Opportunities for Engineered Biological Simplicity

Drew Endy

MIT Biological Engineering
http://mit.edu/endy

CBA MIT

24 May 2007
"There are only two ways we know of to make extremely complicated things.

One is by engineering, and the other is evolution."

Danny Hillis according to Kevin Kelly

indole deficient tnaA5 ${ }^{-}$chassis

methyl salicylate

2006 MIT iGEM team

GCal EG@OWW MIT WM@MIT Parts iGEM PubMed Weather iK
jump to part BBa_

navigation

- Main Page
- Browse Part Types
- iGEM Wiki
- Community portal
- Recent changes
- Recent part changes
resources
- User Accounts
- Add a Part
- Part Searches
- DNA Repositories
- Sequence Analysis
- Assembly Tool
- Help
search

Go Search
toolbox

- What links here

Done
Registry of Standard Biological Parts

Browse Parts by Type

Help \& Documentation

Registry Toolbox

- [8/01/06] We have contact information for the creators of parts. You can access this information when you access "Hard Information" of a part.
- [8/01/06] A table made for yeast parts is now available on the Part Types page

Report any bugs here I Request new features here I See new features here
GCal EG@OWW MIT WM@MIT 20.181 Parts IGEM PubMed Weather IK
2. Drew mytalk preferences my watchlist my contributions log out

imp to part
BBa_
avigation
Main Page

- Browse Part Types iGEM Wiki
Community portal
Recent changes
Recent part changes

esources

- User Accounts
- Add a Part

Part Searches

- DNA Repositories
- Sequence Analysis
- Assembly Tool
- Help
earch

Go
Search
oolbox
What links here

- Related changes

Upload file

- Special pages

Printable version
article

Transcriptional Terminators

Available Transcriptional Terminators

Edit

-?-	Name	Description	Direction	Reversed Version	Biology	Efficiency * Fwd. Rev.		Length
A W	BBa_B0011	Terminator (luxICDABEG, +/-)	Bidirectional	BBa_B0021	LuxiA	0.419	0.636	46
A W	BBa_B0014	Terminator (B0012, B0011)	Forward	BBa_B0024	B0012, B0011	0.604		95
A W	BBa_B0015	Terminator (B0010, B0012)	Forward	BBa_B0025	(B0010, B0012)	0.984	0.295	129
A W	BBa_B0021	Terminator (luxICDABEG, +/-)	Bidirectional	BBa_B0011	LuxlA (reversed)	0.639	0.419	46
A W	BBa_B0025	Terminator (Reverse B0015)	Reverse	BBa_B0015	(B0010, B0012) reversed	0.295	0.984	129
A W	BBa_J52016	Eukaryotic terminator						238
A	BBa_ B0010	Terminator (T1)	Forward	BBa_B0020	T1			80
AX	BBa_B0012	Terminator (T7 TE)	Forward	BBa_B0022	T7 TE	0.309	-0.368	41
AX	BBa_B0013	Terminator (77 TE, +/-)	Bidirectional	BBa_B0023	T7 TE	0.6	-1.09	47
A	BBa_B0017	Terminator (B0010, B0010)	Forward		B0010.B0010			168
AX	BBa_B0022	Terminator (Reverse B0012)	Reverse	BBa_B0012	T7 TE (reversed)	-0.368	0.309	41
AX	BBa_B0023	Terminator (Reverse B0013)	Bidirectional	BBa_B0013	T7 TE (reversed)	-1.09	0.6	47
A	BBa_B0024	Terminator (Reverse B0014)	Reverse	BBa_B0014	(B0012.B0011) reversed		0.604	95
A	BBa_B1004	Terminator (artificial, small, \%T~=55)						34
A	BBa_J63002	yeast ADH1 terminator						225

> * Click here for terminator measurement information.

Other Transcriptional Terminators Edit

-?-	Name	Description	Direction	Reversed Version	Biology	Efficiency * Fwd. Rev.	Length
M	BBa_B0016	Terminator (T7 RNAP specific, T_Phi)	Forward		T7 RNAP, T_Phi		48
	BBa B0020	Terminator (Reverse B0010)	Reverse	BBa B0010	T1 (reversed)		82
	BBa_B0050	Terminator (pBR322, +/-)	Bidirectional	BBa_B0060	pBR322		33
	BBa_B0051	Terminator (yciAltonA, +/-)	Bidirectional	BBa_B0061	yciAltonA		35
	BBa_B0052	Terminator (rrnC)	Forward	BBa_B0062	rrnC		41
	BBa_B0053	Terminator (His)	Forward	BBa_B0063	His		72
	BBa_B0054	-- No description --					69
	BBa_B0055	-- No description --					78
	BBa_B0060	Terminator (Reverse B0050)	Bidirectional	BBa_B0050	pBR322 (reversed)		33
	BBa_B0061	Terminator (Reverse B0051)	Bidirectional	BBa_B0051	yciAltonA (reversed)		35
	BBa_B0062	Terminator (Reverse B0052)	Reverse	BBa_B0052	rrnC (reversed)		41
	BBa_B0063	Terminator (Reverse B0053)	Reverse	BBa_B0053	His (reversed)		72
	BBa_B1001	Terminator (artifical, small, \%T~=90)	Bidirectional				34
	BBa_B1002	Terminator (artificial, small, \%T $\sim=85 \%$)	Bidirectional				34
	BBa_B1003	Terminator (artificial, small, \%T~=80)					34
	BBa_B1005	Terminator (artificial, small, \%T~=25\%					34
	BBa_B1006	Terminator (artificial, large, \%T~>90)					39
	BBa_B1007	Terminator (artificial, large, \%T~=80)					40
	BBa_B1008	Terminator (artificial, large, \%T~=70)					40
	BBa_B1009	Terminator (artificial, large, \%T~=40\%)					40

Description

A transcription factor (LuxR, BBa_C0062) that is active in the presence of cell-cell signaling molecule
$30 C_{6} \mathrm{HSL}$ is controlled by a TetR-regulated operator (BBa R0040). Device input is 3OC ${ }_{6}$ HSL. Device output is PoPS from a LuxR-regulated operator. If used in a cell containing TetR then a second input signal such as aTc can be used to produce a Boolean AND function

Characteristics

Input Swing: Output Swing: $\quad 0 \pm 1$ to $\mathbf{5 0 3} \pm 1$ GFP molecules $\mathrm{cfu}^{-1} \mathrm{~s}^{-1}$ Switch Point: $\quad \mathbf{7 \pm 1} \mathbf{n M} 30 \mathrm{C}_{6} \mathrm{HSL}$, exogenous LH Response: 9 min ($\mathrm{t}_{50 \%}$), $27 \mathrm{~min}\left(\mathrm{t}_{90 \%}\right)$

Demand (low/high input)
Translational:
256/8048 ribosomes cfu-1
$3.8 \mathrm{E} 3 / 1.2 \mathrm{E} 5$ charged tRNA cfu-1 s^{-1}

Compatibility

Chassis: Compatible with MC4100, MG1655, and DH5 α
Plasmids: Compatible with pSB3K3 and pSB1A2
Devices: Compatible with E0240, E0430 and E0434
Crosstalk with systems containing TetR (C0040)
Signaling: Crosstalk with input molecules similar to $3 \mathrm{OC}_{6} \mathrm{HSL}$

Key Parts

BBa_R0040:
BBa_C0062:
BBa_R0062:

TetR-regulated operator luxR ORF LuxR-regulated operator

Response Time*

Stability (low/high input)
Genetic: $\quad>92 / 74$ replication events**
Performance: >92/74 replication events**
Conditions (abridged)
Output: Indirect via BBa_E0240
Vector:
Chassis:
Culture:
*Equipment:
**Equipment:
pSB3K3
MG1655
Supplemented M9, $37^{\circ} \mathrm{C}$ PE Victor3 plate reader
BD FACScan cytometer

Jason Kelly et al.

Jason Kelly et al.

Round 1 (LOW input)

Round 2 (HIGH input)

Jason Kelly et al.

Jason Kelly et al.

Jason Kelly (via Balagadde \& Quake)

Jason Kelly

