ANSYS
requires a surface representation. To do translate between the two, we generated part outlines
using edge detection, and cleaned the result using a pass of the Ramer-Douglas-Peucker algorithm.
Then we create an extrusion of this outline using a CAD program (in this case, Rhinoceros), and
export a STP �le to be readable by ANSYS. Once in the software, we can create a mesh of the part
(shown in Figure 6.5), apply constraints and loads to faces, and extract displacements of the nodes
based on the solutions returned. Packages like ANSYS Workbench attempt to shield users from
intricacies of �nite element analysis, automatically selecting the "best" element type for a given
simulation. For these tests, we used a ten-node tetrahedral element because it accommodates
quadratic displacements and does a good job capturing irregular geometry [6].

Figure 6.6: Deriving the two-dimensional model

The second approach is a simple, pen-and-paper two-dimensional model of the part using
beam de�ections. Modeling the part as a rhombus with rigid joints, with one node �xed and the
opposite node pulled in tension by a force F , as shown in Figure 6.6. We let δ be the displacement
of one of the free, unloaded nodes, measured in the direction towards the loaded node. Assuming δ
is small, a symmetry argument shows that the node is displaced in this direction without rotating,
and that the loaded node does not rotate. Thus, we can simplify the problem to a one-dimensional
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beam problem with one clamped and one end with constrained angle. We write

Ft =
12δEIz

ℓ3
(6.1)

where Ft is the force along the tendon joining this node to the loaded node. Now, to satisfy our
assumptions of no rotations, there must be induced moments about our nodes, given by

τ =
6EIδ

ℓ2
(6.2)

each. To remain in equilibrium, this moment must be balanced by a force Fτ = 12EIδ
ℓ3

at the loaded
node, perpendicular to the tendon. Taking the components of these forces in the direction of our
global force F , and adding the contributions of both sides of the rhombus, we have

F = 2(F y
t + F y

τ ) =
24
√
2δEIz
ℓ3

(6.3)

If ∆ is the displacement of the loaded node, we have ∆ =
√
2δ, and so

k =
F

∆
=

24EIz
ℓ3

(6.4)

As we can readily calculate Iz from the part parameters w and t, this formula gives us a prediction
of the sti�ness measured by our Instron test across the slenderness value array.

Figure 6.7: Part testing results, all methods.

Finally, as the last approach, we implement the full three-dimensional sti�ness matrices of the
beams and solve the corresponding system to minimize strain energy. For this test, we used the
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Frame3dd library [18]. This library implements geometric sti�ness e�ects with a Newton-Raphson
iterative method. Geometric sti�ness captures the e�ect of axial loading on deformation in the
cross-sectional plane of the beam elements [17]. We chose this library over our own linear elastic
solver in order to see how good the simple two-dimensional model performs when compared with
an independently veri�ed simulation which includes many more solid mechanical phenomena.

We plot the results in Figure 6.7. Very evidently, both beam element methods perform con-
siderably better than the more computationally-intensive meshed FEA. To give the meshed FEA
a fair trial, we experimented with several possible sources of errors. First we performed several
re�nements in the simulation mesh and recomputed the solution. Extrapolating the trend of
such a solution sequence is a commonly accepted method to eliminate the e�ects of the mesh
approximation. While the more �nely meshed solutions were slightly closer to the measured
results, the apparently convergent values still showed signi�cant discrepancies.

We also experimented with ways of enforcing the boundary conditions in the meshed sim-
ulation, another common cause of simulation errors. Despite building elaborate geometry that
more closely mimicked the physical test, transmitting loads and constraints to the part through
computed contact patches, the results did not signi�cantly change.

The two beam models agree remarkably well, especially in the narrow tendon limit. When the
tendon becomes very wide, as at the right side of the graph, there is an out-of-plane deformation
not captured by the two-dimensional model. This explains the divergence of the curves and the
better agreement of the three-dimensional model with test results for wide tendons.

There is some question for both beammodels about how to determine ℓ from the part geometry.
Clearly, the beam length is not simply the distance between node centers, as the joinery and �llets
shorten the e�ective beam length. For the purposes of this test, we took the length to be measured
between points on �llets where the width was 25% greater than the thinnest tendon width. In
practice, this step can serve as a model calibration, where we tune our beam simulations using
measurements of a part before simulating large assemblies of parts.

Figure 6.8: Backing out the joint e�ects.

6.2.2 Joints

In these simulations, we model elastically-joined nodes as rigid connections. To validate this
assumption, we next investigated the discrepancies in behavior between the two. To this end,
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we subjected a part from each of the slenderness values above to a clamped test, where the
deformation of the part is constrained by an additional aluminum �xture, shown in Figure 6.8
at right. Two parts with pinned joints and a third with unpinned joints were tested. This test
measured the e�ective sti�nesses of the joints for small deformations (roughly 500N/mm pinned,
and 300 N/mm unpinned).

These results show that the pin element is crucial to maintaining a robust joint, nearly doubling
the sti�ness in extension. Second, when appropriately designed and pinned, these phenolic joints
between parts can exhibit sti�ness within a factor of three of that of a monolithic piece. Given
that the joint regions of digital material parts are generally over-engineered, this suggests that
modeling the joints as rigid is a valid assumption for most relevant loading conditions.

Figure 6.9: 3x3x3 phenolic brick in Instron, ready for compression testing

6.3 Assembly testing: 3x3x3 Brick compression

For the compression testing, we assembled 2x2x2 and 3x3x3 bricks of phenolic parts. For both
this sample and the one described in section 6.4, hitting tolerances and streamlining the part
fabrication and assembly process were both essential to �nishing the tests in a timely manner. For
this, the milling �xtures and pin press described in section 6.1 were both critical.

With the 3x3x3 brick �xtured in the instron (Figure 6.9), we ramped the load until a break
event occurred at one of the interior tendons at roughly 800 N . Based on the dimensions of the
brick, we use the load and displacement data to estimate an elastic modulus of 2.532MPa.

To implement this test in the simulation tools, we needed to describe the geometry and
materials. These parts were milled with square tendon cross section of .065" and a lattice pitch of
2". We specify the cuboct lattice cell unit with these dimensions, and propagate it across the 3x3x3
volume. As described in chapter 5, we apply the edge cell de�nitions in order to close o� the
lattice. The nodes on the bottom face are constrained, and a ramped force is applied to the nodes
on the top face. After solving the system, the displacements of the loaded nodes are collected and
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Figure 6.10: Compression test results results

averaged. Figure 6.10 plots the stress and strain for the empirical test, as well as the simulated
tests.

Figure 6.11: a) Brick simulation in ANSYS, b) Preliminary 2x2x2 test, showing coordinated buckling.

Aswith the part testing, we also implemented this compression test as ameshed FEA simulation,
usingANSYSWorkbench. Elements are again 10-node tetrahedron type, according to the program’s
automatic settings. For this simulation, we added the top and bottom �xture plates, shown in
Figure 6.11. Several small displacements ( 1mm) were speci�ed on the top plate, and the reaction
forces were measured. The results are shown in Figure 6.10 for several mesh resolutions. The
simulated elastic modulus stabilizes quickly, showing very little change between meshes with 50k
and 2M elements.

Again, the beam model is considerably more e�ective than meshed FEA, despite requiring
considerably fewer calculations. The empirically measured modulus and that of the beam model
show agreement to better than 1%. Neither test, however, is sophisticated enough to capture
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the reversible but nonlinear stress-strain curve measured in the testing. This is a geometric
phenomenon, rather than a material phenomenon (e.g. plasticity), resulting from coordinated
buckling of nodes (as shown at the right in Figure 6.11). To fully capture this, more sophisticated
large displacement methods would be necessary.

We should note that these tests can be used to work out the power law scaling relationship
often used in cellular solids literature (c.f. [20]). Let Elattice and ρlattice be the elastic modulus
(as determined above) and density of the lattice, respectively. The power law scaling posits that
Elattice

Ephenolic
∝

(

ρlattice
ρphenolic

)s

. Using the results above, we have

s =
logElattice − logEphenolic

log ρlattice − log ρphenolic
= 1.755 (6.5)

Figure 6.12: Testing �xture for three point bend.

6.4 Assembly testing: Three point bending

For the three-point bend test, we constructed a 10x2x2 structure and mounted the aluminum pads
to the top and bottom faces. The milled �xture plates allowed us to select between which pads we
induce a bend. This allowed multiple measurements across di�erent span lengths from a single
sample. In Figure 6.12, we show the process of mounting the sample in the Instron for a ten cell
span. Again, we ramped the applied load, but stopped short of irreversible changes so that we
could perform multiple tests without a�ecting the results.

Implementing this test in simulation was identical to the compression tests except for the
boundary conditions. For this, we constrained the bottom, middle nodes (again, see Figure 6.12)
and applied loads to the top, outer nodes. Again, after solving we average the displacements of
the loaded nodes to determine the bending sti�ness.

The empirical and simulated test results are shown in Figure 6.13. The agreement looks good,
with error on the same order as the variance in the measurements.

As a point of comparison, consider applying a homogenous material model, using a beam
bending equation with the overall geometry of the sample and the elastic modulus derived in the
compression testing. For large spans, this works as well as our method, but for shorter spans it
signi�cantly overestimates the sti�ness (by as much as 50% for the six cell span).
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Figure 6.13: Three-point bend test results

6.5 Conclusions

These three structural tests show that using beam-based models to describe digital material parts
and synthesize behavior of assemblies is an e�ective way to predict �rst order sti�ness in a
range of meaningful load conditions. Further, this relatively simple and inexpensive method
outperformed meshed FEA with commercial tools where they were compared. These results
are very encouraging, and so next we undertake an ambitious design study to leverage these
advantages.
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Chapter 7

Application: Vacuum Balloons

To demonstrate the utility of building and designing structures using the methods described, we
designed an ambitious ultralight structure.

7.1 Concept

For this design study, we set out to build a volume from which the contained air could be evacuated
while the structure resists the resulting force from atmospheric pressure. If this structure is made
light enough, the mass of the displaced air (at a density of 1.225 kg/m3) will be enough to generate
lift.

Figure 7.1: A) Francesco Lana de Terzi’s �ying boat concept c.1670 [46], B) Discretely assembled sphere

design

This vacuum balloon concept has been around for quite some time, appearing recently in
several articles and patents [31][4] but dating back to at least 1670 with Italian Jesuit Francesco
Lana de Terzi [2], whose design is shown in Figure 7.1 at left. This airship was based around
large spheres (roughly 7 m in diameter) made of thin copper foil. These spheres were reasoned to
withstand atmospheric pressure based on a symmetry breaking argument, but this discounted
inevitable imperfections in the manufacturing of such spheres. The vacuum airship was never
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built, and arguments were constructed for its impossibility based on the assumption of using solid,
homogenous materials for the spherical shells.

If instead of solid materials we use sparse lattices, the scaling looks much more plausible. In
this section, we propose a design based on digital material assembly and use the hierarchical
simulation tools developed in this thesis to investigate performance.

Figure 7.2: Constructing the spherical lattice by truncation of polyhedra.

The lattice underlying the design can be constructed starting from the Platonic icosahedron,
shown in Figure 7.2. We �rst truncate it to get the familiar “soccer ball" polyhedron. Then, we
truncate again, e�ectively replacing each vertex by a triangle between the midpoints of the incident
edges. This polyhedron is composed of triangles, pentagons, and hexagons, where each vertex
has degree four. Taking just just the edge network of this polyhedron, we create two concentric
copies as the inner and outer boundary of our spherical shell. To connect these boundaries we
introduce new edges as follows: First, give each existing edge a direction so that all triangles
have a counterclockwise orientation with respect to the outward normal. Next, draw a new edge
between the �rst vertex of an edge on the outer surface and the second vertex of the corresponding
edge on the inner surface.

Figure 7.3: Sphere section prototypes from plywood and phenolic.

In the resulting framework, there are 540 members, 180 joints, and each vertex has degree
six. Thus, the structure is not isostatic, but it meets the necessary conditions for kinematic
determinacy [14]. Each triangular wedge is similar to Kenneth Snelson’s "octet truss" [13], [43], a
small tensegrity structure which is super-stable, that is, one made sti�er by prestress.
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This framework can be realized from planar components in several ways. Two prototypes in
laser-cut plywood and milled phenolic composite are shown in Figure 7.3. These prototypes are
particularly convenient for fabrication, as the pieces are one-dimensional, and so can be produced
e�ciently. The pieces join in a manner similar to the other lattice structures in this thesis, with
slots, tabs, and pins.

Figure 7.4: First vacuum balloon part prototyping

To obtain the necessary sti�ness in the actual balloon design, we used the molding techniques
described in section 4.4. We split the carbon �ber winding into two phases, inserting a lightweight
core in between. This e�ectively makes custom-shaped, �ber-aligned sandwich panels (see
Figure 7.4), signi�cantly reducing the mass necessary to achieve a given bending sti�ness. For the
core material, we selected end-grain balsa for its relatively low cost, availability in a large selection
of thicknesses, and ease of laser cutting. Balsa is well known for its low density, and the graph in
Figure 7.5 shows the di�erence in compressive modulus between end-grain and side-grain. In the
image at the right, we measure the layer thicknesses of a part fabricated in this way. Using a 2.5
mm balsa layer, we attempted to add .5mm carbon �ber face sheets. The measurements show
that this process has roughly 50 µm precision in layer thickness.

Figure 7.5: A) Stress strain plot for grain directions of balsa., B) Cross section of molded sandwich part.
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7.2 Skin Design

Besides the lattice structure, we also need a method to skin the lattice and maintain vacuum
integrity under load. As an ambitious �rst attempt, we explored making reversibly assembled
skin elements using a custom-built extrusion machine. Using polypropylene pellets, this machine
used an auger to melt and push the molten polymer through custom electric-spark machined
die with a “ziploc" pro�le. These extrusions would be heat sealed onto laser-cut panels, allowing
the panels to be reversibly joined to form an air-tight seal. We prototyped an extruder using a
waterjet-cut aluminum housing, NEMA 23 stepper motor, nichrome wire heating element, and
300◦ C thermistor temperature control, shown in Figure 7.6.

Figure 7.6: A) Ziploc extrusion machine, B) Microscope photograph of interlocking ziploc elements (roughly

6mm across), C) Graphical user interface for the extruder.

Ultimately, more development was needed to consistently produce the ziploc elements, but
the approach showed promise. For the scope of this thesis, we instead switched to irreversibly
joined panels. The sphere design can be panelized into large triangles and smaller pentagons.
With appropriate allowance, these panels can be joined with spray adhesive, applied through a
stencil. The shear stress applied to this bond will be bounded by

τ ≤ 3Patml
2

8wd
(7.1)

where Patm = 101 kPa, l is the sphere cell length, w is the width of the bond, and d is the dip
of the skin furthest from a supporting frame element. To derive this equation, we assign to each
structural member a kite-shaped patch of the skin surface, shown in Figure 7.7. Plugging in
nominal values to this equation, the shear is very conservatively bounded by 300 Pa, well below
the rated shear strengths of 300 psi of 3M products [3].

7.3 Evaluation

To evaluate the performance of this design and the fabrication process, we developed models for
the mass of the parts, the bending sti�ness of the parts, and the stability of the spherical shell.

7.3.1 Mass

To calculate the part masses for a sandwich construction, we use the thicknesses (thcfrp and
thbalsa) and densities (ρcfrp and ρbalsa) of the constituent layer materials, along with the tendon
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Figure 7.7: Each strut can be assigned to a kite-shaped patch for calculations.

lengths. For a spherical shell of outer radius r1 and inner radius r2, the cell length of the outer
and inner tangential parts are l1 = r1

π
9
and l2 = r2

π
9
. Using the law of cosines, the length of the

radial type parts is l3 =
√

r21 + r22 − 2r1r2 cos
π
9
. Then the part masses are given by

mi = wli(2thcfrpρcfrp + ρbalsathbalsa) (7.2)

To calculate the mass of the full sphere lattice, we count parts by type. Starting from the
truncated icosahedron, we have 60 vertices. There is a one-to-one correspondence between these
vertices and the triangular faces after the next truncation. Every edge touches one and only
one triangle, so the number of edges after truncation is 180. Each tangent-type part spans two
cell lengths, so there are 90 instances of each. Each radial-type part corresponds to a unique
polyhedron edge, so there are 180 instances. Therefore the overall mass is

mlattice = 180w(l1 + l2 + l3)(2thcfrpρcfrp + ρbalsathbalsa)

where w is the tendon width as calculated above.
For completeness, we also include calculations for thin-walled pultruded parts with square

cross section of dimension a and wall thickness t. The lattice mass is then

mlattice = 180(l1 + l2 + lB)4ρcfrp(athcfrp − th2
cfrp)

Besides the lattice structure (the mass of which is on the order of a few kilograms), there are
other minor contributors to overall mass. First, the parts are joined with pins, whose mass must be
accounted. Using 1

16
” CFRP rod, diced into pins, the overall pin mass is 5.4g. Second, the skin, as it

is in tension, is not a signi�cant mass contributor. Measuring roughly, Dura-Lar �lm (a candidate
skin material) weighs in at 1.67mg/cm2. Estimating a sphere with radius 1m, has surface area
4π ≈ 12.5m2, which works out to 17 g. All of these masses are relatively small, indicating that
the mass of the lattice will dominate.
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7.3.2 Bending Sti�ness

To reliably predict bending sti�ness, we �rst must produce a composite layer with predictable
�ber �ll fraction and adhesion to the core layer. Using the shear properties of core, we can then
predict the bending sti�ness of the part.

Fill fraction

To make sure to wind an appropriate amount of �ber into these molds for the desired carbon
thickness and �ber �ll fraction, we do some calculations. In the �rst test, we attempt .5 mm
thickness on top and bottom. For the test part, the tendon width is 5 mm. We use a �ber �ll
fraction of 50%, (in the range of common values reported in composites research [1]) with 12k
carbon �ber tow (having measured compacted cross sectional area of .7 mm2 (see Figure 7.8).
Comparing areas, this means we should cover the entire face area with approximately two wraps
of tow.

Figure 7.8: A) Measuring tow packing density for calculating windings. B) and C) Balsa-CFRP sandwich

section part.

Figure 7.9: Shear mode of sandwich panel. [8]
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Core shear

If we neglect shear, increasing the dimension of the core material would appear to generate a
sti�er beam without limit. In reality, there is a shear mode of the core that lowers the sti�ness of
the sandwich beam (see Figure 7.9) as the core thickness increases. Following the analysis of [34],
the de�ection δ of a sandwich beam in a three point loading is given by

δ/F =
L3

48(EI)eq
+

L

4(AG)eq
(7.3)

For a sandwich panel with core thickness c, face sheet thickness t, core elastic modulus Ec, face
elastic modulus Ef , core shear modulus Gc, width w, we have

(EI)eq =
Efwt

3

6
+

Efwtd
2

2
+

Ecwc
3

12
(7.4)

(AG)eq = Gcwd (7.5)

where d = t + c. In practice, the second term of (EI)eq dominates the calculation, and we can
ignore the contributions of other terms.

Measuring the shear modulus Gc accurately can be di�cult due to �xturing issues. Figure 7.10
shows an experimental setup for shear modulus testing. A sheet of end grain balsa is glued to
waterjet-cut aluminum, and a shearing load is applied. Based on the dimensions of the sample, the
forces and displacements can be converted to shear stresses and strains, and the shear modulus
can be estimated. For such a thin sample (2.5mm), the force required to make the measurement is
enough to separate the glued interface over signi�cant portions of the interface area. Therefore,
this test should be considered only a lower bound on Gc.

Figure 7.10: Experimental estimation of Gc for end-grain balsa.

To get a more accurate measurement of Gc, we performed a three point bend test on the
prototype CFRP-balsa sandwich parts. The results are shown at left in Figure 7.11. The bending
sti�ness equations with the shear correction above determine the sti�ness predicted for this test.
Plotting the results (at left), we can back out an estimate of GC of roughly 60 MPa.

Once we have an estimate of the bending sti�ness in the direction of the sandwich stack (EIy),
we can calculate what value for beam width will give uniform bending sti�ness. To guarantee that
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Figure 7.11: A) Three point bend test, B) Using the test to determine shear modulus Gc.

Iy = Iz , then we take w = ( 6Iy
thcfrp

)
1

3 . This value can then be used to calculate the mass savings

over using a uniform beam (not a sandwich panel) to achieve the same bending sti�ness. For the
relevant parameter values, this mass savings factor is signi�cant (around 2).

7.3.3 Stability Calculations

Based on the analysis above, we can calculate maximum pressure values to keep material stress
at safe values. Even if we stay below these limits, however, we are still in danger of failure due
to instability modes of the structure [44]. For this reason, we focus our simulation e�orts on
predicting instabilities in the lattice. Further analysis would �nd parameter choices predicting
that all failure modes occur at the same critical pressure. In [36], a linear programming approach
is devised to do just this, but the sti�ness approximations are too coarse and conservative for our
applications.

We now undertake to use the simulation work�ows developed in this thesis to determine
critical pressures for our spherical shell lattice. Before we even use the simulations, however, we
can do some scaling analysis. Consider a spherical shell with a constant ratio between internal
and external radii. Further, suppose it is composed of a lattice structure of constant tendon cross
section. As we vary r (the external radius), the mass of the lattice material scales linearly. The
volume of the shell varies cubically. Therefore, the relative density ρrel varies as

1
r2
. Using the

stability criterion for a thin spherical shell: Pcrit =
2Et2

3(1−ν2)r2
. That is, we have Pcrit ∝ E. Now

from cellular solids literature [20], we have E ∝ ρsrel, where the value of s depends on whether
the lattice the stretch- or bend-dominated (In chapter 6, we calculated the value of this parameter
for the 3x3x3 cuboct brick sample). This means Pcrit ∝ 1

r2s
. This scaling law will serve as a sanity

check on the simulation results.
Due to the discontinuity in the amount of lift available through vacuum evacuation (i.e., we

cannot create a pressure di�erential greater than atmospheric pressure), it is di�cult to apply
this type of scaling argument to determine the fraction of the critical pressure necessary for lift.
Instead, we will calculate this quantity through simulation directly.
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Critical Pressure Simulation

To calculate the point of instability of a structure, we use modal analysis. As a simple, illustrative
example, consider a tetrahedronwith three nodes �xed and a compressive load applied to the fourth
node. We can compute its lowest frequency mode and the corresponding frequency (shown in
Figure 7.12 at left). As we increase the load applied to the fourth node, this fundamental frequency
starts to drop. Theoretically, in the zero frequency limit, the mode shape is the deformation
associated with structural instability (independent of inertial properties). The load at which the
fundamental frequency crosses zero is the computed buckling load of the structure, after which
the sti�ness matrix is no longer positive de�nite. In the middle image of Figure 7.12, we plot of
the lowest frequency versus load applied. We can see for this example the buckling load appears
to be around 18 kN . To perform these calculations, we used the Frame3dd library [18].

Figure 7.12: Stability example with tetrahedron

As an implementation detail, this buckling analysis is more accurate if we subdivide the beams.
We illustrate this in the right graph in Figure 7.12, where we plot the calculated buckling loads
versus number of beam divisions. We see that the estimate without subdivision signi�cantly
overestimates the limit value, but that we converge quickly after adding a division.

We can apply the same analysis to the sphere, but we �rst need to translate the pressure
di�erence into a load on the structure. To do this, we again partition the boundary of the sphere
into kite-shaped patches for each tendon of length l (shown in Figure 7.7). These kites have area 4

3

times that of a equilateral triangle of side l. This area equals l2√
3
. Thus, the force from a pressure

P per unit length of the tendon supporting the load is P l√
3
. To implement this in simulation, we

apply uniform loads along each of the outer members with this magnitude.
This modal analysis technique is convenient because we don’t need to know a priori which

mode shapes will cause an instability. To perform the analysis, we must eliminate the six rigid
body degrees of freedom. If we simply apply six constraints to a single node, however, modal
analysis will �nd shapes that do not represent a physically meaningful deformation. To produce
relevant mode shapes, we enforce that the extreme nodes on each coordinate axis stay on those
coordinate axes while remaining free to rotate. This is equivalent to enforcing radial deformations
on a subset of the nodes, a common technique used to derive analytical stability formulas for less
complicated structures [44].

Using the lattice design tools, we set up the beam elements in the shape of the spherical
shell. In this case, we again specify the lattice by a unit cell, but instead of using translations
to propagate the cell in space, we use elements of the icosahedral symmetry group. To perform
the modal analysis, we use the Frame3dd library [18]. For this buckling analysis, the geometric
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Figure 7.13: Left, lowest mode frequency vs. pressure di�erence. Right, aggregated critical pressures for an

array of balloon parameters.

sti�ness calculation performed by this library is a critical di�erence from a simple linear elasticity
calculation.

In Figure 7.13, we perform parameter sweeps on the radii and tendon thicknesses of the
spherical shell. For each parameter combination, we estimate the critical pressure which drives
the fundamental frequency to zero. To do this, we perform a binary search on the pressure
value, starting from a known stable pressure (near zero), bracketing the zero crossing, and taking
diminishing steps based on the results of the simulation. When the step size is below a small
acceptable tolerance, we exit.

Figure 7.14: Plotting the fraction of the calculated critical pressure needed for lift, using the CFRP-balsa

sandwich parts.
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The left graph plots the fundamental frequency versus pressure curves for many parameter
combinations, representing major radius of the sphere, the minor radius, and the equivalent cross
sectional dimension of the frame elements. We can use these equivalent cross sectional dimensions
to parameterize the sandwich construction described in section 7.3.2.

Given the number of simulations required for this computation, we implemented it as an array
job for a 176-core computing cluster. The job scheduler dispatches each parameter combination
to the cluster nodes, and each node reports back with the corresponding fundamental frequency
curve.

Interestingly, we observed the maximum critical pressure value when the minor radius was a
set fraction of the major radius, approximately .57. This suggests it may be possible to derive a
formula for this quantity, but this was out of the scope of the present work. As we sweep over the
major radius and pick the minor radius optimally, we can observe how the critical pressure scales
for each tendon dimension. The right graph in Figure 7.13 shows this, illustrating as predicted
that a larger sphere is unstable at a lower pressure di�erence. For each series, this graph �ts a
function a+ bx−1 + cx−2 + dx−3 to the simulation results. This function �ts the data well, but
with fewer terms, the �t is signi�cantly worse. This indicates (with our scaling law Pcrit ∝ 1

r2s
),

that s is (very roughly) near 1.5, a value that is nicely within expectations (e.g. the 3x3x3 brick
produced a value of 1.755).

Figure 7.15: Plotting the fraction of the calculated critical pressure needed for lift, using hollow pultruded

CFRP parts.

Once we can estimate the buckling pressure of a sphere lattice, we need to compare the
generated lift to the mass required for the structure. Calculating the generated lift is a simple
matter of multiplying the density of air by volume of the sphere. Estimating the mass requires us
to use the equation encapsulated by Figure 7.11, backing out the density of the sandwich structure
from the e�ective cross section used in the simulation. The critical line at unity in the graph
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separates designs that are predicted to �oat without imploding from those that are predicted to
fail.

The same analysis can be adapted to simulate composite parts with a hollow, pultruded cross
section (although the part design would be di�erent). We show the same critical pressure fraction
graph for this geometry in Figure 7.15. We see the hollow parts outperform the sandwich parts
on this metric. This is because the sandwich parts grow excessively wide to maintain uniform
sti�ness, whereas the hollow parts are inherently uniform in both cross section directions.

These graphs suggest that while the task of building a vacuum balloon is indeed a di�cult
one, it is certainly not outside the realm of the possible! These results are meant more to illustrate
the application of the simulation and design tools than as a recommendation for the best vacuum
balloon design. Likely, a higher performance structure could be achieved by separating the
functions of tension and compression, adapting the design parameters to create a tensegrity
structure.
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Chapter 8

Conclusions and Future Work

In this thesis, we have demonstrated the ability to assemble linear elastic descriptions of digital
materials in a way closely analogous to the physical assembly process. This hierarchical method
o�ered a signi�cant reduction in problem size and running time versus a meshed approach for the
same modeling. Indeed, the conventional �nite element analyses we ran for comparison not only
took considerably more resources to solve, but also involved time-consuming geometry conversion
pipelines. In practice, these e�ects limit the overall time required for a simulation-validation cycle,
a serious hindrance for the design of a complex part. Further, the solutions from the hierarchical
method showed better correlation with empirical measurements of structural performance for
all tests performed. The most likely cause for this is simply the inherent model complexity of
meshed FEA, as compared to the relative simplicity of the hierarchical representation of digital
materials. In practice, as described in [16], the aforementioned geometry conversion pipelines
are ripe with potential for errors, both human and systematic in nature. The user must keep
track of many more �les and often perform manual simpli�cation and de-featuring operations.
The disconnected, multi-stage processes of reinterpretation and healing can also alter geometry,
often erasing critical features. Thus, using the hierarchical structure inherent in the geometry to
simplify the simulation model and avoid converting between representations can produce more
accurate, reliable results.

We also demonstrated production techniques for digital material part production, including
a table-top process for fabricating high-performance, directionally-aligned composite parts. We
generalized this technique to accommodate sandwich core composites, and produced parts with
signi�cantly greater speci�c bending sti�ness per mass than even the directionally aligned parts.
Both techniques are exciting directions for future work in expanding the possible types of geometry
and streamlining the automated winding process.

We incorporated the constraints of this fabrication technique into a design for a skinned,
lighter-than-air balloon structure. We then used the hierarchical simulation tools to explore the
parameter space of this design, subject to the strict constraint of withstanding atmospheric crush
pressure. Using modal analysis, we calculated critical pressures for structural stability and showed
optimal relationships between design parameters. Based on this analysis, we found portions of
parameter space where �otation based on the lift from the displaced air appears feasible. Because
of the combinatorial explosion required for this type of analysis, such an extensive design study
would have been prohibitively expensive for a simulation framework that did not exploit the
substructure of the digital material design.
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Not only are these results very exciting for the prospect of engineering with discrete assembled
materials, but they also leave a tremendous amount to be done. The same principles of analysis
can be extended beyond static linear elasticity to include dynamics, and nonlinear responses.
Further, the modeling of any �eld (thermal, electromagnetic, etc.) that gives rise to integral whose
domain is con�ned to the part only (as opposed to including the space around them) could be
made similarly hierarchical. For any of these cases, this work has shown that if we intend to build
discretely assemble structures, there is great advantage in exploiting this structure in modeling.

In these simulations, the behavior of structural elements usually had a single characterization,
iterated over the structure many times. For real-world engineering use of these techniques, we
could imagine a more useful design tool that simultaneously creates geometry for a variety of
structural elements, keeps track of behavior models, and generates simulation inputs based on
stitching these models together. Such an integrated design and modeling environment would be a
valuable tool for agile engineering.

The design study undertaken for this work also opens exciting directions for future work.
These preliminary results indicate that with more iterations of the simulate-prototype-test cycle,
physically realizing a vacuum balloon may be possible. The study only considered a single lattice
design with a single part fabrication process, so there is considerable room for exploration and
improvement using the demonstrated work�ows.
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