
Inverse Methods for Design and Simulation with

Particle Systems

by

Erik Steven Strand

S.B., University of Chicago (2012)

Submitted to the Program in Media Arts and Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c÷ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Program in Media Arts and Sciences

August 17, 2020

Certified by. .
Prof. Neil Gershenfeld

Director, MIT Center for Bits and Atoms
Thesis Supervisor

Accepted by .
Prof. Tod Machover

Academic Head, Program in Media Arts and Sciences

2

Inverse Methods for Design and Simulation with Particle

Systems

by

Erik Steven Strand

Submitted to the Program in Media Arts and Sciences
on August 17, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Over the last several decades, computer aided design (CAD) and numeric simula-
tion software have become ubiquitous in engineering research and practice. Despite
this, tools that close the loop between design and simulation — such as optimizing
a design based on simulated performance, or searching over simulation parameters
to identify where a design functions as intended — remain highly specialized and
relatively underutilized.

This thesis charts a path to greater adoption of inverse methods over physical
simulation. I demonstrate a portable, high performance simulation tool based on
dynamic mesh free particle systems, as well as a generic framework for implementing
algorithmically modifiable design languages. I discuss best practices in the use of opti-
mization algorithms and the development of objective functions for simulation based
inverse methods. Finally, I present two applications made possible by these tools:
optimization of gear tooth profiles, and automated construction of coarse grained
models for simulation of plastic deformation of polymers.

Thesis Supervisor: Prof. Neil Gershenfeld
Title: Director, MIT Center for Bits and Atoms

3

4

Inverse Methods for Design and Simulation with Particle
Systems

by

Erik Steven Strand

This thesis has been reviewed and approved by the following
committee members

Neil Gershenfeld .
Director, Center for Bits and Atoms
Professor, Media Arts and Sciences

MIT

Wojciech Matusik .
Director, Computational Fabrication Group

Professor, Electrical Engineering and Computer Science
MIT

John Hart .
Director, Mechanosynthesis Group
Professor, Mechanical Engineering

MIT

6

Acknowledgments

Neil, thank you for making and steering the Center for Bits and Atoms. The rate at

which I pick up new ideas and skills in this lab far outpaces anything I’ve experienced

before, and anything I reasonably expected would be possible.

To my readers, Wojciech and John, thank you for taking the time to provide your

input. I look forward to more collaboration as I work toward my PhD.

To my prior academic mentors, particularly Christian and Scott, thank you for

trusting me to do real research before I was remotely qualified.

To the students and staff of CBA, thank you for the jokes, stories, insights, and

escapades. To Jake, extra thanks for suggesting that I apply to grad school in the

first place.

To the people of Otherlab and FabLight, my career jump from consulting to

making laser cutters was a watershed moment that ultimately led me where I am

today. Thanks for showing me the path.

Wes, Michael, Amir, Nick, Jeremy, and all the other Plethorans, thanks for the

backyard barbecues and honing my coding and fabrication chops.

To my fellow Jazztronauts, Max and Michael, thanks for all the funky grooves,

sizzling swing, and lurchy backbeats. I look forward to playing again soon. Felisa,

thanks for your kindness and lomo saltado. To everyone at PianoFight, thanks for

making a home away from home.

To the talented musicians of AMP, FJE, and Rambax, thank you for keeping

music in my life, no matter how overbooked my schedule becomes.

Chris, Natasha, and Kelly, thanks for the conversations, cooking, and encourage-

ment.

Mikhail, Sam, and Hannah, thanks for making the East Coast feel like home, and,

with Jay, for the formative experiences in distant cities, mountains, and fjords. Jenni,

Andy, Jaylib, and Michael, thanks for the lively debates and constant learning, from

dorm rooms to dinner parties (or hot tubs). Will, thanks for sharing the eccentric

journey from industry to academia.

7

Hanny, thank you for providing support, sharing the sublime, and trying all my

weird mixed drinks. To Niku, thanks for all the wiggles.

Finally a huge thank you to all my family. Mom, Dad, and Sarah, thank you for

cheering me on, listening to me, and providing perspective.

8

Contents

1 Introduction 13

1.1 Background . 13

1.2 Prior Art . 14

1.3 Morphogenesis and Evolution . 17

1.4 Simulation, Representation, Optimization, and Evaluation 18

1.5 Contributions . 20

2 Simulation 23

2.1 Background . 23

2.1.1 Motivation . 23

2.1.2 What Counts as Reality? . 24

2.2 Particle Systems . 26

2.2.1 History . 26

2.2.2 Modern Practice . 26

2.2.3 Comparison with FEM . 28

2.2.4 Fundamentals . 29

2.2.5 Integration . 29

2.2.6 Locality . 31

2.2.7 Parallelization . 32

2.2.8 Stochasticity . 35

2.3 Implementations . 35

2.3.1 Constraints and Measurements 35

2.3.2 CPU . 37

9

2.3.3 GPU . 38

2.3.4 DICE . 39

2.3.5 FPGA/ASIC . 41

3 Representation 43

3.1 Background . 43

3.2 DAGCAD . 43

3.3 FReps . 46

3.4 Particles . 48

4 Optimization 49

4.1 Chaos . 49

4.2 Gradient Methods . 51

4.3 Gradient Free Methods . 52

5 Application: Gear Design 55

5.1 Methodology . 55

5.1.1 Representation . 55

5.1.2 Evaluation . 56

5.1.3 Simulation . 57

5.2 Results . 58

5.3 Future Work . 59

6 Application: Force Law Search 63

6.1 Motivation . 63

6.2 Methodology . 65

6.2.1 Physical Instron . 65

6.2.2 Virtual Instron . 65

6.2.3 Representation . 68

6.2.4 Units . 70

6.2.5 Evaluation . 71

6.3 Results . 73

10

6.3.1 Force Laws . 73

6.3.2 Memory . 76

6.4 Future Work . 77

7 Evaluation 81

7.1 Background . 81

7.2 Gear Design . 82

7.3 Force Law Search . 85

7.4 Conclusions . 86

8 Conclusion and Future Work 89

11

12

Chapter 1

Introduction

1.1 Background

A typical engineering development cycle can be divided into four steps. First, a design

is drawn, typically in a computer aided design (CAD) system. Second, the design is

simulated, using a physics package. Third, the results of the simulation are used to

evaluate the performance of the design. Finally, the evaluation informs an assessment

of how the design may be improved. These steps are repeated, in an effort to produce

a better design with each cycle.

This process is often guided manually. But when all four steps are performed

algorithmically, the whole cycle can be automated. This opens the door to design

optimization, i.e. the automated improvement of a design using computational tech-

niques, as well as inverse design, i.e. the use of design optimization techniques to

completely specify (rather than modify) a design. These sorts of techniques are ex-

amples of inverse methods over simulation, in which initial conditions and simulation

parameters that achieve a desired outcome are identified, despite the fact that no

directly computable method exists for working backwards to a solution.

This process is most commonly used to optimize a design’s geometry for perfor-

mance. An airfoil, for example, can have its profile manipulated to achieve a desired

lift to drag ratio [57]. But the technique is more general than such an example reveals.

The physical design of a robot arm may be fixed, but one can still search for optimal

13

control strategies for various tasks [43]. Even the parameters of the simulation itself

can be targeted by an inverse method. This technique can be used, for example, to

develop approximate realtime emulations of computationally expensive simulations

[35].

Despite these successes, it is my view that inverse methods over simulation are

both underdeveloped and underutilized. There are many tools that address specific

applications in inverse design, such those cited above, or the others that will be

discussed in the proceeding section. On the whole, they tend to be highly specialized,

are quite often cumbersome, and are used far less than CAD or simulation tools

are on their own. Inverse tools for the optimization of simulations themselves are

comparatively few and far between.

I believe that inverse methods over simulation can be approached in a much more

general manner. Doing so requires careful consideration of what simulations we use,

how we represent what we want to improve, which optimization algorithms we apply,

and how we evaluate performance along the way. This thesis addresses all of these

issues. Specifically, I present a new simulation tool and a new design representation

framework, then discuss the metrics that one should keep in mind when selecting an

optimization algorithm to use with them. I demonstrate the use of these tools in a

design optimization problem, namely the optimization of gear tooth profiles, and a

simulation development problem, namely the construction of coarse grained models

for plastic deformation of polymers. Finally, I discuss some common themes that arise

in the development of the performance evaluation metrics that guide optimization.

1.2 Prior Art

Many different disciplines have developed and deployed tools for inverse problems

over simulation. Because these tools tend to be highly specialized, a survey of them

is a survey of many narrowly applied techniques rather than a few general ones. For

this reason a high level overview of the literature is the best I can hope to provide

in this document. Specifically, I will focus on the use of simulation based inverse

14

methods across engineering, computer graphics, architecture, and machine learning.

One of the earliest — and now among the most widely used — simulation based

inverse methods is topology optimization. Topology optimization is most commonly

used to optimize the distribution of material in truss style structures, minimizing com-

pliance for a given amount of material. It assumes a voxel representation of the design,

and almost always relies on a static finite element method (FEM) simulation [85]. It

traces its roots to analytic studies of literal truss structures performed throughout the

twentieth century, but was first formulated as a numeric inverse method in the late

1980s by Bensøe and collaborators [10]. It has since been scaled up to and beyond a

billion voxels [1]. It is incorporated into a variety of common CAD applications.

Another major example of inverse method in engineering is the field of multidis-

ciplinary design optimization (MDO). Its purpose is to enable design optimization

for problems that span multiple domains of physics [63]. However this often comes

at a high cost in complexity, and across other dimensions it is as limited as topol-

ogy optimization. In particular, though dynamic MDO has been investigated, it

remains an underdeveloped capability and most MDO frameworks still assume static

or quasi-static problem formulations [6]. While MDO tools exist for a wide variety of

problems, each one tends to be hyper-specialized. Finally, MDO tools often only aim

to optimize particular aspects of a design, thus falling short of full inverse design.

A third example, from farther afield, comes from very large scale integration

(VLSI) for digital circuits. Mead and Conway’s classic text on the subject emphasizes

the use of design rules and hierarchy [64], if not strictly describing an inverse method.

But today, automated design is commonly used for placing and routing, which does

rely on some simple objective functions and can be integrated with simulations of stray

capacitance. These tools have enabled integrated circuits to become the single most

complex objects manufactured by humans — so they are worthy of our consideration

even if they do not embody inverse methods as much as other examples.

The most prominent early examples of inverse methods in computer graphics are

the studies performed by Karl Sims in the 1990s. Most notably, he used genetic algo-

rithms to evolve virtual creatures, based on a variety of objective functions selected

15

to encourage walking, jumping, swimming, and other behaviors [88]. These stud-

ies have inspired many replications. Sims’ methodology is much more general than

that of most engineering inverse design tools, and thus not coincidentally is among

the closest to that presented in this thesis. I seek to apply such techniques to more

practical engineering problems.

A recent series of papers from MIT’s Computational Fabrication Group demon-

strate gradient based optimization within a variety of simulation environments [41,

39]. These papers are the most closely aligned with the goals and methods of this

thesis than any others I have encountered.

Architects have developed many inverse design tools, which more commonly aim to

aid design space exploration more so than select a single optimal design. This is known

as generative design, and these papers frequently reference biological inspiration,

[79, 55, 73]. Optimization is often not mentioned. Even in problems where the ideal

outcome would be the selection of a single optimal design, such as those considered

in this thesis, it is often valuable to consider a range of solutions that demonstrate

alternative strategies or design principles. So these studies are more relevant for strict

engineering purposes than one might imagine.

The machine learning field, and reinforcement learning in particular, has recently

produced a number of impressive results based on inverse methods [72, 44, 82]. These

typically optimize a policy or control law represented as a deep neural network, based

on an objective function defined within in a simulation. Through some clever al-

gebra, statistical sampling, and judicious use of surrogate models, these methods

usually manage to optimize the neural network with gradient descent without need-

ing to differentiate through the whole simulation. This reduces their generality, and

in particular rules out the specific applications considered in this thesis, but these

methods are still among the most general and powerful encountered in the literature.

Neural networks have also been used for inverse methods that modify the simula-

tions themselves. The first instances of these techniques were used to develop physi-

cally realistic looking animations without needing to run computationally expensive

simulations [35]. More recently, researchers have investigated the development of sim-

16

ulations based on data, typically relying on deep neural networks that process graph

data [9, 13]. This is now a very active research area, with applications in specific

fields such as robotics [58, 3, 2] and more general simulation and control [81, 80].

1.3 Morphogenesis and Evolution

In contrast to the fragmented world of specialized inverse methods devised by hu-

mans, it is informative to seek inspiration in biology. In particular, the natural world

does contain a single inverse method of astounding power and generality: biological

morphogenesis and evolution. These processes provide a primary inspiration for the

development of more general inverse methods over physical processes, and the most

compelling demonstration of what could be possible.

Morphogenesis is the process by which biological organisms develop their shapes.

We can think of it as a fabrication system, in which DNA is the input, the molecular

processes of transcription and translation are the fabrication methods, and our bodies

are the outputs. In these terms morphogenesis may not sound so unfamiliar to an

engineer, but this biological system is unlike any human-made fabrication system in

many fundamental ways.

First, though DNA determines the shape of the organism it describes, it doesn’t

represent the organism’s final geometry explicitly. Instead, DNA directs a develop-

mental program that ultimately produces the organism’s shape. In this sense it’s

more akin to source code than a blueprint. This is important because it enables

compression; the genome contains billions of base pairs, but these ultimately guide

the arrangement of many trillions of cells.

Second, the developmental program that executes DNA (i.e. transcription of DNA

into mRNA, and translation of mRNA into proteins by ribosomes) is distributed. All

somatic cells receive a complete copy of the genome, but they differentiate and divide

based on signals in their immediate environment, without any external or global

coordination. This enables exponential growth, which is essential in order to realize

the massive dynamic range of the body: amino acids are less than a nanometer long,

17

yet our bodies are meter scale, a difference of 10 orders of magnitude.

The structure of the developmental program also facilitates repetition, recursion,

and hierarchy, since a particular subprogram can be run multiple times (e.g. to

generate two arms) or cede control to a different subprogram (e.g. to grow a hand at

the end of each). In fact, expression of an individual gene can, for example, change

an insect’s leg into an antenna or exchange entire thoracic segments [83]. At the

same time, it can take deletions of entire gene clusters to cause the developmental

programs associated with different types of appendages to interfere with each other

[77]. In this way the developmental program biases mutations to have coherent and

interesting effects, thus pushing random search in promising directions. So not only

is DNA tightly coupled with morphogenesis; both are tightly coupled with evolution.

Finally, this developmental program, and its parametrization by DNA, is universal

among bilateral animals. The genes that direct the formation of our basic body plans

— known as Hox genes — evolved over 550 million years ago and are shared by 99%

of all known animal species [30]. So the diversity of the animal kingdom demonstrates

the huge variety of forms that this single basic developmental program can generate,

and the conservation of these genes demonstrate how valuable it is in evolutionary

terms.

On the whole, biological morphogenesis utilizes a compressed search space (the

genome) tightly coupled with a universal, distributed, and discrete fabrication pro-

cess (developmental programs) to guide a powerful search strategy (mutation and

recombination with natural selection). It serves as the most prominent example of

what optimization over physical processes can achieve.

1.4 Simulation, Representation, Optimization, and

Evaluation

Throughout this thesis I will discuss inverse methods in the context of four foun-

dational layers: simulation, representation, optimization, and evaluation. Within

18

each layer, I seek to achieve greater flexibility by challenging common assumptions in

existing practice. Between the layers, I seek tighter integration as inspired by biology.

The simulation layer models the behavior of a design. In general, the simulation

can model any branch of physics using any techniques; the only essential requirements

are that it can simulate any design in the design space, and that it provides enough

fidelity for an accurate objective function to be defined. This thesis focuses on particle

systems, which are an adaptable, mesh free family of simulation techniques well suited

to the discontinuities and messy phenomena that arise in inverse problems. I have

developed a particular type of particle system, and implemented it for three different

compute architectures: CPU, GPU, and a custom system developed at CBA called

DICE. Other implementations are ongoing.

The representation layer defines the space of possible designs. For many appli-

cations a design consists purely of geometry, but it may also include control laws or

other non-geometric features, up to and including the laws of the simulation itself.

To facilitate representation independence, I have developed a design abstraction layer

which can wrap arbitrary design spaces to make them compatible with my inverse

problem toolkit. Design languages built in this framework will feature in both appli-

cations, particularly in the form of functional representations (FReps) of geometry.

The optimization layer searches for the design in the design space that minimizes

the objective function. In theory any optimization method may be used, such as

the simplex method, gradient descent, or evolutionary algorithms. I will discuss

the relevant concerns for selecting an optimization algorithm for simulation based

inverse problems, and provide an overview of the particular algorithm I rely on for

my applications: the covariance matrix adaptation evolutionary strategy (CMA-ES).

The evaluation layer defines the objective function for the inverse design problem.

It may take as inputs any and all features of the design, as well as any accessible

internal state of the simulation. For the purposes of this work, I assume it produces

a single scalar output, but multi-objective optimization techniques could be applied

as well. The evaluation layer defines a specific inverse problem as much as it helps

solve it, so it is difficult to provide general recommendations for its construction. So

19

my discussion of this layer primarily revolves around commonalities drawn from the

applications, and for this reason it appears after the applications are presented.

1.5 Contributions

This thesis contributes a set of tools for inverse methods over particle systems, and

demonstrates their use with two applications.

In chapter 2, I present a portable and generic particle simulation. It achieves

state of the art performance on GPUs, but can also be run on CPUs or DICE, a new

type of modular computing system being developed at CBA. A Verilog implemen-

tation is being developed, which will enable it to run on FPGAs, and will drive the

specifications for a custom superconducting integrated circuit for particle simulation.

In chapter 3, I present a framework for constructing custom design languages.

It is conceptually defined by static single assignment statements that conform to a

context-free grammar, and implemented as a DAG with several different node types.

All design languages constructed with this system are inherently parametric, and can

be easily integrated with optimization routines.

Chapter 4 discusses optimization algorithms that can be used in tandem with the

simulation and representation tools.

The first application is a design study for gear tooth profiles, discussed in chapter

5. I demonstrate gradient free optimization of a dynamic and relatively stiff rigid

body simulation.

The second application (chapter 6) optimizes a course grained force law, in or-

der to allow simulated plastic coupons on a virtual Instron to produce stress strain

curves that match measured data. This demonstrates the automatic construction of

macro-scale course grained models, as well as material memory arising from particle

distributions rather than explicit memory kernels.

Chapter 7 discusses some conclusions on inverse problem definitions based on the

two applications.

Taken together, I hope that these tools and results can contribute a foundation

20

for further research into design and simulation with inverse methods over particle

systems.

21

22

Chapter 2

Simulation

Simulation is the foundation of the work discussed in this thesis. In this chapter,

I first discuss some of the shortcomings of current practice, and how they can be

addressed with particle systems. This is followed by a primer on the theory and

practice of particle systems, and discussion of four specific implementations I have

written or am working on.

2.1 Background

2.1.1 Motivation

Simulation is now ubiquitous in both academia and industry. But it also a common

paint point for engineering workflows.

One significant issue is the disconnect between the representations of geometry

used for design and simulation. All the most popular CAD packages utilize boundary

representations, usually in the form of analytic surfaces but also sometimes as surface

meshes1. Many of the most popular simulation packages, however, rely on the finite

element method (FEM), and as such utilize volumetric meshes. The process of mesh-

ing a CAD model for simulation is computationally expensive, and one that requires

substantial manual oversight. The results of FEM simulations can depend sensitively

1There are alternative, volumentric representations that have a number of advantages for many
domains, but they have not yet seen widespread adoption [46].

23

on the quality of the mesh [70], so it is not a process that can be overlooked.

The development of new simulation codes is also often a painstaking process.

While there are only four known fundamental physical forces, there is a bewildering

variety of simulation techniques and physical approximations. Particularly challeng-

ing is the development of multi-physics models, which involve coupled interactions

between different domains of physics. Similarly, multi-scale phenomena are also par-

ticularly challenging, i.e. those in space or time scales of various pieces of the simu-

lation vary by several orders of magnitude.

Both these challenges are recognized in industry and research. The Defense Ad-

vanced Research Projects Agency (DARPA), for example, has in recent years funded

research addressing these issues. The Fundamental Design project aims to develop

new, physics aware building blocks for encoding designs at the conceptual level [25].

The Computable Models project aims to reduce the time required to develop novel

multi-physics, multi-scale simulations [24]. CBA is a performer in both projects, so

these projects have both funded and guided my research.

2.1.2 What Counts as Reality?

There is a philosophical point underlying much of this chapter that it is best to

address head on. At the most fundamental level, all of modern physics is described

in terms of interacting particles. Bodies with mass interact with each other via the

gravitational field described by general relativity, and the standard model describes

a small zoo of particle types (fermions) whose interactions are mediated by yet more

particles (bosons). Our best understanding is that all other domains of physics are

at root patterns that emerge from the interactions of large numbers of these basic

particles and forces.

But it’s not practical to appeal to these particles to explain these patterns, whether

via analytic calculation or numeric computation, except for the simplest systems. So

physicists have developed a huge variety of other mostly independent theories that

approximate the net effects of these particle interactions for particular scenarios.

Many of these theories are expressed as partial differential equations (PDEs), which

24

approximate the interactions of many particles as a continuum. This representation

is mathematically convenient, and often elegant. For many phenomena, such as heat

transfer in a homogeneous solid, or laminar flow of a fluid, PDEs can make predictions

accurate enough for almost any practical purpose.

But PDEs are unambiguously an approximation of the underlying particle reality,

which becomes all too apparent when one looks at more complicated phenomena.

In turbulent flows, for instance, the PDEs (i.e. Navier-Stokes) describe energy cas-

cades in the form of vortex chains from large length scales down to small ones. This

process can start at the kilometer scale (e.g. a hurricane) and only ends when the

energy dissipation rate and the viscosity become balanced, often at the millimeter

scale. Physically, this is the length scale at which the coherent movement of the fluid

breaks down into the incoherent thermal motion of the molecules that constitute it.

So the molecular scale properties of a fluid end up being extremely important for

understanding its macro-scale behavior. While it is an open problem — and one with

a million dollar reward [17] — some prominent mathematicians are convinced that

the PDEs themselves admit nonphysical solutions that blow up to infinite energy in

finite time [90].

Additionally, except for the most basic cases, PDEs cannot be directly solved by

computers. So when we implement simulations, we approximate yet again. The irony

is that the PDEs, which are a continuous approximation of a discrete reality, are

then discretized again for numeric solution. So most simulation codes are a discrete

approximation of a continuous approximation of a discrete foundational theory. A

fundamental thread throughout this thesis is that we don’t need to go through PDEs

along the way. Particle systems that interact in ways other than the fundamental

forces of the standard model and gravity can approximate the underlying physics just

as well as PDEs. This isn’t to discourage the use of PDEs, or deny that they are an

enormously powerful tool for proving properties of physical theories, just to point out

that physical simulations not derived from them are not inherently invalid.

25

2.2 Particle Systems

2.2.1 History

The fundamentals of particle based simulation can be traced to Newton’s Principia.

In this iconic work he laid out both his laws of motion and the law of universal grav-

itation, and demonstrated that these laws produce the elliptical orbits of the planets

and the parabolic trajectories of comets [71]. These laws still form the complete math-

ematical basis of (non-relativistic) 𝑛-body simulations today. Even more surprising

is that in deriving Kepler’s second law, Newton employed a geometric method that is

mathematically identical to the integration scheme that will be used throughout this

thesis (Verlet integration, see section 2.2.5) [36].

The first published, particle based simulation performed on a digital computer

was Alder and Wainwright’s 1959 study of equilibrium and non-equilibrium statistical

mechanics based on elastic collisions of rigid spheres [4]. This study arguably founded

the field of (computational) molecular dynamics. In quick succession more physically

realistic studies were performed: Gibson et al’s 1960 study of radiation damage in

copper [33] and Rahman’s 1964 study of liquid argon at the atomic level [75].

They soon found use for a wide range of other simulation problems, particularly

those with messy physics and boundary conditions that are challenging for mesh based

methods and finite difference methods. The geophysics community was a particularly

quick adopter, particularly for the study of granular flows [22]. They also became

common in vortex methods for computational fluid dynamics [18].

2.2.2 Modern Practice

Today there are a range of related simulation techniques, and the terminology can be

opaque. “Discrete element simulation” is used as a somewhat general term, often en-

compassing molecular dynamics, discontinuous deformation analysis, and slight vari-

ations on the theme (distinct element method, generalized discrete element method,

etc.). For the purposes of this thesis I take a wider view: I consider all of the following

26

methods to be particle systems, based on the observation that they can be integrated

into a generic particle simulation in a relatively straightforward way.

Smoothed particle hydrodynamics (SPH) is explicitly a particle system. Rather

than compute forces as pairwise interactions between particles, it convolves the par-

ticles with a weighting function to produce a field that then guides particle state

changes [66]. SPH was originally developed for astrophysics problems, but is also in-

creasingly popular for fluid-structure interactions, multiphase flows, and free surface

flow.

The material point method (MPM) refers to its discrete elements as “material

points”, and is a standard particle system in every way except that it extrapolates

(or interpolates) particle properties to a background grid in order to solve for accelera-

tions and gradient terms (such as the deformation gradient) [89]. It is an increasingly

popular tool for rigid and soft body mechanics. There is also a differentiable imple-

mentation that has been used for a variety of inverse design problems [41].

Position based dynamics is a purely particle based method for rigid and deformable

bodies. It deals with particle positions as the most fundamental property, rather than

forces (as described in section 2.2.4). This is achieved by using constraints to enforce

relationships between particle positions, and using a modified form of integration [69].

Lattice gas automata (LGA) are also based on particles, but quantize the particle

positions and momenta in addition to the mass parcels (i.e. particles themselves) [29].

The earliest models restricted particles to travel in the four cardinal directions at a

constant speed, but these gases exhibit highly anisotropic behavior. Hexagonal grids

mostly solve this problem, that is, having six momenta directions but still a single

magnitude. Particle interactions are mediated via a collision rule, which is applied

when multiple particles move into the same lattice node in a given time step.

A more modern extension of LGA is the Lattice Boltzmann Method (LBM) [15].

It has largely superseded research and practical interest in LGA. LBM is an extension

of LGA in which the lattice nodes house particle distributions rather than individual

particles. The discrete collision rule of LGA is thus replaced with a continuous col-

lision operator, which tends to return the particle distributions to their equilibrium

27

state. This relaxation is typically modeled with the Boltzmann equation, hence the

name.

Finally, peridynamics is a new formulation of classical continuum mechanics de-

signed to handle structural discontinuities (such as cracks) where the classical theory

breaks down [86]. The theory is still decidedly a continuum one, unlike the other par-

ticle methods discussed here. However, it is possible to use a mesh free discretization

scheme for numeric solutions that naturally fits within discrete element frameworks

[87].

2.2.3 Comparison with FEM

Particle systems have many advantages compared to the finite element method (FEM).

Most of these ultimately stem from the fact that particles are mesh free. As men-

tioned earlier, FEM simulations can depend sensitively on the quality of the mesh

[70], and meshing itself can be a computationally expensive operation that requires

substantial manual oversight. Conversely, to prepare a particle based simulation one

need only seed particles within the simulated material. These can be placed on a

regular lattice, or in a random fashion. Both methods are simple to compute quickly

in a highly parallel fashion, and can be automated reliably. So the absence of a mesh

in particle simulations replaces an error prone, expensive preprocessing step with

a simple, fast one. Additionally, in simulations with large deformations, it can be

necessary to re-mesh repeatedly. No such step is needed for particle systems.

FEM simulations can also struggle with convergence. This is particularly true

for simulations that develop regions of high stress (or other field variable) gradients

— commonly called “shocks” — and those with topological changes in the meshed

structures. Particle systems handle these situations much more gracefully. Topologi-

cal changes present no problems, and large gradients are fine as long as the stability

conditions (such as the Courant–Friedrichs–Lewy condition) remain satisfied. In fact,

some adaptations of FEM designed to handle large gradients and topological changes

essentially end up incorporating particles in one form or another, such as moving

nodal points [65].

28

2.2.4 Fundamentals

The basic algorithm is simple to describe. A simulation consists of a set of particles

and a force law. Each particle has (at least) a mass, position, and velocity. The force

law describes how the particles interact. In the simplest and still quite common case,

this entails computing an interaction force for each pair of particles, as a function

of their positions and velocities. More advanced formulations may add additional

state to each particle, such as temperature, angular velocity, etc. Others compute a

field based on the positions and other properties of all particles which is then used to

determine the pairwise interaction forces.

Given the interaction forces, Newton’s second law then specifies a system of or-

dinary differential equations that can be integrated to determine the particle trajec-

tories. For instance, assume a three dimensional simulation of 𝑛 particles. Let each

particle have mass 𝑚, and let the positions of each particle over time be given by �⃗�(𝑡)

(a function from R≥0 to R
3𝑛). If the force between particles depends only on their

positions, as is the case for a conservative force, then Newton’s laws indicate that

𝑚¨⃗𝑥 = 𝑓(�⃗�)

This differential equation can be numerically solved with a variety of techniques.

2.2.5 Integration

In this thesis, I use the Verlet-Störmer method, otherwise known as leapfrog integra-

tion [92]. This is a second order integration scheme (in time), that requires comparable

computational effort to the simple but only first order Euler integrator. Additionally,

it is a symplectic integrator, meaning it preserves the geometric properties of phase

space. This enables it to preserve the energy of conservative system even better than

higher order methods [36].

For the macro-scale problems considered in this thesis, it is desirable to add some

amount of dissipation, as otherwise excited vibrational modes would persist indefi-

nitely — clearly an unphysical behavior for commonplace macroscale materials. While

29

the standard derivation of the velocity Verlet method assumes that force is not a

function of velocity, it is possible to adapt it to accommodate such force laws. This

breaks the symplectic properties of the standard velocity Verlet algorithm, but since

dissipative systems are not conservative this is not a problem in practice [34].

Altogether the basic algorithm I use is as follows. Let there be 𝑛 particles. At

some time step 𝑖, suppose we know the particles positions �⃗�𝑖 and velocities �⃗�𝑖 (both

are vectors in R
3𝑛). Suppose also that we have a function 𝑓(�⃗�, �⃗�) that returns the

accelerations on all particles at a given time, as a function of their positions and ve-

locities. Internally, this usually involves computing the forces acting on each particle,

then applying Newton’s second law (i.e. dividing by the particle masses). Then the

positions and velocities at the next time step (�⃗�𝑖+1 �⃗�𝑖+1) are computed based on the

following steps.

1. Compute the relevant accelerations.

�⃗�𝑖 = 𝑓(�⃗�𝑖, �⃗�𝑖)

2. Take a half step for the velocities.

�⃗�𝑖+1/2 = �⃗�𝑖 +
∆𝑡

2
�⃗�𝑖

3. Take a full step for the positions.

�⃗�𝑖+1 = �⃗�𝑖 + (∆𝑡)�⃗�𝑖+1/2

4. Take another half step for the velocities.

�⃗�𝑖+1 = �⃗�𝑖+1/2 +
∆𝑡

2
�⃗�𝑖

This process can be repeated iteratively to integrate forward as far as desired.

30

2.2.6 Locality

Steps 2 through 4 as described above are completely generic. It is the calculation

of forces in step 1 that distinguishes one particle system from another. Force laws

vary widely between systems, so there isn’t too much that can be said about them in

general. But there is one essential commonality: locality.

Our best understanding of modern physics indicates that all macro-scale phenom-

ena are governed by local interactions2. It is true that the law of universal gravitation,

as formulated by Newton in 1687 [71], and Coulomb’s Law, as published in 1785 [19],

both involve “spooky action at a distance.” But this is not the case for the modern,

field based theories (i.e. general relativity and Maxwell’s Equations) that later su-

perseded them. And even when it is more convenient to use the earlier formulations,

as is often the case with particle systems, the forces fall off rapidly with distance and

so can sometimes be ignored past a certain point without adversely affecting fidelity.

Simulation of such systems can be greatly accelerated by exploiting this property.

The naive algorithm for computing all forces in a particle system checks every possible

pair of particles. For 𝑛 particles, this means there are 𝑛2 interactions to consider. But

knowing that no two particles can interact beyond some distance 𝑑 greatly simplifies

this, since we only need to iterate over pairs of nearby particles. This can be performed

in 𝒪(𝑛 log 𝑛) time using tree based spatial data structures, or 𝒪(𝑛) time by using a

single pass bucket sort to place particles into geographic bins with side length 𝑑. The

latter algorithm is used for all simulations discussed in this thesis.

Even assuming the use of an accelerated algorithm, the size of the interaction

cutoff distance, 𝑑, has profound implications for performance. Suppose that particles

are approximately evenly distributed in space (as is usually the case in gas systems

at equilibrium); say 𝑚 particles per unit volume. Then the sphere of radius 𝑑 sur-

rounding each particle will contain approximately 𝑚4

3
Þ𝑑3 particles. This means that

the density of particle interactions is 𝑚2 2

3
Þ𝑑3 interactions per unit volume (the factor

of one half is introduced since each interaction involves two particles). So doubling 𝑑

2Quantum mechanics is usually interpreted as a nonlocal theory, though this is negotiable if one
is willing to cede the principle of counterfactual definiteness.

31

results in eight times the computational burden.

Though not employed in this thesis, it is also worth noting that locality can be of

use even when the force laws cannot be truncated. The Barnes-Hut algorithm uses a

quad tree to find an approximate solution to 𝑛-body problems with long range force

laws in 𝒪(𝑛 log 𝑛) time [8]. More difficult to implement, but ultimately offering better

performance, is the 𝒪(𝑛) fast multipole method [78].

2.2.7 Parallelization

To make the most of modern compute hardware, it is necessary to parallelize the

simulation code. There are a number of strategies that one can employ. The capa-

bilities of the target hardware (CPU, GPU, etc.) can have a big influence on their

performance. These concerns will be addressed in the discussion of my particle system

implementations for the CPU, GPU, and custom hardware, but it is still useful to

introduce the general strategies here. In nearly all practical simulations, computation

of the interaction forces dominates the integration time, so this step will drive the

discussion throughout.

The most straightforward approach is to parallelize the iteration over particle

pairs. This method is simple to implement, but scales poorly for large number of pro-

cessors. This is a simple application of Amdahl’s law [76]: even if force computation

initially accounts for 95% of the compute effort, the program can only be made 20

times faster by reducing the time required for this step. And even assuming perfect

scaling (so parallelization across 𝑛 threads reduces the computational time by a fac-

tor of 1/𝑛), nearly 80% of this maximum speedup is achieved with 64 cores, a tiny

fraction of the parallelism available in modern HPC systems. In practice, the dimin-

ishing returns of additional cores can become actively detrimental, sometimes well

before this limit, due to the overhead of spawning threads (or other parallelization

primitives), and sharing data between them.

An alternative strategy bases the parallelization on locality. This strategy effec-

tively subdivides one simulation into many smaller simulations, which run indepen-

dently except for some additional bookkeeping at their seams. In particular, each

32

sub-simulation is responsible for managing a particular region of space, including

storing the state of particles within it, computing their interaction forces, and in-

tegrating their trajectories. Forces may act across region boundaries, however, and

particles may move between them. Thus this parallelization scheme requires some

additional overhead (relative to running truly independent sub-simulations) to deal

with these cases.

The cost of this overhead varies with the size of the regions, the particulars of the

force law, and the distribution of the particles (which is determined by the force law

and the initial conditions). Size wise, the memory required to store particle data and

the computational effort required to compute interaction forces are both proportional

to the volume of the region. The data that must be transferred between neighbors,

however, is proportional to the surface area of the region. Thus the overhead of

communication between regions increases as the size of the regions is made smaller.

So if one wants to use additional cores to run simulations over larger and larger

volumes, this parallelization method scales perfectly. However if one wants to use

additional cores to accelerate a particular simulation with a fixed size, only so many

regions can be added before the overhead becomes too costly. While data transferred

across seams is always proportional to the surface area of the regions, the prefactor is

determined by the force law cutoff. And if the distribution of particles is sufficiently

inhomogeneous, the particulars of this distribution will matter more than the averages

discussed here.

This brings up an important point: different regions may end up doing different

amounts of work. And since each region cannot perform its integration step until

it knows all the forces that act across its boundaries, it must wait for its neighbors.

This can lead to large amounts of compute resources being underutilized.

Even if all regions do have the same number of particles and interactions, random

fluctuations in compute time can have a noticeable impact on performance. We can

estimate the magnitude of this effect with a simple statistical model. Assume that

compute times are normally distributed, but that each node can’t begin computing

frame 𝑖 + 1 until all its neighbors (and itself) have computed frame 𝑖. So the time 𝑡𝑖
𝑛

33

at which node 𝑛 advances to frame 𝑖 is equal to max𝑚(𝑡𝑖
𝑚) + max(𝑁(Û, à), 0). Here

the first max is computed over the node and its neighbors, and the second max simply

prevents time travel.

0.00 0.02 0.04 0.06 0.08 0.10
standard deviation (as fraction of mean)

1.00

1.05

1.10

1.15

1.20

ru
nt

im
e

(re
la

tiv
e)

1x1
2x2
4x4
8x8
16x16
32x32
64x64

Weakest Link Effect

Figure 2-1: Weakest link effect for geographic parallelization schemes.

The strength of this “weakest link” effect depends on the number of nodes, and the

compute time distribution. In particular, the relative slowdown depends linearly on

the standard deviation of compute time, and roughly logarithmically on the number

of nodes per edge of the array (so roughly log log on the number of nodes). Em-

pirically, the total slowdown from the weakest link effect saturates at around 20%,

assuming the standard deviation of the compute time is bounded at 10% of the mean

compute time, regardless of the size of the array. This is good because it means

that geographic parallelization schemes can scale arbitrarily without the weakest link

slowdown following suit.

An important consideration for geographic parallelization schemes is how to divide

inter-region interaction forces among regions. One strategy is to establish a set of

priorities for each direction. For example, particles that interact across a boundary

along the east/west axis could always be computed by the eastern region. This family

34

of strategies works well when the cutoff distance is small relative to the region size.

When the cutoff distance is larger than the region size, it can be beneficial to use

more complex schemes such as the neutral territory method [84].

2.2.8 Stochasticity

Mathematically, all the algorithms described in this chapter are deterministic. So

one would expect simulations to be exactly reproducible. However, this is not the

case for any of the implementations discussed below. This stochasticity arises from

parallelization. When multiple computations are performed in parallel, then com-

bined, the overall order of the operations involved is not guaranteed. Floating point

arithmetic is not strictly commutative, so the sum of two floating point values 𝑎+ 𝑏 is

not always equal to the sum 𝑏+𝑎. These tiny differences can lead to divergent macro-

scale behavior surprisingly quickly. Some reasons for this phenomenon are discussed

in section 4.1.

2.3 Implementations

I have written three different particle systems implementations, targeting CPUs,

GPUs, and a custom type of modular compute hardware developed at CBA known

as discrete integrated circuit electronics (DICE). I am working on a fourth implemen-

tation in Verilog, that will be used both for running simulations on FPGAs, and as

the basis for an application specific integrated circuit (ASIC). All of these implemen-

tations are based on the techniques discussed earlier in this chapter. All three of the

complete implementations have similar organization and interfaces, and share some

common software components.

2.3.1 Constraints and Measurements

Many simulated systems are not closed; energy can be added or removed by external

forces. Such a capability is essential for the applications discussed in chapters 5 and

35

6. In all implementations, I model external forces via constraints.

Fundamentally, a constraint consists of a subset of particles within a simulation,

and a rule for applying force to these particles. These forces are added to the forces

regularly computed due to the simulation’s primary interaction law (they do not re-

place them). For the applications discussed in this thesis, two different constraints are

required: linear and radial. Linear constraints act to keep their particles constrained

to a single axis of displacement, and radial constraints act to keep their particles a

constant distance away from some specified center.

A linear constraint functions by canceling forces that aren’t aligned with its axis.

So a linear constraint set to keep a particle on the 𝑥 axis, for instance, would apply

forces along the 𝑦 axis to counterbalance those arising elsewhere, while not influencing

forces along the 𝑥 axis. A radial constraint functions similarly, modifying radial forces

and leaving tangential forces unaltered. However radial constraints don’t nullify radial

forces; they apply a net radial force of the correct magnitude to counter centripetal

forces.

Note that this implementation differs from simply picking the particles up and

moving them to the desired locations. Specifically, it alters forces, not velocities

or positions. This has a number of advantages. First, it is easy to compute the

amount of work performed by the constraints. This makes it easy to track the energy

that is added to or removed from the simulation. Second, it avoids a variety of

nonphysical failure modes. For example, if a particle is constrained to the 𝑥 access

via direct manipulation of its position, the 𝑦 component of its velocity ceases to be

meaningful. The regular integration procedure may lead to this component growing

without bound, which will wreak havoc if the interaction law depends on velocity (as

is commonly the case for dissipative systems). This can be fixed through appropriate

manipulation of the particle velocities, which introduces similar decouplings between

force and velocity, which can then only be fixed via appropriate manipulation of forces.

So in my experience it is much better to start at the bottom and avoid nonphysical

decoupling as much as possible. (Anyone reading my code may protest that I do in

certain circumstances manipulate velocities and positions directly. These are legacy

36

features that I am working to remove.)

Constraints can also be driven, enabling control over the motion of particles along

their permitted degrees of freedom. Specifically, particles constrained to motion along

a certain linear axis can be driven to follow a certain trajectory along this axis.

Similarly, the angular position of particles in a radial constraint can also be guided.

Generic trajectories are easy to specify by writing new code (and thus recompiling),

but my implementations also support a variety of paths that can be configured at

runtime. Currently these include sinusoids, linear motion, step functions (useful for

testing impulse response), and smoothed step functions. Motion along trajectories is

guided by a proportional-derivative (PD) controller. As before, this controller sets

forces rather than velocities or positions.

Finally, constraints also provide a useful abstraction for measuring properties of

the system. Currently my linear constraints are capable of recording the average

displacement of their particles, as well as the net force applied for driven trajectories.

Radial constraints record their particles’ average angular position or velocity. These

are the measurements I have found useful so far, but other reductions over the particles

within constraints would be simple to implement.

2.3.2 CPU

I began development of the CPU implementation in February 2019. It started as a se-

rial implementation, was updated to include force parallelization, and ultimately was

rewritten to support geographic parallelism. Figure 2-2 illustrates the performance

of the simulation in its various incarnations, as measured by total particle updates

computed per second.

Single threaded performance of this implementation is competitive with that of

LAMMPS, a leading state of the art framework for molecular dynamics [53]. Mul-

tithreaded performance was never optimized as heavily, as my development focus

for parallel implementations shifted to the GPU. Though the CPU implementation

served as the template for all subsequent implementations, it is currently only main-

tained as a testbed for algorithmic experimentation since it has been surpassed by its

37

O(n^2)
interactions

+ O(n)
interactions

+ O(1)
neighbor lookup

+ Parallelization
(CPU)

102

103

104

105

Particle Updates per Second (Thousands)

Figure 2-2: Performance of the CPU particle system implementation at algorithmic
milestones.

successors in performance and relevance for my research interests.

2.3.3 GPU

Work on the GPU implementation began at the end of April 2020. Unlike the CPU

implementation, it does not use geographic parallelization. However it is far more

parallel than the force parallelism described in section 2.2.7, in that not only the force

computations, but the integration and constraint calculations are also parallelized.

This scheme works well for the highly parallel nature of the GPU.

Indeed, the GPU implementation can achieve more than one billion particle up-

dates per second. This is an order of magnitude faster than the maximum perfor-

mance I achieved with the CPU implementation. It also compares favorably with

Flex, Nvidia’s in house particle system implementation, which uses a position based

dynamics model. In particular, across a variety of use cases, the authors of Flex report

performance between 2 million and 20 million particle updates per second (see Table

1 in [62]). However these numbers are from an older model of GPU (the GTX680),

38

Table 2.1: Time steps computed per second using the author’s CPU implementation
and LAMMPS.

Number of
particles

Author’s impl.
(1 core)

LAMMPS
(1 core)

LAMMPS
(28 cores)

3,438 6,326 3,849 24,102
7,776 2,858 1,692 9,500
14,078 1,591 913 7,034
56,958 411 190 1,407
358,393 67 22 353

which performs 16 times slower in the Geekbench 5 benchmark than the V100 that I

used [21]. Adjusting for this, Flex would achieve between 32 and 320 million particle

updates per second. This is still fewer particle updates per second than I see with

my simulation, but because Flex is constraint based rather than force based it is un-

conditionally convergent and thus can run with larger time steps. So a direct test of

the same physics problem would be needed for a truly apples to apples comparison.

Because of its performance, the GPU implementation is the one I use for all current

design and simulation studies.

2.3.4 DICE

The discrete integrated circuit electronics (DICE) implementation was conceived as

a demonstration application of the DICE project. DICE is a system that enables

three-dimensional assembly of high performance computing systems from basic com-

putational building blocks. This architecture unifies the conventional design of HPC

packages, boards, blades, and systems in a single direct-write process. It is being

developed at CBA with primary funding from a DARPA seedling grant [27].

The current generation of DICE hardware uses Microchip SAMD51J20 ARM Cor-

tex M4F microcontrollers. The smallest versions use 3.5 x 3.6 mm wafer-level chip-

scale-packages (WLCSP), as pictured in figure 2-3, while other incarnations use larger

packages. This version is assembled in a three-dimensional cubic lattice. Each node

can communicate with its six neighbors. To exchange information with more distant

39

Figure 2-3: An assembly of eleven DICE nodes.

nodes, messages must be passed along a chain of intermediates. This locality is key

to DICE, as it greatly reduces the complexity of interconnect found in current state

of the art supercomputers.

My particle system implementation for DICE is currently restricted to two dimen-

sions (as are the CPU and GPU versions). It uses a very literal version of geographic

parallelism, in which each DICE node handles one region of virtual space, and the

tiling of regions in virtual space mirrors that of the DICE nodes in physical space.

To transmit data between neighbors, it must be serialized and transmitted by the

SAMD51’s UARTS. This makes the communication overhead discussed in section

2.2.7 a primary concern, as communication can easily become a bottleneck.

Implementing a particle system simulation required the development of several

layers of supporting software which will be reused for other applications. Collectively

these layers constitute an application programming interface that we call the DICE

programming model, and define the DICE runtime environment. The first layer is a

hardware abstraction layer (HAL) that operates the SAMD51’s hardware peripherals.

The next layer is a data link layer responsible for transferring raw byte strings between

neighboring nodes, informed by the data link layer of the OSI model [26]. Finally,

the third layer implements a token passing model which enables the preservation of

40

message semantics via a simple system of identifiers and types, and synchronization

of nodes based on querying for the presence or absence of certain tokens. This token

model provides an interface very similar to the Message Passing Interface (MPI)

that is used in state of art supercomputers today [93]. However there is one crucial

difference: all communication in the DICE token passing model is local, so each node

can only send messages to its immediate neighbors.

While the DICE firmware token layer uses the DICE data link layer, it is easy

to implement the same token interface on top of other backends. I have done this

for thread level parallelism on CPUs (I simply use the C library’s string copying

functions to transfer bytes, in place of the SAMD51 UARTS). This enables DICE

application code to be compiled for different systems simply by including the ap-

propriate token model header file. This has proven invaluable for DICE software

development, since debugging on a modern computer is far simpler than debugging

a novel hardware/software system. It would be easy to write an implementation of

the DICE token passing model that uses MPI as its backend, which would then allow

DICE applications to be trivially ported to the current generation of supercomput-

ers. Enabling portability to GPUs is trickier, as the parallelism model of GPUs differs

significantly from CPUs, supercomputers, and DICE. Bridging this gap is a focus of

ongoing research.

2.3.5 FPGA/ASIC

A development effort that is still underway is the implementation of a particle system

in Verilog. Ultimately this is intended to create a custom chip dedicated to particle

system simulation. In particular, CBA is collaborating with the Superconducting

Electronics Group at Lincoln Laboratory, and we are targeting a Josephson junction

based circuit that would become the first superconducting DICE node3. However

it will also be interesting to run the Verilog version on large FPGAs, and compare

3The Superconducting Electronics Group’s state of the art superconducting circuits have remark-
able speed and energy efficiency, but it is not currently possible to place more than a few million
Josephson junctions on a single die. DICE provides a path toward assembling a large computer out
of many smaller and feasibly manufacturable pieces.

41

performance with CPU/GPU implementations.

42

Chapter 3

Representation

3.1 Background

To encode the most variation inside the fewest dimensions, it is desirable to use highly

structured representations that are tightly coupled with their problem domains. This

leads us to specialized representations, that don’t generalize between problems. On

the other hand, we don’t want to trap ourselves with unnecessary assumptions, or

to reinvent the wheel for every new problem. This leads us to unstructured, generic

representations that are applicable if not tailored to a wide variety of problems.

Another key concern is the compatibility of the representations used for design

and for simulation. Moving from the boundary representations used by most CAD

programs to the volumetric mesh representations used for FEM simulations poses a

significant challenge for more tightly integrating these two systems.

3.2 DAGCAD

My response to these questions is a framework for constructing design languages based

on directed acyclic graphs (DAGs). Since I first applied it to CAD style problems of

solid geometry description, I call it DAGCAD, though I now also use it for purposes

that don’t resemble CAD much at all. It’s built from the ground up to support

parametric design. It is informed by the design trees in common CAD packages, as

43

well as dataflow programming models. Note that it isn’t a single design representation

— it’s a toolkit for quickly constructing parametric design languages, which can be

as general or specific as desired.

Under the hood, it consists of a DAG with two different classes of nodes: design

nodes and parameters. The design nodes describe primitive design elements and op-

erations for composing them. For example, a language for constructive solid geometry

(CSG) could define cubes, cylinders, and spheres as the basic atomic design elements,

and operations such as unions, intersections, and differences as the compositional

operations. The parameters represent numeric or other values that parametrize the

geometry. So a sphere could have parameters describing its center and radius, a

cube its position and side lengths, etc. Commonly these are simply used to store

and reuse values, but they also support a simple language of arithmetic expressions.

The edges in the DAG indicate the flow of information, so a compositional operation

acting on two subdesigns would have those design nodes as dependencies, and a ge-

ometric operation parametrized by a given parameter would have that parameter as

a dependency.

Formally, these DAGs can be defined as static single assignment (SSA) form state-

ments in a context-free language. A series of node definitions is in SSA form if every

node is defined exactly once, and each node’s definition occurs after those of its depen-

dencies. SSA forms are commonly used as intermediate representations in modern

compilers [23]. Any DAG can be expressed in SSA form: one need only assign a

unique identifier to each node, and order the node definitions based on a depth first

traversal. Conversely, every series of node definitions in SSA form describes a DAG,

since the presence of cycles or a lack of referential integrity would violate the definition

of SSA.

But although an SSA form does fully capture the global structure of the DAG,

it cannot capture the local structure. Specifically, we want to guarantee that (1) no

parameter node depends on a design node, (2) every node has the correct number of

dependencies. These local properties can be captured by a context-free grammar [16]

that is applied to node definitions. Property (1) is required of all DAGCAD gram-

44

mars, while the details of property (2) are defined by each specific design language

implementation. In my codebase, this is achieved by defining a “signature” for each

type of design node.

In all the currently implemented design languages, all node types are valid inputs

for all others. So for the sake of simplicity, this assumption is embedded in the

framework as well. But future versions could relax this, and enable each type of node

to require that its inputs be of certain types. In general, these sorts of constraints are

called type systems, and they can become quite complex (specifically, computationally

universal and thus undecidable) [12]. But for the limited use case described here, a

context free grammar would be sufficient.

To summarize, at the conceptual level, languages in DAGCAD are described by

SSA form statements that conform to a context-free grammar. Implementation-wise,

this boils down to manipulating a DAG with certain invariants enforced on its edges.

With this understanding, we can now discuss the benefits of such a representation.

Parameters with no dependencies represent the inputs of a design. These can be

found automatically, and exposed as a single vector so that it’s as easy as possible to

interface DAGCAD designs with optimization tools. When desired, input parameters

can be marked as constant, so that they are not surfaced for optimization purposes.

Note this process of collecting free parameters depends only on the DAG structure;

it is completely agnostic as to the semantics of the design nodes or the parameter

themselves. This facilitates a separation akin to the genotype/phenotype distinction

discussed in section 1.3.

This separation of concerns also enables a generic graphical model editing tool.

Currently I only have a rough prototype, since I primarily use DAGCAD in code and

haven’t developed a strong desire for a better graphical tool. For portability, what

I have written is implemented in JavaScript and runs in the browser. The intention

is that it will communicate with the C++ backend via a web socket. The existing

implementation is pictured in Figures 3-1 and 3-2.

The DAGCAD backend is implemented as a set of graph processing utilities in

C++. The implementations differ from standard graph processing libraries in a few

45

Figure 3-1: A portion of a model viewed with the prototype generic model editor.
This design uses a specialized design representation for discrete robotics, modeled
after work by Will Langford [54].

important ways. For one, my implementation is statically allocated. This makes it

easy to use DAGCAD in bare bones embedded systems, such as the current generation

of DICE (see section 2.3.4). Second, the rules for constructing edges are somewhat

peculiar compared to most mathematically inspired implementation. Each node has

an unordered list of outputs (so in mathematical terms, a set), but an ordered list

of inputs. This enables non-commutative operations, such as geometric differences.

Finally, my graph utilities are templated to make implementing new design languages

as painless as possible1, so the interface for extending these classes differs from more

generic graph processing utilities.

3.3 FReps

I use functional representations (FReps) to describe most geometries used in this

thesis. FReps encode geometry analytically, specifically as a scalar valued function

interpretable as a distance field. Thus the surface of an FRep model 𝑓(𝑥, 𝑦, 𝑧) is the

set of points for which 𝑓(𝑥, 𝑦, 𝑧) = 0. The interior of a model is the set of points for

which 𝑓(𝑥, 𝑦, 𝑧) < 0, and exterior those points such that 𝑓(𝑥, 𝑦, 𝑧) > 0 (some authors

1I am aware that many would rightfully consider “painless” and “C++ templates” to be incom-
patible. Future versions may provide a more accessible interface.

46

Figure 3-2: A rendering of the model of which a portion is depicted in Figure 3-1.
This is a modular walker robot, as designed by Will Langford [54].

use the opposite convention for sign). FReps are descriptive enough to form large,

generic design spaces, but they also enable easy parametrization of low dimensional,

specialized models.

FReps are ultimately just mathematical expressions, so my DAGCAD FRep im-

plementation reduces down to a DAG that only has parameter nodes. It would be

reasonable to implement a set of design nodes for unions, intersections, etc., but I

have chosen to keep the elegance of the pure parameter model, and use external helper

functions to encode these operations.

Using external helper methods also enables extremely clean syntax for construct-

ing FReps. By overloading the basic arithmetic operators in C++ for FRep nodes2,

it becomes possible to build FRep DAGs by writing expressions such as “x * x +

y * y - 1.0” rather than explicitly building up nodes and edges. This functionality

is inspired by libfive, a wonderful and fully featured FRep library written by Matt

Keeter [45].

2Technically, I use a dedicated FRepBuilder class rather than the literal FRep DAGCAD nodes
for memory management reasons.

47

3.4 Particles

Within the simulation layer, particles are the natural representation of geometry.

Transforming from an FRep to a particle representation is far simpler than meshing

a boundary representation: FReps tell you which points are in their interiors, so it’s

trivial to fill them with particles. Furthermore this process is embarrassingly parallel.

Currently I perform this on the CPU. If it becomes a bottleneck, parallelization on

the GPU would yield far greater performance. Since my DAG implementations are

statically allocated and array based, they would be easy to port to the GPU. For

even greater performance, a dedicated evaluation algorithm for FRep rendering on

the GPU could be used [47].

The use of particles within the simulation raises the possibility of just using parti-

cles as the design representation as well. Then the design and simulation representa-

tions would be directly interchangeable. This is outside the scope of this thesis, but

will be considered in future work.

48

Chapter 4

Optimization

With an appropriate representation and objective function, a wide range of optimiza-

tion algorithms can be used. In this chapter I discuss some properties that make

simulation based objectives particularly challenging, and review three classes of opti-

mizers.

4.1 Chaos

Objective functions based on simulation can exhibit a variety of severely pathological

behavior. This is ultimately all attributable to chaotic system dynamics, but the

ways this can manifest are varied and can be quite surprising to those who have not

studied them before. They have surprised me repeatedly.

Chaotic behavior is usually described as sensitive dependence on initial conditions.

In other words, a very small change in initial position or velocity can quickly lead to

very large changes in trajectory. This alone, however, is not sufficient to define chaos.

Initially nearby particles falling due to a constant gravitational force, for example, will

grow arbitrarily far apart, but their trajectories are not chaotic. Another necessary

condition is topological mixing. This states that if you take any two regions in phase

space (for our purposes, phase space is just the vector space formed by all the particles’

positions and velocities) and integrate one forward according to the dynamics of the

system, it will eventually intersect the other. More intuitively, chaos requires not just

49

that trajectories diverge, but that they get close as well. Any two molecules of water

in a quickly stirred bucket will at some time be arbitrarily far apart (subject to the

confines of the bucket), but at another they will be arbitrarily close.

This has important ramifications for us. If trajectories only got farther apart

over time, then our job would be easy. Large regions of phase space at the end

of a simulation would map backwards to specific small regions of phase space at

the beginning. Every question of the form “How does this end up happening in the

simulation?” would have a clear answer. But because phase space becomes completely

scrambled over time, a neat region of phase space at the end of a simulation can

map back to a fractal dust of initial conditions that defies any other description.

When this is the case, there is no local structure for an optimization algorithm to

exploit. Worse, there simply may not be a meaningful answer to give to our question,

other than “this happens in a million different ways, each one unique and practically

impossible to reproduce.”

These facts can be difficult to reconcile with our intuition. Isn’t the system totally

deterministic? Yes, mathematically there’s nothing random about it. (Let’s ignore

for a moment the implementation specific stochasticity discussed in section 2.2.8.)

Can’t trajectories in phase space never cross? Also true. If you integrated forward

all points in phase space, each path would at times be arbitrarily close or arbitrarily

far from any other, but none would ever cross. Since we’re only integrating for a

finite amount of time, can’t we limit the amount of mixing? Again this is true, but

it doesn’t mean there won’t be enough to thwart all feasible optimization attempts.

To close, let me reference two results from the literature that further demonstrate

the peculiar power of chaos. A classic result from Cristopher Moore is that certain long

term questions about the evolution of dynamic systems are unanswerable in principle

[67]. He proves this by constructing a Turing machine inside a dynamical system,

thus relating dynamical systems to the halting problem. Concretely, this means that

for chaotic systems, there is no algorithm that can tell you if an arbitrary initial point

in phase space ever reaches a certain other region1. Second, a more recent paper used

1This may seem to contradict the principle of topological mixing mentioned earlier. Recall that

50

an arbitrarily precise integrator for celestial dynamics to investigate the stability of

three-body systems. They found that without knowing the initial conditions down to

the Planck scale, about 5% of a certain class of orbiting triplets of black holes could

not be reversibly simulated to the point of breakup (i.e. when one black hole is flung

from the system) [11].

The conclusion we have to reach from all of the above is that you can’t always

win against chaos. If your simulation exhibits chaotic behavior, and this shows up in

your objective function, there may be no optimization algorithm that can help you.

That said, not every system we are interested in is chaotic. And even when chaos is

present, it may be confined to certain avoidable regions of phase space, or it may be

mild enough that it doesn’t doom all optimization attempts. Sometimes an objective

function can be rewritten to be less sensitive to chaotic noise, while still capturing

the relevant features of a problem.

4.2 Gradient Methods

Optimization algorithms that make use of gradients typically converge faster than

those that do not. As such, gradient based techniques are quite common in large

scale practical optimization problems. Stochastic gradient descent, for instance, is

nearly ubiquitous in training large deep neural networks. But such algorithms only

work, of course, when derivatives are available.

Differentiating through a simulation can be tricky, but mathematically is com-

pletely feasible. MIT’s computational fabrication group has released multiple recent

papers demonstrating just this [41, 39]. In particular, they use these gradients to

guide optimization over many different physical systems.

I am interested in differentiable simulation and gradient based optimization over

it, but it is not within scope for this thesis. For all the reasons discussed in the

previous section, for some physical systems gradients will inevitably be swamped by

chaos is not present everywhere or not at all; so trajectories may mix within a region of chaos, and
either eventually break free or not.

51

chaotic noise, if not tend toward infinity. Even barring severe chaos, it can be difficult

to compute gradients in a numerically stable way, further limiting their scope. In

discussions with the authors of some of the papers cited above, the number of time

steps that they can differentiate through is limited. So in the interest of generality,

and allowing long time horizons within my objective functions, I will not currently

use gradient based optimization methods.

4.3 Gradient Free Methods

Gradient free methods may not always converge as quickly, but they can be more

robust to noise. In this thesis, I use an evolutionary algorithm called covariance ma-

trix adaptation evolutionary strategy (CMA-ES). It iteratively refines a multivariate

normal sampling population distribution to converge to a minimum in a coordinate

independent manner. When the algorithm begins, the distribution is set to cover

nearly the entire space of possible solutions. In each generation, samples are drawn

from the distribution, and the mean and covariance matrix of the distribution are

updated in an expectation-maximization step based on the best performing samples

[37]. In this thesis I use the C reference implementation of CMA-ES. However in

discussions with its author, he advises that the Python implementation is currently

better maintained and more up to date.

To generate samples from the current distribution, it is necessary to find a matrix

𝐴 such that 𝐴𝑇 𝐴 = 𝐶 (where 𝐶 is the current covariance matrix). If it is known that

𝐶 is positive definite, the Cholesky decomposition can be used, but in the general case

the algorithm relies on a spectral decomposition (the covariance matrix is always a real

symmetric positive semi-definite matrix), thus incurring a large computational cost

in high dimensions. For large enough 𝑁 , even the storage required for the covariance

matrix itself becomes prohibitive.

In design spaces with few enough dimensions, however, CMA-ES is a suitable

algorithm for a variety of reasons. First, it meets my demand of being gradient

free. Particle swarm optimization, another popular biologically inspired algorithm, is

52

not coordinate independent and can converge orders of magnitude more slowly than

CMA-ES for certain rotations of the objective function [38]. Additionally, CMA-ES is

designed to modify most of its hyper-parameters automatically, so it requires minimal

tuning. Finally, it is in theory equally effective in spaces ranging from a few to a few

hundred dimensions, and by adjusting the step size and population size the degree to

which it performs global or local search can be tuned.

In practice, I have encountered moderately sized problems (i.e. around 20 dimen-

sions) that CMA-ES struggles to optimize. I do not yet have enough information to

say whether this is due to a pathological objective function, or due to the algorithm.

In future work I plan to investigate modifications to CMA-ES that might address

this problem, and allow it to function in higher dimensional spaces. First, one could

compute an estimate of the covariance matrix by iteratively finding a fixed number of

large (positive or negative) eigenvalues. This could be accomplished with the power

method, or the more sophisticated Lanczos algorithm [94]. The resulting eigenvectors

could then be used to generate samples from the estimated distribution directly. A

more general — and potentially more powerful — approach would parametrize the

distribution not as a multivariate Gaussian, but as a cluster weighted model of local

basis functions [32].

53

54

Chapter 5

Application: Gear Design

As a first demonstration of this inverse design framework, I present the optimization

of gear tooth profiles.

5.1 Methodology

5.1.1 Representation

Multiple representations are used, but there are some commonalities between them.

The gears are always represented as FReps1. All representations include a cir-

cular gear body. The inner portions of the gear bodies are constrained with radial

constraints (see section 2.3.1). The left gear is driven in a sinusoidal fashion; the right

gear is not driven but is used to measure the average angular displacement of the con-

strained particles. The gear bodies have hollow centers, since particles in the interior

of the constraint add computational burden but do not affect gear interactions.

The primary representation for the inverse design studies is based on a union of

circles. Each circle has three free parameters: the 𝑥 and 𝑦 coordinates of its center,

and its radius. This is a generic representation, since with enough circles one could

approximate any shape to arbitrary accuracy. I considered varying numbers of circles

in different experiments, which will be mentioned in section 5.2. This representation

1Initial versions used libfive [45], later versions use the FRep library discussed in section 3.3. The
choice of library makes no difference once the FReps are rendered to particles.

55

is trivial to implement as an FRep.

The use of the circles also varied by experiment. In some, the circles describe a

single tooth, which is radially patterned on top of a gear body with a fixed size to

create a complete gear. In others, the circles are not radially patterned, so each tooth

must be independently constructed with a subset of the available circles (the gear

body is still a constant). The former model enables high resolution gear teeth to be

designed, while keeping the overall dimension of the representation space low. How-

ever it assumes symmetry, which means it includes part of the engineering knowledge

that we would like to recover. The latter model requires a much higher dimensional

representation space for comparable gear tooth resolution, but is more general.

In both of these models the distance between the gears is not fixed, but controlled

with an additional parameter. So the total dimensionality of a model with 𝑛 circles

is 3𝑛 + 1.

These generic representations were compared to an involute gear model, also en-

coded as an FRep. This model has three free parameters: addendum, dedendum,

and pressure angle. It serves as a baseline for comparison.

5.1.2 Evaluation

The primary evaluation criteria is the integrated squared error of the angular position

of the right gear (relative to its expected position) over a fixed amount of simulation

time. An ideal set of gears would present negligible resistance when decoupled from

external loads, so the deviation in the angular position of the left gear from its

programmed trajectory should be minimal. Similarly, if the gears are meshed well,

the right gear will always an have equal and opposite angular displacement, compared

to the left gear. This establishes the expected angular position for the right gear.

As mentioned in section 5.1.1, the angular position of the left gear is driven sinu-

soidally. The amplitude of the driving signal is Þ radians, so that the gear oscillates

between a half turn counterclockwise and a half turn clockwise, relative to its initial

position. The simulation is run for one full period of the sinusoidal driving function,

so overall the left gear rotates Þ radians counterclockwise, then 2Þ radians clockwise,

56

and finally Þ radians counterclockwise, returning it to its original position. For gear

representations that don’t enforce radial symmetry, it’s critical that the gears com-

plete a full revolution at some point so that all teeth are engaged. It’s also critical

that the gears change direction, as they are most likely to bind while doing so.

Though the driving pattern described above spends equal time traveling clockwise

as counterclockwise, it’s not totally symmetric. In particular, the initial acceleration is

always in the same direction. This introduces a subtle bias in the objective function,

and leads to asymmetric gear teeth (see section 7.2). To remedy this, I run two

trials that are mirror images of each other: one where the left gear initially rotates

counterclockwise, and one where it initially rotates clockwise.

Finally, an important consideration is recognizing when the positions of the gears is

undefined. In particular, if the gears completely bind, the driving force can eventually

exert so high a force that the simulation becomes unstable. When the gears explode,

the average angular position of the constrained particles is meaningless. By reducing

the step size, it could be possible to avoid many of these explosions. But properly

functioning gears don’t produce extreme internal stresses (relative to dysfunctional

gears), so it’s a feature not a bug to detect such situations early. Luckily this is easy

to do, as gear explosions lead to large numbers of particles exiting the bounds of the

simulation. In these cases a penalty is applied, to incentivize the optimizer to find

stable gear geometries.

5.1.3 Simulation

For all representations, the simulation is seeded by filling the FRep with particles

arranged in a hexagonal lattice. The particles interact with a simple linear force law.

Any two particles that come within one lattice spacing of each other experience equal

and opposite repulsive forces. Particles that are neighbors on the underlying lattice

also experience equal and opposite attractive forces when they are between one and

two lattice spacings of each other. This attractive force falls to zero abruptly beyond

a distance of twice the lattice pitch, which is highly nonphysical. But this only occurs

at the point of failure, so is not an issue for any reasonable gear geometry.

57

5.2 Results

Multiple FRep based design representations were compared. The lowest dimensional

model is simply a parametric involute model. There are three exposed parameters:

addendum, dedendum, and pressure angle. All gears in this design space mesh prop-

erly, but the optimization algorithm appears to have found that shorter, stouter teeth

are stiffer and thus permit less deformation and backlash. The optimized result of

the baseline involute model is visible in Figure 5-1.

Figure 5-1: Optimized involute model.

The most successful generic model uses five circles to describe the tooth profile; the

eightfold radial symmetry of the gear as a whole is baked into the model. Including

the distance between the gears, this gives a total of 16 free parameters. Interestingly,

the optimized design closely resembles a cycloidal gear. Unoptimized and optimized

models are visible in Figure 5-2.

I also experimented with relaxing the radial symmetry constraint (i.e. allowing

each tooth to evolve independently). Two such models were trained, one with six

circles, and one with twelve. The six circle model converged to a highly symmetric

solution as expected. Indeed its final form and score were very close to those of

a model with the symmetry constraint but restricted to one circle per gear tooth.

The twelve circle model, however, converged to an asymmetric and suboptimal local

minimum, so further work is required.

Choice of model greatly impacts the convergence rate. This can be seen in Figure

5-4, which shows the convergence behavior of all four models discussed above. Recall

that their numbers of free parameters are 3, 16, 18, and 36. Dimensionality is an

58

Figure 5-2: Optimization of gears described by a model that enforces eightfold radial
symmetry. Above: an unoptimized design (best member of generation 0). Below: the
optimized design.

important factor, but not the only factor.

Note that the lowest dimensional model (involute) converges faster than the second

lowest dimensional model (symmetric circles), but it doesn’t reach as low a score. This

is noteworthy because it demonstrates that an optimized generic model can achieve

a better result than a manually specified solution (at least within the not completely

physically accurate bounds of this study).

5.3 Future Work

I have three primary goals for future work. The first is to remove more assump-

tions from the gear representation. Currently the model that does not enforce radial

symmetry of the gear does not converge to a useful result. This may be solved sim-

ply by applying more computational power: distributed across multiple GPUs, far

more designs could be evaluated, increasing the chances of finding symmetric designs.

Since convergence is the primary issue, I could also look into alternative optimization

algorithms.

I am also interested in modifying the objective function to motivate the replication

59

Figure 5-3: Optimization of gears described by a model that does not enforce radial
symmetry. Above: a randomly generated sample from the design space (used as the
center of the wide initial distribution). Below: the optimized design.

of gear types other than cycloidal. In particular, by incorporating a penalty for sliding

gear contact, I hope to derive a geometry more akin to that of the involute family.

This may be possible by adding a strong shear damping force, and penalizing designs

that see a large drop in energy between the driven gear and the passive gear. A

more direct approach would be to measure the shear damping force applied between

non-neighboring particles (i.e. between the two gears) and penalize this quantity

directly.

In an effort to speed up convergence, I would like to explore gradient based tech-

niques. This would require making the simulation differentiable. Based on the issues

discussed in section 4.1 it is likely that the gradients would not be stable over the

number of time steps required for this problem. But the potential benefits are so

great that I am eager to try.

60

Figure 5-4: Convergence rates of the involute and circles models.

61

62

Chapter 6

Application: Force Law Search

6.1 Motivation

Simulation of phenomena that involve extreme geometry change, modest topological

change, or any discontinuous geometric features are extremely tedious if not practi-

cally impossible to model with FEM. One such problem is plastic deformation. The

large strains that can be exhibited before failure, and the discontinuous changes that

occur at failure, pose a huge challenge compared to the comparatively trivial problem

of elastic deformation. As we saw in chapter 2, particle methods are well suited to

such challenges.

Unfortunately, it is still difficult to develop an appropriate set of interactions rules

to simulate macro-scale plastic deformation with particle systems. At the atomic

or molecular level, there is a relatively straightforward path from basic physics to

interaction forces, i.e. based on van der Waals forces or density functional theory

(DFT). But no current supercomputer comes close to being able to model even a

centimeter scale plastic coupon at the molecular level in a reasonable amount of time,

so this isn’t of any use for macro-scale problems. As a result, it is common to use

coarse grained models, whose interaction rules are designed to be valid for groups of

atoms or molecules. These theories have been extremely successful in many domains

[48]. There are still two significant drawbacks. First, most course grained models

are developed for mesoscale simulations, not macro-scale. So they don’t help us with

63

macro-scale problems. Second, even at the mesoscale they can be extremely tedious

to derive.

The most common technique for deriving course grained models is the Mori-

Zwanig formalism, which uses projection operators to split the dynamics of a sim-

ulation into relevant (i.e. faithfully simulated) and irrelevant portions (which are

modeled as noise). This formalism tends to produce interaction laws that are no

longer local in time, that is, they can have significant path dependence. This ne-

cessitates the introduction of memory kernels to model this longer time scale system

evolution [59, 60].

There are alternatives to course grained models as well. The field of system iden-

tification is associated with the development of forward models for model predictive

control. System identification problems typically use general statistical methods to fit

black box models of plant behavior [61]. These models typically encode simple math-

ematical relationships between low dimensional inputs and outputs, making them

not ideally suited to descriptions of internal stress and strain fields. Models that do

capture a finer degree of physical detail tend to be specialized (e.g. [49]).

Constitutive models can have their parameters tuned to better match observed

behavior. Often these models are based on PDEs, and thus are not suited to topo-

logical changes. When they are based on particle interactions, they typically assume

domain specific parametric interaction laws [14, 95]. This assumes what we would

like to discover.

This chapter is a first step toward the automated discovery and validation of

macro-scale course grained particle models for polymers. In particular, I seek to

match experimentally measured stress-strain curves for three plastics by varying a

parametric force law. I also demonstrate hysteresis and material memory based on

particle distributions rather than a memory kernel.

64

6.2 Methodology

6.2.1 Physical Instron

Stress-strain curves for three different plastics were acquired using CBA’s Instron.1

Each test was conducted with a standard ASTM D638 type V coupon [7], 1.6mm in

thickness. The three plastics considered were POM (also known as Delrin), HDPE,

and PLA.

Their stress-strain curves are depicted in figures 6-1, 6-2, and 6-3, respectively.

Some features of these curves are worth mentioning. First, there are a range of

magnitudes in both force and extension. PLA and HDPE both exhibit peak forces

less than 100 Newtons, while POM exhibits a peak force of nearly 400 Newtons.

Meanwhile POM and PLA both fail before 20mm of extension, while HDPE stretches

past 100mm before fracturing. Second, the shapes of the curves are qualitatively very

different. POM’s elastic region smoothly levels out (it’s difficult to pinpoint an exact

yield strength), and in the plastic region it produces a remarkably constant force of

just under 400N from 4mm all the way until it fractures at 12mm. (This indicates

that its strain hardening almost perfectly counterbalances its necking.) PLA also

demonstrates a long plateau — in this case at about 60N. However it has a distinct

peak near its yield strength, reaching a force of roughly 90N. HDPE also has a peak

just past its yield strength (almost 50N), but it exhibits more pronounced strain

hardening, leading to an upward sloping stress-strain curve for most of its plastic

region.

6.2.2 Virtual Instron

To extract comparable data from the simulation, I constructed a virtual Instron. The

test coupon is described via an FRep, using the DAGCAD FRep model described in

section 3.3. The bottommost and topmost regions of particles are added to driven

linear constraints (see section 2.3.1). The bottom constraint simply holds its particles

1Thank you Jake Read for acquiring this data.

65

0 2 4 6 8 10 12
displacement (mm)

0

100

200

300

400

fo
rc

e
(N

)

Delrin

Figure 6-1: Experimentally measured stress-strain curve for POM.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
displacement (mm)

0

20

40

60

80

fo
rc

e
(N

)

PLA

Figure 6-2: Experimentally measured stress-strain curve for PLA.

66

0 20 40 60 80 100
displacement (mm)

10

0

10

20

30

40

50

60

70

fo
rc

e
(N

)

HDPE

Figure 6-3: Experimentally measured stress-strain curve for HDPE.

in place. The top constraint pulls its particles upward at a constant rate. The

bottom constraint measures the net exerted force, while the top constraint measures

the average vertical displacement.

At first glance, it can appear that the measurement of force requires some subtlety.

The standard definition, if interpreted literally, would suggest that we should intersect

the coupon with a horizontal line (or a plane, if the simulation were in 3D), and sum

all the forces between interacting pairs of particles that lie on opposite sides of the line.

While this is completely feasible in the virtual Instron (if only such instrumentation

were as simple in the physical world), it turns out that it’s not necessary since simply

summing the forces exerted on all the particles in the constraint produces the same

result. The area under the stress strain curve up to a certain strain gives the total

mechanical energy absorbed per unit volume (or area, in 2D) in reaching that strain.

This energy is provided in the form of work done on the coupon by the top constraint,

and to capture all the work done we must measure the total force. More intuitively,

consider that particles in the interior of the constraint (i.e. completely surrounded by

other constrained particles) will have to be pushed much less by the constraint than

67

those near the boundary, since their neighbors will already be directing them in the

right direction.

To aid development and promote exploration, I developed a graphical user inter-

face for the virtual Instron, pictured in figure 6-4. It consists of a live visualization of

the coupon, colored to show internal stress, and a floating window with a variety of

readouts and controls. The visualization colors each particle according to the sum of

the magnitudes of the forces it experiences. Future versions could depict von Mises

stress or other scalar metrics.

The floating window shows readouts of various performance metrics and error

conditions. It also enables realtime editing of the parameters of the simulation. This

includes parameters such as the time step and the amount of dissipation, as well as

the coefficients used for the control law of the constraints (see section 2.3.1). More

interestingly, it displays a graph the force law, and enables the user to change it. The

form of the force will be discussed in section 6.2.3.

Finally, the user can load reference datasets and run extension experiments. The

resulting stress-strain curves are plotted in realtime. Controls allow the experiment to

be paused or restarted. The score used for optimization of forces laws is also depicted.

The exact form of this score is discussed in section 6.2.5. In addition to extension

experiments, there is also a stability experiment, which tests the basic viability of the

force law. This experiment is also discussed in section 6.2.5.

6.2.3 Representation

The force law specifies a force as a function of distance. All forces between particle

pairs are symmetric and act radially. There is no memory in the particles (just their

positions and velocities) or the force interactions. These are very limiting assumptions

that will be removed in future iterations, but even this basic case proved very worthy

of exploration.

The force law is represented as a piecewise linear function. All the studies de-

scribed in later sections used 5 segments, but this is a compile time parameter that

can be changed at will. Conceptually, a force law with 𝑛 segments is determined by

68

Figure 6-4: A screenshot from the virtual Instron GUI.

69

𝑛 + 1 points. The first point is constrained to have an 𝑥 value of 0, while the last

point is constrained to have an 𝑥 value of the force cutoff distance and a 𝑦 value of 0

(for more on constraints, see section 2.3.1). The latter constraint ensures that there

isn’t an abrupt change in force (i.e. jerk) as particles transition from interacting to

non-interacting. All together then, for a force law with 𝑛 linear segments, there are

2𝑛 ⊗ 3 free parameters (𝑛 ⊗ 2 positions and 𝑛 ⊗ 1 forces).

To be well defined, the other points must have 𝑥 values between 0 and the cutoff

distance. This constraint is easy to satisfy when manually entering values. But

enforcing it during optimization would require a constrained search. To avoid this,

I use a transformed representation of the position coordinates for the optimization

representation. Rather than specify literal 𝑥 coordinates, this representation specifies

the relative distances between the points. This ensures that all tested force laws are

at least meaningfully interpretable.

6.2.4 Units

So far we have not specifically stated any system of units to be used. All values of

physical parameters have been chosen more for numerical convenience than alignment

with real-world systems of measurement. To match a real-world stress strain curve,

we will have to remedy this.

This can be done one dimension at a time. The unit of distance is the easiest to

nail down. The coupons we used in the real world are 63.5 millimeters long, so this

defines our length scale. Rather than mandate that internal simulation numbers must

be expressed in mm, or in relative coupon lengths, I simply record the scaling factor

and use it to transform distances before they are reported to the user. This conversion

factor is approximately 1.575 × 10−2 simulation distance units per millimeter. Mass

is also unambiguously defined: the total mass of the particles in the simulation must

equal the mass of the real coupon. As will be discussed shortly, this gives us a

conversion factor of 3.39 × 106 simulation mass units to one kilogram. To simplify

computations, within the simulation each particle is taken to have a mass of one.

Time is trickier to pin down. From a physical standpoint, it may make the most

70

sense to define the units of time based on the speed of sound in a material. But

other physical processes also have characteristic time scales, which could be used

instead. The rate of plastic flow, for instance, is a crucial process for stress-strain

experiments. Finally, the rate at which the coupon is extended also defines a time

scale. Unfortunately, the dynamic range of time scales in real materials is much

higher than we can accurately simulate and still produce results in a timely manner.

So choosing the fastest processes (such as speed of sound) is not practical. As a

result, I selected an intermediate time scale factor of 0.1 simulation time units to

one second. The precise value of this parameter is not ultimately consequential, as

the optimization procedure will attempt to find a force law that makes this choice

reasonable.

With scales for distance, mass, and time defined, force follows naturally. In par-

ticular, our unit of force is simply our unit of mass multiplied by our unit of distance,

divided by the square of our unit of time. This yields a conversion of 5,342 simulation

force units to one Newton.

Now that our base units are defined we can discuss the other important parameters

of the simulation in terms of them. In the experiments presented here I place particles

on a hexagonal lattice with a spacing of 0.002 simulation distance units. We now

know that this corresponds to 127 micrometers. There are 33,925 particles within

each test coupon; each one has a mass of 295 micrograms. (The mass conversion

factor was set by assuming a mass of 10 grams for each coupon. In the real world

each coupon has a slightly different mass.) I use a time step of 5 × 10−5 simulation

time units, or 5 × 10−4 seconds. Thus there will be 2,000 time steps per second. The

extension rate is 1.36 × 10−2 simulation distance units per simulation time unit, or

about 87 micrometers per second. This is intentionally somewhat faster than the real

life experiments, which used a rate of 25 micrometers per second.

6.2.5 Evaluation

The primary objective function is the integrated squared error between the reference

stress-strain curve and the simulated stress-strain curve. To facilitate the calculation

71

of this metric, I load the reference stress-strain curve up front and collect force samples

at the same extensions recorded in the physical Instron data.

Data in the virtual Instron is taken up to the extension at which the real plastic

coupon failed. Thus a force law will be penalized if a virtual coupon fails too early

(since it will measure zero force when real experiment did not), but not necessarily

if it fails too late (since we will stop collecting data before it happens). I deem the

latter type of inaccuracy acceptable since my primary aim is to reproduce the shape

of the curve, rather than precisely model the failure point. After all, the real failure

point can vary from sample to sample, and the integrated squared error in the region

of disagreement (i.e. where the virtual coupon has failed, but the physical one has

not, or vice versa) could easily dominate the error from the region of agreement (in

which both coupons have not failed).

But this metric alone isn’t sufficient. Most force laws (when sampled uniformly

from the representation space described in section 6.2.3) do not produce reasonable

physical behavior. In fact, most are wildly unstable, and lead to spontaneous explo-

sions or implosions within the first few steps of the simulation. Needless to say, this is

not typical behavior for POM, PLA, or HDPE. Luckily it is easy to detect when this

happens, because it causes many particles to leave the bounds of the simulation. So

in this case the objective function is computed as a sum of three terms. First, there

is the integrated stress-strain curve, as before, assuming a force of zero for all time

after the explosion. This ensures that unstable matter can never be given a better

score than no matter at all. Second, there are two explosion penalty terms. The first

is linearly decreasing in the amount of time the simulation runs without exploding,

and the second is larger but exponentially decreasing. The first penalty term ensures

that even late stage explosions are penalized, while the second term provides a strong

signal to avoid instantaneous explosions.

These explosion penalties help steer the optimization algorithm toward stable

matter, but it turns out they still allow plenty of non-physical behavior. In particular,

the equilibrium density of the material may not be the initial density (i.e. of the

hexagonal lattice). This leads to artificial expansion or contraction of the material

72

as soon as the simulation begins. To address this I added a second independent test,

in addition to the stress-strain measurement. The initial conditions for this test are

identical, but rather than drive the constraints, I only use them for measuring the

displacement of the ends of the coupon. The simulation is run for a short amount

of time: 1800 steps, or 0.9 seconds. The score is computed based on the maximum

absolute average displacements of the particles in the top and bottom constraints.

A score of zero is awarded if the coupon is completely stationary, while a very large

score is assigned if the coupon expands or contracts significantly. The same explosion

penalty is also applied, to ensure that unstable matter is still scored poorly even if it

explodes before any displacement measurements are taken.

6.3 Results

6.3.1 Force Laws

Figures 6-5 and 6-6 compare simulated and real stress-strain measurements for the

best found force laws. Results for HDPE are not reported, as this model has not

yet successfully converged. The simulated stress-strain signals are low pass filtered

to remove artifacts of the material’s resonant vibrational modes. Although the time

scales are different, the mass of the physical Instron itself performs a similar function.

Figure 6-7 depicts the convergence of the optimization procedure for both mate-

rials. Finally, figure 6-8 shows the optimized force laws.

The virtual stress-strain curves display many of the important features of their

physical counterparts. In particular, POM rises at the correct rate, and smoothly

transitions to a roughly constant force. PLA also rises at the correct rate, and displays

a prominent initial peak.

There is very visible noise in the virtual stress-strain measurements that is not

physical. This is an artifact of the discrete nature of the simulation. Specifically, plas-

tic deformation in the simulation occurs via dislocation of particles. These particles

tend to quickly slip from one local potential minimum to another, leading to short

73

0 2 4 6 8 10 12
displacement (mm)

100

0

100

200

300

400

500
fo

rc
e

(N
)

Delrin
simulated
reference

Figure 6-5: Simulated and measured stress-strain curves for POM.

0 2 4 6 8 10
displacement (mm)

0

20

40

60

80

100

120

fo
rc

e
(N

)

PLA
simulated
reference

Figure 6-6: Simulated and measured stress-strain curves for PLA.

74

0 20 40 60 80 100
CMA-ES generation (pop size = 20)

106

107

108

lo
ss

Force Law Optimization
Delrin
PLA

Figure 6-7: Convergence histories for POM and PLA.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
distance (lattice pitch)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fo
rc

e
(N

)

1e5 Inferred Force Laws
Delrin
PLA

Figure 6-8: Derived for laws for POM and PLA.

75

bursts of displacement. Cascades of dislocations can occur, amplifying the result-

ing signal. This process isn’t inherently unphysical. Indeed, dislocations in crystal

structures are of great theoretical interest, and simulations are developed specifically

to study them [52, 68, 51]. However in common materials the dislocations occur at

the atomic or molecular level, far smaller than the micrometer scale dislocations that

occur in this simulation.

6.3.2 Memory

Interestingly, the resulting materials exhibit memory, despite the fact that neither the

particles nor the force laws have any memory themselves. Thus the material memory

in these simulations arises purely from the distribution of particles in phase space.

This is entirely physical: neither classical physics nor quantum mechanics2 contains

any memory itself. So it is common knowledge that material memory results from

particle distributions at the atomic and molecular scale. At larger scales, memory

arising from distributions has been studied in granular materials, ranging in size

from sand to boulders [31, 28]. But there is a scarcity of literature on non-nanoscale

distribution based material memory in non-granular materials. So it is somewhat

surprising that material memory in a plastic can be realized utilizing a micrometer

particle description. The results of this study are a first step toward characterizing

this intriguing possibility.

As a concrete example of how memory can arise from particle distributions, fig-

ure 6-9 visualizes the force distribution within two virtual coupons that have been

stretched until failure. In particular, the image is colored based on the sum of the

magnitudes of the forces acting at each point. It is easy to spot regions that have

experienced higher strains.

As a further demonstration of memory, I performed a study on hysteresis with

the optimized force laws. Methodologically, it required a simple change to the virtual

2Note that quantum entanglement, which is sometimes discussed as if it were a form of memory,
simply arises from multi-particle wave functions that cannot be factored into a product of the wave
functions of the individual particles.

76

Figure 6-9: Qualitative visualization of internal stresses in two simulated plastics.

Instron GUI. Specifically, I drove the constraint driver for the top of the coupon with

a sinusoidal function rather than a linear one. And I modified the data collection

routine to collect force measurements at regular time intervals, rather than at the

displacements recorded in a reference dataset. Figures 6-10 and 6-11 depict the

results.

6.4 Future Work

These initial results suggest many future avenues of research.

To begin, it would helpful to find a way to damp the noise in the virtual stress

strain curves. One potential solution is simply to add more particles. This would

reduce the Poisson noise that results from random individual displacement events.

However it would also increase computational costs. Increasing the damping in the

system could also help, although this would require reducing the time step to maintain

stability. Finally, it could be beneficial to add non-radial damping. In particular, if

there were a strong damping force that decelerated particles as they rotate relative

to one another, it could smooth out the contributions of each individual dislocation

event.

This last strategy is also interesting apart from considerations of noise. Molecules

and even atoms are perfectly capable of exerting torques and shear forces on one

77

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
displacement (mm)

100

50

0

50

100

150

200
fo

rc
e

(N
)

Delrin Hysteresis

Figure 6-10: Simulated hysteresis curve for POM.

4 2 0 2 4
displacement (mm)

60

40

20

0

20

40

60

80

100

fo
rc

e
(N

)

PLA Hysteresis

Figure 6-11: Simulated hysteresis curve for PLA.

78

another. (A simple example of the latter is a dipole-dipole interaction.) Currently

this is not possible at the particle level in this simulation. Some course grained models

in the literature require non-radial interactions [5], which can be taken as evidence

that this would open the door to qualitatively new phenomena.

In the spirit of letting the optimization routine fully determine the force law, I

am particularly interested in adding generic state parameters to the particles. This

would enable the particles to have a sense of memory, but it would let the best

use of that memory be discovered by the optimization algorithm. In particular,

in addition to mass, position, and velocity, each particle could posses some small

number of additional scalar values. The interaction law would be reframed to accept

this additional state as input, and specify how this state should be updated. So the

positions and velocities would evolve according to Newton’s second law, while the

generic particle states would evolve according to a learned update function. Such

an interaction rule could be specified as a series of linear transformations and simple

nonlinear functions, as in an artificial neural network.

Another exciting possibility for the interaction laws is the introduction of hier-

archy. Most of the interesting physics happens near the boundaries of interacting

bodies; the bulk material is relatively easy to model. So it seems feasible to use a

relatively large number of small particles near boundaries, for both geometric and

physical fidelity, and a relatively small number of large particles in the interior re-

gions, to save on compute effort where it is not needed. The critical concern would be

developing a force law that interpolates between these different scales while providing

consistent material properties. This challenge seems well suited to the automated

methods demonstrated in this chapter.

As mentioned in other sections, I am eager to investigate the effectiveness of

gradient based optimization techniques.

Finally, I would like to apply these techniques to practical problems in fused

filament fabrication (FFF). The prospect of recycling old prints by melting them

into new filament has received considerable attention. This is primarily due to the

potential resource and energy conservation [96, 50], but certain technical benefits

79

have been reported as well [91]. However there are significant difficulties. Often the

mechanical performance of recycled parts is subpar [20], and the different types of

plastic must be kept separate [74, 42]. Using the techniques demonstrated in this

thesis, it could be possible to quickly develop models of prints from mixed polymer

filament, even if the proportions and ingredients of the filament are not known.

80

Chapter 7

Evaluation

7.1 Background

In the previous two chapters I presented applications of inverse methods over particle

systems: one for design, and one for simulation. They both use the same simulation

code and optimization algorithm. Their primary representations encode very different

information, but both can be expressed in the same framework so this difference is

largely abstracted away. Their evaluation layers, however, are more distinct. This

isn’t coincidental. At the end of the day, the evaluation metric is what defines the

problem.

But despite the lack of theoretical or implementation similarities, there are com-

mon themes in the practice of designing tractable objective functions. This is often

more an art than a science. Specifically, optimization algorithms are good at coming

up with surprising solutions. Sometimes these are welcome, but often they satisfy

the letter of the objective but completely miss the spirit. In these instances it is

necessary to revise the objective function, to try to steer the optimization algorithm

toward more fruitful (or simply practical) regions of the design space.

In the following sections I discuss results of this nature from the applications

presented in chapter 5 and chapter 6. Please refer to these chapters for context.

81

7.2 Gear Design

Depending on the parameters of the simulation, gear teeth may not be necessary at all.

Figure 7-1 depicts a set of friction wheels that resulted from an early iteration of the

objective function. In this case, the fact that the optimization algorithm converged to

such a design was an indication that the material compliance was too high, and the

applied load (i.e. the damping force on the right gear) too low. Interestingly, there

are regions of parameter space in which CMA-ES sometimes converges to gears, and

sometimes to friction wheels, indicating that multiple local optima exist.

Figure 7-1: A friction wheel is a viable strategy if the material compliance is too high,
or the applied load is too low.

Later, I found that I had decreased the compliance of the material too much. Or

more specifically, that I was using too large a time step for the newer, stiffer force law.

This led to many otherwise reasonable gear designs failing due simulation instability.

Some designs rather cleverly avoided this issue by introducing compliance through

geometry, as depicted in figure 7-2. In particular, this design effectively introduced

flexures on the ends of the gear teeth, so that when they came into contact they

82

could deflect. This reduced the magnitude of the forces experienced at the gear tooth

boundaries, thus reducing the chances of initiating a catastrophic breakdown of sta-

bility. This design illustrates the sometimes surprising creativity of the optimization

procedure in working around limitations — unfortunately in this case the limitations

were accidentally imposed and did not lead to useful innovation.

Figure 7-2: An ambitious timestep led to material instabilities — unless compliance
was a feature of the design.

With the physics tuned for appropriate rigidity and stability, recognizably gear-like

solutions became more common. Still, a number of issues remained. As introduced

in section 5.1.2, subtle asymmetries in the objective function can lead to obvious

geometric asymmetries. Figure 7-3 depicts one such design, which is not equally

effective when driven clockwise versus counterclockwise.

Beyond the symmetry of the objective function, I also varied the primary mea-

surement. Before settling on the mean squared error in angular position, I tried a

variety of metrics including mean power, and mean squared power. The latter pro-

duced one of the most surprising results. Because of the nonlinearity of the metric,

83

Figure 7-3: Subtle asymmetries in the objective function can become manifested in
designs.

gears that transmit power in short bursts are advantaged over those that transmit

it consistently, even if the total work performed is equivalent. Clearly this is disad-

vantageous, which became all too obvious upon seeing the design depicted in figure

7-4. These gear teeth have small ledges, which catch their neighbors as they start to

engage. This stores potential energy in the compression of the caught tooth, which

is all released at once when the tooth finally slips off the ledge.

Figure 7-4: Gears designed to catch and release in momentary bursts of power.

84

7.3 Force Law Search

A similar series of surprises guided the development of the evaluation function for the

virtual Instron. As mentioned in section 6.2.5, most force laws do not describe stable

physics for solid materials. These laws lead to immediate spontaneous explosion (or

implosion), as depicted in figure 7-5. With a uniform penalty for explosions, CMA-

ES can in theory find stable regions of force law space through brute force sampling.

In practice, it is much better to add a penalty that guides CMA-ES to these useful

regions more directly.

Figure 7-5: The result of an unstable force law.

Even among the stable force laws, the initial arrangement of particles may not be

in a local potential energy minimum. This usually leads to rapid expansion or con-

traction in volume (see figure 7-6), distinguished from the explosions and implosions

since the particles do settle into a bound equilibrium state. From the singleminded

perspective of matching a stress strain curve, this initial settling can be immate-

rial. Specifically, though it may produce a large force as soon as the simulation

begins (since the clamps must resist the expansion or contraction forces), this force

is transient and thus adds only a small amount of error to the stress strain loss. But

considering the broader goal of accurately reproducing real material behavior, this

85

phenomenon is clearly not desired. As a result, the stability test discussed in section

6.2.5 was devised.

Figure 7-6: From left to right: a coupon that has undergone contraction, a nominal
coupon, and a coupon that has undergone expansion.

7.4 Conclusions

For both the applications presented in this thesis, developing the final objective func-

tion required an iterative process. Along the way, the optimization procedure would

produce seemingly counterintuitive results that, ultimately, are guided by what the

objective function is, rather than what it is intended to be. Only after several refine-

ments and corrections to the objective are the intent and the reality aligned, allowing

the optimization procedure to produce useful results. This finding is consistent with

examples from a diverse array of other fields [56].

As a result, the development of a useful objective function still requires manual

work on the part of a skilled practitioner. Developing the right objective often re-

quires a solid background in basic physics, and in the relevant specific engineering

86

discipline. For this reason, it would be inaccurate to claim that inverse methods to-

tally automate design or simulation development. They shift the focus of the skilled

engineering labor, and often reduce the amount required, but they do not eliminate

it. In summary, knowing the right problem to solve has always been essential. With

inverse methods, it is almost everything.

87

88

Chapter 8

Conclusion and Future Work

This thesis is a first step toward realizing the underdeveloped potential of inverse

methods over physical simulation in engineering disciplines. I presented a particle

simulation environment that is free from the limitations of common mesh based al-

ternatives, and can achieve speeds of over one billion particle updates per second. I

discussed its implementation on CPU, GPU, and physically reconfigurable networks

of microcontrollers, as well as ongoing work toward an FPGA version and a supercon-

ducting ASIC. I presented a framework for developing custom design languages that

offers seamless integration with optimization frameworks. I discussed the strengths

and weaknesses of gradient based and gradient free optimization algorithms in the

context of simulation based inverse methods. Collectively, this technology stack is a

complete toolkit for defining and solving inverse problems.

Two applications of these tools were presented. The first entailed the design of

gear tooth profiles. Within the bounds of this study, existing best practices for gear

design were recovered and surpassed. The second entailed the derivation of force laws

for course grained simulations of plastic deformation. This application opens the door

to much more rapid development of new simulation tools than is currently possible,

and demonstrates that material memory can be encoded in particle distributions

rather than explicit memory kernels. Finally, I discussed commonalities from the

development of these two applications as they relate to the specification of objective

functions within inverse methods over particle systems.

89

All the tools and techniques introduced in this thesis are still being improved in

the course of my research at the Center for Bits and Atoms. In the context of this

larger arc, I hope that this body of work is only the first step. There are many

exciting directions to explore.

The simulation and representation tools have so far been guided by exploration.

Now that their utility has been demonstrated on a few different applications, it is

time to solidify architectural decisions and expand their scope and generality. For

the simulation tools, an obvious first step is expanding to three dimensions. I also

plan to add new physics modules. First on the agenda are hydrodynamics, which will

draw inspiration from SPH, and thermodynamics. The latter will be an interesting

case study in its own right: is it possible to represent temperature in the phase

space distributions of meso or macro-scopic particles, as I have shown is possible

for material memory? Or will it be necessary to introduce additional particle state?

Beyond these forces, there is electrostatics, electrodynamics, and couplings of all of

the above. Finally, to facilitate adoption by other researchers, I aim to develop better

interfaces. This entails better documentation of internal and external APIs, as well

as creating more functional and polished graphical user interfaces.

A related endeavor is the development of custom hardware. I will continue work-

ing on conventional DICE: improving the firmware, working toward feature parity

with the CPU/GPU simulations, and taking advantage of automatable physical re-

configurability as it is developed. I will also continue working on the Verilog imple-

mentation. Comparing CPU/GPU performance to datacenter scale FPGAs will be

interesting on its own, but even more exciting long term is the development of ASICs

for particle systems. As mentioned in section 2.3.5, CBA is currently working with

Lincoln Laboratory to spec out a superconducting chip for this purpose. Based on

Josephson junctions, these ASICs could be clocked at 5GHz and burn only 10nW per

operation. Even with cooling overhead, projections indicate it could be possible to

achieve a 105 increase in flops per Watt [27]. Even a small fraction of this theoretically

achievable limit would be groundbreaking.

Maintenance of the different simulation implementations is currently too high a

90

burden, so I am working toward greater code reuse. This is fairly straightforward

between the CPU and DICE implementations, since both are written in plain C++.

It is harder to share code with the GPU implementation, however, since the necessity

of dividing algorithms into separate CUDA kernels imposes an arbitrary and often

cumbersome architecture. Verilog is even more foreign. To address these issues, I

take inspiration from the Taichi language [40]. I would like to take the abstraction of

GPU kernels even further, and introduce a distinction between code that describes an

algorithm (expressed in an abstract mathematical form), and code that describes an

implementation of an algorithm (expressed in data structures and operations designed

for specific hardware).

In the optimization layer, convergence is often still an issue. Encoding more

structure in the optimization algorithm itself, such as the cluster based extensions

to CMA-ES discussed in section 4.3, is an interesting possibility. Despite the issues

discussed in chapter 4, gradient based methods are another. Using these would re-

quire making my simulation tool differentiable, a task which I have planned in detail

and plan to implement soon. It would also open the door to direct optimization of

initial particle positions and velocities — i.e. using an identical representation for

representation and simulation.

For applications, to begin there is plenty of work left to do on the two presented

in this thesis. Briefly restating the steps described in sections 5.3, I would like to

be able to derive different real world gear tooth profiles based on adjustments to the

objective function. For instance, if sliding contact is penalized, one might expect

to end up closer to an involute gear (which has only rolling contact). As discussed

in section 6.4, for the force law studies I want to mitigate the noise in the current

systems, and expand to search over more expressive families of interaction laws.

Beyond these applications, my goal is to apply inverse methods over particle sys-

tems to increasingly practical and realistic problems. In ongoing work funded by

DARPA’s Computable Models project [24], we will soon be examining plastic defor-

mation in titanium alloys. This phenomenon can exhibit strong memory effects, and

is of great practical importance to NASA. In a different project with NIST, CBA is in-

91

vestigating low-cost, distributed means of material characterization, as well as online

measurement of rheological properties during 3D print jobs in order to optimize ma-

terial characteristics. Both these tasks involve simulation of some wonderfully messy

physics. Finally, CBA is also collaborating with Oldendorff, one of the world’s largest

operators of dry bulk carriers, to help them meet upcoming emissions guidelines set

by the International Maritime Organization. In this project we are fabricating and

testing many alternative propulsion systems. All involve fluid structure interaction

to some degree, and many require modeling turbulence and interactions with free

surface flows. Ultimately the approach described in this thesis must be evaluated on

its ability to drive meaningful progress on currently intractable applications.

92

Bibliography

[1] Niels Aage, Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. Giga-voxel
computational morphogenesis for structural design. Nature, 550:84, Oct 2017.

[2] Anurag Ajay, Maria Bauza, Jiajun Wu, Nima Fazeli, Joshua B Tenenbaum,
Alberto Rodriguez, and Leslie P Kaelbling. Combining Physical Simulators
and Object-Based Networks for Control. In IEEE International Conference on
Robotics and Automation (ICRA), 2019.

[3] Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauza, Leslie P Kaelbling, Joshua B
Tenenbaum, and Alberto Rodriguez. Augmenting Physical Simulators with
Stochastic Neural Networks: Case Study of Planar Pushing and Bouncing. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018.

[4] B. J. Alder and T. E. Wainwright. Studies in molecular dynamics. i. general
method. The Journal of Chemical Physics, 31(2):459–466, 1959.

[5] Davide Alemani, Francesca Collu, Michele Cascella, and Matteo Dal Peraro. A
nonradial coarse-grained potential for proteins produces naturally stable sec-
ondary structure elements. Journal of Chemical Theory and Computation,
6(1):315–324, 2010. PMID: 26614340.

[6] James T. Allison and Daniel R. Herber. Special section on multidisciplinary de-
sign optimization: Multidisciplinary design optimization of dynamic engineering
systems. AIAA Journal, 52(4):691–710, 2014.

[7] Standard test method for tensile properties of plastics. Standard ASTM D638-14,
ASTM International, West Conshohocken, PA, 2014.

[8] Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm.
Nature, 324(6096):446–449, 1986.

[9] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al.
Interaction networks for learning about objects, relations and physics. In Ad-
vances in neural information processing systems, pages 4502–4510, 2016.

[10] Martin Philip Bendsøe and Noboru Kikuchi. Generating optimal topologies in
structural design using a homogenization method. 1988.

93

[11] TCN Boekholt, SF Portegies Zwart, and Mauri Valtonen. Gargantuan chaotic
gravitational three-body systems and their irreversibility to the planck length.
Monthly Notices of the Royal Astronomical Society, 493(3):3932–3937, 2020.

[12] Luca Cardelli. Type systems. ACM Computing Surveys (CSUR), 28(1):263–264,
1996.

[13] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum.
A compositional object-based approach to learning physical dynamics. arXiv
preprint arXiv:1612.00341, 2016.

[14] BM Chaparro, Sandrine Thuillier, LF Menezes, Pierre-Yves Manach, and JV Fer-
nandes. Material parameters identification: Gradient-based, genetic and hybrid
optimization algorithms. Computational Materials Science, 44(2):339–346, 2008.

[15] Shiyi Chen and Gary D Doolen. Lattice boltzmann method for fluid flows.
Annual review of fluid mechanics, 30(1):329–364, 1998.

[16] Noam Chomsky. On certain formal properties of grammars. Information and
control, 2(2):137–167, 1959.

[17] Navier-stokes equation. https://www.claymath.org/millennium-problems/navier
Accessed: August 2020.

[18] Georges-Henri Cottet, Petros D Koumoutsakos, et al. Vortex methods: theory
and practice, volume 8. Cambridge university press Cambridge, 2000.

[19] Charles Augustin Coulomb. Premier mémoire sur l’electricité et le magnétisme.
Académie Royale des sciences, 1785.

[20] Fabio A. Cruz Sanchez, Hakim Boudaoud, Sandrine Hoppe, and Mauricio Ca-
margo. Polymer recycling in an open-source additive manufacturing context:
Mechanical issues. Additive Manufacturing, 17:87 – 105, 2017.

[21] CUDA benchmarks. https://browser.geekbench.com/cuda-benchmarks. Ac-
cessed: August 2020.

[22] P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular
assemblies. Géotechnique, 29(1):47–65, 1979.

[23] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[24] Computable models (COMP mods). https://www.darpa.mil/program/computable-
models. Accessed: August 2020.

[25] Fundamental design (FUN design). https://www.darpa.mil/program/fundamental-
design. Accessed: August 2020.

94

[26] John D Day and Hubert Zimmermann. The osi reference model. Proceedings of
the IEEE, 71(12):1334–1340, 1983.

[27] Zach Fredin, Jiri Zemanek, Camron Blackburn, Erik Strand, Amira Abdel-
Rahman, Premila Rowles, and Neil Gershenfeld. Discrete integrated circuit
electronics (dice). Manuscript accepted, 2020.

[28] SJ Friedmann, G Kwon, and W Losert. Granular memory and its effect on
the triggering and distribution of rock avalanche events. Journal of Geophysical
Research: Solid Earth, 108(B8), 2003.

[29] Uriel Frisch, Brosl Hasslacher, and Yves Pomeau. Lattice-gas automata for the
navier-stokes equation. Physical review letters, 56(14):1505, 1986.

[30] Stephen Gaunt. Hox cluster genes and collinearities throughout the tree of animal
life. The International Journal of Developmental Biology, 62:673–683, Jan 2018.

[31] Junfei Geng, Emily Longhi, RP Behringer, and DW Howell. Memory in two-
dimensional heap experiments. Physical Review E, 64(6):060301, 2001.

[32] N. Gershenfeld, B. Schoner, and E. Metois. Cluster-weighted modelling for time-
series analysis. Nature, 397(6717):329–332, 1999.

[33] J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard. Dynamics of
radiation damage. Phys. Rev., 120:1229–1253, Nov 1960.

[34] Robert Groot and Patrick Warren. Dissipative particle dynamics: Bridging the
gap between atomistic and mesoscopic simulation. The Journal of Chemical
Physics, 107(11):4423–4435, 1997.

[35] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator:
Fast neural network emulation and control of physics-based models. In Pro-
ceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’98, page 9–20, New York, NY, USA, 1998. Association
for Computing Machinery.

[36] Ernst Hairer, Ch Lubich, and Gerhard Wanner. Geometric numerical integration
illustrated by the störmer-verlet method. Acta Numerica, pages 399–450, May
2003.

[37] Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adap-
tation of arbitrary normal mutation distributions in evolution strategies: The
generating set adaptation. In Proceedings of the 6th International Conference
on Genetic Algorithms, pages 57–64, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[38] Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne
Auger. Impacts of invariance in search: When cma-es and pso face ill-conditioned
and non-separable problems. Applied Soft Computing, 11(8):5755 – 5769, 2011.

95

[39] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan
Ragan-Kelley, and Frédo Durand. Difftaichi: Differentiable programming for
physical simulation. arXiv preprint arXiv:1910.00935, 2019.

[40] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo
Durand. Taichi: a language for high-performance computation on spatially sparse
data structures. ACM Transactions on Graphics (TOG), 38(6):201, 2019.

[41] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum,
William T Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. Chain-
Queen: A real-time differentiable physical simulator for soft robotics. In 2019
International Conference on Robotics and Automation (ICRA), pages 6265–6271.
IEEE, 2019.

[42] Emily J. Hunt, Chenlong Zhang, Nick Anzalone, and Joshua M. Pearce. Poly-
mer recycling codes for distributed manufacturing with 3-d printers. Resources,
Conservation and Recycling, 97:24 – 30, 2015.

[43] Robert A Jacobs and Michael I Jordan. Learning piecewise control strategies in
a modular neural network architecture. IEEE Transactions on Systems, Man,
and Cybernetics, 23(2):337–345, 1993.

[44] Shinkyu Jeong, Mitsuhiro Murayama, and Kazuomi Yamamoto. Efficient opti-
mization design method using kriging model. Journal of Aircraft - J AIRCRAFT,
42:413–420, 09 2005.

[45] Matthew Keeter. libfive. https://libfive.com.

[46] Matthew Keeter. Hierarchical volumetric object representations for digital fab-
rication workflows. Master’s thesis, MIT, 2013.

[47] Matthew J. Keeter. Massively parallel rendering of complex closed-form implicit
surfaces. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 39(4),
July 2020.

[48] Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Aleksan-
dra Elzbieta Dawid, and Andrzej Kolinski. Coarse-grained protein models and
their applications. Chemical reviews, 116(14):7898–7936, 2016.

[49] Marek Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas Moerwald, and
Jeremy L Wyatt. Learning modular and transferable forward models of the
motions of push manipulated objects. Autonomous Robots, 41(5):1061–1082,
2017.

[50] M.A. Kreiger, M.L. Mulder, A.G. Glover, and J.M. Pearce. Life cycle analysis of
distributed recycling of post-consumer high density polyethylene for 3-d printing
filament. Journal of Cleaner Production, 70:90 – 96, 2014.

96

[51] Ladislas Kubin, G Canova, M Condat, Benoit Devincre, Vassilis Pontikis, and
Yves Bréchet. Dislocation microstructures and plastic flow: A 3d simulation.
Solid State Phenomena, 23:455–472, 01 1992.

[52] D. Kuhlmann-Wilsdorf. Theory of plastic deformation: - properties of low energy
dislocation structures. Materials Science and Engineering: A, 113:1 – 41, 1989.

[53] Lammps. https://lammps.sandia.gov/.

[54] Will Langford. Discrete Robotic Construction. PhD thesis, MIT, 2019.

[55] Neil Leach. Digital morphogenesis. Architectural Design, 79(1):32–37, 2009.

[56] Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Julie Beaulieu, Pe-
ter Bentley, Samuel Bernard, Guillaume Beslon, David Bryson, Nick Cheney,
Antoine Cully, Stephane Donciuex, Fred Dyer, Kai Olav Ellefsen, Robert Feldt,
Stephan Fischer, Stephanie Forrest, Antoine Frénoy, Christian Gagneé, and Ja-
son Yosinksi. The surprising creativity of digital evolution: A collection of anec-
dotes from the evolutionary computation and artificial life research communities.
Mar 2018.

[57] Wu Li, Luc Huyse, and Sharon Padula. Robust airfoil optimization to achieve
drag reduction over a range of mach numbers. Structural and Multidisciplinary
Optimization, 24(1):38–50, 2002.

[58] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Tor-
ralba. Learning particle dynamics for manipulating rigid bodies, deformable
objects, and fluids. In ICLR, 2019.

[59] Zhen Li, Xin Bian, Xiantao Li, and George Karniadakis. Incorporation of mem-
ory effects in coarse-grained modeling via the mori-zwanzig formalism. The Jour-
nal of Chemical Physics, 143(24):243128, 2015.

[60] Zhen Li, Hee Sun Lee, Eric Darve, and George Em Karniadakis. Computing
the non-markovian coarse-grained interactions derived from the mori–zwanzig
formalism in molecular systems: Application to polymer melts. The Journal of
chemical physics, 146(1):014104, 2017.

[61] Lennart Ljung. System identification. Wiley encyclopedia of electrical and elec-
tronics engineering, pages 1–19, 1999.

[62] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Uni-
fied particle physics for real-time applications. ACM Transactions on Graphics
(TOG), 33(4):104, 2014.

[63] Joaquim Martins and Andrew Lambe. Multidisciplinary design optimization: A
survey of architectures. AIAA Journal, 51(9):2049–2075, 2013.

97

[64] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1979.

[65] Keith Miller and Robert N. Miller. Moving finite elements. i. SIAM Journal on
Numerical Analysis, 18(6):1019–1032, 1981.

[66] Joe J Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy
and astrophysics, 30(1):543–574, 1992.

[67] Cristopher Moore. Unpredictability and undecidability in dynamical systems.
Physical Review Letters, 64(20):2354, 1990.

[68] H. Mughrabi. Dislocation wall and cell structures and long-range internal stresses
in deformed metal crystals. Acta Metallurgica, 31(9):1367 – 1379, 1983.

[69] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Posi-
tion based dynamics. Journal of Visual Communication and Image Representa-
tion, 18(2):109–118, 2007.

[70] A. Needleman. Material rate dependence and mesh sensitivity in localization
problems. Computer Methods in Applied Mechanics and Engineering, 67(1):69 –
85, 1988.

[71] Isaac Newton. Philosophiae Naturalis Principia Mathematica. William Dawson
& Sons Ltd., London, 1687.

[72] Yew Ong, Prasanth Nair, and Andy Keane. Evolutionary optimization of compu-
tationally expensive problems via surrogate modeling. AIAA Journal, 04 2003.

[73] Rivka Oxman. Morphogenesis in the theory and methodology of digital tecton-
ics. Journal of the International Association for Shell and Spatial Structures,
51(3):195–205, Sep 2010.

[74] Jukka Pakkanen, Diego Manfredi, Paolo Minetola, and Luca Iuliano. About the
use of recycled or biodegradable filaments for sustainability of 3d printing. In
Giampaolo Campana, Robert J. Howlett, Rossi Setchi, and Barbara Cimatti, ed-
itors, Sustainable Design and Manufacturing 2017, pages 776–785, Cham, 2017.
Springer International Publishing.

[75] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev.,
136:A405–A411, Oct 1964.

[76] David P Rodgers. Improvements in multiprocessor system design. ACM
SIGARCH Computer Architecture News, 13(3):225–231, 1985.

[77] Eddie Rodríguez-Carballo, Lucille Lopez-Delisle, Ye Zhan, Pierre J. Fabre,
Leonardo Beccari, Imane El-Idrissi, Thi Hanh Nguyen Huynh, Hakan Ozadam,
Job Dekker, and Denis Duboule. The hoxd cluster is a dynamic and resilient
tad boundary controlling the segregation of antagonistic regulatory landscapes.
Genes & Development, 31(22):2264–2281, 2017.

98

[78] Vladimir Rokhlin. Rapid solution of integral equations of classical potential
theory. Journal of computational physics, 60(2):187–207, 1985.

[79] Stanislav Roudavski. Towards morphogenesis in architecture. International Jour-
nal of Architectural Computing, 7(3):345–374, 2009.

[80] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure
Leskovec, and Peter W Battaglia. Learning to simulate complex physics with
graph networks. arXiv preprint arXiv:2002.09405, 2020.

[81] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel,
Martin A. Riedmiller, Raia Hadsell, and Peter W. Battaglia. Graph networks
as learnable physics engines for inference and control. CoRR, abs/1806.01242,
2018.

[82] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design
using machine learning: Generative models for matter engineering. Science,
361(6400):360–365, 2018.

[83] Stephan Schneuwly, Roman Klemenz, and Walter J. Gehring. Redesigning the
body plan of drosophila by ectopic expression of the homoeotic gene antennape-
dia. Nature, 325(6107):816–818, 1987.

[84] David E Shaw. A fast, scalable method for the parallel evaluation of distance-
limited pairwise particle interactions. Journal of computational chemistry,
26(13):1318–1328, 2005.

[85] Ole Sigmund and Kurt Maute. Topology optimization approaches. Structural
and Multidisciplinary Optimization, 48(6):1031–1055, Dec 2013.

[86] S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range
forces. Journal of the Mechanics and Physics of Solids, 48(1):175 – 209, 2000.

[87] S.A. Silling and R.B. Lehoucq. Peridynamic theory of solid mechanics. In Has-
san Aref and Erik van der Giessen, editors, Advances in Applied Mechanics,
volume 44 of Advances in Applied Mechanics, pages 73 – 168. Elsevier, 2010.

[88] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pages
15–22, New York, NY, USA, 1994. ACM.

[89] Deborah Sulsky, Zhen Chen, and Howard L Schreyer. A particle method for
history-dependent materials. Computer methods in applied mechanics and engi-
neering, 118(1-2):179–196, 1994.

[90] Terence Tao. Quantitative bounds for critically bounded solutions to the navier-
stokes equations, 2019.

99

[91] Xiaoyong Tian, Tengfei Liu, Qingrui Wang, Abliz Dilmurat, Dichen Li, and
Gerhard Ziegmann. Recycling and remanufacturing of 3d printed continuous
carbon fiber reinforced pla composites. Journal of Cleaner Production, 142:1609
– 1618, 2017.

[92] Loup Verlet. Computer “experiments” on classical fluids. I. Thermodynamical
properties of lennard-jones molecules. Phys. Rev., 159:98–103, Jul 1967.

[93] David W Walker and Jack J Dongarra. Mpi: a standard message passing inter-
face. Supercomputer, 12:56–68, 1996.

[94] Kesheng Wu and Horst Simon. Thick-restart Lanczos method for large symmet-
ric eigenvalue problems. SIAM Journal on Matrix Analysis and Applications,
22(2):602–616, 2000.

[95] Zhaohui Yang and Ahmed Elgamal. Application of unconstrained optimization
and sensitivity analysis to calibration of a soil constitutive model. International
journal for numerical and analytical methods in geomechanics, 27(15):1277–1297,
2003.

[96] Shan Zhong and Joshua M. Pearce. Tightening the loop on the circular economy:
Coupled distributed recycling and manufacturing with recyclebot and reprap 3-d
printing. Resources, Conservation and Recycling, 128:48 – 58, 2018.

100

