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Abstract

This thesis addresses the problem of recovering three-dimensional location and shape infor-

mation from measurements made with Electric Field Sensors. A single sensor functions as

a proximity detector; two can be used as a mouse; three allow tracking of the hand in three

dimensions, and each additional sensor allows us to extract additional shape information.

The ultimate goal of this work is to understand the entire hierarchy, from a single sensor

up to an array of sensors. In this thesis, we take the �rst steps toward imaging, moving

from simple proximity detection to imaging a single point in three dimensions. At every

step along the hierarchy, we are interested in two questions: i) given a �xed number of

sensors, how should they be arranged in space to enable us to extract the most information,

and ii) given an arrangement of sensors, how should we infer \what's out there" from the

data they return? We describe a probabilistic framework that can be used to answer these

questions for any sensor con�guration, from a single sensor to an array.

The thesis describes the physics of Electric Field Sensing, uses this discussion to �nd

an approximate analytical solution to the forward problem of determining the sensor values

from a conductivity distribution, shows how to use this analytical model in conjunction

with probability theory to design optimal electrode layouts, and presents several methods

of inverting the signals to recover information about a conductivity distribution from sensor

values. As an example application, we present a non-contact three-dimensional mouse.
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Chapter 1

Introduction

1.1 Electric Field Sensing

1.1.1 Background: The Theremin and Capacitive Sensing

Electric Field sensing has existed in some form since the Theremin was invented circa

1917.[Gal91, Oth92, Nic93] Before that time, only aquatic animals had used electric �elds

to sense their environments.[Bas94] The Theremin combined analog sound synthesis and

an early form of Electric Field sensing in a single clever circuit. It may be surprising

how little research attention has been focused since then on the use of electric �elds for

measuring the shape and motion of the human body. With the exception of the work of

Mathews[Mat90] and Vranish[V+92, V+93], little e�ort has been made to improve upon the

early, \capacitive" form of Electric Field sensing until recently.

However, it is worth remembering that before the advent of digital electronics, there

existed very few devices that could be controlled by tiny currents. The Theremin represented

not only the �rst application of Electric Field sensing, but also one of the �rst examples

of electronically synthesized music of any kind. Furthermore, the computation needed to

perform even the simplest interpretation of the signals produced by Electric Field Sensors

was not available in an inexpensive and physically small form until quite recently. In

Theremin's day, the word \computer" referred to women who tabulated ballistics tables.

Thus there was little demand for methods of transducing the position of the human body

into tiny currents.

In its time, the Theremin was clearly the \killer app," or rather the \only app," for

capacitive sensing, since its analog synthesizer was one of the few existing devices that

could be controlled by tiny currents, and since the signals required no inversion or gesture

interpretation.

1.1.2 Motivation for Electric Field Sensing

Today, the supply of devices that can be controlled with tiny currents, in particular digital

devices, is growing explosively. In one sense, controlling these devices is trivial: they can

be programmed to map arbitrary messages into arbitrary actions. But the problem of

translating human intention into those digital control messages is nontrivial; some would

argue that it has become the main factor limiting their usefulness.

For example, the utility of 3-d graphics programs is limited by the fact that the most
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sophisticated input device most people have access to is the 2-d computer mouse, which

implements a straightforwardmapping between motions of the mouse in a plane and motions

of an on-screen pointer. In principle, arbitrary 3-d manipulations can be performed using

the right combination of 2-d mouse moves (for example, clicking on-screen buttons to change

rotation modes), but this is by no means a natural way to interact with a 3d environment.

The demand for more subtle and sophisticated means of physically interacting with

digital devices and environments, plus the abundance of signal processing power, make this

an auspicious time to develop Electric Field Sensing further. We will now survey recent

e�orts by members of the MIT Media Lab's Physics and Media Group to develop Electric

Field Sensing further; this thesis is a continuation of this line of research.

1.1.3 Recent Work on Electric Field Sensing

In 1991, Gershenfeld[Ger91, Ger93] used a version of Electric Field sensing to measure the

position of a cello bow with respect to the cello body. A transmitter on the cello body

induces a signal in a resistive strip a�xed to the bow. The received signal depends on the

position of the bow relative to the body. Paradiso later applied these ideas in an accelerator

alignment problem.[Par94, PM94]

The Physics and Media Group of the MIT Media Lab has developed this EF sensing

technology further into non-contact sensors that detect the bulk conductivity of the human

body[ZSP+95]. When part of a human body, which is typically coupled to ground, enters

the �eld set up by a transmitter and receiver, some of the displacement current is diverted

from the receiver and shunted to ground. This form of Electric Field sensing di�ers from

previous, \capacitive" forms, because it is a three-terminal measurement, the sensed body

part being the third terminal. The class of sensors usually called \capacitive," including

Theremin's, Vranish's, Matthews', the cello and alignment sensors, and present industrial

\capacitive sensors" are two terminal devices, in which the object being sensed functions

as the second terminal.

This new form of Electric Field sensing, and variants, have been used in a variety of

ways: with simple gesture recognition software to ip through the pages of an electronic

newspaper[SPZG95], in a musical sculpture known as the Gesture Cube[Wax95, SPZG95], in

a \musical chair" made for the magicians Penn and Teller[PGng], to y through information

spaces[ARS95, AZP+95], and in numerous musical installations by David Waxman[Wax95].

1.1.4 Alternatives to Electric Field Sensing

So far we have argued that the growing supply of digital devices presents a need for sophis-

ticated sensing technologies, and that EF sensing is such a technology. In other words, EF

sensing is su�cient to solve a problem of great practical interest. But to what extent is it

necessary? Are there other sensing technologies that could solve the problem just as well?

There are, of course, other sensing mechanisms. Here we will briey contrast some

of the alternatives with EF sensing. Many sensors, including infra-red and pyroelectric,

require a line of sight to the object being sensed. Electric Field Sensors can \see" through

low conductivity materials, such as wood, paper, and cloth|they do not require a line of

sight. Since EF sensors measure a bulk property of the body, impedance, surface properties

of the object have no e�ect. By contrast, a change of clothing or lighting can change the

response of video cameras and infra-red, pyroelectric, or sonar sensors. This is obviously
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an advantage if one is interested in measuring surface or lighting properties. But often one

is not. The fact the EF sensing functions independently of lighting conditions may be one

of the reasons it is so prevalent in �sh.

Magnetic sensors, such as the commercially available Polhemus, have none of the prob-

lems listed above. However, they tend to be much noisier than electric �eld sensors, and

also are prone to hysteresis problems. One recent sensing technique, Micropower Impulse

Radar,[Lab95] makes bulk measurements and does not require a line of sight to the object.

But it is much more expensive than EF sensing, and while it can be used either as a sim-

ple proximity detector or an imager, it is unclear whether it could be used in regimes of

intermediate complexity, such as for a non-contact 3-d mouse.

1.2 Toward Electric Field Tomography

The goal of the research begun in this thesis is to develop Electric Field sensing beyond

the relatively simple applications surveyed in section 1.1.3, in which small numbers of sen-

sors were used as proximity detectors, into a genuine imaging technology, Electric Field

Tomography. At this point we have only taken the �rst steps, from proximity sensor to

3-d mouse, but the framework we introduce is very general should be applicable to much

more complicated problems. We hope to gain a general understanding of how to extract

information from a set of electric �eld sensors, and of the relationship between sensor ge-

ometry and the information they can provide. We are ultimately interested in the following

questions: (1) Given a sensor geometry, how much information can be extracted from it?

(2) To estimate a given quantity characterizing a matter distribution, what is the optimal

sensor con�guration (both number and geometry)? (3) How do we infer the information of

interest about the distribution from the sensor values?

In this thesis, we introduce a framework for addressing these questions, and demonstrate

its utility for a couple of relatively simple problems. But before continuing, let us consider

some motivating applications and problems.

1.2.1 Motivation for Electric Field Tomography

Fast, inexpensive, and unobtrusive imaging of the human body will permit non-contact

shape, motion, and gesture capture for hands, faces, and entire bodies, which will enable

people to interact in new (and hopefully better) ways with digital devices, computer models,

and other people. For example, as realtime three-dimensional computer graphics becomes

more common, the need for techniques to measure 3-d gesture becomes more acute. Creating

3-d models, placing lights, and animating the models are all cumbersome procedures with

present techniques. Creating and lighting models is often accomplished with a mouse,

keyboard, or stylus. More sophisticated methods for capturing shape, and motion capture

techniques, which we will review below, are typically more intrusive.

1.2.2 Alternatives to Electric Field Tomography

The CyberWare scanner, a laser-based shape capture device, requires a line of site between

the apparatus and the object being scanned. Medical imaging techniques such as CT-scans,

MRI, or PET are too costly, too large, and provide more data than is needed for human
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interface and simple geometry-capture applications, since they provide images of the interior

of the body.

All present motion capture or \performance animation" systems, which map human

movement into that of three-dimensional graphic \puppets," are intrusive as well.[Rob94,

Cha94] Magnetic motion capture devices such as the Polhemus require the user to wear

tethered magnetic sensors whose response to a static �eld can be measured through the

cable. The other popular motion-capture technology is video.

For human interface purposes, video provides both too much and too little data. The

frame rate is too slow for musical and other demanding realtime control applications, so in

that sense it doesn't provide enough data. One the other hand, when a video camera does

deliver a frame, it provides as many as several million numbers. For control applications,

these million numbers must be laboriously boiled down into the �nal control message, often

just a few bytes. In this sense, a video camera provides far too much data.

To combat the second problem, video-based motion-capture systems require the user to

wear black clothing and bright targets that the vision software can easily track. Video-based

gesture recognition systems require large amounts of computing horsepower and often place

restrictions on the background. Geometry capture systems require multiple cameras and

consume large amounts of computing. Having surveyed the competition, we will now revisit

the ancestors of Electric Field Tomography.

1.2.3 Background: Electrical Impedance Tomography

Electrical Impedance Tomography (EIT),[BB84, Web89] sometimes known as Applied Po-

tential Tomography, is an imaging technique that has been used in medical and geophysical

applications. It is closely related to Electric Field Tomography. In a typical medical EIT

experiment, current is applied to electrodes attached to the skin, the resulting voltages are

measured, and then, using a variety of inversion techniques, the conductivity distribution

is recovered.

More formally, a current pattern is applied to the surface @
 of body 
, and the resulting

electrical potential on @
 is measured. The conductivity � 2 
 is then inferred. The

potential u in 
 satis�esr�(�ru) = 0, which is Laplace's equation with a �nite conductivity

�eld, and may also be viewed as the microscopic form of Ohm's and Kircho�'s laws. The

current density j on @
 given by j = ��rnu where n is the outward normal on @
.

Comparison with Electric Field Tomography

EIT is similar enough to EFT that the mathematics used to show the feasibility of inver-

sion appears to carry over directly, as we discuss in section 1.2.3. Though Electric Field

Tomography and Electrical Impedance Tomography may be identical in the most general

mathematical sense, there are substantial di�erences in practice. In EFT, we usually apply

alternating voltages at the boundary and measure currents to �nd capacitances, rather than

applying currents and measuring voltages to �nd conductances.

More signi�cantly, the practical inversion problems are somewhat di�erent. In EIT,

the electrodes are in contact with the body. The goal is to image the small variations in

conductivity in the interior. EIT imaging occurs in a very low-contrast regime. In Electric

Field Tomography, on the other hand, the electrodes are not in contact with the person.

There are essentially two, vastly di�erent impedances: that of air, and that of the person's
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hand. This is the high-contrast regime. Though EFT is an intrinsically easier problem

(producing a 1-bit image should be easier than producing an 8-bit image), there are some

advantages to the low-contrast regime: the image can be treated as a perturbation on a

background conductivity, and linear approximations can be used.

Finally, note that EFT could be posed in a completely di�erent way, in which all bound-

ary potentials are known, but the boundary geometry is not known. This may turn out to

be the most straightforward way of posing the problem.

Questions of Principle Answered in EIT

Extensive work has been done in the Electrical Impedance Tomography literature on the

feasibility of the inverse problem. Basically, it has been shown that the problem is soluble

in principle. Kohn and Vogelius proved the uniqueness of solutions of the inverse problem

for a piecewise analytic conductivity.[KV84, KV85, KV83] Sylvester and Uhlman proved

invertibility for � 2 C1(
).[SU87] Though most of the EIT literature is posed in the

context of DC conductivity, we will see in section 2.2.4 that there is an exact analogy

between the Laplace equation for inhomogeneous media that describes the resistive forward

problem, and the equation describing the capacitive forward problems, so that in the most

general sense, arguments from one domain automatically apply in the other.

However, because of the di�erent contrast regimes, algorithms for constructing the in-

verse are not automatically applicable in both domains. Furthermore, EFT has the ad-

ditional practical complication that the object being imaged (a hand, say) is typically

connected to a conductive body that is not in the sensing �eld, but is coupled capacitively

to ground. Nevertheless, we will briey survey the three classes of inversion algorithms used

in EIT.

Backprojection

The backprojection algorithm for EIT, introduced by Barber and Brown,[BB84] was adapted

from the algorithm of the same name that originally was used to reconstruct CT-scans.

The classic backprojection algorithm is explained in Appendix 6. In the generalized version

used in EIT, measurements are backprojected along the iso-signal surfaces, in Barber and

Brown's case curved equipotential lines, since they measure voltage.

Barber and Brown's forward model makes perturbative linear approximations. It is at

present unclear whether it could be adapted to our high-contrast regime.

Backprojection is reported to provide fast, high-quality, approximate reconstructions.

If slower, more re�ned algorithms are to be employed, it may make sense to give them a

head start by backprojecting �rst.

Spectral

Spectral methods typically provide a set of basis images and a matrix that transforms a vec-

tor of sensor readings into a vector of basis image coe�cients. In EIT, these techniques rely

on perturbative linear approximations. Since spectral techniques are analytical, they are

more likely to give insight into algorithm stability, the ill-posedness of the inverse problem,

and so forth.[AS91, Z+91]
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Iterative

Iterative numerical techniques are the only way of solving the inversion problem exactly.

Based on the applied boundary conditions and a trial conductivity distribution, the free

boundary conditions (sensor values) are predicted. An optimization technique such as

Newton-Raphson is used to relax the conductivity distribution so as to reduce the error be-

tween the actual sensor values and those predicted by the trial conductivity distribution.[KM90,

DL81]

A very interesting variational formulation of the inversion problem, which provides ex-

plicit estimate of the quality of the reconstruction, is developed by Berryman in [Ber89] and

by Berryman and Kohn in [BK90]. They show that there is a close analogy between the

electrical impedance tomography problem and the seismic travel-time inversion problem,

which they solve using Fermat's principle.

1.2.4 Field Sensing Hierarchy

For many human interface applications, a full image may not be desirable. Therefore, rather

than simply adopting one of the brute force imaging techniques from EIT, it would be nice

to understand how to extract just the required information using only the necessary number

of sensors. For example: roughly speaking, from one sensor it is possible to infer at most

one number characterizing a matter distribution. The number might be an estimate of

position or size, for example. With two sensors, one can estimate two position coordinates,

or one size and one position. This �eld sensing hierarchy extends upwards, until we reach

a continuum of sensors. When a large number of sensors is available, it becomes possible

to extract a three-dimensional image of a conductivity distribution, as the arguments cited

in section 1.2.3 show. In Chapter 4, we will show how to construct and analyze \ambiguity

classes," which will make the notion of the �eld sensing hierarchy more precise.

This thesis is entitled \Toward Electric Field Tomography" because, although we have

not yet arrived there, imaging is the endpoint toward which we are heading, and because

our goal is to understand the entire hierarchy, from a single sensor up to a continuum. At

this point, we have explored the hierarchy in a practical way as far as three sensors: we have

made non-contact two- and three-dimensional mice. The user's body is the only moving

part of these input devices.

1.2.5 Forward, Inverse, and Experimental Design Problems

Now that we have explained the ultimate destination of this research, we will describe the

sub-problems that must be solved in order to arrive there. There are two obvious parts to

the full imaging problem, and to any of the problems along the EF sensing hierarchy. The

goal, of course, is to infer as much as possible about the conductivity distribution from the

measurements returned by the sensors. We will refer to this as the inverse problem; before

we can solve it, we must �rst understand the direct or forward problem of calculating the

sensor values given a conductivity distribution and sensor geometry.

There is also a less obvious problem, which might be called the \experimental design"

problem. When a large number of sensors is available, the problem is to decide which of

the large number of measurements that could be made actually should be made. When a

smaller number of sensors is available, the question is, how many are needed, and where

should they be placed?
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1.2.6 Bayesian Framework

We will introduce a general framework that allows us not only to solve inversion problems

anywhere along the EF sensing hierarchy, but also to design optimal sensor geometries.

Given a sensor geometry and data values, we will construct the ambiguity class of models

that could explain the data. This ambiguity class takes the form of a probability distribu-

tion over model parameters. Once this distribution has been constructed, the problem of

inverting the sensors (to �nd, say, the location of the hand from some sensor values) reduces

to the optimization problem of maximizing the probability of the model, given the data.

This ambiguity function is also useful in chosing sensor geometries. The expected change

in entropy of the ambiguity class will provide a measure of the quality of sensor geometries.

By maximizing this quantity, optimal sensor geometries can be found.

Before we discuss methods of solving the inverse and experimental design problems in

Chapters 4 and 5, however, we will explain the physics of electric �eld sensing in Chapter 2,

and then, in Chapter 3, we will introduce approximations that allow us to predict e�ciently

the sensor values resulting from a simple matter distribution.

13



Chapter 2

Physics of Electric Field Sensing

In this chapter we will describe the hardware we use for Electric Field Sensing, and then

discuss the physics underlying the hardware.

2.1 Hardware

The Electric Field Sensors[Ger93, ZSP+95] developed in the Physics Group of the MIT

Media Laboratory provide high-precision, low-noise measurements of the bulk conductivity

of a matter distribution. The \Fish" �eld sensing board1 consists of a transmitter that can

be tuned from 20kHz to 100kHz, and four receive channels that use synchronous detection.

The transmitter consists of an oscillator connected to an op-amp. The op-amp de�nes the

voltage on the transmit electrode, as speci�ed by the oscillator, by putting out as much

current as required to maintain the correct voltage. The amount of power that the user

is exposed to is on the same order of magnitude as that received from a pair of stereo

headphones, and is several orders of magnitude below FCC regulation.

Each receive channel consists of an op-amp gain stage, a multiplier, and another op-

amp used as an integrator. The received signal is multiplied by the original transmitted

signal, and the resulting function is integrated over an interval of 60 ms. The e�ect of

these two operations is to project out, in a sense de�ned below, all the Fourier components

of the received signal except for the component that was transmitted. The multiplier and

integrator are computing (in analog electronics) the inner product of the transmitted signal

function st and the received signal function sr, with a window function set by the integration

time. The sense in which the multiplier and integrator project out all undesirable Fourier

components is the following: because all distinct pairs of Fourier components are orthogonal,

the contribution to the inner product < st; sr > from all the undesirable (i.e. di�erent from

st and therefore orthogonal) components is zero. The input stage is therefore a very sharp

�lter that rejects all signals not of the proper frequency and phase.

It is also possible to describe the sensing circuitry in terms of amplitude modulation. The

transmitter may be thought of as a carrier whose amplitude is modulated by the motions

of a person's body. The receive multiplier mixes the carrier down to DC, and then the �nal

1It is called \Fish" because electric �sh use similar mechanisms to sense their environments, and because

we hope that the Fish, which navigates in three dimensions, might be the successor input device to the

mouse, which only navigates in two.
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Figure 2-1: Diagram of front end gain stage for noise calculations.

lowpass �lter rejects all signals other than those superimposed on the carrier.

2.1.1 Noise

There are two classes of op-amp noise to consider, interference noise, which is caused by

external sources, such as coupling from the digital circuitry on the board, and intrinsic

noise, which is due to the physics of the op-amp and feedback network components. We

will calculate the intrinsic noise for the Fish front end, compare it to the observed noise,

and conclude that interference noise dominates the intrinsic noise.

Intrinsic Noise Calculation

Intrinsic noise may be divided into voltage noise, current noise, and Johnson noise in the

feedback and input resistors.[SS69] The most important component of the intrinsic noise

turns out in our case to be voltage noise. For our front end gain stage, shown schematically

in Figure 2-1, the output voltage noise eo is given by e0 = Nen where en is this intrinsic

voltage noise and the ampli�er's noise gain N is given by

N =
1

�

1

1 + 1
A�

Here A is the ampli�er's open-loop gain, and the feedback ratio

1

�
= 1 +

R

1 + RC2p

(C1p)

with R = 1M
 and C1 = C2 = 1pF. The impedance of C1 is denoted C1p =
1

i!C
. For the

TL082CP op-amp used in the Fish front end, en is
18nVp
Hz

[Dev95]. This yields a voltage noise

of 0:12mV rms. The current noise is 8:31� 10�18V and the Johnson noise is 9:95� 10�7V .
The quadrature sum of all the three intrinsic noise �gures is essentially the same as that of

the voltage �gure, 0:119mV .

The Fish board uses the 8-bit analog to digital converter on the Motorola MC68HC11,
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Figure 2-2: Timeseries of 600 sensor values showing quantization noise.

which has �1=2 least signi�cant bit accuracy[Mot91], so the quantization resolution is

5V=256 = :195V . Since the quantization noise is 3 orders of magnitude greater than the

intrinsic noise of the op-amp, we expect the readings to show the Gaussian pro�le typical

of quantization noise.

Measured Noise

To study the noise characteristics of the �nal digitized signal, we chose the o�set voltage

so that the sensor gave a value comfortably far from clipping high or low (about 175 out

of 255) when the �eld was unperturbed. We collected 600 samples at a sampling rate of

60 per second. The maximum likelihood estimate of the standard deviation of this data

set is 0:66. Figure 2-2 shows this timeseries, Figure 2-3 shows its normalized histogram,

and Figure 2-4 shows the normal distribution with the mean and standard deviation of the

noise timeseries.

2.1.2 Contrast to Noise and Lengthscale

The signal received depends on the sensor geometry. Consider a parallel plate transmit-

receive geometry. Since the capacitance goes as 1=d, where d is the spacing between the

plates, the unperturbed signal also falls o� as 1=d. Thus at a certain point the op-amp noise

places a limit on how far we can see with the sensors, that is, on the lengthscale on which

they are operable. In fact, however, the relevant quantity in determining the usefulness of

the sensors is not signal to noise (the ratio of the unperturbed signal to the voltage or other

noise), but contrast to noise, that is, the ratio of the di�erence between the maximum and

minimum signal to the noise.

In order to maximize contrast to noise microscopically, one needs to set
d( S
N
)

dp
= 0,

where S is signal, N is noise, and p is an adjustable parameter that a�ects both signal and

noise.[Ros95]
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Figure 2-3: Normalized histogram of noise dataset.
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Figure 2-4: Normal distribution with mean and standard deviation of noise dataset.
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2.2 Derivation of Circuit Model from Maxwell Equations

The goal of EFT imaging is to estimate a microscopic \impedance �eld" from macroscopic

measurements provided by circuits such as the Fish. It will therefore be useful to be

clear about the relationship between the circuit description and the �eld description of

the sensing process. In the remainder of this chapter we will outline the derivation of the

circuit description from the quasi-static approximation to the Maxwell equations, following

the treatment in Chapter 6 of Fano, Chu, and Adler[FCA60]. In the next chapter, we

will come full circle by using circuit concepts to describe �elds, and introduce a hybrid

circuit-�eld description that will allow us to predict the response of the sensors to simple

conductivity distributions.

2.2.1 Maxwell's equations

Maxwell's equations can be written in the form

r� E = �@B
@t

(2:1)

r�H = Jf +
@D

@t
(2:2)

r �D = �f (2:3)

r �B = 0 (2:4)

r � Jf = �@�f
@t

(2:5)

where, for linear and isotropic media,

D = �E

B = �H

Jf = �E

As explained in section 2.1, Electric Field Sensing uses low frequencies. To study the

properties of low-frequency solutions of the Maxwell equations, we can introduce a time-

rate parameter � and a new, scaled time � = �t. Small values of � map long periods of

real time t into a unit of scaled time. Thus slow or low-frequency behavior corresponds to

small values of �. The low-frequency behavior is therefore described by the low order terms

in an expansion of the �elds in a power series in �.

We can put a rough physical interpretation on �: its value is the ratio between the time

� for an electromagnetic wave to propagate across the longest lengthscale in the problem

(the characteristic time for wave behavior), and the smallest time t of interest, in our

case the period of the highest frequency that our oscillator can produce. We will say this

quantitatively later, but for now note that the period of our oscillator is slow compared to

the wave propagation time, so � is small. The expansion of E in powers of � has the form

E(x; y; z; t) = E(x; y; z; �; �) = E0(x; y; z; �)+ �E1(x; y; z; �)+ �2E2(x; y; z; �)+ : : :
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where

E0(x; y; z; �) = [E(x; y; z; �; �)]�=0

E1(x; y; z; �) =

�
@E(x; y; z; �; �)

@�

�
�=0

Ek(x; y; z; �) =
1

k!

"
@kE(x; y; z; �; �)

@�k

#
�=0

When the frequency is low enough that all but the zeroth and �rst order terms can be

neglected, the solution is called quasi-static.[FCA60]

Using the new, scaled time � , time derivatives will be multiplied by �, for example:

@B

@t
=

@B

@�

@�

@t
= �

@B

@�

The three Maxwell equations involving time derivatives become

r�E = ��@B
@�

(2:6)

r�H = Jf + �
@D

@�
(2:7)

r � Jf = ��@�f
@�

(2:8)

Substituting the expanded E and B �elds back into the scaled Maxwell equation 2.6 and

grouping terms, 2.6 becomes

r�E0 + �(r�E1 +
@B0

@�
) + �2(r� E2 +

@B1

@�
) + : : : = 0

Each term in the sum must equal zero individually for the equation to hold for all values of

�. This de�nes a series of equations whose solution is the series of �elds that make up our

expansion. Because the B term in 2.6 is multiplied by �, and the E term is not, kth order E

terms are related in the in�nite series of equations to k�1th order B terms. The expansion

of equation 2.7 will yield a series of equations coupling kth order B �elds to k � 1th order

E �elds. Since all �elds are coupled only to lower order �elds, any number of terms can be

evaluated, by starting from the zeroth order solution, using that to �nd the �rst order, and

so on. The zeroth order E �eld equations are

r�E0 = 0 (2:9)

r�H0 = Jf0 (2:10)

r � Jf0 = 0 (2:11)

The Maxwell equations that do not involve time derivatives become:

r � �E0 = �f0 (2:12)

r � �H0 = 0 (2:13)
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Next we will write out the �rst order �elds. Since all values of � correspond to physically

realizable �elds, any �eld can be viewed as the original, \unscaled" �eld. Therefore no loss

of generality results from setting � = 1, and writing t instead of � :

r�E1 = �
@H0

@t
(2:14)

r�H1 = �
@E0

@t
+ Jf1 (2:15)

r � �E1 = �f1 (2:16)

r � �H1 = 0 (2:17)

r � Jf1 = �@�f0
@t

(2:18)

Because the curl of any vector �eld V equals zero if and only if V can be written as

the gradient of a scalar potential, equation 2.9 implies that E0 = r�0. In a region with

no sources or sinks, any vector �eld satis�es r �V = 0, so if there are no free charges,

r � r�0 = r2�0 = 0; that is, �0 satis�es Laplace's equation. If free charges are present,

then �0 satis�es Poisson's equation, by a similar argument.

2.2.2 Quasistatic limit

In terms of our expansion above, the quasi-static condition holds when � = �
t
= L

ct
�

1, because higher powers of � are negligible when � � 1. Again, � is the time for an

electromagnetic wave to propagate across the longest lengthscale in the problem, and t is

the period of the transmit oscillator. If L is 10 meters and the transmit frequency is 100kHz,

so that t = 1:0� 10�5, then � = 3:3� 10�3 � 1, so we are comfortably in the quasistatic

regime.

When � is vanishingly small, so that only the zeroth order terms are required, we are

in the regime of DC circuits. For small but �nite rates of change, the �rst order terms

must also be taken into account. This is the regime of AC circuitry. In the next section we

will see in more detail how the concepts and laws of circuit theory emerge naturally as the

quasistatic limit of the Maxwell equations.

2.2.3 Circuit Theory

There are three basic types of solutions to the zeroth and �rst order Maxwell equations,

which correspond to the three basic types of circuit components: capacitive, inductive, and

resistive. For Electric Field Sensing and Tomography, only the capacitive solutions are

relevant;2 for Electrical Impedance Tomography only the resistive solutions matter (for this

reason the name Electrical Resistivity Tomography would be more accurate). We will see,

however, that the equations specifying the \capacitive" and \resistive" �elds are identical in

form, which might be guessed from the fact that resistance and capacitance can be viewed

as special cases of the generalized circuit concept of impedance.

The three types of quasi-static �elds can be classi�ed according to their zeroth-order

terms. The �rst two types arise when there is no conduction current. In these �rst two

2We will see later that the situation is slightly more complicated than this.
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cases the right side of equation 2.10 is zero, and there is no coupling between the electric

and magnetic �elds, so the two can be treated separately. The �rst type of quasistatic

solution, electrical, has no magnetic component, and will be associated with capacitance, as

we will explain below. A magnetic solution with no electrical component will be associated

with inductance. The solution associated with resistance arises when conduction currents

are present. If Jf0 = �E0, then equation 2.10 becomes r �H0 = �E0. Thus in resistive

solutions the zeroth order electric �eld is coupled to the zeroth order magnetic �eld through

a �nite conductivity.

To see why the electrical solution is associated with capacitance, �rst recall the circuit

de�nition of capacitance:

I = C
dV

dt
(2:19)

A capacitance couples a current to the time derivative of a voltage. Now consider the

\capacitive" �eld. Because of equation 2.15, a zeroth order electric �eld induces a �rst order

magnetic �eld proportional to the time derivative of the electric �eld. Associated with the

zeroth-order electric �eld is a zeroth-order charge; by equation 2.18, the time derivative

of this charge induces a �rst order current. Since the zeroth order electric �eld may be

represented by a scalar potential, this �rst order current is coupled to the time derivative of

the zeroth order potential. As we saw in equation 2.19, this type of coupling is referred to

as capacitive in circuit theory. Similar arguments demonstrate the correspondance between

the other types of �elds and circuit components.

2.2.4 Laplace's equation in an inhomogeneous medium

For an inhomogeneous medium with embedded conductors at de�ned potentials, for exam-

ple, the medium shown in Figure 2-5, the zeroth order electric �eld satis�es equation 2.12,

which becomes

�r � �E0 = r � (�r�o) = �r2�0 +r� � r�0 = 0 (2:20)

in the region between the conductors. For a homogeneous medium, this reduces to the

standard Laplace equation, r2�0 = 0. The third, resistive �eld solution leads to an equation

analogous to 2.20, but with permittivity replaced by conductivity:

� r � �E0 = r � (�r�o) = �r2�0 +r� � r�0 = 0 (2:21)

Because these two equations have the same form, solutions pertaining to one physical situ-

ation are solutions to the other, as long as the boundary conditions are analogous. In fact,

to determine the capacitance due to a body with a complex shape, Haus[HM89] (p. 274)

recommends immersing the body in a tank �lled with electrolytes and making conduction

measurements, which he feels are easier experimentally.

Equation 2.21 describes the general forward problem in Electrical Impedance Tomogra-

phy. Technically, equation 2.20 describes the forward problem in Electric Field Tomography.

However, the bodies we image in EFT tend not to be isolated permittivities, as would be

the case if we only wanted to use EFT to, for example, image the surface of a wooden desk

and the books on top. For this sort of problem, all the machinery of Electrical Impedance

Tomography applies in the most straightforward manner. In a typical EFT problem, how-

ever, the body being imaged is a perfect conductor coupled capacitively (through the shoes)

to a de�ned potential, ground, which changes the problem somewhat. Practical approaches

21



will probably model the part of the body that is outside the sensing �eld as a lumped circuit

component. For example, the parts of the body outside the �eld can probably be modeled

as a capacitor to ground.

2.2.5 Electrostatics

Our expansion showed that static (zeroth order) electric �elds satisfy Laplace's equation.

The behavior of the static �elds is crucial to Electric Field Sensing, because, as we shall see

in section 2.2.6, though EF sensing requires �rst order �elds to operate, no new information

is contained in the �rst order �elds; it is all present in the zeroth order. Therefore, we will

now briey discuss methods for solving electrostatic �eld problems.

There are two basic ways of viewing such problems: the boundary value perspective,

and the superposition integral perspective. In the boundary value perspective, we �nd the

potential and hence the �eld by solving Laplace's equation subject to speci�ed boundary

conditions. There are a variety of analytical methods useful for solving Laplace's equation

in particular cases, but in general, one must resort to numerical methods. In describing

the boundary value perspective, I have essentially just said \solve the zeroth order Maxwell

equations for the electric �eld."

There is another way to view electrostatics problems, however. In the superposition

integral approach, we assume that a charge distribution is known. We �nd the total �eld

by superposing the �elds induced by each charge separately. This approach works well for

�nding the �eld around a (non-conductive) molecule, since the charge density is essentially

�xed. It is less convenient for dealing with conductors, since the charges are not in �xed

locations. It may not be obvious how to relate the superposition integral perspective to our

quasistatic solution of Maxwell's equations, and thus to the boundary value perspective.

The relationship is that the E �eld due to a static point charge is the Green's function of

Laplace's equation. The reason we can superpose the �elds is that Maxwell's equations are

linear.

2.2.6 Capacitance

In the previous two sections, we discussed the principles of how to �nd the static electric

�eld due to a set of isolated conductors at known potentials, such as those shown in Figure

2-5, embedded in a medium (isotropic, but not necessarily homogeneous) of permittivity

�. We now will show how to use quasistatic �eld solutions to calculate macroscopic circuit

quantities such as capacitance and received current.

The static charge on a conductor i is due to the E0 �eld:

Qi = �
Z
Si

�n � r�0da

where Si is the surface of i, n is the outward normal to Si, and � may be a function of

position, since the medium need not be homogeneous.

Using the standard de�nition, the capacitance of conductor i due to a conductor j is

the ratio between the charge on Qi and the voltage between j and a reference. Of course

if we know the capacitance and voltages for a pair of electrodes, we can �nd the charge

induced on one by the other. Because of the linearity of all the equations involved, the

total charge on i induced by all the other conductors is the sum of the separately induced
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charges[FCA60] (note that the capacitances are not linear functions of position):

Qi =
X
j

CijVj (2:22)

The o�-diagonal terms of this capacitance matrix Cij represent the ratio between Qi and

Vj when all the other V s are zero. The diagonal \self-capacitance" terms Cii represent the

charge on i when it is held at Vi and all the other electrodes are at zero. In terms of our

sensing hardware, the diagonal terms represent the intrinsic capacitance of the cable and

the electrode. The matrix is symmetrical.

We will now see that from the capacitances, we can calculate the currents received at

the electrodes. This is because equation 2.18 relates the �rst order current to the zeroth

order charge. By charge continuity (expressed microscopically in equation 2.18), the current

Ii entering receiver i is given by the time derivative of the charge on i: Ii =
dQi
dt
.

Ii =
d

dt

X
j

CijVj =
X
j

Cij

dVj

dt
(2:23)

The currents that we measure in Electric Field Sensing are �rst order phenomena. However,

we only use the currents to measure capacitance, the zeroth order property that is geometry

dependent and therefore encodes the geometrical information that we ultimately want to

extract. This tells us something about the physical limits on the time resolution of EF

sensing: the \frame rate" must be much shorter than the characteristic time for �rst order

phenomena, that is, the oscillator period.

2.3 Lumped Circuit Model and Sensing Modes

Now we will apply the framework developed in the previous section to Electric Field Sensing.

We will present a lumped circuit model of a single transmit-receive pair with a single

target object, whose proximity we are interested in. The various \modes" in which the

Fish circuitry can be used have clear interpretations as current paths through the circuit

diagram, shown in Figure 2-5. For each sensing mode, we will give a brief overview from a

user's point of view, and then explain the physics of the mode in terms of this diagram.

Figure 2-5 shows the model. There are four \terminals": the transmitter, the receiver,

the target object (shown as a hand), and ground. The 4�3
2

= 6 distinct inter-conductor

capacitances are shown. The small resistor and capacitor and Ci represent the body's

internal capacitance and resistance. Capacitor C5 is the target object's coupling to ground.

If a person is being sensed, C5 is usually dominated by the capacitance through the shoes.

The ground terminal may either be a ground plane in close proximity to the transmitter

and receiver, or the ambient room ground.

The sensors can be used in a variety of ways, explained below, each of which modi�es

these capacitances di�erently. We measure capacitance by measuring the current arriving

at the receiver, as explained in section 2.1 and 2.2.6.

23



Ground

T R
C0

C1
C2

C3C4C5

R i

C
i

H ε

Figure 2-5: Lumped circuit model of Electric Field Sensing.
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2.3.1 Transmit Mode

In transmit mode[GZA95], the transmit electrode is put in contact with the user's body,

which then becomes a transmitter, either because of direct electrical connection, or AC

coupling through the clothes, which is shown as current path C1 in the circuit diagram.

When the hand moves, the spacing to the receiver changes, which changes the value

of C2. When the spacing from the hand to the receiver is large, the received signal goes

roughly as 1=r2, because the hand acts like a point object and the �eld falls o� as 1=r2. By

Gauss's law then, the induced charge on the receiver also goes as 1=r2. Since the potentials

on the electrodes are de�ned by the Fish circuit, we know the capacitance to be C = Q=V ,

and the received current IR = 2�fCV , as explained in section 2.2.6. When the hand is very

close to the receiver, C2 (typically) has the geometry of a parallel plate capacitor, and the

signal goes as 1=r.

2.3.2 Transmitter Loading Mode

The Smart Fish[PG95] has circuitry to measure the current being lost at the transmit

electrode. This is known as loading mode. It has also been investigated by Vranish et

al.[V+92, V+93].

If the only object in our sensing apparatus that can move is the body that we wish to

sense, then any change in the amount of current leaving the transmitter indicates a change

in the value of C1.

2.3.3 Receiver Loading Mode

Receiver loading mode is a pseudo mode, in that it relies on non-ideal characteristics of the

op-amp. When a grounded object approaches the receiver, current may be shunted from

the receiver, even if the receiver completely shields the transmitter from the ground.

I discovered this mode while trying to make a two-dimensional electric �eld mouse with

touch click. The mode is useful for making very large pressure sensors that are not sensitive

to matter until it touches the sensing surface. Additional proximity sensitive electrodes, for

example those used to track the hand in the clickable two-d mouse, can be mounted on top

of the touch surface; the touch sensor and the proximity sensors do not interfere with one

another.

It is important for Fish users to know about this mode because it can often be an

annoyance. If a receiver is placed against a wall, there is a current path from the receiver

to the wall; this path appears as capacitor C3 in the diagram. Because wall electrodes are

usually placed ush against the wall, they behave like parallel plate capacitors, with a very

small separation r between the plates. The reason this mode can be such a problem is that

the capacitance k=r (where k is a constant) is very large. In particular, tiny changes in r,

which may arise from air currents, lead to large changes in k=r, and therefore large o�sets

in signal. The mode can therefore introduce mysterious drifts in the sensor values, or be

used to make very sensitive measurements.

2.3.4 Shunt Mode

In this thesis, we will be concerned primarily with shunt mode. Shunt mode is better suited

to imaging, because it provides more informative measurements than other modes, as we
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will explain below.

In shunt mode, neither the transmitter nor the receiver are in contact with the user's

body. When the user's body is out of the �eld, current ows from transmitter to receiver

through the e�ective capacitance C0.

When part of the user's body, such as a hand, enters the �eld, it functions as a third

terminal, and the capacitance matrix changes, often drastically. In particular, the value

of C0 shifts. Since the voltage between the transmitter and receiver is held constant, the

change in C leads to a change in the current arriving at the receiver. From the amount of

current that fails to arrive at the receiver, one can infer something|what, exactly, is the

subject of the thesis|about the \amount of arm" in the vicinity of the sensor. [The rest of

the body functions as a ground for the part that is in the �eld. It does so because, at these

frequencies, the body is nearly a perfect conductor, and is a relatively large charge reservoir.

The rest of the body is also capacitively coupled to an even larger charge reservoir, the earth

or room ground; this current path is labeled C5. Both e�ects (the body as a ground, and

the body as a wire to ground) contribute to C5.[Zim95]]

The sense in which shunt mode is more informative is the following: an n electrode array

can make as many as
n(n�1)

2
distinct measurements, since it uses pairs of electrodes. This

number, rather than n2, arises because electrodes cannot function simultaneously as receiver

and transmitter (hence the n(n�1)). The factor of 1
2
arises because the capacitance matrix

is symmetrical: we learn nothing new when we interchange a transmitter and receiver. By

contrast, an n-electrode array of sensors operating in transmit or loading mode can only

make n distinct measurements. To see the di�erence more clearly, note that each shunt

mode measurement has an associated length and orientation, that of the vector between

the transmitter and receiver. A pair of electrodes far apart \sees" much further than a pair

of electrodes close together (because the lengthscale of the 1
r3

�eld dependence is set by

the spacing between the electrodes), and a pair oriented horizontally responds di�erently

than a vertically oriented pair. So while both shunt and loading mode measurements have

associated positions, a shunt mode measurement has an extra geometrical parameter, this

sensor orientation vector.

Relationship to other modes The modes cannot actually be separated as cleanly as

I have suggested. When the hand is close to both the transmitter and receiver, both C1

and C2 can become large. Their sum,3 in fact, can become larger then C0, and the current

arriving at R can be greater than the current that arrived before the �eld was perturbed.

We usually refer to this as \coupling mode" or \crossover mode," meaning the pseudo

mode in which the electrodes are con�gured for shunting, but the dominant e�ect is the

transmit e�ect. As the hand approaches a transmit-receive pair in shunting con�guration,

the signal decreases as more displacement current is shunted from C0 to C1. But as the

hand approaches the transmitter and receiver more closely, the signal starts increasing as

the \transmit mode" current path through C2 grows.

Variations in C5 can a�ect the sensors dramatically. The C5 of a person wearing 10 cm

thick platform shoes would be one tenth that of a person wearing shoes with 1 cm thick

soles. In fact, the value of C5 can vary even more, for example when the person is on an

actual platform such as a stage.[Par] This can be a serious problem.

3Since the arm is a conductor, C1 and C2 are connected in parallel, and therefore add.
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Formice or imaging systems to work well, they must infer the global o�set C5, in addition

to the C1 for each receiver. We usually try to suppress C2, though for some applications it

might be desirable to try to infer its value also.

Component Values

At the frequencies we are concerned with, the real impedance of free space is essentially

in�nite (capacitors block direct current), and the real impedance of the body is almost zero.

Barber [BB84] gives resistivity �gures on the order of 10
m (Ohm-meters), plus or minus

an order of magnitude: cerebrospinal uid has a resistivity of :65
m, wet bovine bone

has 166
m, blood has 1:5
m, and a human arm has 2:4
m longitudinally and 6:75
m

transverse.

Tom Zimmerman measured the capacitance between the right hand and the left foot,

and found a value of 9:1 pF [Zim95]. A simple parallel plate model of feet in shoes with

1cm thick soles gives a capacitance of 35 nF, using C = �0A=d, and taking A = 2 feet

�20cm� 10cm and d = 1cm. For 10 cm thick platform shoes, the value of C = 3:5nF. (We

have neglected the dielectric constant of the soles, and all inductive e�ects.)
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Chapter 3

Forward Problem

3.1 General Case

As we saw in section 2.2.4, the sensor values can be determined in the most general case by

solving the Laplace equation with an inhomogeneous permittivity �, equation 2.20:

�r � �E0 = r � (�r�o) = �r2�0 +r� � r�0 = 0

However, for very simple imaging problems (such as imaging a single point, that is, making

a two- or three-dimensional mouse), this model is too general. We cannot a�ord to solve

Laplace's equation each time we move the mouse. In this chapter we will use some of the

physics presented in Chapter 2 to motivate a an approximate forward model of the response

of the sensor to a single point-like grounded object.

3.2 Approximate e�ect of a small grounded object

We want to model the e�ect of a small, perfect conductor h at a point x in space, connected

to ground through a capacitance C5 and a wire whose e�ect on the �eld is negligible. What

we want is a simple model of how the presence of the conductor a�ects the capacitance

between the transmitter and the receiver. As a \zeroth order" approximation, we will

assume that the object's e�ect on the geometry of the �eld is negligible.1 We will be more

explicit below about what is meant by the geometry of the �eld.

Figure 3-1 shows both the unperturbed electric �eld impinging on the receiver, and the

perturbed �eld. It will be helpful to de�ne a \two-terminal" component model of a �eld

line. Such a component is shown in the Figure, stretching from the perturbation to the

receiver. The component is de�ned by a small tubular surface with the property that the

tangent vector of its axis is everywhere parallel to the �eld. Since the tube is small, its

sides are also parallel to the �eld, and its endcaps are perpendicular to the �eld. Because

the sides are parallel to the �eld, there is no ux through the sides. The only ux into or

out of the tube is through the endcaps. Since the endcaps are small and perpendicular to

the �eld, the ux through an endcap is equal to the �eld strength at a point on the endcap

1It should be possible to do an expansion in the size of the perturbation, analogous to the expansion in

the time-rate parameter from Chapter 2, to make the \zeroth-order" character of the approximation explicit.
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C5

Figure 3-1: The unperturbed electric �eld impinging on the receiver, left, and the per-

turbed �eld, right. A two-terminal component model of a �eld line is shown between the

perturbation and the receiver.

disk multiplied by the disk's area.

The divergence theorem says that the total ux through the tube's surface is equal to

the integral of the enclosed source and sink terms �f . The ux through a tube containing

no sources or sinks (charge) is zero. Thus the ux leaving the bottom endcap of a sourceless

tube equals the ux entering the top.

Now we can consider three contiguous tubes, the �rst starting at the transmit electrode

(but not overlapping it) and ending just above the perturbation, the second enclosing the

perturbation, and the third beginning just below and extending to the receiver. The net

ux through the �rst tube is zero, since it contains no sources. The ux entering the small

section of tube enclosing the perturbation is simply the �eld strength at the endcap disk

multiplied by the disk's area, as explained earlier.

If the perturbation is a grounded, perfect conductor, it absorbs all the incident �eld

lines: charge is induced on its surface in proportion to the incident ux. No ux leaves the

bottom endcap, so that the net ux, rather than being zero as it would be in a charge-free

region, is proportional to the induced charge.

Since none of the ux that left the �rst tube and entered the second arrives at the third,

we can calculate an approximate change in the ux into the receiver, if we have made the

\zeroth order" assumption that the object does not a�ect the �eld geometry (meaning the

shapes of the tubes). The decrease in ux at the receiver is the amount that left the top

tube, that is, the �eld strength at the perturbation, multiplied by the tube area.

If the object is connected to ground through an impedance, instead of directly, a voltage

divider is a natural model to consider. The �rst tube would be modeled as one impedance,

the third tube would be an impedance in series with it, and the connection to ground would

be the load on the divider. This model is consistent with the case considered above, in

which the impedance to ground is zero, and all the \current" is shunted to ground. When

the impedance to ground is non-zero, some fraction of the ux entering the second tube
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would also leave, and arrive at the receiver. We will be investigating the utility of this

model further.

Now we have introduced a model for how an object changes the received signal that

depends on the �eld strength at the object's location. Next we will need a model of the

�eld itself.

3.3 Modeling the �eld: the dipole approximation

We will approximate the �eld due to a pair of small, identical, rectangular electrodes of

dimension b� c and displaced from one another by a along the x-axis as a dipole with the

same spacing. The dipole moment of a charge distribution is

p =

Z
x0�(x0)d3x0 (3:1)

If the distribution on the electrode surfaces had a uniform value of �,2 then 3.1 yields

px = �abc

and

py = 0

The expression for px makes sense: �bc yields the total charge on one electrode, so we could

write px = Qa. Thus the pair of rectangular electrodes displaced from one another by a

and charged to +Q and �Q has the same dipole moment as a pair of point charges +Q and

�Q displaced by the same amount.

To justify the dipole approximation more rigorously, we would have to solve for the

charge distribution on the electrode surfaces, and then perform a multipole expansion of

the charge distribution. The dimensions at which the higher order terms became signi�cant

would be the limits of the approximation's validity.

3.4 Modeling the sensor response

Using the point absorber model together with the dipole approximation of the �eld geom-

etry, we can model the sensor response data measured using a small grounded object as a

hand phantom. Figure 3-2 shows a plot of the function C � jE(x)j, where C is a constant

and E(x) is a dipole �eld, given by the gradient of the dipole potential
p�̂r
r2
. The dipole

moment p is a constant representing charge multiplied by the vector from the center of the

transmitter to the center of the receiver.

Figure 3-3 shows sensor measurements along the z-axis, perpendicular to the transmit-

receive axis, and the dipole response model. Since x and y are zero, the dipole model

simpli�es to E(0; 0; z) = 1
z3
. Scale and o�set parameters for the distance (abcissa) and

sensor value (ordinate) have been �t to the data. The function plotted is shown at the top

of the graph.

2The surface charge distribution is not in fact uniform, though the surface is an equipotential. These two

statements are by no means equivalent.
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Figure 3-2: Comparison of functional form of dipole model with experimental data. Mea-

surements were made in a plane parallel to the dipole axis, using a grounded metal cube as

a hand phantom. The theoretical plot is for a plane parallel to dipole axis, at a distance of

:9a above the dipole axis, where a is the dipole spacing.
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Figure 3-3: Comparison of functional form of dipole model with experimental data. Mea-

surements were made along a line originating at the dipole origin, and extending outward,

perpendicular to the dipole axis. At very short distances, transmit mode starts to dominate,

and the signal rises again.

3.5 Iso-Signal Shells

Given this �eld model, we can plot surfaces of constant sensor readings. These plots are

very helpful in shaping one's intuition about the behavior of the sensors. The surfaces are

ellipsoidal shells. The central axis of the ellipsoid is the dipole axis. Figure 3-4 shows two

nested iso-signal shells, for two di�erent sensor readings. The outer shell has been cut away

to reveal the inner one. As we will see in Chapter 4, these shells, with a Gaussian thickness

to represent uncertainty due to sensor noise, are the ambiguity classes for single sensor

measurements.

3.6 Ground plane

The dipole approximation is also a good model of the response of a sensor in the presence

of a groundplane. Note that in the presence of a groundplane, the functional form of the

response of a sensor is no longer simply the �eld strength, since many �eld lines starting at

the transmitter end on the groundplane, instead of on a receiver, and are therefore irrelevant

to the signal measured. In the non-groundplane case, almost all the �eld lines leaving the

transmitter arrive at the receiver, so the sensor response is proportional to the absolute

�eld strength.

The electric �eld between a transmit-receive pair in the presence of a groundplane is

not dipolar. The �eld due to a single transmitter might be modeled as a dipole, but it

would be one whose axis was perpendicular to the groundplane (by the method of images).

Nevertheless, the response of the sensor can be modeled almost as well by the �eld strength

of a dipole whose axis runs between the transmitter and receiver, parallel to the groundplane.
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Figure 3-4: Two nested iso-signal shells, for two sensor values. The outer shell has been cut

away to reveal the inner one. The dipole generating the �eld lies along the central axis of

the ellipsoid.

Evidently the density of �eld lines that leave the transmitter and arrive on the receiver,

rather than on groundplane, has this dipolar form, which is not surprising since this set of

�eld lines has at least the very least the same bilateral symmetry as those produced by a

pair of isolated electrodes.

We now have an analytical model for the behavior of a single transmit-receive pair in

the presence of a groundplane, and this has useful consequences. Since receivers are virtual

grounds, the �eld con�guration due to, say, one transmitter, should not be changed by re-

placing a patch of groundplane with a receiver. In other words, the �eld due to a transmitter

surrounded by groundplane is identical to that produced by a transmitter surrounded by a

patchwork of receivers and ground. This in turn means that, in the presence of a ground-

plane, receivers do not a�ect one another|they are entirely independent dipoles. For small

objects at least, we have an analytical solution to the forward problem of predicting the

sensor values given a hand location, and this will be very helpful in solving the inverse

problem.

3.6.1 Generalizations of hand model

It is an open research question whether the sort of approximations we have been using

can generalized and applied to more complex conductivity geometries, for example, to the

case of two hands, and for the general imaging problem. If there is a way to do so, we

will be able to make faster algorithms. In the worst case, we will have to solve Laplace's

equation each time we need to evaluate the forward model. This is a computationally slow

but well-understood procedure.
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Chapter 4

Constructing the ambiguity class

In this chapter we will introduce a general probabilistic framework that will allow us solve

inversion problems anywhere along the EF sensing hierarchy, and also provide a means

of designing optimal sensor geometries. This approach, applied to full imaging problems,

is described by Jaynes in [Jay83], Hurwitz in [HHL79], Gull and Daniell in [GD78], and

Skilling and Gull in [SG83].

The essence of the approach is to view imaging (or proximity detecting, or hand �nd-

ing) as an inference problem. We de�ne a model whose parameters we wish to know, and a

probability distribution over those parameters. As more data becomes available (for exam-

ple, as we consider additional sensors), the volume of the feasible set of model parameters,

which we will call the ambiguity class, decreases and the probability distribution becomes

increasingly peaked around the \true" values of the parameters.

The inverse curvature of a peak in a particular direction gives the uncertainty of the

estimate of the parameter value (or linear combination of parameter values) corresponding

to that direction. The amount of information provided by a measurement can by quanti�ed

by the change in entropy of the distribution that resulted from the measurement. Ill-posed

(underdetermined) problems can be made well-posed by specifying additional constraints

on the feasible set. (This is the Bayesian view of regularization.) These constraints can

be encoded in the prior probability distribution that de�nes the initial feasible set. The

problem of designing sensor arrays may be posed in terms of maximizing the expected

information provided by a measurement.

Since, as we saw in section 2.1.1, the sensors are subject to additive Gaussian noise, the

probability of the data given some setting of model parameters is given by

p(Djm) =
p
��e

(D�f(m))2

�2

where � is the standard deviation,1 d is a data value, f(m) is the data value predicted by our

analytical forward model given a model con�guration (hand position) m. This distribution

is normalized: if we integrate over all values of d, we get 1. By Bayes' theorem,

p(mjD) =
p
��

e
(D�f(m))2

�2 p(m)

p(D)

1It will not represent conductivity in this chapter.
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For the case of a two- or three-dimensional mouse, we can chose a prior p(m) that renders

the inversion well-posed, by, for example, restricting the possible hand positions to positive

coordinate values. A useful prior for for one of the model parameters is p(m) = c
1+e��x

,

de�ned in some �nite range of x, where c is a normalizing constant and � is a sharpness

parameter. This function is a way to approximate a step function with a closed form

expression. A possible advantage of using this function over a hard step function is that

numerical optimization techniques are able to follow it back into the high probability region,

since it is smoothly varying. The prior for our entire model is the product of the priors for

x, y, and z.

p(mjD) / e
(D�f(m))2

�2
c

1 + e��x

Apart from the prior, which we might have chosen to be a constant over some region,

the functional form of p(mjD) is identical to that of p(Djm). The remarkable fact that the

p(mjD) distribution and the p(Djm) distribution, which have completely di�erent meanings,

happen always to have the same functional form is the content of Bayes' rule. However,

the similarity in functional form is in some sense super�cial. Consider the normalization of

p(mjD). Rather than performing the trivial Gaussian integral over d (trivial and Gaussian

because when we integrated p(Djm), m and therefore f(m) was �xed), we must integrate

over all values ofm, which means integrating our forward model composed with a Gaussian.

The di�culty of performing this integration depends on the form of f . This normalization

constant, which Bayesians grandly call the evidence, is not important for �nding the best

setting m̂ of the model paramters, since a scaling of the dependent variable (probability) has

no e�ect on the location of maxima. However, it does become important when making any

sort of comparison between di�erent functions f , or calculating entropies. The di�culty of

performing this integration would be the Achilles' heel of Bayesian methods, were it not for

the fact that for small �, p(mjD) can be well approximated by a Guassian, which is trivial

to integrate.

Information collected by multiple sensors can easily be fused: simply multiply the

p(mjD) terms due to each sensor to get the joint probability of a model given all the

data. Thus if we use D to denote the set of N measurements di, where i indexes the sensor,

p(mjD) /
NY
i

e
(Di�fi(m))2

�2

Y
j

c

1 + e��xj

Notice that, since log is a monotonically increasing function, if we maximize log p(mjD),

we will get the same m as if we had maximized p(mjD). It will be desirable in practice

to work with log probabilities rather than probabilities, for several reasons: we can save

computation time since exponentials disappear and multiplication and division become

addition and subtraction. Furthermore, when we multiply many probabilities together, the

numbers become very small, so that numerical precision can become a problem. Using

log probabilities alleviates this problem, and reduces computation time, since exponentials

appear so often, in each of our Gaussian probability distributions.

log p(mjD) =
NX
i

(Di � fi(m))2

�2
�
X
j

log(1 + e��xj ) + c
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This has the familiar interpretation of the sum of squared errors between the data and the

data predicted by the model, with an additional error term derived from the prior.

4.1 Uncertainty and optimal sensor geometry

Once the basic degeneracies have been broken, either by collecting su�cient data or impos-

ing constraints via a prior, so that there is a single maximum in the log probability, the

uncertainty about the best setting of model parameters may be represented by the inverse

Hessian matrix A�1 evaluated at the maximum. To see why, we will consider the Hessian

and its properties. The Hessian A gives the curvature, which is a measure of con�dence

or certainty. In A's eigenvector basis, in which it is diagonal, the diagonal elements (the

eigenvalues) Aii represent the curvature along each of the eigenvector directions (known

as the principal directions). The curvatures along the principal directions are called the

principal curvatures. The product of the curvatures, the Gauss curvature, which serves

as a summary of the certainty at a point, is given by the determinant of A. The average

curvature is given by 1
2
trace A = A11+A22

2
. Finally, the curvature in a particular direction

v = (cos�; sin�) is given by Euler's formula:[Mor93]

� = vTAv = �1cos
2� + �2sin

2�

The inverse of A in this basis is the matrix with diagonal elements 1=Aii. Thus the

inverse Hessian speci�es \radii of curvature" of the probability distribution, which can be

used a measure of uncertainty. The determinant and trace of the Hessian are independent

of coordinates, so we may use these as local measures of the \Gauss uncertainty" and mean

uncertainty.

4.2 Entropy

The most general global measure of uncertainty is the entropy. The change in entropy of

the p(mjd) distribution resulting from the collection of new data measures the change in

uncertainty about the values of the model parameters, including uncertainty due to multiple

maxima, given a set of measurements. The change in total entropy �H of the ambiguity

class m resulting from a measurement dn+1 is

�H(mjDn+1) = H(mjDn+1)�H(mjDn)

where

H(mjDn) =

Z
p(mjDn) log p(mjDn)dm

The expected change in entropy when we collect a new piece of data, that is, the change

in entropy averaged over possible data values, gives a basis for comparing sensor geometries.

The expected value of H(mjD) is

I =

Z
p(D)H(mjD)dD

I is thus measure of the quality of a sensor geometry. By analogy with coding theory,

the best measurement procedure (for single measurements) reduces the entropy as much as
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Figure 4-1: Forward probabilities for sensor 1.

possible. One could therefore search for optimal sensor geometries by maximizing I .[Mac91,

Lut85, Lin56]

4.3 Example: Two dimensional mouse

Here we use this technique to construct the ambiguity class and �nd the most likely model

parameters given two sensor readings. We want to infer the position of the hand in two

dimensions from two sensor readings. So the model consists simply of two numbers, rep-

resenting the position of the object purported to explain the sensor readings. The sensor

axes are oriented perpendicular to one another, and the transmit electrode is shared.

Figures 4-1 and 4-2 below show the forward probability distributions p(Djm) for the

two sensors, oriented perpendicular to one another. To make the �gure easier to view, the

the noise has been exagerated dramatically. If we were to use the actual noise levels for the

sensors, as measured in section 2.1.1, the features of the surfaces would be so minute that

the plot routine would miss them.

Figure 4-3 shows these two distributions in the same space. Their product, the joint

forward probability, p(D1; D2jm) = p(D1jm)p(D2jm), is shown in Figure 4-4. The inverse

probability distribution, p(mjD1; D2) is the same picture, multiplied by a prior and divided

by a normalizing constant.

The surfaces in Figures 4-1 through 4-3 are not normalized with respect to m (i.e. they

show p(Djm) not p(mjD)), because the heights of the two marginal distributions are not in

fact the same. Their actual heights would make Figure 4-3 less clear. The important feature

of that picture is the point where the straight sections of the ovals intersect perpendicularly.

In Figure 4-4, which shows the normalized joint distribution (the product of the �rst two
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Figure 4-2: Forward probabilities for sensor 2.
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Figure 4-3: Forward probabilities for sensor 1 and sensor 2.
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Figure 4-4: The ambiguity class: joint forward probabilities.
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Figure 4-5: Forward probabilities for sensor 1.
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Figure 4-6: Forward probabilities for sensor 2.

40



-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4-7: The ambiguity class: joint forward probabilities, with error bars, the principal

components of the inverse Hessian evaluated at each peak. The larger error bar on the less

sharply de�ned peak has been scaled down by 1/3 to �t it on the page.
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distributions, normalized), this intersection point appears as the sharper peak. Figure 4-7

shows a contour plot of the joint distribution, with the \principal uncertainties," or error

bars, evaluated at the two maxima, superimposed on the maxima. The three smallest

arrows have been scaled up by a factor of 10 to make them more visible. The larger arrow

on the less sharply de�ned peak has only been scaled up by 31
3
, so that it �ts on the page.

4.3.1 Recovering orientation

Since in our calculations we have been assuming that the hand is point-like, the uncertainties

seen here are due to the �eld, not the hand. But if the hand were not point-like, this would

presumably introduce additional uncertainties, attening the distribution further, at least

in some directions. If we \calibrated out" the intrinsic ambiguities due to the sensor layout,

for example by multiplying the uncertainties at each point by the principal curvatures for

the single-point ambiguity class, or by subtracting the same, then any ambiguities we did

detect would presumably represent a spread in the distribution being measured. This may

provide a way to estimate the size and orientation of the object: simply use the \uncertainty

ellipsoid" de�ned by the principal curvatures.
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Chapter 5

Example Inverse Problem: 3D

Mouse

In this section we will present another application of the discussion in Chapter 4: a three-

dimensional mouse. We will chose a sensor geometry and construct its ambiguity class for an

example hand position. It is possible to check the suitability and quality of a sensor layout

and prior by examining the ambiguity class: if there are multiple maxima, the inversion is

ill-posed, and if the peak is not sharp (if the maximum has high radii of curvature, that is,

a high value of the determinant of the inverse Hessian matrix) the value is very uncertain.

Figure 5-1 shows the layout we selected. In section 4.1 we discussed criteria for optimal

sensor design. Evaluating the entropy integrals, and averaging over all possible data val-

ues, represents a substantial practical challenge. E�cient means of doing so may require

sophisticated Monte-Carlo techniques, except in special cases.

Therefore, we will simply satisfy ourselves that this layout does not lead to ill-posed

inversion problems by examining its ambiguity class. Figure 5-2 shows the (log) ambigu-

ity class for our sensor layout with the hand at :5; :5; :5, measured in units of the sensor

dipole spacing. Each image shows a slice through the three-dimensional joint probability

distribution, parallel to the X � Y plane.

Unlike in Chapter 4, where we plotted the probability directly because it led to a clearer

�gure, here we have plotted the log probability, which is the more useful quantity. In this

case, the same �gure made with probability instead of log probability, is not very interesting:

every frame is black except one, which has a small white area in the region of the maximum.

The log �gure is easier to read.

Actually to invert the signals (as opposed to showing that they can be inverted), we can

maximize the log probability, which corresponds to minimizing the prior term plus the sum

of squared error between the measured value and that predicted by the current estimate of

the hand position. We have done so for this example case, and found that the maximum

was the at the expected location of :5; :5; :5.

For the practical mouse we have made, we have taken a cruder approach. The inversion

process is computationally intensive, so we have generated a set of input-output data using

the forward model, and �t to this dataset surfaces mapping sensor values to hand positions.

Once the surfaces are �t, evaluating them is more computationally e�cient than maximizing

a function each time. However, function �tting can be very di�cult. In fact, we never found

a full, satisfactory map from all 3 sensor values to all 3 axes. We ended up �tting a map
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Figure 5-1: Sensor geometry for three-d mouse.

from 2 of the sensor values to x and y, and then estimating the z separately. This allows

horizontal motions to be tracked well, but the approach is fundamentally awed, and it

leads to other problems: as the hand moves left and right, there is a large change in z,

because the left-right change also changes the value of the third (diagonal) sensor.

The Bayesian approach, if it can be realized in real time, is free of these aws, and gives

the actual position and error, to the extent that the forward model is correct. We plan to

try an alternate implementation of the mouse in which we solve the optimization problem in

real time. In addition to the �tting di�culties we encountered, the �tting approach will not

be applicable to harder inverse problems, in which we are trying to infer more parameters.

Furthermore, possibility raised in section4.3.1 that curvatures in the ambiguity class may

reveal size and orientation information is tantalizing. Finally, even if some other inversion

technique is employed, the Bayesian formalism we have introduced can be used o�ine to

design optimal sensor con�gurations, by minimizing the expected change in the entropy of

the ambiguity class resulting from a typical measurement.

Figure 5-3 shows a screen-shot of the mouse.1 The user's hand motion is mapped onto

the motion of the hand icon. The hand can pick up the small cube shown, move it around

the space, and set it back on the oor. Because we cannot yet extract hand size, we have

used a \sticky hand, sticky oor" protocol for grasping and releasing the cube. The small

cube starts on the oor. When the hand �rst touches the cube, the hand closes and the cube

\sticks" to the hand and moves with it until the hand returns to the oor, at which point

the hand opens and the cube sticks to the oor, where it remains until the hand returns.

1The 3d graphics for the mouse was created by Barrett Comisky.
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Figure 5-2: Ambiguity class for sensor geometry pictured in the previous �gure, with hand

at location :5; :5; :5:
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Figure 5-3: Three-d mouse.
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Chapter 6

Conclusion

We have taken the �rst steps toward Electric Field Tomography, moving from simple prox-

imity detector to 3-d mouse. We have introduced a general mathematical framework with

which it should be possible to solve the inversion and optimal sensor design problems for

any number of sensors.

In Chapter 2, we explained the physics of Electric Field Sensing. Starting fromMaxwell's

equations, we found that Laplace's equation with an inhomogeneous permittivity is the

general solution to the forward problem of predicting the sensor values given a permittivity

distribution and boundary conditions. But with an eye toward the simpli�ed problem of

imaging a single point, in Chapter 3 we introduced an approximate analytical forward

model. This model has two parts: one describes how the object interacts with the �eld,

and the other describes the �eld itself.

Next, in Chapter 4 we introduced a framework that allows us to discuss both inversion

and optimal sensor placement. Given a forward model, in this framework we de�ne a prob-

ability distribution over the model parameters. Additional data sharpens the distribution

around the \true" parameter values. The most likely set of model parameters is found

by maximizing the probability, or log probability. The uncertainty of the �nal estimate

of model parameters (the error bars) is given by the curvature of the log probability. An

optimal sensor layout can be chosen by minimizing the expected change in the entropy of

the ambiguity class. Finally, we showed how to use the Bayesian framework to image a

single point in two and three dimensions.

One open question is whether the forward model introduced in Chapter 3 will continue to

be useful with more complicated distributions, for example with multiple small objects. As

long as the approximation on which it is based remains valid, it should work with multiple

objects. The only question is whether multiple objects start to distort the �eld so much

that the zeroth order approximation is no longer good enough. Answering this question will

require additional experimental and theoretical work. Another issue that must be addressed

is that of incorporating a variable impedance to ground into our model. A suggestion for

how to do this was presented at the end of section 3.2, but it must be tried experimentally.

If the forward model can be generalized successfully, then there is truly a path from the

3-d mouse to imaging. If it cannot be, then we will have to take a brute force approach,

and solve Laplace's equation numerically in order to image more complex geometries. Even

if our present forward model cannot be generalized, however, all the inference and inversion

techniques introduced here are applicable, since they treat the forward model as a black
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box. And even if the 3-d mouse is not a path to imaging, developing it for its own sake,

perhaps by using the principle curvatures of the log probability to extract orientation and

size information, will interesting and useful. If the long-term project is successful, we will

be able unobtrusively to extract 3-d shape information using electric �eld measurements,

which could profoundly a�ect the way people interact with machines.
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Appendix A

Backprojection Algorithm

The standard backprojection algorithm is a computationally e�cient means of recovering

an image of the cross section of an object from a set of projections. A projection is a

line integral of some parameter of the object, for example X-Ray opacity (as in CT-scans).

We will restrict the discussion in this Appendix to the case of parallel projections, that is,

integrals along straight lines that are parallel to one another. Figure A-1 shows an object

f(x; y), and (schematically) a single parallel projection P�(t).

The mathematical basis of the backprojection algorithm is the Fourier Slice Theorem,

which equates the Fourier transform of P�(t) with a sample (or slice) along the projection

angle �, of F (u; v), the two-dimensional Fourier Transform of f(x; y) . The proof of the

Fourier Slice Theorem, following Kak and Slaney [KS88], is straightforward:

Consider the coordinate system (t; s), a rotated version of (x; y):

"
t

s

#
=

"
cos � sin �

� sin � cos �

#"
x

y

#
(A:1)

In this coordinate system, a projection along lines of constant t is written

P� =

Z 1

�1
f(t; s)ds

Its Fourier Transform is given by

S�(!) =

Z 1

�1
P�(t)e

�2�i!tdt =

Z 1

�1

�Z 1

�1
f(t; s)ds

�
e�2�i!tdt =

Z 1

�1

Z 1

�1
f(t; s)e�2�i!tdsdt

We can transform the expression for S�(!) back into the (x; y) frame using A.1:

S�(!) =

Z 1

�1

Z 1

�1
f(x; y)e�2�i!(xcos �+y sin �)dxdy

This expression represents the two-dimensional Fourier Transform at a spatial frequency of

(u = ! cos �; v = ! sin �), that is, along a line through the origin at angle �:

S� = F (!; �) = F (! cos �; ! sin �)

.
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Figure A-1: The projection P�(t) of an object f(x; y) .
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F(u,v)

u

v

Figure A-2: The non-uniform sampling of k-space corresponding to a set of projections 10

degrees apart.

Now that we have explained the Fourier Slice Theorem, we can use it to analyse the

process of collecting projections. This will lead us to the backprojection algorithm. The

following explanation of backprojection is a combination of Kak[KS88], Rosen[Ros95], and

my own explanation.

The Fourier Slice Theorem tells us that a series of projections in increments of 10 degrees,

for example, provides a set of samples of the Fourier transform plane along a set of lines 10

degrees apart, as shown in Figure A-2. To reconstruct the image f(x; y), we might naively

sum all the samples of the Fourier Transform plane and then take the inverse transform.

But this would introduce a systematic error. The low spatial frequencies in the center

of the Fourier Transform plane have been sampled more densely than the higher spatial

frequencies at the outskirts of the plane, because we sampled along lines through the origin.

In particular, the origin (the spatial DC component) received a contribution from each

sample line. To correct this, in the we could scale each frequency domain sample by jkrj,
where jkrj is the distance of the sample from the origin in k space (the Fourier Transform

plane). This is a high-pass �ltering operation. Notice that this removes the overemphasized

DC component entirely, which is no loss, since it contained no spatial information (just a

global \brightness" that would typically be adjusted to make the picture look best anyway).

The �nal reconstruction could be found by adding together the two-dimensional inverse

Fourier Transform of each weighted slice. But to carry out the reconstruction, we do not

actually have to perform the forward and inverse Fourier transforms. We can implement

the �ltering (weighting), by convolving each projection with the Fourier transform h of our

one-dimensional \ramp" weighting/�ltering function jkrj. The (t; s) space counterpart of

adding together the weighted k-space samples is adding the functions h(t) � P�(t). Since

this function has no explicit or implicit s dependence, h(t) � P�(t) has the same value for
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all s. This means that the value of pixel p(s; t) is given by

p(s; t) =
X
�

h(t) � P�(t)

This means that we are \smearing" the values h(t)�P�(t) along all values of s, or backproject-
ing, and summing the backprojections for each � value. This is the �ltered backprojection

algorithm.

Note that if we forget the k-space picture completely, backprojection still makes some

intuitive sense: we smear the measured values back along the set of pixels that could have

contributed to the measurement; additional projections sharpen the image, because the

pixels where the object actually is receive contributions from many projections. Neverthe-

less, we are always left with an unwanted spatial \DC" term, in all the pixels that received

contributions from, say, just one projection, so we perform a highpass �ltering operation to

eliminate this DC component.

The backprojection algorithm can be generalized to handle non-parallel, non-straightline

projections. The backprojection algorithm used in Electrical Impedance Tomography back-

rojects along curved equipotentials. This is discussed further in Chapter 1.

The set of pixels p(s; t) along which we \smear" the measured value h(t) � P�(t) bears
some resemblance to the ambiguity class for the projection measurement, to use the ter-

minology of Chapter 4. However, the ambiguity class in fact is more general. It is the

probability distribution over all possible states of the model. So in this case, it is the

probability distribution over each possible brightness setting of the pixel values in the set

p(s; t). Backprojection may be viewed as an approximation of this approach in which the

probability distribution over the possible brightness values of each pixel is summarized by

the mean value. Using the Bayesian approach with the Gaussian approximation amounts

to keeping the �rst two moments of the ambiguity class, instead of just the mean. This

allows us to put error bars on each pixel brightness.
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