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Inertial measurement with trapped particles: A microdynamical system
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We describe an inertial measurement device based on an electrodynamically trapped proof
mass. Mechanical constraints are replaced by guiding fields, permitting the trap stiffness to be tuned
dynamically. Optical readout of the proof mass motion provides a measurement of acceleration
and rotation, resulting in an integrated six degree of freedom inertial measurement device.

We demonstrate

such a device—constructed without

microfabrication—with  sensitivity

comparable to that of commercial microelectromechanical systems technology and show how
trapping parameters may be adjusted to increase dynamic range. © 2010 American Institute of

Physics. [doi:10.1063/1.3360808]

While micromachined accelerometers and gyroscopes
have been commercialized and are approaching the funda-
mental limits"? of their noise performance, an inertial mea-
surement unit with six degrees of freedom still requires mul-
tiple distinct devices whose dynamic response is limited by
their static structure and whose production requires complex
microfabrication. Instead of using micromechanical systems
we propose here the use of a microdynamical system based
on the orbital motion of a trapped particle. This system has
no static structure that would require microfabrication (see
Fig. 2) yet its microscopic dynamics provide sensitivity and
noise performance comparable to that of microelectrome-
chanical systems (MEMS) devices, and its sensitivity and
bandwidth can be dynamically controlled.

Our approach follows from the observation that a par-
ticle in a Paul tlrap3 is in effect a spring-mass system with an
electrodynamic restoring force. The trap has a hyperbolic
electric  potential  ®(r,1)=Dy(r) p(r) (ax>+ By>+yz%) / a]
driven by an oscillating voltage ®,(1)=U+V cos ¢ and
scaled by a geometric factor ag=|a|xj+|B|y5+|v|z; defined
in terms of the trap’s characteristic radii (xy, yg, and z).
Absence of free charge in the trap (V>®=0) leads to the
constraint a+ B+ 7y=0. In the case of the three-dimensional
(3D) Paul trap, these values are chosen to be a=1, B
=1, y=-2.

It is well-known that a particle subject to the time-
varying electric potential of such a trap experiences fast,
small-scale micromotion on the time scale 7=2/(). Be-
cause the electric field in the trap is spatially inhomoge-
neous, a particle moving in the field will also experience a
small net force over one cycle of micromotion. This force
leads to the slower, large-scale secular motion of trapped
particles.

To derive the effect of inertial acceleration upon a
trapped particle, we use the electric pseudopotential of,* de-
fined as,
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In one dimension, the Hamiltonian for a particle subject to a
pseudopotential ¢ and an acceleration a is
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where k=(eV/ Qaé)z. The corresponding equation of motion
will be that of a driven harmonic oscillator X+ cuf,x:—a
where w?=k/m. Substitution of the general solution x=X
+cy expliogt)+c; exp(—im ) shows that the particle oscil-
lates about a mean position

1 m*Q2a)
f=<x>=—Ea=—WZOa. (3)

Therefore we see that in the region where the pseudopoten-
tial approximation holds, the mean position X depends lin-
early on a.

This analysis was tested by simulating the motion of a
charged particle in the trap’s electric potential ®(r,7). The
simulated particle was a gold microsphere of radius r
=3.125 pm and mass m=3.85 ng, with trap parameters U
=0 V, V=1000 V, Q=27X240 rad/s, and ay=0.5 mm.
Finally, a Stokes drag term with b=6m7r was added to simu-
late the damping effect of a buffer gas (air at 1 atm with
dynamic viscosity 7=1.827X 107 Pas) resulting in the
equations of motion
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The results of numerically integrating these equations is
shown in Fig. 1, from which it is apparent that the center and
amplitude of particle micromotion are both linearly depen-
dent on applied acceleration.

To test these observations experimentally, a planar trap
geometry5 was chosen for simplicity. Figure 2 shows such a
trap with a ring electrode (xo=yo,=1.0 mm, zp=1.3 mm, e,
=4.3) constructed using a circular copper electrode on FR4
circuit board stock. A high-voltage lead drives the central
electrode while the brass disk of the transducer and the upper
electrode (here, a gold-plated nut) provide the trap’s ground
references.

The trap is loaded by exciting a piezoelectric transducer
with a voltage pulse when the trap electrode is at an appro-
priate phase to induce charge on the top of a cluster of par-
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FIG. 1. (Color) Simulation results for a particle launched into the xy plane
of a trap in free fall (from r=0 s to r=0.25 s) and then subject to a linearly
increasing downward acceleration (along z) from 0 to 1 g (from 1=0.25 s to
t=0.75 s). Data are plotted as (a) position of the particle and applied accel-
eration over time and (b) projections of particle motion. Simulation param-
eters are as described in the text. Note that the mean particle displacement X
is proportional to a.

ticles at ground potential. The ejected particles will carry
away an induced charge when they lose contact with ground.
Particle charge can be selected by stability of the particle in
the trap and calibrated by dynamics of the trap. In these
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FIG. 2. (Color) Trap construction detail. Dimensions referenced in the fig-
ure are r=500 um, z=1585 um.

Appl. Phys. Lett. 96, 143501 (2010)

80
60
40
20

€

2 0

z

£ 20 5 2

@ By O,

o 0T, X7 X 600V X

A »xX

S x«x/r/;e’ojj" 700V ©
. P-4 800V  +

p{o/e 900V x
-80 & 1000V ©
//" 1100V +
) 1200V X
100 1300V ©
120 1400V +
-3 -2 - 0 1 2 3

Applied acceleration (m s'2)

FIG. 3. (Color) Observed particle displacement as a function of applied
acceleration (with linear fits).

experiments the particles were gold (Au) microspheres
7.25*+1.5 um in diameter.

A key feature of the inertial measurement trap is its dy-
namic tunability. Figure 3 shows the displacement of the
proof mass as a function of applied acceleration as V varies.
Dissipation is introduced to increase stability of the trapped
particle’s motion® by operating at atmospheric pressure. The
pseudopotential must be corrected for drag due to motion in
a buffer gas7 and the effective spring constant is reduced by
damping to k= (e?V?)/8mag(Q*+(b/m)?). Figure 4 shows
the measured dependence of k on the AC trap voltage V in
our trap, demonstrating its tunability.

The measured effective spring constant can be used to
calibrate a measurement of the noise in the trap. When this is
done, the observed spectrum shows two distinct regions. Fig-
ure 5 plots the observed power spectral density of a measure-
ment of particle drift, with a 1/f slope overlaid at low fre-
quencies and a 1//% slope (diffusion noise®) at higher
frequencies.

The magnitude of the variance of the measured accelera-
tion can be estimated from the equipartition theorem.
For any collection of quadratic energy storage modes in ther-
mal equilibrium each mode will have an average energy
equal to kzT/2 where kz is Boltzmann’s constant (1.38
X 1072* J/K) and T is the temperature. Energy will be stored
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FIG. 4. (Color) Measured effective spring constant as a function of trap
voltage.
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FIG. 5. (Color) Power spectral density of observed particle drift with simu-
lated 1/f and diffusion noise spectra overlaid. As the particle passes repeat-
edly through the Gaussian waist of a focused weak laser beam, its time-
domain optical scattering signal reveals the amount of time spent in the
beam waist and allows measurement of the particle’s closest approach to the
optical axis (calibrated by applying known accelerations.) The large peak is
from 60 Hz noise, and the side peaks are associated with resonances of the
secular motion in the trap potential (verified by simulating the trap dynamics
with stochastic forcing).

by a particle’s displacement from equilibrium in the pseudo-
potential (U=kx?/2), so {(&x)*>y=kzT/k. The scale of thermal
noise in acceleration measurements is estimated to be (da)
=k(5x)/ m=\r’m/ m. Given the observed value of k
=227 nN/m at V=1000 V, the positional variation is ex-
pected to be (Sx)=135 nm so the rms acceleration noise
should be on the order of (Sa)=812 ug. This is in good
agreement with the integral of the observed noise density
which gives an rms noise measurement of 684 ug and is
comparable to the performance of state-of-the art MEMS
devices.” From this estimate we can also calculate that trap-
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ping effectively cools the proof mass to a temperature 7
=213 K.

The simplicity of microdynamical systems (in this case,
the only moving parts are the particles) may lead to devices
capable of large dynamic range obtained through closed-loop
control of trap stiffness. Such inertial sensors could be sim-
pler to build than their MEMS counterparts yet exhibit supe-
rior performance, owing to their dynamically adjustable op-
erating parameters. We propose that similar microdynamical
systems could be used as 3D probes for sensing magnetic
field strength, fluid flow, and other physical quantities at
lower cost and higher performance than comparable MEMS
devices.
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The data sheet for the Analog Devices ADXL103 *1.7 g single-axis
MEMS accelerometer specifies an acceleration noise density of a,
=110 ug/\Hz and a typical rms noise level of a,\1.6 X Af=1846 ug for
the bandwidth (Af=110 Hz) over which our device was characterized.
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