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Motivation

Is the entire protocol stack a distributed optimization machine?

Are there alternative protocol stacks we can design?



Overview

• NUM Framework

• Recent Advance 1: Inelastic Traffic

• Recent Advance 2: Coupled Utilities

• Recent Advance 3: Wireless Network Power Control

• Recent Advance 4: Physical Layer Channel Coding

• Layering as Optimization Decomposition

Thanks To: S. Boyd, R. Calderbank, J. Doyle, M. Fazel, P. Hande, J.

W. Lee, Y. Li, S. H. Low, D. Palomar, S. Zhang



NUM Framework

Beyond (linear) Network Flow Problems. Basic version:

maximize
∑

s Us(xs)

subject to
∑

s:l∈L(s) xs ≤ cl, ∀l,
x º 0

Current applications:

• Reverse engineering: TCP congestion control and Internet rate

allocation (Steven’s talk)

• Forward engineering: Network resource allocation, e.g., power control

• Both reverse and forward engineering: TCP/IP/MAC/PHY

interactions (Steven’s talk)

Major approaches:

• Optimization-theoretic: distributed optimal solution algorithm

• Game-theoretic: Nash equilibrium characterization
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Goals and Steps

Layering as NUM decomposition for:

• Internet 0

• Existing networks: FAST Copper (with S. Fraser and J. Cioffi)

But many pieces are missing in basic version of NUM

• What is utility?

• What is a channel?

Many encouraging progress very recently made



Inelastic Traffic

Shenker (1995): “Because of this elasticity, they can decrease their

transmission rate in the presence of congestion.” What about inelastic

flows?
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linearity and nonlinearity, but convexity and nonconvexity.” Can we do

nonconcave utility maximization?
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When Does Canonical Distributed Algorithm Work?

• Set of bottleneck links does not change at optimal prices (⇒
continuity)

• U∗(c) is a concave function (⇒ zero duality gap)
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Inelastic Traffic: General Case

What can we do when duality gap is nonzero?

• Analysis: Can a certain amount of network utility be attained?

• Design: A new distributed algorithm?

SOS Tool applied to inelastic flow congestion control: very numerically

efficient (but centralized off-line) analysis

Obtain the globally optimal network utility with a second order

polynomial link pricing

A new distributed algorithm for link price update (by simple bisection)

always converges to global optimality

Polynomial time in number of end hosts, exponential time in number of

links (work well for small networks with many users)
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Coupled Utilities: Formulations

Us: a function of {xi}i∈I(s) where I(s) is the set of other sources whose

rates is of concern to source s

• A hybrid model of selfish and non-selfish utilities

• Overlay or sensor network where some source nodes form a cluster

• DSL spectrum management and wireless power control
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x º 0
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Coupled Utilities: Optimal Distributed Algorithm

Associate extra constraints with consistency pricing: γ12, γ21, γ23, γ31

Decompose the Lagrangian into three sets, one for each source, e.g.:

U1(x1, y1) + γ12y1 − γ21x1 − γ31x1 − λ1x1 − λ2x1

Maximizing over x1 and y1 locally at source 1

Link price λ implicitly feed back by queue management process,

updated the same way as in canonical distributed algorithm

Consistency price γ communicated through the local communication

channels among the sources whose utilities depend on each other’s

rates. Consistency prices update is easy, e.g.:

γ12(t + 1) = γ12(t) +
β

t
(y1(t)− x2(t))
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Wireless Network Power Control

Link capacity depends on transmit powers and channel conditions

Nonlinear dependency, e.g., energy efficiency or SIR as a function of

transmit power

Joint control of end-to-end rate allocation and per-hop power control

Recent results obtained for various cases:

• Cellular downlink case

• Cellular general case

• Cellular end-to-end case

• Multihop case with voluntary relays

• Multihop case with relay charges

• Incremental estimation in sensor networks
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Multihop Case

s: index for sources

l: index for links

L(s): set of links used by s

xs: rate from source s

maximize
∑

s Us(xs)

subject to
∑

s:l∈L(s) xs ≤ log(KSIRl(P)), ∀l,
x,P º 0

NewExisting

Demand
Change  

Supply
Change 

New Challenges:

• Global nonlinear (and nonconvex) dependency between rates and

powers

• Need distributive algorithm to balance supply and demand
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JOCP Algorithm

1. At each intermediate node, queuing delay λ is implicitly updated:

λl(t + 1) =


λl(t) +

γ

cl(t)


 ∑

s:l∈L(s)

xs(t)− cl(t)







+

2. At each source, window size updated (and xs(t + 1) =
ws(t+1)

Ds(t)
):

ws(t + 1) =





ws(t) + 1
Ds(t)

if ws(t)
ds

− ws(t)
Ds(t)

< αs

ws(t)− 1
Ds(t)

if ws(t)
ds

− ws(t)
Ds(t)

> αs

ws(t) else.

3. Each transmitter j passes message mj to all other transmitters:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj

4. Each transmitter updates its power:

Pl(t + 1) = Pl(t) +
κλl(t)

Pl(t)
− κ

∑

j 6=l

Gljmj(t)



Example

A small example:
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Layering Price

TCP 
Transmit Node
Power Control

x

x c

P

    Shadow Price  Shadow Price

(Demand) (Supply)

Shadow Price

Existing New 

Source Node Intermediate
Node Queue

• Theorem: Nonlinearly coupled system converges to joint, global

optimality

• Advantage: No need to change the existing TCP congestion control

and queue management algorithms. Just utilize the values of queue

length in designing power control algorithm in physical layer

• Congestion price is also layering price



Physical Layer Channel Coding: Formulation

Rate-reliability tradeoff. NUM in (xs, Pe,s, Pe,l):

maximize
∑

s Us(xs) +
∑

s Vs(Pe,s)

subject to
∑

s:l∈L(s) xs ≤ cl(Pe,l), ∀l,
Pe,s =

∑
l∈L(s) Pe,l, ∀s

• Source tradeoff: Higher rate, lower quality

• Link tradeoff: Fatter pipe, lower reliability

How to distributively find the network-wide, globally optimal tradeoff?

Possible for large block length and reasonable decoding error probability
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Physical Layer Channel Coding: Algorithm

• Source problem: maximize the sum of net utility on rate (with total

congestion price) and net utility on reliability (with signal quality price)

• Source algorithm: local solution of source problem (2 variables),

updates signal quality price

• Network problem: receive revenue from rate, pay price for unreliability

• Link algorithm: update link congestion price

Next step: Recover information theoretic channel capacity as a special

case of NUM: utility is rate and constraint is decoding error probability

Achievability proof as primal problems, converse proof as dual problems
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Layering as Optimization Decomposition

How to layer? How not to layer? Separation theorem?

Rigorously quantify architectural principles and tradeoffs of layering

• Decompositions of a generalized NUM ⇔ Layering schemes

• Variables coordinating the subproblems ⇔ Interfaces among the layers

• Vertical and horizontal decomposition

Generalized Network Utility Maximization:

maximize
∑

s Us(xs) +
∑

j Vj(wj)

subject to Rx ¹ c(w,Pe),

x ∈ C1(Pe)
⋂ C2(F),

R ∈ R, F ∈ F , w ∈ W

Optimization variables: x,w,Pe,R,F
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One Possibility

• Application layer. Utility functions Ui and Vj model application needs

• Transport layer. End-to-end throughput is source rate xs for each end

user s

• Network layer. Routing matrix can be designed by varying R within

constraint set R
• Link layer. Through scheduling, antenna beamforming, and spreading

code assignment, contention matrix F can be designed within constraint

set F. Rates are then constrained by contention-free or

contention-based access schemes described by constraint set C2.
• Physical layer. Adaptive resource allocations, e.g., power control,

adaptive modulation, coding with embedded diversity, leads to different

logical link capacities c as functions of decoding error probabilities Pe.

Rate-reliability tradeoff forms constraint set C1



Are Alternative Decompositions Possible?

Consider a special case, with variables (x,y):

maximize
∑

s Us(xs)

subject to fs(xs, ys) ≤ 1,
∑

s gs(ys) ≤ 0,

xs ∈ Xs,

ys ∈ Ys

• Wireless cellular network downlink power control

• Waterfilling algorithms for capacity computation

• Generalized coding problem for HOT systems

3 - 6 different decompositions depending on the applications

Lead to different tradeoffs between computation and communication,

efficiency and complexity, different asymmetries in message passing
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Remaining Challenges

Open Issue 1: Wireless networks: no decoding or multiuser decoding?

MAC layer issues?

Open Issue 2: Internet routing protocols, especially BGP and wireless

ad hoc routing?

Open Issue 3: Application layer modelling? Bursty and real-time traffic?

Open Issue 4: Functions that may not fit into optimization?

Open Issue 5: Non-convexity, integer constraints, nonzero duality gap

for generalized network utility maximization?

Open Issue 6: Transient behaviors and time-scale mismatch?



Quantifying Network X-ities

Layering, and many networking principles, not just for performance

metrics, e.g., throughput, latency, distortion

It’s for network robustness in terms of Network X-ities:

• Evolvability

• Scalability

• Deployability

• Adaptability

• Manageability

Major challenges and opportunities:

• How to quantify these important and fuzzy notions?

• Optimize for the right objectives?
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END Tool



Summary

Tool: Network Utility Maximization

• An emerging, unifying framework for analysis and design of

communication systems

• Substantial theoretical advances in recent years

• Significant practical motivations and applications

Goal: Layering As Optimization Decomposition

• Reverse engineering to sharpen understanding of layering interactions

• Forward engineering to design layering

• Many puzzles have recently been solved. Other challenges remain



Contacts

chiangm@princeton.edu

www.princeton.edu/∼chiangm


