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Abstract

Many high-dimensional time-varying signals can be modeled as a se-
guence of noisy nonlinear observations of a low-dimensional dynamical
process. Given high-dimensional observations and a distribution describ-
ing the dynamical process, we present a computationally inexpensive ap-
proximate algorithm for estimating the inverse of this mapping. Once
this mapping is learned, we can invert it to construct a generative model
for the signals. Our algorithm can be thought of as learning a mani-
fold of images by taking into account the dynamics underlying the low-
dimensional representation of these images. It also serves as a nonlinear
system identification procedure that estimates the inverse of the observa-
tion function in nonlinear dynamic system. Our algorithm reduces to a
generalized eigenvalue problem, so it does not suffer from the compu-
tational or local minimum issues traditionally associated with nonlinear
system identification, allowing us to apply it to the problem of learning
generative models for video sequences.

1 Introduction

Video is a very high-dimensional signal, yet a few smoothly varying degrees of freedom
govern the appearance of many dynamic scenes. These latent degrees of freedom may
correspond to the pose of objects, illumination conditions, or other physical states of the
scene. Given a video sequence, we would like to learn a generative model of the appear-
ance of the scene that takes into account these low-dimensional processes. Once such a
model is learned, it becomes straightforward to perform traditional time series tasks, such
as predicting future frames, denoising, classification, anomaly detection, and dimension-
ality reduction. We describe an efficient approximate algorithm for learning such a latent
variable generative model for high-dimensional time series such as video.

A common generative model for time series assumes each obseryatioR ” is gener-
ated by an unknown nonlinear functign R¢ — R of a corresponding state:

ye = g(xt) + v, 1)

where ther; model observation noise and are iid. Assuming the appearance manifold
of images in the sequence does not intersect itgel$, one-to-one [17, 1, 3]. The low-



dimensional states, are not observed, but are presumed to evolve according to a first
order linear Gaussian autoregressive process:

Tip1 = Az + wy, (2)

where A is a state transition matrix, and, are iid zero-mean Gaussian variables with
varianceX. Together, equations (1) and (2) define a generative mp@€| Y|g) over
states and observations, with equation (1) definifig|z:, g) and equation (2) defining a
prior, p(X), over states.

We would like to estimatg given a video sequence and the prigX). But with high-
dimensional observations such as video frames, even when the dynamics of the low-
dimensional process are known a priori, it is impractical to estimatgh existing nonlin-

ear system identification techniques [4, 19]. This is because traditional representations of
nonlinear functions such as multilayer perceptrons (MLP) [19] and radial basis functions
(RBF) [4] require many parameters to represent a mapping to a high-dimensional space.
Further, even though they make various simplifying approximations, existing techniques
are susceptible to local minima. Hence, as far as we are aware, only linear system identifi-
cation techniques have been used to learn state-space models of video [2, 15]. Learning a
k-step-ahead predictor [7] for the sequence directly instead of a latent variable model also
requires a large number of parameters to output high-dimensional outputs. Further, because
these models do not build a latent variable model, many of the tasks we mentioned above
become intractable.

We subvert the problems that occur in searchinggftwy searching for a functiorf that

maps observations to states that agree with the p(i&r). When adopting an RBF rep-
resentation forf, this estimation problem reduces to an eigenvalue problem in which high
dimensional observations are summarized by entries of a kernel matrix. Fifidéngot
subject to local minima, and the dimensionality of the data set does not factor into the
computational or storage complexity of the algorithm, except to compute the kernel ma-
trix. The inverse of this projection can later be implicitly plugged back into the generative
model, and we can evalugt¢X|Y) andp(Y), and sample fromp(Y) without explicitly
computing and storing.

The small storage requirement and the fast and local-minimum-free computations of this
algorithm make it well suited for high-dimensional data sets like video sequences. We
show experimentally that thg we obtain is close to the inverse of the trgtewhen the

true g is invertible. These experiments demonstrate that our algorithm learns a sensible
low-dimensional representation governing the appearance of frames.

2 Related Work

This work is an unsupervised extension of a semi-supervised regression algorithm for learn-
ing mappings from images in a video sequence to underlying representations [11].

Our algorithm is closely related to manifold learning and nonlinear Independent Compo-
nent Analysis (ICA) algorithms. Jenkins and Mataric [6] have extended Isomap [17] by
explicitly assigning similar low-dimensional coordinates to temporally adjacent samples.

In addition to our use of dynamics, a notable difference between our algorithm and the
general manifold learning framework laid out in [14], the nonlinear ICA algorithm of [18],

or [9] is that instead of learning a mapping from states to observations, we learn mappings
from observations to states, which reduces the storage and computational requirements
when processing high-dimensional data.

Instead of basing our optimization problem on an information theoretic criterion, as in ICA
[10], our cost function is based on a generative model and can be optimized quickly using



simple linear algebra. We show that a variant of kernel PCA [13] is obtained in the limiting
case where there are no dynamics in the low-dimensional representation.

3 The Identification Problem

Given a generative model(X,Y) for the observations and the latent states, one can
generate a nonlinear video texture by sampling fre() (see [2] for a linear model);

one could detect the location of an anomaly in a sequence by examining the poste-
rior state pathp(X|Y) (see [5] for an example that uses [19]); given several models
p1(Y,X),p2(Y,X),---, one could classify a sequendeby picking the model that as-
signs the highest probabilify; (Y) to Y. We wish to learn such models given an observed
sequenc&’,.

The generative model (1)-(2), along with a prigg) on mappings, define the joint distri-
bution

T
1 1
—5logp(X, Y, g) = > llwign — Az} + 2l —g(Hz)|>+5(0, %, A) —2log p(g).

t=1
3)
Here, through the given permutation mafkx we have explicitly selected the components
of z, that are mapped tg;. For example, when the componentsagfare the position
and velocity of an objectH could be used to select only the position. The terns a
normalizer that does not depend @n

After observing a sequendg, and picking a representation fgy [4] uses EM to find the

ML parameters of the model while marginalizing out the state sequEnead [19] uses
Variational Bayes to find the posterior ovErand the parameters of the model. These al-
gorithms are approximate: the E-step of both algorithms relies on approximate estimation,
and the Variational Bayes formulation of [19] assumes a convenient functional form for
the posteriors. Despite these approximations, these algorithms are subject to local minima.
Another problem with solving fog directly is that both the RBF and MLP representations
require too many parameters to represent mappings to video frames. Repregeisiimy

RBFsg(x) = Zthl cik(x, x¢) requires as many parameters as there are pixels in the en-
tire video frame: each coefficient vectaris D-dimensional (the number of pixels in the
frame), and there arE are frames in the sequence. The MLP representation has a similar
requirement. This storage requirement may not be acceptable for large sequences, and op-
erating on such a representation may be too computationally intensive. These algorithms
can estimate all identifiable model parameters, but the issues pointed out persist even when
the task is to estimate the parameterg ofly.

We show how to alleviate these problems in Section 4.1 by approximating the functional
(3) by a functional over a mapping from observations to states. This optimization can then
be solved exactly. For convenience, we assume the dynamics decouple a priori into identi-
cal independent chains. Under this assumptibrand A are block diagonal matrices with
repeated diagonal blocks. The matkk extracts the same elements from each of these
blocks. Assuming identical independent chains simplifies the presentation, but the exten-
sion of our technique to an arbitrary linear Gaussian dynamics model is straightforward.



4 Approach

Our algorithm is based on a function learning interpretation of a variant of kernel PCA
[13]. Consider the least squares cost function

man”xt (y ||2+/\Z||f1||k (4)

s.t. ?XXT =1, %)

where|| - || is a horm on a reproducing kernel Hilbert space of functions and is defined
by a positive definite kernél(y, y’) (see, for example, [16]). The norm of each dimension
of f is penalized individually. The representer theorem [12] states that the optihes

the formf(y) = E;‘F:l cek(y, vt ), where eachy; is ad-dimensional vector. Wheh(y, y')

is a radial function,f(y) is an RBF. Substituting in this form, the optimization (4) can be
rewritten as:

min||X — CK|% + AMtrCKC" (6)

1
s.t. TXXT =1, (7)

where|| - || 7 is the Frobenius nornK is the kernel matrix whoser-th element is:(y:, y.),
andC is the matrixC = {¢;}7 of coefficients off.

Finding the optimalX* reduces to extracting th&largest eigenvectors of the kernel matrix
K. The rows of the optimaC* are scaled versions of the rowsXf (see the appendixfor a
more thorough derivation). Plugging back into the representer form results in a function
thatis a scaled versions of the function recovered by the kernel PCA algorithmak8ph

et al.[13].

This interpretation reveals that KPCA looks for a smooth funcfichat projects the se-
guence of observation¥g to a low-dimensional sequenée so that the dimensions &

are orthogonal to each other and have unit sample variance. By placing an additional prior
on the hidden sequen@&, we can refine this algorithm to take in to account a wide range
of Gaussian priors. In particular, we can constrainXh have linear Gaussian dynamics.

4.1 Learning a Mapping with Dynamics

To search for a functiorf that maps observations to state sequences that agree with the
prior p(X), we augment the KPCA cost function with a dynamics model:

mlnz [Hz, — f(yo)ll* + o — Az |3 +>\Z 117 8)
rX i=1
St — (thmt> =01 9
1
t=1

The additional term in the cost function measures the compatibility of the projection with
some of the components &f selected by the given permutation mafiix The constraints
ensure that the empirical distribution.@s match the steady state distribution of the states.
Note that the constraint on the second moments is identical to the constraint in KPCA, ex-
cept for the scale factaer?, the steady state variantien; . . cov(z;), given by the prior



dynamics model. Equation (8) is reminiscent of Equation (3), with the notable difference
that observations are mapped to states, instead of the other way. Later, we show experi-
mentally that the optimizing is close to the inverse of the tryein the generative model

(1-2).

Applying the representer theorem, and keeping in mind that the dynamics decouple, the
optimum of the cost function can be found by solving an eigenvalue problem (see the
appendix):

Z'SZU* = To’Z'H'HZU*D* (11)
V = (K+A)'H (12)
S = Q+H'H-VKH (13)
Z = null(H1) (14)
N T
X+ = (HZU*) (15)
Cc* = VZU* (16)

The matrixX* and C* are the optimal path and RBF coefficients, respectively. dhe
columns ofU* contain the eigenvectors of the generalized eigenvalue problem (11), and
the diagonal matrisD contains the resulting generalized eigenvalues. The mBtnigpli-

cates the repeating blocksHf T" times instead of times. The vectot is a column vector
consisting of all 1s. The columns &fspan the null space @1, so they span the space of
solutions to the mean constraint (10). The maftiis the block-tridiagonal inverse covari-
ance matrix of the independent Markov chains defined by the dynamics. The eigenvalue
problem (11) is of sizédT — 1) x (dT — 1), and can be solved quickly since we only
require the topl eigenvectors.

4.2 Substituting into the Generative Model

Once the functionf* and the latent state&* have been estimated, the inveige) of

f can be computed, specifying the generative model (1)-(2). However, we wish to avoid
representingj in an explicit non-parametric form such as MLP or RBF, as this would be
unwieldy.

To evaluatgj at a particularc, we search for thé nearest neighbors ofin X*, and inter-
polate between their correspondigg to obtainy, = G(z). Sincey; = g(x) minimizes
the cost||f(y) — z||, we can further refing, by using it as an initial iterate to find the
minimum of || f(y) — z||.

Filtering, smoothing, and calculating the evidence under the generative model can then
be performed by standard techniques that do not require the derivatigeswth as the
Unscented Kalman Filter [8].

5 Experiments

Empirically, the mapping we recover is close to the inverse of the true observation function.
We compare the mapping recovered by our algorithm against KPCA and Isomap, since
these performed the best out of the manifold learning algorithms we tried, and did not
impose unreasonable storage requirements. All of our experiments use a Gaussian kernel.

Figure 1 shows the embedding of a 1500 step 2D random walkRritby the function
g(z,y) = (z,ycos(2y), ysin(2y)). The 2D walk is bounded, and reflects off of the bound-
ary. In addition to this behavior, the dynamics model used to generate the walk was different
from the one specified in our algorithm, to demonstrate resilience to errors in the dynamics



model. Using the recoveref] the figure plotsf(y) wherey are gridded samples from the
surface of the roll. The recovergds close the original mapping. Varying the dynamics up

to an order of magnitude on the parameters of the dynamics model yields similar results,
but changes the scale of the mapping. Isomap performs poorly on this data set due to the
low sampling rate on the manifold and the fact that the true mapgpiisgnot isometric.

KPCA chooses a linear projection that eliminates one of the dimensions, since this projec-
tion is smooth and the symmetry of the roll about the origin satisfies KPCA's constraint

(5).

In Figure 2, we show thaf accurately represents the inverse of the yughen applied

to an image sequence. The figure shows a few frames of a 2000 frame sequence of a
synthetically generated cube undergoing 2D rotations. To show resilience to mismatch
between the true dynamics and the assumed dynamics, different dynamics were again used
to generate the path of rotations than those specified to our algorithm, including reflections
off of the boundary. The figure plots the coordinaf€$ recovered by our algorithm.
Because these coordinates are close to the true low-dimensional coordinates, the recovered
f is close to the inverse of the trye

Note that the mapping between rotations and appearances is not isometric, since infinites-
imal rotations produce different amounts of change in appearance depending on the in-
stantaneous rotation. This violation of Isomap’s isometric assumption explains why its
recovered poses are stretched in places. Both Isomap and KPCA pull together rotations
that make the top face of the cube face the camera, because the appearance of the face is
similar under all such poses. Use of dynamics allows our algorithm to disambiguate be-
tween these situations. KPCA also exhibits folding, which is absent from Isomap and our
algorithm’s output.

For a 2000 frame sequence, the algorithm runs in about 5 minutes on a 3 Ghz P4. We
have found the following guidelines to be useful in setting the parameters of our system.
To avoid numerical problems, the kernel width is chosen so that the smallest element of

09 02 0
K is about 0.1. We use stable third order dynamics, wdita- [ 0 09 0.2] ,andX a
0 0 09

diagonal matrix with a few orders of magnitude more noise in the acceleration components
than the velocity or position components.

6 Conclusions and Future Work

We have shown how to learn a nonlinear model for video that takes the dynamics of a
latent representation for frames into account. Given a training video sequence and the
approximate dynamics of the latent states, our algorithm learns a nonlinear relationship
between observations and the latent variables.

To circumvent storage and computational problems, the nonlinear function maps observa-
tions to states, rather than the other way. We demonstrated that when the true underlying
mapping from states to observations is one-to-one, the mapping recovered by our algorithm
is close to the inverse of the true mapping.

In the future, we hope to isolate the conditions under which this convergence occurs. We
intend to show how to estimate the parameters of the dynamics model as well.

The code and a version of this paper with derivations is available online on the first author’s
web site.



Figure 1:(top-left) Low-dimensional ground truth trajectory. Points are colored according to their
distance from the origin in the parameter spatep-middle) Embedding of the trajectory(top-
right) Recovered low-dimensional representation using our algorithm. The original déda-ileft)

is correctly recovered. To further test the recovered funcfiome uniformly sampled a 2D rectangle
(middle-left), lifted it usingg (middle-middle), and projected the result to 2D using the recovered
f (middle-right). f has correctly mapped the points near their original 2D location. Given only
high-dimensional data, neither Isom@ottom-left) nor KPCA (bottom-right) find the ground truth
low-dimensional representation. These figures are best viewed in color.

Figure 2: (top row) A few frames from the synthetically generated rotating cube sequence. Only
the azimuth and elevation of the cube are modifi@).Shows the true elevation-azimuth trajectory,

(b) the trajectoryX™ recovered by our algorithnfc) by KPCA, and(d) by Isomap. Our algorithm
recovers the true rotation up to a flip, but with very little distortion. Because appearance is not an
isometric function of rotation, Isomap’s trajectory is unevenly stretched.
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A KPCA

Rewriting (6) as

d T
. X; I -K X,
EX 2 { Ci } { ~K K?+)K } { Ci } "
stXX' =1, (18)

whereC,; is the transpose of thith row of C andX; is the transpose of thih row of X, we may
minimize overC to find

C; = (K+ ) 'X; (19)
plugging this optimal value back into the cost function yields a minimization only &ver
d

. T —1~7.
min Z X (K4 M) 7'X; (20)
stXXT =1, (21)
The optimalX; are thed largest eigenvalues of the kerrlg€l. Let~,...,~q be the largest eigen-
values ofK andv,...,vq be the corresponding orthonormal set eigenvectors. It follows that the
optimal C; are given by
1
* = i 22
f= (22)
Substituting thiC; into the representer form gives us a solution for
1 T
i(y) = itk (Y, 23
fily) = S 2 vkl ) (23)

The kpca algorithm returns the functiohs, . . . , hq given by

(24)

from which we see that thg" are multiples of the solution to the kpca problem

fi = (%3/_71/\)2 hi . (25)

B Learning with Dynamics

Applying the representer theorem, and keeping in mind that the dynamics decouple, the cost function
can be rewritten as in Secti@? as

min|[HX — CK|% + X"0X + A\CTKC (26)
StHXXH' =To21 27)
HX1" =0. (28)

Letting X; denote the rows oK corresponding to the state of thih independent Markov chain
stacked as a column vector afti denote the transpose of the ith row @f we can rewrite this

optimization as
. H'H + Q -K X;
X< { ] { K? 4+ AK } { C } (29)

StHXX 'H' =7 (30)
HX1' =0 (31)



As before, minimizing ove€ yields

C; = (K+ ) 'HX; (32
plugging this optimal value back into the cost function yields a minimization only Xver
d A~ ~
min ; x; (H’(K FAD)TH 4+ Q) X; (33)
stHXX 'H' =To%1, (34)
HX1' =0 (39)

Define a matrixZ with orthogonal rows to span the nullspace . so they span the space of
solutions to the mean constrai®?. Then we may rewrite??) as

d
. TrT (T —1 )
min ;_1: X,z (H (K + D) 'H + Q) ZX; (36)
stHZXX'Z'H" = To2 1 (37)

The optimalC* andX™* pair can then be found by solving (11)-(16).



