Multidisciplinary Design Optimization

Joaquim R. R.A. Martins

Multidisciplinary Design Optimization Laboratory http://mdolab.engin.umich.edu/

University of Michigan

7th International Fab Lab Forum and Symposium on Digital Fabrication Lima, Peru, August 18, 2011 (Remote presentation)

Sir George Cayley

The Dawn of Multidisciplinary Design

Current Multidisciplinary Design

[Flight International]

What is Optimization?

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{by varying} & x \in \mathbb{R}^n \\ \mbox{subject to} & c_j(x) \geq 0, \quad j=1,2,\ldots,m \end{array}$

- f : objective function, output (e.g. structural weight).
- x : vector of design variables, inputs (e.g. aerodynamic shape); bounds can be set on these variables.
- $c\,$: vector of inequality constraints (e.g. structural stresses), may also be nonlinear and implicit.

Conventional vs. Optimal Design Process

Numerical Optimization

 $\begin{array}{ll} \mbox{minimize} & f(x) = 4x_1^2 - x_1 - x_2 - 2.5 \\ \mbox{by varying} & x_1, x_2 \\ \mbox{subject to} & c_1(x) = x_2^2 - 1.5x_1^2 + 2x_1 - 1 \geq 0, \\ & c_2(x) = x_2^2 + 2x_1^2 - 2x_1 - 4.25 \leq 0 \end{array}$

- Aerodynamics: Panel code computes induced drag. Variables: wing twist and angle of attack
- Structures: Beam finite-element model of the spar that computes the displacements and stresses. Variables: element thicknesses

Aerostructural Coupling — Boeing 787

[airliners.net]

Aerostructural Coupling — Boeing 787

[airliners.net]

Sequential Optimization

The final result is always an elliptic lift distribution

A Sound MDO Approach

The multidisciplinary feasible (MDF) method

Sequential Optimization vs. MDO

[Chittick and Martins, Structural and Multidisciplinary Optimization, 2008]

Sequential Optimization vs. MDF

Optimization Methods

Engineering intuition

Optimization Methods: Gradient-Free

Genetic algorithms

Nelder-Mead simplex

Optimization Methods: Gradient-Based

The Case for Efficient Sensitivity Analysis

- By default, most gradientbased optimizers use finite differences
- When using finite differences with large numbers of design variables, sensitivity analysis is the bottleneck
- Accurate sensitivities needed for convergence

Sensitivity Analysis Methods

Finite differences: very popular, easy to implement, but can be very inaccurate; need to run analysis for each design variable

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Complex-step method: accurate, easy to implement and maintain; need to run analysis for each design variable

$$f'(x) \approx \frac{\operatorname{Im}\left[f(x+ih)\right]}{h}$$

[Martins, Alonso and Sturdza, ACM TOMS, 2003]

Automatic differentiation: automatic implementation, accurate; cost can be independent of the number of design variables

(Semi-)Analytic Methods: efficient and accurate, long development time; cost can be independent of the number of design variables

Sensitivity Analysis Methods

Finite differences: very popular, easy to implement, but can be very inaccurate; need to run analysis for each design variable

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Complex-step method: accurate, easy to implement and maintain; need to run analysis for each design variable

$$f'(x) \approx \frac{\operatorname{Im}\left[f(x+ih)\right]}{h}$$

[Martins, Alonso and Sturdza, ACM TOMS, 2003]

Automatic differentiation: automatic implementation, accurate; cost can be independent of the number of design variables

(Semi-)Analytic Methods: efficient and accurate, long development time; cost can be independent of the number of design variables

Complex-Step Derivative Approximation

Like finite differences, can be derived from a Taylor series expansion, but use a complex step instead of a a real one:

$$f(x+ih) = f(x) + ihf'(x) - h^2 \frac{f''(x)}{2!} - ih^3 \frac{f'''(x)}{3!} + \dots$$

- No subtractive cancellation
- Numerically exact for small enough step

[Martins, Alonso and Sturdza, ACM TOMS, 2003]

Complex-Step Derivative Approximation

Like finite differences, can be derived from a Taylor series expansion, but use a complex step instead of a a real one:

$$f(x+ih) = f(x) + ihf'(x) - h^2 \frac{f''(x)}{2!} - ih^3 \frac{f'''(x)}{3!} + \dots$$

$$\Rightarrow \quad f'(x) = \frac{\operatorname{Im} \left[f(x+ih) \right]}{h} + h^2 \frac{f'''(x)}{3!} + \dots$$

- No subtractive cancellation
- Numerically exact for small enough step

[Martins, Alonso and Sturdza, ACM TOMS, 2003]

Complex-Step Derivative Approximation

Like finite differences, can be derived from a Taylor series expansion, but use a complex step instead of a a real one:

$$f(x+ih) = f(x) + ihf'(x) - h^2 \frac{f''(x)}{2!} - ih^3 \frac{f'''(x)}{3!} + \dots$$

$$\Rightarrow \quad f'(x) = \frac{\operatorname{Im} \left[f(x+ih) \right]}{h} + h^2 \frac{f'''(x)}{3!} + \dots$$

$$\Rightarrow \quad f'(x) \approx \frac{\operatorname{Im} \left[f(x+ih) \right]}{h}$$

- No subtractive cancellation
- Numerically exact for small enough step

[Martins, Alonso and Sturdza, ACM TOMS, 2003]

Aircraft Design for Minimum Environmental Impact

Single Objective Optimization

Results for Increasing Fuel Prices

Multi-Objective Optimization

Wind Turbine Blade Design Optimization

(Kenway and Martins, 2008)

Wind Turbine Blade Design Optimization

(Kenway and Martins, 2008)

