Digital encoding for scalable brain mapping?

Adam Marblestone

2014

with Zador, Church, Boyden, Mishchenko, Daugharthy, Lee, Peikon, Kalhor, Kebschull, Shipman, Chen, Tillberg et al

Coarse-grained brain maps give un-testable models

Solari and Stoner 2011

Coarse-grained brain maps give un-testable models

??? thalamic gating of "copy and paste" operations between cortical working memory buffers, executing a sequence of steps controlled by the basal ganglia **???**

Computationally-relevant molecular complexity?

Example: hundreds of proteins in each synaptic vesicle

Deep molecular diversity of mammalian synapses: why it matters and how to measure it

Nature Reviews | Neuroscience

Nancy A. O'Rourke, Nicholas C. Weiler, Kristina D. Micheva and Stephen J. Smith

How to cope with the brain's complexity?

Activity history
Behavior
Connectivity (circuit diagram)
Development (cell lineage tree)
Expression (epigenetic cell types, + single-synapse proteomes)

Need: a technology to cheaply / rapidly measure <u>all</u> these variables in a <u>single</u> brain.

Need: (sub)cellular resolution + whole brain scope.

see upcoming essay by Church, Marblestone & Kalhor

How to cope with the brain's complexity?

Rosetta Brains: A, B, C, D & E <u>comprehensively</u> on a single brain

allows correlations across variables/levels

(sub)cell-level <u>co-registration</u> of variables

Activity history Behavior

Connectivity (circuit diagram) Development (cell lineage tree) Expression (epigenetic cell types, + single-synapse proteomes)

Need: a technology to cheaply / rapidly measure <u>all</u> these variables in a <u>single</u> brain.

Need: (sub)cellular resolution + whole brain scope.

see upcoming essay by Church, Marblestone & Kalhor

long-range connections

[Gong et al, 2013]

dense 3D circuitry: >I synapse (connection) per um

[Mischenko, 2010]

Current practice: widely believed that electron microscopy (EM) is the **only** viable method for cellular-resolution connectomics

302 neurons: 50 person-years for C. elegans **\$\$\$\$** for mouse w/ **no molecular info** Can't run a <u>simulation</u>?

4^N possible DNA sequences of length N "letters"

Zador, Cepko, Tabin, Walsh, Church et al: can give every neuron a uniquely-identifiable DNA "barcode"

with Zador, Church, Boyden, Mishchenko, Daugharthy, Lee, Peikon, Kalhor, Kebschull et al

Zador: Pair barcodes of connected cells, then sequence

potential for extremely low cost due to cheap sequencing

extracts connectivity

<u>but</u>

- I) scrambles the precise positions of cells + synapses
- 2) nontrivial to integrate w/ molecular "annotations" (e.g., gene expression)

Fluorescent In-Situ DNA Sequencing (FISSEQ):

Highly Multiplexed Subcellular RNA Sequencing in Situ

Je Hyuk Lee,^{1,2}*† Evan R. Daugharthy,^{1,2,4}* Jonathan Scheiman,^{1,2} Reza Kalhor,² Joyce L. Yang,² Thomas C. Ferrante,¹ Richard Terry,¹ Sauveur S. F. Jeanty,¹ Chao Li,¹ Ryoji Amamoto,³ Derek T. Peters,³ Brian M. Turczyk,¹ Adam H. Marblestone,^{1,2} Samuel A. Inverso,¹ Amy Bernard,⁵ Prashant Mali,² Xavier Rios,² John Aach,² George M. Church^{1,2}†

Fluorescent In-Situ DNA Sequencing (FISSEQ):

Highly Multiplexed Subcellular RNA Sequencing in Situ

Je Hyuk Lee,^{1,2}*† Evan R. Daugharthy,^{1,2,4}* Jonathan Scheiman,^{1,2} Reza Kalhor,² Joyce L. Yang,² Thomas C. Ferrante,¹ Richard Terry,¹ Sauveur S. F. Jeanty,¹ Chao Li,¹ Ryoji Amamoto,³ Derek T. Peters,³ Brian M. Turczyk,¹ Adam H. Marblestone,^{1,2} Samuel A. Inverso,¹ Amy Bernard,⁵ Prashant Mali,² Xavier Rios,² John Aach,² George M. Church^{1,2}†

GCATCATA

GCGGCATT

CGATGCAT

A much easier problem than whole-brain electron microscopy!

Red dots are synapses, resolved w/ diff. limited optics via thin-sectioning

Smith lab, Stanford

Enhance effective resolution by "stratifying" molecules into different image frames:

S^(1/3) xyz improvement where S is slowdown factor

Use prior information about entire pool of barcodes to <u>de-mix multiple signals from</u> <u>a single resolution voxel</u>:

35-base barcodes suffice for no deconvolution ambiguities in mouse

The Rosetta Brain integration project

see upcoming essay by **Church**, Marblestone & Kalhor

Further reading: roadmaps for BRAIN map strategy

frontiers in COMPUTATIONAL NEUROSCIENCE

HYPOTHESIS AND THEORY ARTICLE published: 21 October 2013 doi: 10.3389/fncom.2013.00137

Physical principles for scalable neural recording

Adam H. Marblestone^{1,2*†}, Bradley M. Zamft^{3†}, Yael G. Maguire^{3,4}, Mikhail G. Shapiro⁵, Thaddeus R. Cybulski⁶, Joshua I. Glaser⁶, Dario Amodei⁷, P. Benjamin Stranges³, Reza Kalhor³, David A. Dalrymple^{1,8,9}, Dongjin Seo¹⁰, Elad Alon¹⁰, Michel M. Maharbiz¹⁰, Jose M. Carmena^{10,11}, Jan M. Rabaey¹⁰, Edward S. Boyden^{9,12‡}, George M. Church^{1,2,3‡} and Konrad P. Kording^{13,14‡}

Rosetta Brains: A Strategy for Molecularly-Annotated Connectomics

Adam H Marblestone, Evan R Daugharthy, Reza Kalhor, Ian D Peikon, Justus M Kebschull, Seth L Shipman, Yuriy Mishchenko, Je Hyuk Lee, Konrad P Kording, Edward S Boyden, Anthony M Zador, George M Church

OPEN access Freely available online

Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing

Bradley Michael Zamft^{1®}, Adam H. Marblestone^{2,9®}, Konrad Kording^{3,8}, Daniel Schmidt^{4,5,7}, Daniel Martin-Alarcon^{4,5,7}, Keith Tyo⁶, Edward S. Boyden^{4,5,7}, George Church^{1,2*}

Highly Multiplexed Subcellular RNA Sequencing in Situ

Je Hyuk Lee,^{1,2}*† Evan R. Daugharthy,^{1,2,4}* Jonathan Scheiman,^{1,2} Reza Kalhor,² Joyce L. Yang,² Thomas C. Ferrante,¹ Richard Terry,¹ Sauveur S. F. Jeanty,¹ Chao Li,¹ Ryoji Amamoto,³ Derek T. Peters,³ Brian M. Turczyk,¹ Adam H. Marblestone,^{1,2} Samuel A. Inverso,¹ Amy Bernard,⁵ Prashant Mali,² Xavier Rios,² John Aach,² George M. Church^{1,2}†

PLOS COMPUTATIONA

ESSAYS BY THE WORLD'S LEADING NEUROSCIENTISTS

EDITED BY GARY MARCUS

AND JEREMY FREEMAN

OPEN ORCESS Freely available online

Statistical Analysis of Molecular Signal Recording

Joshua I. Glaser¹*, Bradley M. Zamft^{2®}, Adam H. Marblestone^{3,4®}, Jeffrey R. Moffitt⁵, Keith Tyo⁶, Edward S. Boyden^{7,8,9}, George Church^{2,3,4}, Konrad P. Kording^{1,10,11}

Conneconomics: The Economics of Dense, Large-Scale, High-Resolution Neural Connectomics

Adam H Marblestone, Evan R Daugharthy, Reza Kalhor, Ian D Peikon, Justus M Kebschull, Seth L Shipman, Yuriy Mishchenko, Je Hyuk Lee, David A Dalrymple, Bradley M Zamft, Konrad P Kording, Edward S Boyden, Anthony M Zador, George M Church **doi:** 10.1101/001214

