MAXL: Distributed Trajectories for Modular Motion

Jake Robert Read Nadya Peek Neil Gershenfeld
jakeread@mit.edu nadya@uw.edu neil.gershenfeld@cba.mit.edu
MIT Center for Bits and Atoms University of Washington MIT Center for Bits and Atoms
Cambridge, Massachusetts, USA Machine Agency Cambridge, Massachusetts, USA

Seattle, Washington, USA

Figure 1: MAXL (for Modular Acceleration eXecution Library) is a distributed software system that allows multiple micro-
controllers to work together to execute time-synchronized motion trajectories. MAXL exposes generalized APIs to high- and
low-level software participants that allows integration of many different processes. Shown here is a long-exposure photograph

of light-painting motion trajectory made with MAXL.
ABSTRACT

Computational fabrication relies on time-synchronized operation of
various machine components. Designing machines for novel work-
flows is of interest to the computational fabrication community,
but designing control systems for these machines, especially with
diverse actuators and sensors, remains challenging. We present
MAXL, a modular, extensible machine control architecture that
enables synchronous control of heterogeneous components. We
contribute (1) a design pattern for a distributed trajectory object
with one author and multiple readers, (2) high- and low-level APIs
for interfacing this trajectory object to modular hardware and to
digital fab applications (3) a simple time-synchronization algorithm
and queuing scheme for distributing the trajectory object, and (4)
an extensible hardware implementation of MAXL. We demonstrate
MAXUL’s utility in developing new computational fabrication ap-
plications by integrating it into two motion control applications;
one for time-synchronized data output (light-painting), and the
other for time-synchronized data retrieval (from an accelerometer).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SCF °23, October 8-10, 2023, New York City, NY, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0319-5/23/10.

https://doi.org/10.1145/3623263.3623362

Finally, we discuss how MAXL can be extended for use in future
machine applications.

CCS CONCEPTS

« Computer systems organization — External interfaces for
robotics; Reconfigurable computing; - Software and its engi-
neering — Object oriented development; » Networks — Program-
ming interfaces; - Human-centered computing — Systems
and tools for interaction design.

KEYWORDS
Machine Control, Networked Systems, Modularity, Fabrication

ACM Reference Format:

Jake Robert Read, Nadya Peek, and Neil Gershenfeld. 2023. MAXL: Dis-
tributed Trajectories for Modular Motion. In Symposium on Computational
Fabrication (SCF ’23), October 8-10, 2023, New York City, NY, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3623263.3623362

1 INTRODUCTION

Computational fabrication relies on time-coordinated actions. CNC
milling relies on coordination between X, Y, and Z axes while
controlling the rotational speed of a spindle. Laser cutting relies
on motion coordination while modulating laser power and firing
rate. Extrusion-based 3D printing relies on motion coordination
while heating a build plate and melting filament for extrusion.

https://orcid.org/0000-0003-4422-5837
https://orcid.org/0000-0001-9405-0399
https://doi.org/10.1145/3623263.3623362
https://doi.org/10.1145/3623263.3623362

code

laser

event track
module

velocity track

SCF ’23, October 8-10, 2023, New York City, NY, USA Read, et al.
{ ""High Level" } ‘ { "Low Level"]
»
'
Digifab Applicati MAXL ; MAXL I dO Devi
igifab Applications Trajectory : Trajectory nput and Output Devices
Author API H Reader APIs
1 .
1
'
1
. motion tracks motor
E \ module
. 1 firmware
configuration, !
track routing, '
custom and trajectory !
application authorship !
ey
1
1
1
1
1
1
1

firmware

Network

Channels

Figure 2: MAXL is a distributed application that is directly embedded into system authors’ code. At the high level, MAXL
provides APIs for configuring machines and for interfacing with a distributed trajectory object that we discuss in Section
3.1 (i.e. writing new motion segments into a queue). In low-level components (hardware modules), MAXL presents APIs for
time-synchronized reading of trajectory information. The system is a pure software solution to motion control; rather than
requiring that users acquire particular hardware components, it instead offers useful APIs that systems authors can use to
integrate motion control into their own custom hardware, or to extend existing systems with new hardware.

Each of these well-established processes are served by custom-
built hardware. However, computational fabrication researchers
are interested in developing new workflows that accommodate
experimental materials and machines, e.g., [Bhooshan et al. 2020;
Rivera et al. 2023; Vasquez et al. 2020; Wang et al. 2016]. Building
custom hardware controllers to explore this design space is chal-
lenging. A common approach is to hack existing machines, adding
functionality by overloading existing practice, e.g., by modifying
off-the-shelf 3D printers [Rivera and Hudson 2019; Roumen et al.
2016]. However, this approach doesn’t generalize well and requires
expertise—adding additional end effectors requires low-level access
for timing, configuration, and safety, which is difficult to achieve
[Landwehr Sydow et al. 2022].

To address the challenges associated with designing custom
machine controllers, we seek to contribute a modular motion and
end-effector control system. A main design goal is for the system to
be extensible by plugging in additional boards, rather than needing
to implement new hardware. Furthermore, the system should be
straightforward to use by people who are prototyping workflows,
for example computational fabrication researchers developing new
machines and materials. Finally, it should be able to accommodate
many different types of processes with a single set of core features.

In this short paper, we present MAXL, a Modular Acceleration
eXecution Library, an extensible and modular motion control sys-
tem. MAXL’s core design attribute is considering the trajectories
of multiple devices as one distributed object, and providing clear
software APIs to interface with that object. A MAXL “author” can
create an object with trajectories for multiple MAXL “readers”. Here
an example author might be computational fabrication software,
such as a 3D printing slicer, and example readers would be 3D
printer components such as stepper motors, extruders, and heated
beds. We illustrate where MAXL sits in a computational fabrication
workflow in Figure 2. MAXL creates a new type of connection be-
tween digital fabrication applications (e.g., Computer-Aided Design
(CAD) programs such as Fusion360 or Rhino3D or Computer-Aided
Manufacturing (CAM) programs such as 3D printing slicers or tool-
path planning programs) and digital fabrication machines (e.g., 3D
printers, CNC mills, and more experimental machines).

The rest of this short paper is structured as follows. First, we
describe how MAXL relates to other research efforts in Section 2.
We then provide details of MAXL’s implementation, including its
time synchronization methods and segment buffering in Section
3. We evaluate MAXL by showing key features of the system in
demonstrations in Section 4. Finally, we close with a discussion and
future work.

MAXL: Distributed Trajectories for Modular Motion

2 RELATED WORK

Our goal of supporting the development of experimental compu-
tational fabrication machines is widely shared. In this section, we
describe related research efforts and how our approach draws from
and is distinct from this prior work.

2.1 Exploratory Digital Fabrication

There is increasing interest from the computational fabrication
community to create alternative methods for interfacing with digi-
tal fabrication machines. This ranges from being able to control the
machine in real time, enabling interactive [Fossdal et al. 2021; Kim
et al. 2018; Tian et al. 2019, 2018; Willis et al. 2010] and exploratory
[Tran O’Leary et al. 2023, 2022] fabrication, to creating modes of
interaction that prioritize material exploration in a computational
fabrication process [Tokac et al. 2022], to allowing for style transfer
with different robotic toolpaths [Ma et al. 2020], to allowing the use
of found objects such as tree branches in the fabrication process
[Larsson et al. 2019]. This research is in addition to the development
of new material affordances based on computational fabrication
methods, such as programmed deformation [Forman et al. 2020;
Ion et al. 2016; Tricard et al. 2020] and 4D printing [An et al. 2018;
Wang et al. 2018]. We are inspired by this research and seek to
advance it by developing a motion system that can support similar
lines of inquiry. MAXL makes real-time control of computational
fabrication systems straightforward by exposing each element of
a fabrication machine to the control software. This enables appli-
cations that require material tuning and iteration such as listed
above, and also supports applications that seek to move away from
mesh-based toolpath planning methods [Keeter 2013; Nandi et al.
2018].

2.2 Digital Fabrication Machine Building

Building custom machines for digital fabrication has also been ex-
plored through prior research. However, this has mainly focused on
the mechanical components of the machines such as the mechan-
ical motion [Fossdal et al. 2020; Peek et al. 2017] or toolchangers
[Vasquez et al. 2020]. MAXL complements this prior research by
focusing on motion- and end-effector control.

Commercial and off-the-shelf solutions for machine control such
as GRBL [GRBL 2023] or Replicape [Replicape 2023] are difficult
to extend with additional controllers or modules. Especially users
who wish to add time-sensitive control of additional components,
such as modulating the temperature of a hot-end based on its dwell
time on styrofoam, will find extending GCode based solutions con-
straining. The most closely aligned approach is that of Klipper
[Klipper3D 2023], 3D printer firmware which also prioritizes exten-
sibility. However, Klipper is also challenging to configure, especially
for tasks that are outside of its intended 3D printing applications,
and uses a rigid trajectory representation that makes integrating
new firmwares within the system difficult. MAXL is designed for re-
configurability and applications that go beyond 3D printing, thereby
expanding the landscape of machine control options and enabling
new applications.

SCF ’23, October 8-10, 2023, New York City, NY, USA

3 SYSTEM IMPLEMENTATION

MAXL introduces a design pattern that allows modular computing
devices to work together on the execution of a time-synchronized
trajectory by re-casting the trajectory as a distributed object with
one author (written in a high level programming language) and
multiple readers (written in embedded C++ and deployed using the
Arduino framework).

In a higher level view, MAXL is situated between path generators
(i.e. 3D Printing slicers and CNC Milling CAM tools) and machine
hardware (i.e. stepper motors, hotends, etc) as a distributed soft-
ware object, as diagrammed in Figure 2. It is primarily concerned
with orchestrating the execution of tool-paths (that are generated
in computer programs) in the real-world, on hardware that must
respect networking and physical constraints like acceleration limits.

MAXL takes a software-first approach, allowing system devel-
opers to interface their trajectory with custom hardware using an
Arduino [Arduino LLC 2023] library, and with their path generation
application using a JavaScript APL It is intended to be embedded
directly within digital fab applications in around the same place as
most existing applications would export GCode, i.e., just after path
generation and before path execution.

1 // Configuring a MAXL Trajectory Author Object
3 let maxl = createMAXL ({

// assigning names to positional DOF:
6 motionAxes: ["x", "y"]

// and defining event channels:
9 eventChannels: ["powerOut"l,

11 // managing subscriptions:

12 subscriptions: [{

13 device: "motorOne", // the device to route the track to
track: "x", // the output to route
reader: "stepper" // the callback, within the device

device: "motorTwo",
track: "y",
19 reader: "stepper",
20 3L
21 // the laser module to event and velocity tracks,
22 device: "laserModule",
23 track: "velocity",
reader: "velocityReader",
A
26 // we can route multiple tracks to the same device !
device: "laserModule",
track: "powerOut",
29 reader: "laserPower",

Listing 1: This is an example of a MAXL configuration object
from a laser cutter that has X and Y axes of motion, and that
routes one event track and the velocity track to a laser output
module.

1 for(let p = 0; p < path.length; p ++){

2 await maxl.addSegmentToQueue ({

3 endPosition: maxl.testPath[p]l,
maxVelocity: 250

5 s

6 }

Listing 2: We use JavaScript’s ‘async’ semantics to control
program flows.

For example, suppose a machine builder constructed a pen plot-
ting machine and they wanted to build an application where user
pen strokes are transmitted to a machine in real-time. To do so,
they might start by building a sketching tool that ingests input
on a tablet as polylines. Using a MAXL machine, they could add

SCF ’23, October 8-10, 2023, New York City, NY, USA Read, et al.
l—[Minimal Transmit Window]—l
Ve 3 g 5 q T N)
Trajectory History Current Transmitted Segments (Locked) Planned, Untransmitted (Free to Edit) | New \
Author \ \

]

1[0

N
-------------- ‘ Completion Acks |~--- Network Channels

Figure 3: A distributed trajectory object is key to MAXL’s operation. In this figure, we see the trajectory as a queue of segments
that transition through four states: unplanned, planned, transmitted, and historical. Segments that have been transmitted
are locked to prevent further editing by the author, but any others in the queue can be modified. MAXL contributes a design
pattern for minimal buffering (Section 3.2) that defines the size of this window.

N\ Current Segment Transmitted (Locked) Segments Planned (Ready) Segments New Segments
L | b i : i ' :
v \l/_\ll I [I I I
5} Y I o | I I
g I I \/ I I I I |
= (now) I I I N\ I I I [
> I I I (I I I I [
R I I I [I [
Q | | | I [| I | I
To) I I I [I I I [
= | | L ! | | BN
N
< L | Lo | : i i :
2 (now) I I [I I [I I I
g | | I | | I | | |
I I | I I [I I I
k= | I | | | | | I
19 |_| I [[I I I
> | | [[I I I
m AN
7

Figure 4: MAXL trajectories can be further decomposed into tracks, each of which is a single time-series function. This figure
shows an example of what two tracks - one velocity track and one event track - may look like in practice. Velocity tracks,
generated as a result of MAXL’s motion optimization routine, encode constant acceleration with linked velocities at segment
junctions. Event channels are simple time-stamped step functions, and provide the utility of turning remote devices on and off
(or changing their levels) in time-synchronized manner. Typical uses may include setting laser power levels during engraving
jobs, pulsing inkjet heads at precise intervals, or triggering sensor readings. In our light-painting demonstration from Section
4.1, we use an event channel to write LED states at precise locations. Section 3.4 explains in more detail how event tracks are

generated.

these trajectory objects directly to the distributed queue (which we
explain in Section 3.1) via an API like the one shown in Listing 2,
while monitoring MAXL'’s internal copy of the trajectory state to
track, in real-time, the machine’s progress.

To build their machine, they could use MAXL as a library for
motion control on a custom board, or simply deploy it on existing
hardware of their choosing; in the latter case, they would only be
responsible for authoring the code that interfaces from MAXL’s

trajectory object to the board’s hardware API, two examples of
which are shown in Listings 3 and 4.

3.1 The Distributed Trajectory

The trajectory object, diagrammed in Figure 3, is made up of discrete
segments of motion. These segments each encode a linear move
between two points in the machines’ defined coordinate space.
MAXL’s basic task is to ingest these segments from a computational

MAXL: Distributed Trajectories for Modular Motion

design application, apply acceleration constraints to them, and
coordinate their execution across modular machine hardware.

Segments are ingested in an unplanned state (rendered in blue
in Figures 3 and 4), meaning they arrive without precise speed
profiles. For example, a typical GCode instruction "G@ X90 F100"
encodes only a maximum cruise velocity of 100units/sec for the
given move, but does not specify entry and exit velocities. Were
these requests to be executed verbatim, acceleration constraints
would likely be violated, meaning that machines would be asked to
exert torques that their designs are incapable of. To prevent this,
MAXL optimizes entry, exit and cruise speeds within each segment
according to a junction-deviation-based lookahead scheme that is
common amongst many motion controllers [GRBL 2023; Replicape
2023; Smoothieware 2023]. An example of resulting speed profiles
is drawn in Figure 4.

MAXL makes planned segments available to trajectory readers
throughout the system by maintaining remote queues of segments
across a collection of networked devices, and time synchronizing
those devices such that they each know where, exactly, within the
queue they are meant to be at any given time. The trajectory author
also maintains access to planned, unplanned, current and historical
segments, as well as a real-time estimate of the trajectory’s current
state.

// supposing we have a hardware API that lets us issue steps
void stepperStep(boolean dir);

4 // and we can define the conversion between world-units
5 // and stepper motion,

6 float stepsPerUnit = 100.0F;

7 float unitsPerStep = 1.0F / stepsPerUnit;

5 float stepModulo = 0.0F;

10 // we can write a callback that receives position updates
1 // as well as position deltas (since the last call)
12 // from the track that this motor is subscribed to

14 void onPositionUpdate(float position, float delta){
15 // this simply checks if we have crossed a step threshold,
16 // and issues a step if so

17 stepModulo += delta;

18 if(stepModulo > unitsPerStep){

19 stepperStep(true);

20 stepModulo -= unitsPerStep;

21 3}

22 if (stepModulo < -unitsPerStep){

23 stepperStep(false);

24 stepModulo += unitsPerStep;

’5 }

26 }

28 // we enable this track by declaring the object,
9 // passing along our callback:
)

"stepper", // the reader's name

3

31 MAXL_TrackPositionLinear stepperTrack(

3

3 onPositionUpdate // the reader's callback
3

Listing 3: This is a code snippet from our stepper motor
module, where a positional track is defined and the motor is
programmed to step when position deltas exceed the size of
one step.

3.2 Minimal Buffering

Once a segment has been transmitted to readers, it becomes locked
from further edits by user programs or by the speed optimization
routine. Because locking portions of the trajectory is not often
desirable (it is best to be able to stop or adjust machine paths on
the fly, for example), and because trajectory readers have limited
buffer depths, MAXL makes an effort to minimize the number of

SCF ’23, October 8-10, 2023, New York City, NY, USA

transmitted segments. To do so, it deploys a queuing scheme where
a few criteria are maintained, which we list in Table 1.

The Minimal Buffer Time criteria can conflict with the Maximum
Buffer Size criteria in cases where trajectories are composed of
very many small segments, each of which is traversed quickly.
Unsurprisingly, this means that faster underlying networks (smaller
RTTs) will allow MAXL to handle more detailed trajectories. At the
moment, this condition simply results in the reporting of an error
condition and a systems halt, but we mention other solutions to
this trouble in our discussion on future work (Section 5). It has not
yet posed a serious performance constraint.

1 // supposing we have a laser API that lets us write
2 // power values from ©-100.0F
3 void writelLaserPower (float pwr){};

5 // we'll keep track of the currently requested relative-power:
6 float unscaledPower = 0.0F;

8 // and we can update that with an event track,
9 // that the trajectory author can use to set
0 // a laser power level:

12 void onlLaserOnOffEvents(float val){
13 unscaledPower = val;

}

16 MAXL_TrackEvent laserPowerTrack(
"laserPower",
18 onLaserOnOffEvents

9)

21 // then we can additionally scale it by speed, since we need
22 // to match power per mm, rather than power per second
// using a second track listener, this time for velocity

void onSpeedUpdate(float rate){
float scaledPower = unscaledPower * rate;
writeLaserPower (scaledPower);

28 }

30 MAXL_TrackVelocity velocityTrack(
31 "velocityReader",

32 onSpeedUpdate

33)

Listing 4: This is an example from a laser power module,
where an event track sets laser power per millimeter of travel,
and a speed track is used to continuously update the power
per second as speeds fluctuate. The point here is that MAXL
does not interface with or include hardware implementations
directly, rather it serves as a software-first interface between
custom hardware and custom motion control applications,
allowing systems developers the freedom to write their own
glue code..

3.3 Time Synchronization

Each trajectory segment is precisely time-stamped with a start and
end time (in microseconds), and data within trajectory segments
are all delineated on the basis of time; each segment is essentially
just some function that describes what the machine’s state should
be at a given time, x = f(t). By synchronizing trajectory readers’
clocks with the trajectory author’s clock, we can guarantee that,
at any given microsecond, every participant in the system knows
what they are responsible for doing.

However, MAXL does not specify network architectures. It uses
abstracted networking links implemented in the Modular Things
framework [Read et al. 2023] in order to communicate with remote
devices. We think that this aspect is valuable, as it means that the
system will remain extensible even if machine builders choose to
deploy devices on network architectures that are unknown to us at
the moment. But, it means that we (MAXL’s authors) do not know

SCF ’23, October 8-10, 2023, New York City, NY, USA

Read, et al.

Table 1: MAXL’s minimal buffering scheme tries to maintain a buffer size that minimizes the number of locked segments while

maintaining that remote buffers are not starved.

Criteria Value Comments

Minimal Buffer Size 2

Unless the trajectory is coming to an end, we maintain at least two segments in remote buffers: the

currently operating segment, plus one (for grace).

Minimal Buffer Time (s)

2% RTT MAXL measures the average packet round trip time (RTT) to each reader when it starts up; we can

use this measurement to ensure that remote buffers are long enough such that when we transmit a
new segment, it will arrive before the previous segments have completed.

Maximum Buffer Size 64

Trajectory readers, being typically deployed on micro-controllers with limited memory, have limited

buffer depths; we have set this limit at 64 although it is easily re-configurable.

Measurement 1/n }—PQ—P{ Measurement n/n

Calculati
]_‘acualon [m [ﬁ

Drift Check }

Time Assignments]»—»[H

Trajectory ping [rtt] (_ping |
Author

(reference clock)

Readers

\

/l

\/

(follower clocks)

[timestamp }

Figure 5: In order to synchronize trajectory readers’ clocks to the author’s clock, MAXL deploys a simplified type of network
time protocol. MAXL starts up by measuring a number of round-trip-time (RTT) samples from remote clocks and calculating
the average half-round-trip time. It then formulates one time assignment message per device that sets the device’s clock to one
half-round-trip time in the future, such that when the packet arrives at the remote device, the message is accurately stamped
with the trajectory author’s current time. MAXL can then occasionally check remote clock time-stamps in order to monitor for
drift. Average RTT times are additionally used to inform MAXL’s minimal buffering algorithm as discussed in Section 3.2

exactly the timing properties of the networks that MAXL will be
deployed on.

In order to synchronize clocks on unknown networks, we im-
plemented a simple network time protocol that is diagrammed in
Figure 5. At startup, MAXL makes a series of measurements using
a ping packet, estimating the average round-trip-time to each tra-
jectory reader. It uses that information to align trajectory reader
clocks with the trajectory author. One key difference between our
network time protocol and the Network Time Protocol [Mills 1991]
is that ours is asymmetric: the trajectory author is the sole clock
source.

3.4 Tracks, APIs, Transforms and
Configurations

In order to organize trajectories, we further decompose them into
a series of tracks. For example, in a laser cutting machine, the
machine’s trajectory is encoded into five tracks: x, y, and z positions,
one velocity track, and one event track that encodes laser on/off
requests.

Positional and velocity tracks are generated by MAXL by default
and are available regardless of configuration. To name them, users
can provide a list of positional track names (string identifiers) when

they configure the system. Machine builders can also provide trans-
form functions that map machine positions to actuator positions,
for machine configurations like CoreXY [Moyer 2012]. In the cases
where transforms are provided, actuator- and cartesian-space posi-
tional tracks are both made available to trajectory readers. These
configurations are handed to MAXL when it is instantiated as a
software object. In Figure 1 we show one example configuration.

Event tracks are time-series step functions: they encode as a list
of time stamps with a value at each stamp. An example of this type
of track is figured alongside an example of the velocity track in
Figure 4, and we show an example of how they are defined, using
evaluators, in Figure 5. They are calculated after a segment’s motion
profile has been optimized, but before the segment is transmitted.
Users provide a callback for the segment that, given the current
machine state, returns a desired value for the event track at that
time. In many cases event tracks are likely to be very simple: for
example just switching a device "on" or "off"—but others (like our
light-painting example) are more complex.

Listing 1 also shows a typical subscriptions data structure, which
is the semantic that MAXL uses to denote which device will be
responsible for carrying out each track in the trajectory. Each object
in the subscription data structure names a device (string identifiers

MAXL: Distributed Trajectories for Modular Motion

are akin to network addresses in the Modular Things framework),
a track that it should be subscribed to, and a callback function that
it should use to read that track (the "reader").

Embedded devices are pre-configured to read particular types of
tracks. For example, our modular stepper motor contains a firmware
(a snippet of which is pictured in Listing 3, at left), that reads a
positional track using a reader-callback labelled "stepper". However,
it is only subscribed to a particular positional track (i.e. "x" or "y")
when it is configured by a trajectory author. Our laser module (code
snippets in the same figure, at right), defines two track readers:
one for an event track that defines laser power, and another that
reads the velocity track. It uses the combination of these two tracks
to appropriately write a laser power output (which needs to scale
along with speed).

The embedded APIs may seem like a small detail in the system,
but they are core to the design pattern. In combination with Modular
Things’ abstracted networking layers, the generalized embedded
APIs allow us to deploy MAXL on just about any embedded platform
available in the Arduino ecosystem, using small pieces of interface
code to bring new devices into MAXL systems.

await maxl.addSegmentToQueue ({

endPosition: [210, o],

maxVelocity: 250,
4 eventChannels: [{
5 name: "neopixelBitmap",
6 evaluationPrecision: 10, // in milliseconds

evaluationFunction: (states) => {

8 let xpos = states.unitX * states.dist + states.pl1[0];
9 return evaluator(xpos, bitmapHello)
10 3}
1 hal
12 »

Listing 5: Event channel tracks can be authored using
evaluator callbacks, showing code from our light-painting
demo from Figure 1. These callbacks are evaluated at variable
timing precisions: callbacks are given the trajectory’s full
state at a given time, and return the desired value for the
event channel, given those states. It is also possible for users
to simply state a fixed event channel value for the entirety
of the segment.

4 DEMONSTRATIONS

As an evaluation of our system, we provide demonstrations that
show key attributes of our implementation [Ledo et al. 2018]. Firstly,
both demonstrations were deployed on a machine where each mo-
tor, as well as output and input devices, were controlled via a modu-
lar circuit (some of which are photographed in Figure 6). This shows
that MAXL is capable of coordinating motion across modular hard-
ware. We think it is worth noting that this does not preclude MAXL
from deployment on monolithic control boards like those used in
most off-the-shelf 3D printers, since one device can subscribe to
many tracks.

The light-painting demonstration showcases the flexibility of
MAXL'’s event channels to coordinate the action of output devices
and the use of abstract track types to interface with application-
specific hardware. The second demo showcases the simple utility of
being able to readily distribute a synchronized clock across modular
input devices; we deployed an accelerometer on our machine and
used time-synchronized readings to match planned accelerations
with measured accelerations.

SCF ’23, October 8-10, 2023, New York City, NY, USA

4.1 Light Painting

To demonstrate time-aligned output and the use of MAXL’s event
channels, we put together a light-painting demonstration whose
output is the teaser figure of this paper, Figure 1. In this case we de-
ployed a small strip of neopixels, which are individually addressable
LEDs, on an end-effector. The firmware that runs the neopixels was
deployed as a MAXL device that reads an 8-bit wide event track
where bit values were mapped to LED states. We wrote bitmaps
for "HELLO" and "WORLD" in JavaScript, and used an event track
evaluator that wrote LED states to the track that corresponded to
the machines’ anticipated position within each word.

We think that this is a compelling demo because it shows clearly
the flexibility of MAXL’s event channels, and it maps cleanly onto
motion control tasks that are typically difficult to orchestrate like
jet-based printing and laser engraving.

4.2 Time-Aligned Data Retrieval

Our second demonstration deploys an accelerometer (a BNO055
chip) on our modular machine (Figure 6). We were curious to com-
pare real-world accelerations (which are subject to vibrations and
other machine realities like stretching belts and flexing compo-
nents) with MAXL’s planned trajectory. To do so, we were able to
capture accelerometer data that was time-stamped at the source
using MAXL'’s distributed clock, while also recording the accelera-
tion trace from segments as they were planned. We combined these
data to render the plot in Figure 7.

This demo serves partially to demonstrate that MAXL is able
to actually execute motion on a distributed system, but also to
showecase the simple utility of being able to generate time-aligned
data traces from modular sensors. This demo is perhaps most com-
pelling to machine builders who want to measure and characterize
their machines. For example, some researchers have developed 3D
printer hardware that can measure nozzle pressure in real-time
[Coogan and Kazmer 2019], but other motion controllers do not
provide a framework for aligning these measurements with the rest
of the machines’ state at the time of measurement: the extruders’
flowrate and the machine’s speed and position. MAXL provides the
double utility of a distributed clock to time-stamp measurements
from modular sensors, and a copy of the as-optimized trajectory to
machine applications, such that trajectories and sensor data can be
re-combined in data sets for offline analysis.

4.3 Plotter

Modular machine systems can be helpful in the context of machine
prototyping environments, novel systems, and experimental ma-
chine designs, but modularity tends to increase overall systems
cost and complexity. As a result, many machines are likely to go to
market using monolithic controllers, or some mixture of monolithic
main-boards with modular tool heads (for example).

Although we developed MAXL mostly for use in experimental
and prototype machines, we wanted to show that it can be applied
even in simple machines with monolithic controllers, and so we
assembled a prototype of a Blot pen-plotter [HackClub 2023] and
quickly deployed it as an instance of MAXL. This involved about
40 lines of new code in the firmware to glue the MAXL API to the
plotter’s existing hardware drivers, and some small changes to an

SCF ’23, October 8-10, 2023, New York City, NY, USA Read, et al.

Figure 6: In order to test MAXL, we built a small modular machine using stepper-motor drivers from the Modular Things
system controlling X (left, actuated using one motor) and Y (at right, which we controlled with two motors) axes, and developed
two new end effectors for data retrieval (an accelerometer, center-left, shown dismounted from the machine) and data output
(our light-painting device, center-right).

Time-Aligned Feed-Forward and Measured Acceleration on the Y Axis

[N ¥

|
—

|
N

Acceleration (m/s2)

12 14 16 18 20

|
_

—— Feed-Forwards Acceleration
—— Accelerometer Reported Acceleration

Acceleration (m/s?)
o —_ N

|
N

12.5 13.0 13.5 B 14.0 14.5 15.0

Figure 7: Here we show data traces from our time-aligned data retrieval demo that used hardware shown in Figure 6. MAXL
makes post-optimization trajectories available to applications, and we used this feature to plot the reported acceleration trace
(in blue). Using the distributed clock, we time-stamped accelerometer readings (in orange), and can render the two traces
overlaid on one another. The point here is not to show alignment between feed-forward and sensed acceleration plots (we
know that belt stretch and other vibrations contribute to error in this regard), but is meant to convey the utility of using a
distributed clock to accurately time-stamp sensor readings, and compare them with as-optimized trajectories.

existing machine interface code that we use to send SVGs to the However, our ultimate goal is for members of the computational
machine. In Figure 8, we show the machine plotting a test file. fabrication research community to extend MAXL in ways that we
have not anticipated, using the generalized structures that we have

5 DISCUSSION AND FUTURE WORK deployed here. In particular, we are motivated by the notion that
') o MAXL, or design patterns like it, could help computational fab-

In this short paper, we have explained how MAXL uses a distributed rication researchers collaborate more productively by providing
trajectory to organize modular execution of motion trajectories. We a framework within which new motor controllers. sensors. and
hoPe that the reader can see how the éysFem could be extended to other devices (like extruders, spindles, cameras, etc.) can be inte-
build many other computahonal fab}rlcatlf)n processes, from l.aser grated into novel processes. At the moment, many such custom
cutters to FDM 3D printers, CNC mills, pick-and-place machines, systems rely on outdated GCode-based interpreters that provide

and combinations thereof.

MAXL: Distributed Trajectories for Modular Motion

SCF ’23, October 8-10, 2023, New York City, NY, USA

Figure 8: To demonstrate that MAXL can be deployed to modular or monolithic controllers, we configured an instance on this

prototype Blot [HackClub 2023] machine.

limited access to optimized motion paths and limited surface area
for modification—especially where new hardware is needed.

Furthermore, we hope that MAXL’s treatment of motion control
as a software interface (rather than a serialized interface like GCode)
may enable researchers to more rapidly develop feedback-based,
interactive computational fabrication processes (e.g., [Fossdal et al.
2021; Kim et al. 2017; Peng et al. 2018; Roumen et al. 2016; Willis
et al. 2010]), or exploratory workflows ([Devendorf and Ryokai
2015; Tran O’Leary et al. 2023]). MAXL’s minimal buffering routine,
discussed in Section 3.2, is developed with near-real-time trajectory
modification in mind, and our test system averaged 2 millisecond
round-trip-time, meaning that practical minimal buffers only need
to be a few milliseconds long.

With that said, MAXL is clearly a first step in this direction and
not a be-all end-all solution for motion control. In future work, we
anticipate following a few paths. First off, our underlying motion
segments (simple linear moves) are limiting for high quality mo-
tion. We are developing an improved set of segments including
arcs and bezier representations, as we think these will improve
the overall quality of motion as well as help compress complex
trajectories. For example, spiral and circular profiles that are cur-
rently segmented into hundreds of linear segments could be in-
stead represented directly as arcs, greatly reducing the system’s
bandwidth requirement. Second, our speed optimizer is based on
constant acceleration, where it is well known that constant-jerk
optimizations produce higher quality motion. We are exploring the
integration of this style planner into MAXL, as well as exploring
the use of complete state-space dynamics representations [Rowell
2002] of machine systems in order to further optimize trajectories.
We hope that this exploration will also enable us to plan for more
kinematically complex systems that we know are of interest to the
computational fabrication community, like robot arms and delta
printers. Third, while MAXL can be configured for many different

processes, we have yet to develop semantics for on-the-fly machine
changes like those that arise from tool-changing CNC machines
[Vasquez et al. 2020]. For example, we would like to combine FDM
printing, CNC milling and laser-etching into one workflow, but
have not considered how MAXL will adapt to changing underlying
hardware when tools are swapped out mid-process. We do hope that
the software-based nature of the system will make experimentation
in this regard straightforward.

6 CONCLUSION

This paper introduces MAXL (Modular Acceleration eXecution
Library): a modular and extensible motion control system for digi-
tal fabrication applications. MAXL uses a time-synchronized dis-
tributed trajectory object in order to coordinate modular devices
that make up a machine. For example, a digital fabrication applica-
tion such as a CAM program authors a distributed trajectory object,
and a machine’s hardware modules, such as a 3D printer’s stepper
motors and extruder, read their trajectories from the distributed
object. MAXL provides a novel interface between digital fabrica-
tion applications and machines, enabling low-level and interactive
control of each machine module. Authors and readers can rapidly
update and read the distributed trajectory object, enabling respon-
sive and interactive motion. We demonstrate the benefits of this
approach in several example implementations. The examples show
that MAXL enables high-quality time-synchronous coordination
across diverse hardware modules. Ultimately, we argue that MAXL
is a step towards making machine control design simpler and more
extensible, enabling computational fabrication systems researchers
to more readily build and re-use modular motion components as
they develop novel systems and machines.

SCF ’23, October 8-10, 2023, New York City, NY, USA

REFERENCES

Byoungkwon An, Ye Tao, Jianzhe Gu, Tingyu Cheng, Xiang ’Anthony’ Chen, Xiaoxiao
Zhang, Wei Zhao, Youngwook Do, Shigeo Takahashi, Hsiang-Yun Wu, Teng Zhang,
and Lining Yao. 2018. Thermorph: Democratizing 4D Printing of Self-Folding
Materials and Interfaces. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/3173574.3173834

Arduino LLC. 2023. Arduino Boards, Modules, Shields, and Kits. https://www.arduino.
cc/, accessed July 2023.

Shajay Bhooshan, Tom Van Mele, and Philippe Block. 2020. Morph & Slerp: Shape
Description for 3D Printing of Concrete. In Proceedings of the 5th Annual ACM
Symposium on Computational Fabrication (Virtual Event, USA) (SCF °20). Association
for Computing Machinery, New York, NY, USA, Article 1, 10 pages. https://doi.
org/10.1145/3424630.3425413

Timothy J Coogan and David O Kazmer. 2019. In-line rheological monitoring of fused
deposition modeling. Journal of Rheology 63, 1 (2019), 141-155.

Laura Devendorf and Kimiko Ryokai. 2015. Being the Machine: Reconfiguring
Agency and Control in Hybrid Fabrication. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (Seoul, Republic of Korea)
(CHI ’15). Association for Computing Machinery, New York, NY, USA, 2477-2486.
https://doi.org/10.1145/2702123.2702547

Jack Forman, Mustafa Doga Dogan, Hamilton Forsythe, and Hiroshi Ishii. 2020. DefeX-
tiles: 3D Printing Quasi-Woven Fabric via Under-Extrusion. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST 20). Association for Computing Machinery, New York, NY, USA,
1222-1233. https://doi.org/10.1145/3379337.3415876

Frikk Fossdal, Rogardt Heldal, and Nadya Peek. 2021. Interactive Digital Fabrication
Machine Control Directly Within a CAD Environment. In Proceedings of the 6th
Annual ACM Symposium on Computational Fabrication (Virtual Event, USA) (SCF
°21). Association for Computing Machinery, New York, NY, USA, Article 8, 15 pages.
https://doi.org/10.1145/3485114.3485120

Frikk H. Fossdal, Jens Dyvik, Jakob Anders Nilsson, Jon Nordby, Torbjern Nordvik
Helgesen, Rogardt Heldal, and Nadya Peek. 2020. Fabricatable Machines: A Toolkit
for Building Digital Fabrication Machines. In Proceedings of the Fourteenth Interna-
tional Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW,
Australia) (TEI °20). Association for Computing Machinery, New York, NY, USA,
411-422. https://doi.org/10.1145/3374920.3374929

GRBL. 2023. An open source, embedded, high performance g-code-parser and CNC
milling controller written in optimized C that will run on a straight Arduino. https:
//github.com/grbl/grbl

HackClub. 2023. Blog, the plotting bot from hack club. https://github.com/hackclub/
blot.

Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack
Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial
Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery,
New York, NY, USA, 529-539. https://doi.org/10.1145/2984511.2984540

Matthew Keeter. 2013. Hierarchical Volumetric Object Representations for Digital
Fabrication Workflows. In ACM SIGGRAPH 2013 Posters (Anaheim, California)
(SIGGRAPH ’13). Association for Computing Machinery, New York, NY, USA, Article
84, 1 pages. https://doi.org/10.1145/2503385.2503477

Jeeeun Kim, Haruki Takahashi, Homei Miyashita, Michelle Annett, and Tom Yeh. 2017.
Machines as Co-Designers: A Fiction on the Future of Human-Fabrication Machine
Interaction. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI EA ’17). Association
for Computing Machinery, New York, NY, USA, 790-805. https://doi.org/10.1145/
3027063.3052763

Jeeeun Kim, Clement Zheng, Haruki Takahashi, Mark D Gross, Daniel Ashbrook, and
Tom Yeh. 2018. Compositional 3D Printing: Expanding & Supporting Workflows
towards Continuous Fabrication. In Proceedings of the 2nd Annual ACM Symposium
on Computational Fabrication (Cambridge, Massachusetts) (SCF ’18). Association
for Computing Machinery, New York, NY, USA, Article 5, 10 pages. https://doi.
org/10.1145/3213512.3213518

Klipper3D. 2023. Klipper: 3d-Printer firmware. https://www.klipper3d.org/

Sophie Landwehr Sydow, Martin Jonsson, and Jakob Tholander. 2022. Modding the
Pliable Machine: Unpacking the Creative and Social Practice of Upkeep at the
Makerspace. In Proceedings of the 14th Conference on Creativity and Cognition
(Venice, Italy) (C&C °22). Association for Computing Machinery, New York, NY,
USA, 220-233. https://doi.org/10.1145/3527927.3532804

Maria Larsson, Hironori Yoshida, and Takeo Igarashi. 2019. Human-in-the-Loop
Fabrication of 3D Surfaces with Natural Tree Branches. In Proceedings of the 3rd
Annual ACM Symposium on Computational Fabrication (Pittsburgh, Pennsylvania)
(SCF °19). Association for Computing Machinery, New York, NY, USA, Article 1,
12 pages. https://doi.org/10.1145/3328939.3329000

David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul
Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,

Read, et al.

Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1-17. https://doi.org/10.1145/3173574.3173610

Zhao Ma, Simon Duenser, Christian Schumacher, Romana Rust, Moritz Bicher, Fabio
Gramazio, Matthias Kohler, and Stelian Coros. 2020. RobotSculptor: Artist-Directed
Robotic Sculpting of Clay. In Proceedings of the 5th Annual ACM Symposium on
Computational Fabrication (Virtual Event, USA) (SCF 20). Association for Comput-
ing Machinery, New York, NY, USA, Article 13, 12 pages. https://doi.org/10.1145/
3424630.3425415

David L Mills. 1991. Internet time synchronization: the network time protocol. IEEE
Transactions on communications 39, 10 (1991), 1482-1493.

Ilan E Moyer. 2012. Core xy.

Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman,
and Zachary Tatlock. 2018. Functional Programming for Compiling and Decom-
piling Computer-Aided Design. Proc. ACM Program. Lang. 2, ICFP, Article 99 (jul
2018), 31 pages. https://doi.org/10.1145/3236794

Nadya Peek, James Coleman, Ilan Moyer, and Neil Gershenfeld. 2017. Cardboard
Machine Kit: Modules for the Rapid Prototyping of Rapid Prototyping Machines.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New
York, NY, USA, 3657-3668. https://doi.org/10.1145/3025453.3025491

Huaishu Peng, Jimmy Briggs, Cheng-Yao Wang, Kevin Guo, Joseph Kider, Stefanie
Mueller, Patrick Baudisch, and Frangois Guimbretiére. 2018. RoMA: Interactive
Fabrication with Augmented Reality and a Robotic 3D Printer. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1-12. https://doi.org/10.1145/3173574.3174153

Jake Robert Read, Leo Mcelroy, Quentin Bolsee, B Smith, and Neil Gershenfeld. 2023.
Modular-Things: Plug-and-Play with Virtualized Hardware. In Extended Abstracts
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI EA °23). Association for Computing Machinery, New York, NY, USA,
Article 210, 6 pages. https://doi.org/10.1145/3544549.3585642

Replicape. 2023. Replicape - a smart, silent and user friendly electronics controller
board for 3D-printers and CNC machines. https://www.thing-printer.com/product/
replicape/

Michael L. Rivera, S. Sandra Bae, and Scott E. Hudson. 2023. Designing a Sustainable
Material for 3D Printing with Spent Coffee Grounds. In Proceedings of the 2023 ACM
Designing Interactive Systems Conference (Pittsburgh, PA, USA) (DIS "23). Association
for Computing Machinery, New York, NY, USA, 294-311. https://doi.org/10.1145/
3563657.3595983

Michael L. Rivera and Scott E. Hudson. 2019. Desktop Electrospinning: A Single Ex-
truder 3D Printer for Producing Rigid Plastic and Electrospun Textiles. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA,
1-12. https://doi.org/10.1145/3290605.3300434

Thijs Roumen, Bastian Kruck, Tobias Diirschmid, Tobias Nack, and Patrick Baudisch.
2016. Mobile Fabrication. In Proceedings of the 29th Annual Symposium on User Inter-
face Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing
Machinery, New York, NY, USA, 3-14. https://doi.org/10.1145/2984511.2984586

Derek Rowell. 2002. State-space representation of LTI systems. URL: http://web. mit.
edu/2.14/www/Handouts/StateSpace. pdf (2002), 1-18.

Smoothieware. 2023. smoothieboard. http://smoothieware.org/smoothieboard

Rundong Tian, Vedant Saran, Mareike Kritzler, Florian Michahelles, and Eric Paulos.
2019. Turn-by-wire: Computationally mediated physical fabrication. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology.
713-725.

Rundong Tian, Sarah Sterman, Ethan Chiou, Jeremy Warner, and Eric Paulos. 2018.
Matchsticks: Woodworking through improvisational digital fabrication. In Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems. 1-12.

Iremnur Tokac, Benay Gursoy, Herman Bruyninckx, and Andrew Vande Moere. 2022.
Craft-Inspired Digital Fabrication: A Study of Interactive Robotic Clay Carving.
In Proceedings of the 7th Annual ACM Symposium on Computational Fabrication
(Seattle, WA, USA) (SCF "22). Association for Computing Machinery, New York, NY,
USA, Article 2, 14 pages. https://doi.org/10.1145/3559400.3562003

Jasper Tran O’Leary, Gabrielle Benabdallah, and Nadya Peek. 2023. Imprimer: Com-
putational Notebooks for CNC Milling. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (Hamburg, Germany) (CHI "23). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 207, 15 pages.
https://doi.org/10.1145/3544548.3581334

Jasper Tran O’Leary, Eunice Jun, and Nadya Peek. 2022. Improving Programming for
Exploratory Digital Fabrication with Inline Machine Control and Styled Toolpath
Visualizations. In Proceedings of the 7th Annual ACM Symposium on Computational
Fabrication (Seattle, WA, USA) (SCF ’22). Association for Computing Machinery,
New York, NY, USA, Article 8, 12 pages. https://doi.org/10.1145/3559400.3561998

Thibault Tricard, Vincent Tavernier, Cédric Zanni, Jonas Martinez, Pierre-Alexandre
Hugron, Fabrice Neyret, and Sylvain Lefebvre. 2020. Freely Orientable Microstruc-
tures for Designing Deformable 3D Prints. ACM Trans. Graph. 39, 6, Article 211
(nov 2020), 16 pages. https://doi.org/10.1145/3414685.3417790

https://doi.org/10.1145/3173574.3173834
https://www.arduino.cc/
https://www.arduino.cc/
https://doi.org/10.1145/3424630.3425413
https://doi.org/10.1145/3424630.3425413
https://doi.org/10.1145/2702123.2702547
https://doi.org/10.1145/3379337.3415876
https://doi.org/10.1145/3485114.3485120
https://doi.org/10.1145/3374920.3374929
https://github.com/grbl/grbl
https://github.com/grbl/grbl
https://github.com/hackclub/blot
https://github.com/hackclub/blot
https://doi.org/10.1145/2984511.2984540
https://doi.org/10.1145/2503385.2503477
https://doi.org/10.1145/3027063.3052763
https://doi.org/10.1145/3027063.3052763
https://doi.org/10.1145/3213512.3213518
https://doi.org/10.1145/3213512.3213518
https://www.klipper3d.org/
https://doi.org/10.1145/3527927.3532804
https://doi.org/10.1145/3328939.3329000
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3424630.3425415
https://doi.org/10.1145/3424630.3425415
https://doi.org/10.1145/3236794
https://doi.org/10.1145/3025453.3025491
https://doi.org/10.1145/3173574.3174153
https://doi.org/10.1145/3544549.3585642
https://www.thing-printer.com/product/replicape/
https://www.thing-printer.com/product/replicape/
https://doi.org/10.1145/3563657.3595983
https://doi.org/10.1145/3563657.3595983
https://doi.org/10.1145/3290605.3300434
https://doi.org/10.1145/2984511.2984586
http://smoothieware.org/smoothieboard
https://doi.org/10.1145/3559400.3562003
https://doi.org/10.1145/3544548.3581334
https://doi.org/10.1145/3559400.3561998
https://doi.org/10.1145/3414685.3417790

MAXL: Distributed Trajectories for Modular Motion

Joshua Vasquez, Hannah Twigg-Smith, Jasper Tran O’Leary, and Nadya Peek. 2020.
Jubilee: An Extensible Machine for Multi-Tool Fabrication. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI "20). Association for Computing Machinery, New York, NY, USA, 1-13. https:
//doi.org/10.1145/3313831.3376425

Guanyun Wang, Humphrey Yang, Zeyu Yan, Nurcan Gecer Ulu, Ye Tao, Jianzhe Gu,
Levent Burak Kara, and Lining Yao. 2018. 4DMesh: 4D Printing Morphing Non-
Developable Mesh Surfaces. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology (Berlin, Germany) (UIST °18). Association
for Computing Machinery, New York, NY, USA, 623-635. https://doi.org/10.1145/
3242587.3242625

Guanyun Wang, Lining Yao, Wen Wang, Jifei Ou, Chin-Yi Cheng, and Hiroshi Ishii.
2016. XPrint: A Modularized Liquid Printer for Smart Materials Deposition. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 5743-5752. https://doi.org/10.1145/2858036.2858281

Karl D.D. Willis, Cheng Xu, Kuan-Ju Wu, Golan Levin, and Mark D. Gross. 2010.
Interactive Fabrication: New Interfaces for Digital Fabrication. In Proceedings of
the Fifth International Conference on Tangible, Embedded, and Embodied Interaction
(Funchal, Portugal) (TEI ’11). Association for Computing Machinery, New York, NY,
USA, 69-72. https://doi.org/10.1145/1935701.1935716

SCF ’23, October 8-10, 2023, New York City, NY, USA

https://doi.org/10.1145/3313831.3376425
https://doi.org/10.1145/3313831.3376425
https://doi.org/10.1145/3242587.3242625
https://doi.org/10.1145/3242587.3242625
https://doi.org/10.1145/2858036.2858281
https://doi.org/10.1145/1935701.1935716

	Abstract
	1 Introduction
	2 Related Work
	2.1 Exploratory Digital Fabrication
	2.2 Digital Fabrication Machine Building

	3 System Implementation
	3.1 The Distributed Trajectory
	3.2 Minimal Buffering
	3.3 Time Synchronization
	3.4 Tracks, APIs, Transforms and Configurations

	4 Demonstrations
	4.1 Light Painting
	4.2 Time-Aligned Data Retrieval
	4.3 Plotter

	5 Discussion and Future Work
	6 Conclusion
	References

