

Massachusetts Institute of Technology

George A. Popescu Prof. Neil Gershenfeld

Digital Materials and Digital Printers

Existing technologies

100 000\$

Irreversible

10 \$ Reversible

JUIC

Low precision Assembly

Error Correction

Age 3+

Age 21+

Existing Research : Saul Griffith

2D Folding

(A) B:P:B:P:B : Y:B:Y:B:Y:B:Y:B:Y:B:Y : G:Y:G:Y : B:P:B:P:B:P : G:P:G:P:G:P:G:P:G:P:G:P: B : Y:B:Y:B:Y:B:Y:B : P:B:P:B:P : G : Y:G:Y:G : P:G:P:G:P:G:P : B:P:B:P : G : Y: G:Y:G:Y:G:Y:G : P:G:P:G : Y : B:Y:B:Y : G:Y

How to make Saul's Thesis at a micron ? How to make 3D objects ?

Cut in 2D Assembled in 3D Space filling voxels Press fit : reversible Multiscale Multimaterials

Material Set

Plexiglas, Stainless Steal, Foam, Plywood, Kepton ...

<u>Multiscale</u>

1cm

200µm

1 µm (below eye resolution), between atoms and macroscopic

Microscopic vs Macroscopic

- Compression
- Tension
- Stress pattern
- Fatigue
- Error Reduction

Tension

Causes of Friction

Dept. of Industrial Engineering: NC State University

GIK joint variants & Pull test

TUSHAR MAHALE Dept. of Industrial Engineering: NC State University

Hysteresis

Force when GIKs are pushed together

TUSHAR MAHALE Dept. of Industrial Engineering: NC State University

Coefficient of friction

Normal load of 44.5N μ =0.337

Fn = p*Fnb + (1-p)*Fnc **Fc=µFn**

TUSHAR MAHALE Dept. of Industrial Engineering: NC State University

Error Reduction

Bonus : Material Tuning

Material Tuning

Active Materials

Conducting, insulating : Electronics ? PCBs ? Transparent, opaque : Optics ? Different refractive index : Photonic Crystals? Soft, hard : Joints ? Conducting, Semiconducting : Transistors ?

GIK Assembler

The head

Blade 1 is buildingBlade 2 is detecting errorsBlade 3 is removing errorsBlade 4 is rebuilding the removed lines