
66

Mods: Browser-Based Rapid
Prototyping Workflow Composition

1 Modules from left to right:
1. Input design file (here in the
form of a .PNG image file repre-
senting traces and pads).
2. Select preset parameters for
the milling job. This can be done
with a presets module such
as the one here called set PCB
defaults that specifies a 1/64˝
end mill and 4 milling contours
at 0.004˝ depth.
3. Generate the toolpath using
the parameters specified.
4. Set up the material and set the
origin using the machine.
5. (cropped out) Run the toolpath
on the machine by spooling
through a WebSocket.

Nadya Peek
University of Washington
Machine Agency

Neil Gershenfeld
MIT Center for Bits and Atoms

ABSTRACT
Software is shared through files and libraries, but workflows are not. To be able to share

workflows for rapid automation, we developed an extensible environment for running

CAD, CAM, and machine control. We present Mods, a browser-based environment for

data handling, toolpath planning, and machine execution. Users compose modules (either

existing modules or new modules they contribute) into workflows for machine automation

sequences in a dataflow environment. The modules themselves run client side, imple-

menting the functions used by the modules (such as toolpath planning algorithms or image

analysis) in JavaScript, which runs in the browser. The physical machines are connected to

a JavaScript server, which listens to commands from the client over a WebSocket connec-

tion. Together, these software modules make up an extensible and simple-to-use alternative

to traditional CAD/CAM machine control environments.

67

INTRODUCTION
The workflows for running digital fabrication machines

can be tedious; the user needs to interface among CAD

softwares and their representations, the machine’s CAM

software and its possible file formats, and load these onto

the machine that is going to run the toolpath, all while

making sure the material stock accommodates the digital

design. Yet digital fabrication is a highly active current field

of research (Malone and Lipson 2007; Coleman and Cole

2017; Lewis 2006; Zoran and Paradiso 2013; Rivers, Moyer,

and Durand 2012; Gramazio and Kohler 2014; Mellis et al.

2013). Machine users constantly develop new workflows

depending on what machine they are using, what file format

their design is in, what file formats the machines expect,

and how material-specific operations such as zeroing and

part placement take place.

Software is one realm where rapid prototyping is already

widespread in practice. However, usability lags when

it comes to the software driving automation equipment

(including digital fabrication machines). We are saddled

with buggy print drivers, file name length limitations, or

confusing limitations (Soler et al. 2017; Louis-Rosenberg

2016; Coleman et al. 2016). Adding functionality such as

sensor feedback complicates matters yet further. Once

workflows are finally perfected it is hard to share them

with other machine users, except through out-of-band

documentation: you can share libraries for designs, or

settings for slicers, or machine instructions for a zeroing

process, but you cannot share something that includes all

those parts in one place.

To be able to share and reuse the workflows that users

of CAD/CAM develop, we developed an open-source,

extensible, event-driven environment for creating machine

actions called Mods. Mods is a framework in which users

can author workflows using a dataflow programming

language.

BACKGROUND
Dataflow programming research was originally motivated

in the 1970s by the need for massive parallelism, which

was considered at odds with von Neumann Architecture’s

global program counter and global updatable memory

(Johnston, Hanna, and Millar 2004). Researchers proposed

dataflow programming as executing commands once all

operands were available and using only local memory

(Davis and Keller 1982; Johnston et al. 2004). These

methods were exceptionally suited for visual programming,

as programs could be represented by nodes and graphs.

Visual programming dataflow languages, such as National

Instruments Labview, were subsequently popularized

in the 1990s and continue to be used to this day (Bitter,

Mohiuddin, and Nawrocki 2006). In computer-aided design,

dataflow programming mimics a designer’s modelling

workflow. The ability to generalize these workflows into

parametric designs in CAD makes visual dataflow program-

ming languages such as Rhino3D’s Grasshopper very

popular (Bachman 2017). We draw inspiration from these

dataflow languages and design practices in the develop-

ment of Mods.

Event-driven software architectures with asynchronous

I/O are now commonly considered best practice for (online)

applications with both high throughput and scaling require-

ments (Tilkov and Vinoski 2010). Node.js is a JavaScript

runtime environment using the Chrome V8 engine, which

can be used for both server-side and client-side scripting

and facilitates real-time communication (Dahl 2017). The

2 A Mods program for toolpath generation. This program uses the modules “read png,” “threshold image,” “distance transform,” “offset,” “edge detect,” “orient
edges,” “vectorize,” “to plotter moves,” and finally connects to the physical machine through the “fabnet” module. More generally, this program reads in an
image, thresholds it, produces a machine toolpath of that threshold, and sends it to the machine.

COMPUTATIONAL INFIDELITIES

68

V8 engine does just-in-time (JIT) compilation of JavaScript

to native machine code, offering massive speedup in

comparison to interpreted JavaScript (Google 2017). Mods

code would be impossibly slow without JIT compilation,

and interfacing between the client and server sides would

be very difficult without Node.js. Furthermore, by using

JavaScript’s typed arrays we avoid converting at every

access and can take advantage of highly optimized web file

readers available in libraries such as OpenGL (Group 2017).

These recent (since 2010) browser and JavaScript technol-

ogies make the development of Mods as a browser-based

system possible. We also drew inspiration from other

platforms moving into the browser, such as the creative

programming language Processing, which was adapted

into P5.js (McCarthy, Reas, and Fry 2015), or the Scratch

programming language for children (Resnick et al. 2009).

The remixing that takes place in these online communities

can lead to improved computational thinking and learning

(Dasgupta et al. 2016), and we modelled our remixing possi-

bilities using insights from these studies.

We are interested in the full workflow from idea

through manufacturing. We are specifically interested

in low-volume production and real-time feedback in the

fabrication process, similar to Willis et al. describe in

“Interactive Fabrication” (2011). While dataflow program-

ming exists for CAD, the hooks to CAM are limited. G-Code

generators such as 3D-printer slicers or machine-specific

postprocessors are well developed for existing machines,

but don't easily generalize to nonstandard machines. For

executing machine commands, platforms like GRBL and

TinyG do a stellar job for G-Code interpretation, but G-Code

has severe limitations (for example, G-Code does not have

conditional statements). Finally, there are middleware

suites such as Willow Garage’s ROS or IBM’s Node Red,

which create a structure for passing messages between

services, but do not implement the functionality we want in

digital fabrication workflows. These limitations are why we

decided to explore what an accessible system with CAD/

CAM machine control in one place could look like.

USING MODS
Before going into the implementation details of Mods, we

describe how a user might perform an example fabrica-

tion task using Mods. For example, if a user would like to

subtractively machine a copper-clad board using a milling

machine such as a Roland SRM-20 to produce a circuit, this

would be done in the following steps and as illustrated in

Figure 1.

• Open the program “SRM-20 PCB” at http://mods.cba.mit.

edu. Part of this program is shown in Figure 1.

• Input design file (image of the board)

• Specify the machining parameters (depth of cut, number

of offsets, percentage of offset, climb or conventional,

etc.)

• Calculate toolpath (using other modules we will later

describe in Figure 3)

• Zero machine (by moving the toolhead close using

computer commands and then manually zeroing the bit)

• Start the milling job.

For this workflow we assume that the SRM-20 milling

machine is connected to the user’s computer and that the

Mods server is already installed and running there. The

Mods server can be stopped and restarted at any time by

the user. This is only one example of a Mods workflow—

many others are possible.

Mods: Rapid Protoyping Workflow Composition Peek, Gershenfeld

3 A closer look at the “edge detect,” “orient edges,” “vectorize” modules. Each image can also be opened in a separate window to inspect the toolpath more
closely.

69

MODS SOFTWARE ARCHITECTURE
Mods consists of modules that can be connected together

in a dataflow graph. Users can use existing modules

(provided in a repository), write their own modules (using

a module template), or modify existing modules (directly

in the browser). The modules can be connected together

into programs. To run, the main source mods.js sets up a

container within the browser where programs of modules

can run. Each module includes initialization, event handling,

presentation, and application. This means that the func-

tionality of the module and how it will be rendered are both

included in each single module. A module can be edited,

reloaded, and saved from within Mods. Programs (collec-

tions of modules and their connections) can be saved as

well. This all happens client side—the module is all its parts

and does not use any online resources. Mods.js provides

the container, while modules each have a closure. When

the modules are loaded by mods.js, they spawn HTML5 web

workers to complete their tasks. This means that although

Mods runs in a browser, it does not need to be connected to

a server for running the computational modules—they are

standalone.

function worker() {
self.addEventListener('message',function(evt) {

var h = evt.data.height
var w = evt.data.width
var t = evt.data.threshold
var buf = new Uint8ClampedArray(evt.data.buffer)
var r,g,b,a,i
for (var row = 0; row < h; ++row) {

for (var col = 0; col < w; ++col) {
r = buf[(h-1-row)*w*4+col*4+0]
g = buf[(h-1-row)*w*4+col*4+1]
b = buf[(h-1-row)*w*4+col*4+2]
a = buf[(h-1-row)*w*4+col*4+3]
i = (r+g+b)/(3*255)
if (a == 0)

val = 255
else if (i > t)

var val = 255
else

var val = 0
buf[(h-1-row)*w*4+col*4+0] = val
buf[(h-1-row)*w*4+col*4+1] = val
buf[(h-1-row)*w*4+col*4+2] = val
buf[(h-1-row)*w*4+col*4+3] = 255
}

}
self.postMessage({buffer:buf.buffer},[buf.buffer])
})

}

var server_port = ’1234’
var client_address = ’127.0.0.1’
var server = {}
var WebSocketServer = require(’ws’).Server
wss = new WebSocketServer({port:server_port})
wss.on(’connection’,function(ws) {

if (ws._socket.remoteAddress != client_address) {
console.log("connection rejected from "+ws._socket.

remoteAddress)
wss.close()
return
}

else {
console.log("connection accepted from "+ws._socket.

remoteAddress)
}

ws.on(’message’,function(msg) {
eval(msg) }
}

 }

4 We have developed
machine-specific Node.js
servers controlling different
machines. A generic Node.
js server might evaluate any
messages passed through a
WebSocket from a Mods module.
Mods modules for different
machines may be more specific
with what messages need to be
evaluated (e.g., lpr -P milling-
machine [data]), and handle
details like hardware flow
control or ports permissions
when connecting a machine.
For example, to interface with
the Roland MDX-20 milling
machine, we need to set up a
serial port with a baud rate of
9600, RTSCTS flow control, and
the correct port name. These
attributes are specified in a
“serial” module available in the
repository.

5 The image threshold module
will spawn this web worker to
execute thresholding (making a
color or greyscale image black
and white).

COMPUTATIONAL INFIDELITIES

70

We have developed machine-specific Node.js servers

controlling different machines, as shown in Figure 4. The

example program in Figure 3 follows a typical design file

(here a .png) to toolpath workflow (here in coordinates).

This is the same workflow used in Figure 1. When a module

is added or updated, it triggers events on the modules that

are connected downstream. If we look at the code that

makes up the modules, we find the module’s inputs, outputs,

interface code, and functions. For example, the threshold

module is shown in Figure 5. Each module will start working

upon receiving the operands, or more specifically once an

event has been triggered because the inputs have been

modified. If the inputs are modified again, previous workers

are terminated.

USER-MADE MODS
Mods has been tested by novices using small-format

digital fabrication machines such as laser cutters, milling

machines, and 3D printers (Peek et al. 2017). Users can

access Mods by going to http://mods.cba.mit.edu or

running Mods locally. We host a repository of open-source

modules including video, image, .stl, and sensor input

modules, modules that directly import from CAD tools like

Solidworks, machine code output modules, and server code

for connecting to digital fabrication machines. However,

this of course does not cover all the applications users

might be interested in. Therefore, users can augment Mods

with custom modules. Users have, for example, made their

own modules for liquid handling machines that are used in

biological experiments. Those modules expose functionality

such as pipetting, mixing, or creating buffers.

DISCUSSION
The main reason we developed Mods was to avoid debug-

ging drivers to run digital fabrication machines. We fear

that trying lots of different ancient versions of the .dxf file

format to be able to get a toolpath right for a waterjet or

other digital fabrication machine is very familiar to thou-

sands of architects. While we acknowledge that our system

is hardly ready to replace all CAM and machine control

software, we hope to demonstrate that it is possible to

capture the workflows that are developed each time a user

figures out how to run a particular machine for a partic-

ular geometry, material, or specification. Especially within

architecture, where low-volume production is the norm and

highly precise fabrication of thousands of unique parts is

required, we hope to increase workflow efficiency.

We chose to implement Mods to run in the browser to be

able to keep connections to machines working with an

increasingly post–operating system world. We specifically

did not implement Mods as a Grasshopper plugin so that

we could more easily interface with the machines through

serial/USB/ethercat/etc. connections maintained from the

Mods server. While Grasshopper is a powerful tool, it is still

difficult to connect it directly to machine tools.

Performance is of concern when moving to interpreted

languages. Toolpath planning has historically been a

computationally intensive task. To measure the perfor-

mance of Mods, we created several benchmarking

modules. To benchmark processing power we calculate π

to a specified decimal point, and to benchmark connectivity

we time a roundtrip to the server. On a typical-performance

laptop on which we also wrote this paper, we measured

1033 Mflops and 9.8 ms round trip with the server. This

is on par with performance of compiled C on the same

machine, so we conclude that our implementation does not

suffer from interpreted language slowdown.

CONCLUSION
In summary, Mods is a browser-based event-driven envi-

ronment for data handling, toolpath planning, and machine

execution. It makes creating workflows for generating

automation sequences for machines easier by allowing

users to compose modules into programs in a dataflow

environment. This allows users take advantage of the

precision of digital fabrication machines without their

historical constraints. The modules themselves run client

side, implementing the functions used by the modules

(such as toolpath-planning algorithms or image analysis)

in JavaScript, which runs in the browser. The physical

machines are connected to a JavaScript server, which

listens to commands from the client over a WebSocket

connection. Together, these software modules make up a

simple-to-use and simple-to-extend alternative to tradi-

tional CAD/CAM machine control environments. We believe

this is a step towards harnessing the precision of machines

for the creativity of individuals.

ACKNOWLEDGEMENTS
We'd like to thank Naveed Ihsanullah, Jason Weathersby, Eric

Rescorla, Martin Best, and Andreas Gal (for Firefox) and Kenneth

Russell and Jochen Eisinger (for Chrome/Chromium) for finding

and fixing issues with their engines that emerged during the

development of Mods.

REFERENCES
Bachman, David. 2017. Grasshopper: Visual Scripting for

Rhinoceros 3D. New York: Industrial Press.

Bitter, Rick, Taqi Mohiuddin, and Matt Nawrocki. 2006. LabView:

Advanced Programming Techniques, 2nd ed. Hoboken: CRC Press.

Coleman, James, and Shannon Cole. 2017. “By Any Means

Mods: Rapid Protoyping Workflow Composition Peek, Gershenfeld

71

Necessary: Digitally Fabricating Architecture at Scale.” In

Disciplines & Disruption: Proceedings of the 37th Annual

Conference of the Association for Computer Aided Design in

Architecture, edited by T. Nagakura, S. Tibbits, M. Ibanez, and C.

Mueller, 190–201. Cambridge, MA: ACADIA.

Coleman, James, Craig Long, Andrew Manto, and Trygve Wastvedt.

2016. “Lots of parts, lots of formats, lots of headache.” XRDS 22 (3)

54–57.

Dahl, R. 2017. “Node.js.” https://nodejs.org/en/.

Dasgupta, Sayamindu, William Hale, Andrés Monroy-Hernandez,

and Benjamin Mako Hill. 2016. “Remixing as a Pathway to

Computational Thinking.” In Proceedings of the 19th ACM

Conference on Computer-Supported Cooperative Work & Social

Computing, 1438–49. San Francisco, CA: CSCW.

Davis, A. L., and R. M. Keller. 1982. “Data Flow Program Graphs.”

Computer 15 (2): 26–41. DOI: 10.1109/MC.1982.1653939.

Google. 2017. “Chrome V8.” https://developers.google.com/v8/.

Gramazio, Fabio, and Matthias Kohler, eds. 2014. “Made by

Robots: Challenging Architecture at a Larger Scale”. Special issue,

Architectural Design 84 (3).

Group, K. 2017. “OpenGL.” https://www.opengl.org/.

Johnston, Wesley M., J. R. Paul Hanna, and Richard J. Millar. 2004.

“Advances in Dataflow Programming Languages.” ACM Computing

Surveys 36 (1): 1–34.

Lewis, J. A. 2006. “Direct Ink Writing of 3D Functional Materials.”

Advanced Functional Materials 16 (17): 2193–204.

Louis-Rosenberg, Jesse. 2016. “Drowning in Triangle Soup: The

Quest for a Better 3-D Printing File Format.” XRDS 22 (3): 58–62.

Malone, Evan, and Hod Lipson. 2007. “Fab@home: The Personal

Desktop Fabricator Kit.” Rapid Prototyping Journal 13 (4): 245–55

McCarthy, Lauren, Casey Reas, and Ben Fry. 2015. Getting

Started with p5.js: Making Interactive Graphics in JavaScript and

Processing. San Francisco, CA: Maker Media.

Mellis, David, Sean Follmer, Björn Hartmann, Leah Buechley, and

Mark D. Gross. 2013. “FAB at CHI: Digital Fabrication Tools, Design,

and Community.” In CHI ’13 Extended Abstracts on Human Factors

in Computing Systems, 3307–10. Paris: CHI EA.

Page, Mitchell. 2017. “A Robotic Fabrication Methodology for

Dovetail and Finger Jointing: An Accessible & Bespoke Digital

Fabrication Process for Robotically-Milled Dovetail & Finger

Joints.” In Disciplines & Disruption: Proceedings of the 37th Annual

Conference of the Association for Computer Aided Design in

Architecture, edited by T. Nagakura, S. Tibbits, M. Ibanez, and C.

Mueller, 456–63. Cambridge, MA: ACADIA.

Peek, Nadya, James Coleman, Ilan Moyer, and Neil Gershenfeld.

2017. “Cardboard Machine Kit: Modules for the Rapid Prototyping

of Rapid Prototyping Machines.” In Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems, 3657–68.

Denver, CO: CHI.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernandez,

Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner,

Eric Rosenbaum, Jay Silver, and Brian Silverman. 2009. “Scratch:

Programming for All.” Communications of the ACM 52 (11): 60–67.

Rivers, Alec, Ilan E. Moyer, and Frédo Durand. 2012. “Position-

correcting Tools for 2D Digital Fabrication.” ACM Transactions on

Graphics 31 (4): 88:1–88:7.

Soler, Vicente, Gilles Retsin, and Manuel Jimenez Garcia. 2017. “A

Generalized Approach to Non-Layered Fused Filament Fabrication.”

In Disciplines & Disruption: Proceedings of the 37th Annual

Conference of the Association for Computer Aided Design in

Architecture, edited by T. Nagakura, S. Tibbits, M. Ibanez, and C.

Mueller, 562–71. Cambridge, MA: ACADIA.

Tilkov, Stefan, and Steve Vinoski. 2010. “Node. js: Using JavaScript

to Build High Performance Network Programs.” IEEE Internet

Computing 14 (6): 80–83

Willis, Karl D. D., Cheng Xu, Kuan-Ju Wu, Golan Levin, and Mark D.

Gross. 2010. “Interactive Fabrication: New Interfaces for Digital

Fabrication.” In Proceedings of the Fifth International Conference

on Tangible, Embedded, and Embodied Interaction, 69–72. Funchal,

Portugal: TEI.

Zoran, Amit, and Joseph A. Paradiso. 2013. “FreeD: A Freehand

Digital Sculpting Tool.” In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 2613–16. SIGCHI.

Nadya Peek develops unconventional digital fabrication tools,

small scale automation, networked controls, and advanced manu-

facturing systems. Spanning electronics, firmware, software, and

mechanics, her research focuses on harnessing the precision of

machines for the creativity of individuals. Nadya is an assistant

professor at the University of Washington in the Human-Centered

Design and Engineering department where she directs the Machine

Agency.

Prof. Neil Gershenfeld is the Director of MIT's Center for Bits

and Atoms. His unique laboratory is breaking down boundaries

between the digital and physical worlds, from creating molecular

quantum computers to virtuosic musical instruments.

11

COMPUTATIONAL INFIDELITIES

