SEA for internet-0: a Scalable Encryption Algorithm for Small Embedded Applications

F.-X.Standaert, G. Piret, N. Gershenfeld, J.-J. Quisquater

UCL Crypto Group Microelectronics Laboratory

why we need crypto for internet-0

- identification : use encryption in a specific way
- authentication : use encryption in a specific way
- encryption : indeed
- thus asking encryption algorithm with *security*, *scalability* (uses, processors, ...), *small footprint*, maybe trading it.

The competition

- Triple-DES:
- AES:
- TEA (Tiny Encryption Algorithm), FSE 1994
- Yuval: "Reinventing the Travois", FSE 1997
 - no scalability
 - do we only need one standard encryption algorithm? (NB: need of something like tinySSL for UDP)

Specifications

- -n: plaintext size, key size.
- -b: processor (or word) size.
- $-n_b = \frac{n}{2b}$: number of words per Feistel branch.
- $-n_r$: number of block cipher rounds.

$$\longrightarrow$$
 SEA_{n,b}

Basic operations

Round and key round

6

Performances

- Pseudo-assembly code provided
- Operation counts easy
- Only a few instructions required:
 - Arithmetic and logic
 - Branch instructions
 - Comparisons, load from RAM, store in RAM

It yields...

	# ram	# regs.	code size (ops.)	implementation time (ops.)
$SEA_{n,b}$	$4n_b$	$n_b + 3$	$31n_b + 36$	$(n_r - 1) \times (22n_b + 29) + 20n_b + 18$

Table 1. Performance evaluation of $SEA_{n,b}$ (encryption + decryption).

Algorithm	E/D	Device	# ram	# regs.	code	# clock	$\#$ cycles \times
					size	cycles	code size
SEA96,8	yes	Atmel ATtiny	1	32	386	17 745	6849.10^3
$SEA_{192,32}$	yes	ARM $(risc-32)$	6	12	420	27 059	$11 \ 364.10^3$
Rijndael [19]	no	ARM (risc-32)	16	12	1404	2889	4056.10^3
SEA _{128,32}	yes	ARM (risc-32)	6	12	280	18 039	5050.10^3

Table 2. Comparisons: the code size is expressed in bytes. The results of $SEA_{128,32}$ where obtained by multiplying the code size and number of cycles of $SEA_{192,32}$ by 2/3, since 128 is not a multiple of 6.

ASIC and FPGA

• ASIC: 6800 gates 271 Mbits/s (250 MHz)

• FPGA: 400 slices 240 Mbit/s (240 MHz)

Conclusions

- Efficient combination of encryption/decryption
- Low code size
- Low memory requirements (RAM + regs)
- Typical performances: a few milliseconds and a few hundreds bytes of ROM
- More efficient for large bus sizes
- Compared to the AES: trades time for space

– May be reasonable in recent controllers

