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Abstract There are many models of computation, but they all share the same under-
lying laws of physics. Software can represent physical quantities, but is not itself writ-
ten with physical units. This division in representations, dating back to the origins of
computer science, imposes increasingly heroic measures to maintain the fiction that
software is executed in a virtual world. I consider instead an alternative approach,
representing computation so that hardware and software are aligned at all levels of
description. By abstracting physics with asynchronous logic automata I show that
this alignment can not only improve scalability, portability, and performance, but also
simplify programming and expand applications.
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1 Introduction

There are many models of computation: imperative versus declarative versus func-
tional languages, SISD versus SIMD versus MIMD architectures, scalar versus vector
versus multicore processors, RISC versus CISC versus VLIW instruction sets. But
there is only one underlying physical reality, accurately described by the Standard
Model and general relativity from subatomic to cosmological scales.
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Fig. 1 Conventional representations of the calculation of Fibonacci numbers

This difference between the description and the reality of computation is leading
to increasingly severe scaling issues, in order to maintain the fiction that the digital
world is not physical. Ever-faster busses and networks are needed to avoid intercon-
nect bottlenecks in topologies that differ from the actual dimensionality of space.
Processors might occupy vertices of a higher-dimensional hypercube; memory access
might be along a lower-dimensional index. If such a system is really growing in 3D
there will be a divergence in the resources needed to map between the virtual and
physical spaces. Programs that are described as a series of operations for a processor
to follow require an optimization in compilation to make effective use of multiple pro-
cessor cores that grows with the size of the program and the number of cores. Power
is required to do nothing as well as to do something, unlike the origin of dissipation
in irreversible processes.

Consider as an example the calculation of Fibonacci numbers. Figure 1 shows four
representations of the algorithm, C source code, an object file produced by compiling
it, an executable file targeted for a processor, and the processor that will execute it.
These representations serve as abstractions that hide knowledge of the lower layers
from those above.

Compare this to Fig. 2, zooming a map. There is again a hierarchy, from a building
to a world, but the geometry does not change with magnification—the abstractions
represent and respect the layers below them.

What if computation likewise respected physics, so that it was possible to zoom
from software to hardware without changing geometry, and they scaled in exactly the
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Fig. 2 Hierarchical structure of a zoom through a map

same way? Physics is the ultimate model of computation; nature is computationally
universal [1,2]. What would computer science look like if it was not considered to be
divorced from physical science?

This paper will provide an illustration of what answers to these questions might
look like, based on asynchronous logic automata (ALA). Subsequent sections will
review background history, introduce the ALA model, look at how programs can be
written, describe implementations and their performance, and examine implications.

2 History

The origin of the divergence between computer science and physical science can be
traced to the origin of computing. The theory of computational universality is based
on Turing’s machine [3], which has a head that processes symbols on a tape. These
elements appear in von Neumann’s prevailing architecture [4] as organs for memory
and control.

While these are simplified abstractions that have had a great impact, they also reflect
prevailing historical conceptions of what a machine or organism is. It is now appre-
ciated that biological information processing is not localized but rather is distributed,
from gene expression to regulatory networks to neural spiking to synaptic connectivity
to brain morphology to social relationships. A faithful biologically-inspired model of
computation would retain this fine-grained integration of the storage and manipulation
of information, across a hierarchical modular construction.

In a Turing machine the head is distinct from the tape; in the laws of physics states
are not separated from their interactions. Physical space does appear in theories of
computational complexity as a resource to be traded off against time [5], but those
theories do not provide insight into how to do that. Space also appears in a dataflow
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model as a graph of how information flows, but the space that the graph represents is
typically not the same as the one that the hardware occupies.

There is a parallel history of computing that is based on real rather than virtual
space. Theoretically, an equivalence was shown between tilings of the plane and Turing
machines, with the halting problem corresponding to asking whether a set of tiles can
fill space without bound [6]. Space is central to the final problems studied by Turing,
morphogenesis in reaction-diffusion systems [7], and von Neumann, self-reproduction
in cellular automata [8].

CAs [9] and then PDEs [10] were subsequently shown to be computationally
universal, although these were theoretical studies rather than practical proposals. CA
computers were later built, programmed by the selection of the rule table and initial
conditions rather than by sequential instructions [11]. While offering promising per-
formance with simple hardware, the technological impact of these CA machines was
limited by the competition with conventional silicon scaling, by the lack of programs
and programmers, and by the requirement for synchronization of the cell updates.

The requirement for a global clock was relaxed in asynchronous CAs, with cells
that update at random times. The behaviour of a synchronous CA depends on the order
of updates; in an asynchronous CA, delay-insensitive structures distributed over many
cells operate independently of their update order [12]. There is a (relatively) inde-
pendent history of eliminating clocks in IC design with asynchronous logic, which
in that context means circuits that are unclocked but deterministic. These are based
on modules that enforce logical dependencies, which can be specified with a data-
flow representation that is mapped onto reconfigurable logic [13]. The ALA model
described in the next section links these approaches, with deterministic asynchronous
updates on a regular lattice.

3 ALA

Asynchronous logic automata represent essential physical attributes, so that hardware
and software can scale in the same way [14]. These include:

• Propagation: there can not be action at a distance; there is a velocity of infor-
mation propagation. A model of connectivity that is based on anything other
than proximity introduces an implicit size-dependent communication overhead;
actual distances are typically hidden in a conventional architecture. ALA is based
instead on a locally-connected lattice of cells that communicate by transporting
state tokens.

• Information: a finite volume must contain a finite amount of information. In ALA,
the links between each cell can be empty or occupied with a token that has a value
of 0 or 1.

• Interaction: physically, logic is due to nonlinear interactions in product (or higher
order) Hamiltonian terms. Tokens interact at ALA cells; when there are tokens
present on a cell’s inputs and absent on its outputs, it pulls from the former and
pushes to the latter.

The corresponding cell choice is not unique; the version described here has 14 cell
types, shown in Fig. 3: AND, NAND, OR, XOR for logic (NAND alone is universal;
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Fig. 3 ALA cells

the others ease layout), copy and delete to selectively create and destroy tokens, buf-
fered and non-buffered transport cells, and merge and switch cells to join and select
token sources.

These cells are connected to rectangular nearest neighbors in either 2D or 3D, based
on the their actual physical construction. Each cell represents one unit of time, space,
state, and logic; these are coupled as they are in the underlying physics. Communi-
cation, processing, and storage are all aspects of the same resource; the distance that
a token travels is proportional to the time that it takes, the number of operations that
can be performed, and the amount of information that can be stored.

ALA shares the token-passing of a Petri Net [15], the graphical construction of a
dataflow architecture [16], the array of gates of a Field Programmable Gate Array,
the dependencies of an asynchronous circuit [17], and the parallelism of a multicore
processor. It differs in explicitly representing space, offering spatial as well as com-
putational universality.

It is possible to relax the assumption of a periodic lattice with models of computing
in random media [18,19], however that introduces overhead that’s not needed given
the availability of low-cost batch processes for nanofabrication, including stamping
[20] and printing [21]. ALA can be restricted to reversible logic [22,23]; the CMOS
implementation described below does use a dual-rail representation, with cells that
explicitly create and consume tokens.

The relationship between a device physics model, an ALA diagram, and a com-
puter program is analogous to that between molecular dynamics, lattice gas automata,
and partial differential equations. Both intermediate representations coarse-grain the
essential features of the microscopic description, and can be used to reproduce the
macroscopic limit, while providing an alternative that can be simpler and more con-
venient to use, and that avoids historical assumptions.

4 Programming

Returning now to the example of generating Fibonacci numbers (Fig. 1), Fig. 4 shows
this being done in ALA. It is based on the gate-level definition of a one-bit full adder.
Because of the linkage in ALA between time, distance, storage, and logic, a one-bit
adder becomes an arbitrary-precision adder as a number is streamed past. The recur-
sive definition of Fibonacci numbers is realized by linking the output to the inputs,
with the starting values and their time ordering provided by the initial token locations.

The Fibonacci example has one level of abstraction, from the gates to the adder.
Figure 5 shows a larger example, a dot product that is part of an ALA implementation
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Fig. 4 Steps in the calculation of Fibonacci numbers with an ALA one-bit full adder

Fig. 5 Hierarchical structure of a zoom through an ALA dot product [24]

of linear algebra [24]. This is a computational equivalent to the zoom in Fig. 2 with a
hierarchical structure that respects the spatial organization.

Mathematical operations in ALA require an execution time that’s proportional to the
distance that information travels [25] rather than the number of operations performed
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Fig. 6 Visual dataflow ALA programming environment, with hardware description language and ALA
cell output [P. Schmidt-Nielsen (2011, Personal communication)]

and messages passed [26]. This means that in return for ALA’s overhead (discussed
below), many operations such as matrix multiplication and sorting become linear
time.

The dot product in Fig. 5 was developed with a hardware description language for
ALA, Snap [27]. This is similar in spirit to the use of VHDL or Verilog in an IC
design workflow, but rather than exporting a netlist to place-and-route, relative spatial
relationships are part of the logical description since an ALA program is specified by
its geometry.

An alternative approach to ALA programming is to use a visual dataflow design
interface, such as the one shown in Fig. 6 [P. Schmidt-Nielsen (2011, Personal com-
munication)]. While conceptually similar to any dataflow environment, with a visual
representation linking modules drawn from a library, there are two essential differ-
ences for ALA. There is not an implicit assumption of an external scheduler to manage
execution of conventional code; it is self-timed by the cells. And the picture is the pro-
gram: it is possible to zoom from a high-level diagram into individual cells. Like a
hierarchical, parametric CAD model, functional relationships are represented in their
real-space locations.

The one approach that has not been used for ALA programming is interpretation
of existing procedural languages. This is because they typically assume an instruction
pointer, and a separation between variables and program statements, both of which
violate the physical formulation of ALA and would negate the benefits of its bit-level
parallelism.
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5 Implementation

ALA programs are portable: any implementation that can perform the local cell updates
will operate identically globally, differing only in a tradeoff of speed, cost, size, and
power.

One way ALA can be implemented is by emulation with a microprocessor. To avoid
the overhead of branch instructions, cell states can be packed into words, all possible
bit operations evaluated, and then results projected out in parallel. Estimating perfor-
mance, a $100 processor with a 1 ns instruction time, 64 bit word, 10 instructions per
parallel ALA update, and 10 W power consumption corresponds to 2 × 10−10 s per
token update, 2×10−9 J per token update, and a combined figure of merit of 2×10−8

$·seconds per token update. At this update rate, a bit-serial word operation would take
on the order of 10−8 s, compared to 10−9 for a native instruction.

Finer-grain parallelism is possible by emulation with a microcontroller. Assuming
a $1 processor with a 100 ns instruction time, 16 bit word, 10 instructions per parallel
update, and 10 mW power consumption, this corresponds to 6 × 10−8 s per token
update, 6 × 10−11 J per token update, and a figure of merit of 6 × 10−8 $·seconds
per token update. The update rate is reduced because of the slower clock and smaller
word size, but the power per token update is also reduced because of the reduction in
the total number of transistors that participate in an update.

A native CMOS cell can be implemented with tens of transistors per cell, a few times
larger than what is required for a synchronous logic gate. A 90 nm cell library based
on handshaking requires on the order of 10−13 J per token update, with a throughput
of 10−9 s per token [28]. Dividing Joules per update by seconds per update gives
10−4 W. For a mathematical operation with ∼100 tokens passing through ∼100 cells,
that corresponds 107 operations per second at 1 W. Thats ∼100× less efficient than
state-of-the-art operations per Watt in high-performance computing, again due to the
difference between a bit-serial operation and native instruction. The energy per token
can be brought down with a smaller feature size, and with a simpler cell design based
on linked memory cells.

To price CMOS ALA, the TSMC MOSIS Logic G 90 nm process gives a com-
bined figure of merit of 1.8 × 10−13 $·seconds per token update. This is so much
smaller than that for a microprocessor or microcontroller because of the enormous
reduction in the number of transistors required for a cell update, which is not a primi-
tive operation in those architectures. That overhead can be reduced still further, at the
expense of speed, by storing virtualized cells in DRAM and updating with local cell
processors.

A great benefit of ALA in an ASIC workflow is the one-to-one mapping from
ALA cells to circuits, illustrated in Fig. 7. With this equivalence, chips can be taped
out directly from an ALA design, with performance projections available from token
counts in a high-level event simulation combined with cell device modeling [27].

Finally, the conditional dynamics of ALA’s token updates can be implemented
directly in device physics, with potential mechanisms including Coulomb blockade in
a quantum dot [29], and two-photon transitions in a trapped atom in a high finesse opti-
cal cavity [30]. ALA’s simple assumptions allow its cell states and their interactions
to be represented by such individual physical degrees of freedom.
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Fig. 7 One-to-one mapping from an ALA design to an ASIC [28]
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6 Implications

Any ALA implementation will have an overhead relative to a custom design for a given
process and application. This is warranted when the costs of design, verification, and
testing dominate lifecycle costs, rather than the need to saturate performance limits.
This is increasingly the case for large-scale application IC development. Just as the
use of TCP and IP in the Internet is sub-optimal versus custom protocols for particular
purposes but has offered tremendous scalability, interoperability, and accessibility, in
return for its overhead ALA offers a number of benefits. These include:

Scheduling As seen in Sect. 4, in ALA it’s not necessary to explicitly identify process
threads, schedule processor time, or manage dependencies in a communication under-
lay. This does not eliminate the need for timing, but it is intrinsic to the representation
rather than imposed by an execution environment.

Portability The implementations described in Sect. 5 can all run the same ALA pro-
gram. Many languages have been ported to many platforms, but these typically make
substantial assumptions about the resources required to support them. To execute
ALA, all that is needed is to be able to perform cell updates and communicate locally.
This means that ALA programs written now will be useful across a range of future
technologies.

Reliability A billion-transistor processor will fail if individual transistors fail, requir-
ing a fabrication process that can yield a billion transistors. Because ALA is assembled
from individual cells, it can be built by stepping and repeating units of tens of tran-
sistors, allowing for either more aggressive process scaling or greater error margin.
Error correction can naturally be introduced spatially, by replicating blocks of cells.

Scalability All of the design rules in an ALA implementation are contained within
the cell. As a system grows, the resources available for computing, communications,
and storage are all growing at the same rate, rather than introducing size-dependent
bottlenecks or a coarse system granularity.

Efficiency ALA designs are less efficient than full-custom designs optimized for a
particular task, but for arbitrary problems they run at the speed of the gate delay rather
than a fixed clock, and consume power (other than leakage) only when and where
there are tokens to process.

Verifiability A control system might be specified in a visual dataflow environment,
exported to a high-level language, compiled to a low-level language, and executed
on a microarchitecture. Each of these changes in representation can introduce errors,
imposing a substantial effort to verify that what gets executed matches the original
intention. In ALA the same representation is used throughout, so that as long as the
cell updates are performed correctly embedded hardware will match a simulation.

Applicability Because ALA programs are spatial structures, they provide a natural
mapping onto spatial problems such as display drivers and distributed control systems,
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can be spatially extended to enhance system interfaces for power, heat transfer, and
I/O, and can be built with incrementally variable sizes to match workloads.

7 Conclusion

I have reviewed the inspiration, implementation, and implications of the ALA model
for computing. It is based on a belief that a fundamental error was made when com-
puter science diverged from physical science; by basing the foundations of the former
on those of the latter, hardware and software can be aligned at all levels of description.

I’ve argued that this is not just possible, it is preferable to address many of the
issues in scaling information technologies. Interconnect bottlenecks, challenges in
multicore compilation, quiescent power budgets, and diverging chip design costs are
all symptoms of trying to compute in a world that differs from the one that we actually
live in. These problems are simplified by explicitly recognizing time, space, state, and
logic as coupled properties of a medium in which computing happens. These issues
don’t disappear, but they’re moved to where they belong, the design of the problem
solution, rather than appearing afterwards as a result of mapping between unrelated
descriptions of a program and the platform that executes it.

There are many models of computation, but only one (standard) model of phys-
ics. Engineers don’t get to pick which physical laws to obey when they work on a
problem, but that’s effectively what’s done when an unphysical model of computation
is chosen—the burden of emulating it is pushed off to system architects, compiler
writers, and chip designers. That’s worked for many years, but will be infeasible to
continue to sustain. Instead of imposing increasingly heroic measures to maintain the
fiction that software is virtual and hardware physical, their development can coincide
with the recognition that both must ultimately satisfy the same constraints.

The ideas embodied in ALA have had a long and frequently parallel history in
the development of computing. ALA can be viewed as their convergence, reducing
instruction sets to a single logical operation, passing tokens on a graph that represents
real space, using logic as the primitive operation of automata cells, implementing
asynchronous timing in individual bits. Each of these introduces overhead relative
to a solution optimized for a particular application, but the scaling of those optimi-
zations will eventually have to match that of the physics used to implement them.
Rather than accommodating that incrementally for each kind of hardware, software,
and application, ALA provides an alternative foundation for computation that aligns
the representation and reality of computation.
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