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ABSTRACT: A complete reciprocal-space formalism for describing the spatial aspects of
nuclear magnetic resonance (NMR) spin dynamics in the presence of hard radiofrequency
(RF) pulses and linear-refocusing inhomogeneities is reviewed. The formalism demonstrates
how the magnetization in a sample can be decomposed into a linear combination of simple
basis functions consisting of helical phase modulations in the transverse plane and
sinusoidal amplitude modulations along the principal axis of symmetry. It is shown that
plotting the evolution of the spatial Fourier variable for each basis function provides a
simple way to compute both the number of echoes resulting from any multipulse experi-
ment and when the echoes will form. The maximum number of echoes possible for a
sequence of n hard RF pulses with 90° flip angles and with arbitrary flip angles, both under
the action of a time-invariant linear I, Hamiltonian, is computed using this formalism. A
simple criterion for the delay time necessary between pulses to observe the maximum
number of echoes is presented. Experimental results are shown for pulse sequences of up to
four pulses. © 1998 john Wiley & Sons, Inc.  Concepts Magn Reson 10: 331-341, 1998
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INTRODUCTION

Spin echoes are indispensable elements for both
imaging and spectroscopy experiments because of
their ability to refocus selective interactions. Spin
echoes were first discovered in 1950 by Hahn (1),
and the theory of echo formation has been well
established.

Until a few years ago, exact calculations to
show the appearance times and amplitudes of
spin echoes based on the theory of echo forma-
tion had been performed only under special cir-
cumstances. Carr and Purcell (2) and Woessner
(3) directly integrated the Bloch equations (4) for
sequences of up to four radiofrequency (RF)
pulses. Ghose et al. (5), extending the spin-echo
model developed by Banerjee et al. (6), correctly
predicted the maximum number of echoes from a
sequence of n hard pulses by invoking a physi-
cally nonexistent virtual stimulated echo mecha-
nism, but did not indicate a simple way to deter-
mine when the echoes would appear. Using the
fact that an echo forms when previously in-phase
magnetization becomes refocused during a free
induction period, Jensen (7) amplified the ob-
scure spin-echo diagram originally attributable to
Das and Saha (8) to predict the times and ampli-
tudes of echo formation; similarly, Kaiser et al.
(9) proposed a formalism for echo formation
based on a partitioning of the magnetization vec-
tor into components of the same phase. These
methods work adequately for periodic, symmetric
pulse trains, but do not generalize easily to se-
quences with arbitrary flip angles, pulse phases,
numbers of pulses, or different interpulse waiting
times.

Recent work by Kim and Lee (10) corrected
earlier work by Das and Roy (1) to predict the
number of echoes produced by an arbitrary num-
ber of RF pulses, but their formalism relied on
integrating the Bloch equations and deducing
complex rules for magnetization pathways. Their
work underscored the fact that as the number of
RF pulses increases, the solution to the Bloch
equations becomes appreciably more complex;
furthermore, numerical evaluation of the ex-
pected induction signal is inflexible and provides
little insight into the dynamics of echo formation.
Finally, Hennig (72, 13) developed a successful
but sophisticated formalism that correctly pre-
dicts echo appearance times and amplitudes by
defining substates that index the possible magne-
tization phase pathways induced by RF pulses.
Although Hennig’s extended phase graph formal-

ism appears similar to the work presented in this
article, it lacks the straightforward intuition and
simpler mathematical description given here.

This work reviews a reciprocal-space formalism
attributable to Sodickson and Cory (14, 15) that
completely describes the formation of spin echoes
in an experiment of hard RF pulses and static
field inhomogeneities. This approach provides a
straightforward way to compute the appearance
time and amplitude of all echoes due to linear
effects by following trajectories in reciprocal space
that contain the amplitude and phase information
of each magnetization component in the sample.
This method is then used to calculate the maxi-
mum number of echoes possible from a sequence
of n hard RF pulses in the presence of a constant
gradient field.

GENERALIZED /-SPACE FORMALISM

Consider the three Cartesian components of mag-
netization in a nuclear magnetic resonance
(NMR) experiment. As is customary, the z axis is
aligned with the external static field B,. During
an experiment consisting of hard RF pulses, and
refocusing inhomogeneities such as applied static
magnetic field gradients, the magnetization vector
field becomes in general a complicated function
of position; this complex spatial dependence of
the magnetization is called the magnetization
grating. Decomposition of the grating into Fourier
components of different spatial frequencies sim-
plifies the description of the effects of RF fields
and gradients on the magnetization grating. In
this approach, known as the generalized k-space
formalism, we examine the Fourier transform of
the three components of magnetization, M,, M,,
and M,, under the action of magnetic field gradi-
ents and RF pulses.

Although this article specifically calculates the
cffects of static magnetic field gradients on the
grating as found in an imaging experiment, this
picture of the magnetization easily generalizes to
a large class of spectroscopy experiments where
the effects of other static refocusing inhomo-
geneities are the dominant interactions, such as
static field inhomogeneities, background fields, or
chemical shift differences (14, 15). Indeed, since
the Fourier transform is a linear mapping, this
generalized k-space formalism accurately de-
scribes the magnetization in the sample under the
action of any time-invariant linear I, Hamilto-
nian.



Effect of Static Magnetic Field Gradient
on Grating

When a magnetic field gradient is applied with a
variation in magnetic field B,, the components of
the grating transverse to the z axis combine to
form helical phase modulations (Fig. 1). If the
gradient is applied such that the magnetic field
varies along an arbitrary axis #, the precession
frequency of the magnetization in the transverse
plane changes, or is phase modulated, according
to

0B,
y—udt = udk, [1]
Ju

where v is the gyromagnetic ratio, (9B,/dou)
describes the magnetic field gradient, and k, de-
notes the Fourier variable that contains the com-
plete spatial dependence of the phase modula-
tion. Referring to Fig. 1, k, is a wavenumber that
describes the pitch of the modulation. Consider-
ing the transverse magnetization variables M,
and M, to be the real and imaginary parts of a
single complex variable s, the phase modulation
of the grating is proportional to

s(u, k) o ekt ® (2]

(a)
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where 6 is the constant phase offset for the entire
sample, measured counterclockwise from the pos-
itive x axis in the x—y plane.

The effect of the gradient field is to change the
wavenumber &, of the transverse grating. Inte-
grating Eq. [1] yields

Aku=vf

Hence, gradient evolution may be visualized as
the tightening of the spatial helix in the direction
of the gradient. If the magnetic field gradient is
static, the effect of the field is to produce a
modulation of k, that is linear in time. Note that
the gradient has no effect on 9.

Effect of an RF Pulse on Grating

In contrast to magnetic gradient effects, a hard
RF pulse along a particular axis direction can be
described as a rotation of the axis system around
that axis. As a result, the new magnetization
vector after an RF pulse is a linear combination
of its components before the pulse. For example,
consider an on-resonance, hard RF pulse a,,
where o is the tip angle and & is the phase of the
pulse. If o = 7 /2, a component of magnetization
from the transverse plane modulated as sin(k, u
+ 0) is rotated into the z axis, creating a longitu-

e

Mx, '

»

(c)

Figure 1 Magnetization grating caused by a linear magnetic field modulation along #i: (a)
right-handed and (b) left-handed helical modulations of the magnetization, corresponding to
phase-modulated grating components in the transverse plane; (c) a sinusoidal modulation of
magnetization, corresponding to a longitudinal component.
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dinal magnetization grating. In addition, if a = =,
then magnetization both along the z axis and
along the axis transverse to both z and the pulse
axis reverses their signs, or, equivalently, changes
the sign of %k, on those axes.

Notice that if a < m/2, only a fraction of the
transverse magnetization is rotated into the =z
axis, but that the fraction depends only on «, not
on k,. The RF pulse causes mixing of longitudi-
nal and transverse magnetization that may alter
the overall phase 6, but has no effect on the
absolute value of k,,.

How Magnetization Gratings Transform
under RF Pulses

Note that any transverse magnetization can be
written as the sum of right-handed and left-
handed transverse helical gratings, phase modu-
lated as in Eq. [2], over all values of k,. In
addition, any magnetization along the z axis can
be written as the sum of longitudinal gratings,
modulated as sin(k,u + 6), over all values of k,
[Fig. 1(c)]. Consequently, any spatial modulation

cosz(%)gl(ﬁ)
81(9) N o
g,(0) | = sinz(—)gl(—6+2¢) +cosz( )gz(ﬁ)
2 2
g.(6)
L

where it is understood that the k-value remains
unchanged. These results can be modified further
to include the effect of off-resonance pulses on
the basis set, if necessary.

In summary, a sample at thermal equilibrium
has all magnetization aligned with the external
field B,; an initial RF pulse at time ¢, creates
some initial magnetization in the transverse plane;
the gradient field creates modulations in the k-
values of the magnetization grating; subsequent
RF pulses cause mixing of the magnetization that
can be described by the addition of grating com-

+sin2(%)g2(—9 +2d) +sin(a)g,(6 — )

(s

1 1
Esin(oc)gl(e +d+m)+ Esin(a)gz(—e + ¢) +cos(a)g,(6)

of magnetization along G at any time ¢ can be
written as a linear combination of these three
basis functions over all values of k,:

g1(ku,9) — ei(kuu+e)
g,(k,,0) = ei(—ku+9)
g.(k,,0) =sin(k,u + 6)

(4]

Since gradients affect only the transverse grating
wavenumbers, and RF pulses mix components at
constant k, values, it is convenient to describe
NMR experiments using this complete set of basis
functions.

As previously noted, ideal, on-resonance RF
pulses of the form «, cause mixing of the above
basis functions that alters the amplitude and phase
of the magnetization before the pulse. The
derivation of the mixing amplitude and phase can
be computed by considering the effect of the
appropriate rotation matrices on the Cartesian
components of magnetization, and then trans-
forming to the basis set above; such computations
have been carried out elsewhere (12-15) and can
be summarized as:

+sin(a)g (=0 + & + ) [5]

ponents from the basis set, with their appropriate
k-values. Thus, the magnetization grating is su-
perimposed on the spin distribution, which for
simplicity is assumed to be uniform and of infinite
spatial extent. Since the detected signal is the
transverse magnetization integrated over the sam-
ple volume, it is proportional to the grating am-
plitude at k = 0 (Fig. 2).

Tracking the evolution of the k-values for each
magnetization grating present in the sample can
easily be accomplished by plotting the k-space
trajectories on a single graph. Note that the tra-
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Figure 2 (a) Magnetization spin density, uniform along u, and its Fourier transform. (b)
The evolution of a magnetization grating under the action of a time-invariant linear
magnetic field gradient. The solid dots indicate the amplitude of the measured signal; the
solid line shows the trajectory of the spatially uncorrelated k-value.

jectories for each of the components of the mag-
netization grating, described by the basis func-
tions, completely describe the NMR experiment.

APPLICATION

The k-space description of the spin dynamics in
an NMR experiment is not only complete in the
sense that the formalism accounts for all the
spatial information about the magnetization, but
it also provides a straightforward way to compute
the outcome of many NMR experiments. Con-
sider the problem of determining the maximum
possible number of echoes from a series of n
hard RF pulses. Assume that the experiment is

conducted in the presence of a constant B, gradi-
ent, whether a background gradient or intention-
ally applied, and assume enough time is allowed
to elapse after each pulse to observe all echoes
created by that pulse before the next pulse is
applied. This maximum echo time delay between
pulses can be trivially computed using the k-space
picture, as shown later.

Calculation of Maximum Number of Echoes

This formerly complex problem may be accom-
plished in a straightforward manner using k-space
trajectories. With the k-space description to track
the spatial relations of the magnetization in the
sample, determining the maximum number of
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echoes produced by a series of n hard pulses
reduces to counting the number of trajectories in
k-space that cross the k = 0 axis. Since the rota-
tion angle and rotation axis of the magnetization
induced by each transverse RF pulse depend on
the particular pulse sequence, the amplitude and
phase of each trajectory will not be calculated,
but rather only the existence of each possible
trajectory and when the echo will occur. However,
it should be noted that for any specific pulse-
sequence experiment, computing the amplitude
and phase of each trajectory simply amounts to a
straightforward application of Eq. [5]. Finally, the
amplitude of each echo can be calculated by
including with the trajectory amplitude any atten-
uation, such as the effects of 7, and 7T, relax-
ation, and diffusion.

Although the total number of echoes produced
by a series of n pulses can be computed directly,
it is instructive to solve this problem in three
steps:

1. Determine the number of echoes that will
result from the ith pulse in the series, as-
suming that only the first pulse rotates spa-
tially uncorrelated magnetization into the
transverse plane;

2. Determine the total number of echoes for
all n pulses, with the same assumption as in
step 1;

3. Determine the total number of echoes for
all n pulses when each pulse rotates spa-
tially uncorrelated magnetization into the
transverse plane.

To label the possible trajectories, we will use
the following nomenclature. Let a; represent the
number of g, components (trajectories in k-space
that have nonzero slope and & > 0), b, the num-
ber of g, components (trajectories with nonzero
slope and k£ < 0), and p; the number of g, com-
ponents (trajectories with zero slope and k > 0)
of the grating immediately after the ith pulse
(Fig. 3). It is useful to track these last trajectories,
since they correspond to components of the mag-
netization that lie along the z axis after the ith
pulse but will have a component of magnetization
rotated into the transverse plane with the subse-
quent pulse. Without loss of generality, it is as-
sumed that the gradient field has a positive value.

This procedure is applied to two cases: (a) the
90°; flip angle, where each pulse is a perfect w/2
pulse; and (b) the arbitrary flip angle, where each
pulse has a flip angle not equal to an integer
multiple of w/2 (for example, a < 7 /2). This

last case gives the maximum number of echoes
possible from a sequence of n pulses.

The 90° Flip Angle Case.

1. Assuming only the first pulse rotates spa-
tially uncorrelated magnetization into the
transverse plane, a recursion relation be-
tween trajectories after the (i — 1)th pulse
and the ith pulse can be computed by refer-
ring to Eq. [5] as follows:

e For a;: All a; — 1 trajectories have a compo-
nent with slope and k > 0 after the ith pulse;
in addition, all b, — 1 trajectories will have a
component with & > 0 after the ith pulse if
enough time has elapsed since the (i — 1)th
pulse so that they have all crossed the k = 0
line; finally, all p, — 1 trajectories will be
rotated into the transverse plane after the
ith pulse.

e For b;: The ith pulse causes all a; — 1 tra-
jectories to have a component with k < 0
after the pulse is applied; all b, — 1 will also
have a component with k < 0 after the ith
pulse if enough time has elapsed to ensure
that all b, — 1 trajectories have crossed the
k = 0 line; in addition, all p, — 1 trajectories
will be rotated into the transverse plane af-
ter the ith pulse.

e For p;: All a; — 1 and b; — 1 trajectories will
leave some magnetization along the z axis
after the ith pulse.

The above relations may summarized as:
a;=a;, ;+b_,+p_,
bj=a;,_+b_, +p_, (6]

pi=a;,_;+b_,

Since each b; gives rise to an echo when it
crosses the k = 0 line, the simple recursion
relation for the (maximum) number of echoes
after the ith pulse is found from Eq. [6] as:

b, = 2b. | + 2b,_, [7]

or, by solving this difference equation:

b (D) = —= |1 +V3) = (1 = V3)]

(8]

1
s

for i > 1. (Note that b,__ (1) = 0, since
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Figure 3 Counting trajectories: In general, pulse i produces a, components of the grating
described by basis functions of form g, b, components described by basis functions g,, and p;
components stored along the z axis described by basis functions g,. An echo forms when

one of the b; lines crosses the k = 0 axis.

the first pulse gives rise to a single trajectory
beginning at k = 0).

2. For a sequence of n pulses in which only
the first pulse rotates uncorrelated magneti-
zation into the transverse plane, the maxi-
mum number of echoes N, ,_. , is the
sum of the maximum number of echoes
from each pulse:

Nl,a:'n'/Z(n)

= Z bu:'rr/Z(i)

i=1

1 n+1
i) [(1 +v3)

oy 2
=" -5

3. In addition to the trajectories accounted for

by N,,a = w/2, each pulse also creates a
new component of magnetization at k = 0
by rotating new magnetization from the z
axis into the transverse plane. Hence, the
maximum number of echoes N ,_.»
produced by a series of perfect 90° flip angle
hard RF pulses is

Nmax,u:w/2(n)

n
Z Nl,(x=1'r/2(i)

i=1

1 n+ n+
m[(l%—ﬁ) 2—(1-—\/?) 2]

1
- E(Zn + 1 [10]
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Note that in the more realistic case when each
pulse rotates new magnetization into the trans-
verse plane, the number of echoes produced by
the ith pulse only is exactly equal to N, ,_.
and is precisely the solution that would have
been found had this assumption been included
in the recursion relations from the outset.
Equations [9] and [10] are listed in Table 1 for
values of n between 1 and 15.

Arbitrary Flip Angle Case.

1. As in the 90° flip angle case, first assume
that only the first pulse begins a new k-space
trajectory at k = 0 by rotating spatially un-
correlated magnetization into the transverse
plane. By referring to Eq. [S], it is obvious
that each RF pulse will cause each grating
component to branch into a combination of
all three basis functions. Equivalently, this
case produces the same recursion relations
as in the 90° flip angle case except that all
p; trajectories leave some magnetization
along the z axis:

a;=a;_; +b_,+p_,
bi=a; y+b_,+p,_, [11]
pi=a;,_1+tb_,+p_,

As before, each b, gives rise to an echo
when it crosses the & = 0 line. In this case,
the simple recursion relation for the (maxi-
mum) number of echoes after the ith pulse
is

b, =3b, , [12]

z

or, by solving this difference equation
b(i) =37 [13]

for i > 1, where b(1) = 0 since the first
pulse gives rise to a single trajectory begin-
ning at k = 0.

2. For a sequence of n pulses in which only
the first pulse rotates uncorrelated magneti-
zation into the transverse plane, the maxi-
mum number of echoes N, is

N(n) = 43" = 1) [14]

3. Finally, in addition to the trajectories ac-
counted for by N,, each pulse also creates a
new component of magnetization at k = 0
by rotating new magnetization from the z

axis into the transverse plane. Hence, the
maximum number of echoes N,,, produced
by a series of hard pulses is

N (n)=33"-2n-1 [15]
This formula represents the absolute maxi-
mum number of echoes that can appear in
an NMR experiment consisting of » hard
RF pulses and linear refocusing inhomo-
geneities. Table 1 tabulates N, and N,
(Egs. [14] and [15]) for pulse sequences of
1-15 pulses.

When the Last Echo Appears, and the
Maximum Echo Time Delay

The k-space picture of the magnetization trajec-
tories not only facilitates the above counting ar-
gument, but also clearly shows when each echo
will appear. Of particular interest is when the last
echo (typically called the direct spin echo of the
first and last pulse) will appear after the ith pulse.
Since the slopes of all the b; trajectories are the
same, the trajectory with the largest negative k-
value after the ith pulse will cross the k = 0 line
last. From Fig. 4(b), it is clear that this trajectory
is the component of the original magnetization
rotated into the transverse plane with the first
pulse that is never stored along the z axis. Thus,

Table I Echoes from a Sequence of n Hard Pulses

a=m/2 a<mw/2
n Nl,(x=-n/2(n) Nmax,(x=‘n'/2(n) Nl(n) Nmax(n)
1 0 0 0 0
2 1 1 1 1
3 4 5 4 5
4 12 17 13 18
5 34 51 40 58
6 94 145 121 179
7 258 403 364 543
8 706 1109 1093 1636
9 1930 3039 3280 4916
10 5274 8313 9841 14,757
11 14,410 22,723 29,524 44,281
12 39,370 62,093 88,573 132,854
13 107,562 169,655 265,720 398,574
14 293,866 463,521 797,161 1,195,735
15 802,858 1,266,379 2,391,484 3,587,219

N,(n) shows the maximum number of echoes after hard pulse
n. Np.(n) shows the maximum total number of echoes for a
sequence of n hard pulses. The last column shows the maximum
number of echoes that can be observed for a sequence of hard
RF pulses in the presence of linear refocusing inhomogeneities.
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if the ith pulse occurs at time ¢, after the first
pulse, the last echo will appear at time 21, after
the first pulse, regardless of the strength of the
gradient.

To observe the maximum number of echoes
from series of n hard pulses, it is useful to know
the time to wait after a pulse before the next
pulse is to be given. The first two pulses may be
given at any time, since they do not lead to echo
formation; thereafter, based on the above demon-
stration of when the last echo appears after the
ith pulse, the delay between pulses must be

i-1
A==t D>t = ) Az [16]
j=2

to observe all echoes. This is the maximum echo
time delay criterion.

EXPERIMENT

Setup

To demonstrate the accuracy of Eq. [15], an NMR
experiment was conducted using an applied B,
gradient field and a sequence of four hard RF
pulses. The sample consisted of an agrose gel,
selected because of its good signal response and
long relaxation times, run on a somewhat modi-
fied 3.0-T (122.19-MHz) Bruker AMX spectrome-
ter. To allow all possible echoes to develop with
large amplitudes, the four RF pulses were chosen
with a flip angle of w/4. The delay times between
pulses were chosen to be 2, 6, and 10.5 ms,
respectively, in accordance with the maximum
echo delay time criterion in Eq. [16]. The con-
stant B, gradient was chosen to allow good reso-
lution of the echoes with acceptable signal losses.
The entire sequence is illustrated in Fig. 4(a).

Results

Figure 4(c) shows the experimental results of the
pulse sequence. As anticipated, the experiment
produced the expected number of echoes: 18 total
echoes for the four-pulse experiment. Figure 4(b)
shows the k-space picture and accurately demon-
strates the formation of each echo as indicated by
a heavy mark when the trajectories cross the
k = 0 line. Also note that the last RF pulse was
given 18.5 ms after the first pulse, and that the
last echo occurred precisely 18.5 ms after the last
pulse, as predicted by the k-space picture.

CONCLUSIONS

In the absence of nonlinear effects, the maximum
number of echoes from a train of n hard RF
pulses in the presence of a refocusing inhomo-
geneity such as a weak magnetic field gradient is
N,..(n) = 1/4(3" — 2n — 1). In addition, the last
echo to be formed after a sequence of n hard
pulses occurs after the last pulse an amount of
time equal to the time after the first pulse that
the nth pulse was given. These results demon-
strate that the generalized k-space picture pro-
vides a complete picture of all echoes formed
from time-invariant linear refocusing inhomo-
geneities.

Although the k-space picture reviewed here
was used to investigate a simple gradient-pulse
experiment, it has also been used to analyze imag-
ing experiments, echo experiments, selective exci-
tation sequences, and multiple quantum coher-
ence gradient selection methods by including the
effects of relaxation, flow, molecular diffusion,
chemical shift, and spin—spin couplings (9, 10). In
most cases, use of the powerful k-space descrip-
tion of NMR spin dynamics simplifies the analysis
over the use of numerical simulations of the
Bloch equations or other, less intuitive methods.
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a course taught by Proessor David G. Cory. This article matured from one of the required
homework problems during the semester. The problem was aimed at demonstrating the
benefits of keeping track of all spin magnetization in an experiment, rather than focusing on
just the “paths of interest.” Clearly, the approaches first introduced by Henning provide a
very convenient framework for accomplishing this. From left to right: David Tuch, Gabriela
Leu, Daniel F. Caputo, Marco Pravia, Yael Maguire, Yaakov S. Weinstein, and Richard J.
Nelson. Not pictured: Yun Kang and David G. Cory.



