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Abstract

The Internet is currently unsuitable for small devices because the assumptions behind its architecture for
desktop and server computers do not scale down. Implementations and costs that apply to larger machines
have a baseline that is still too high for small embedded objects that cost only a few dollars, thereby leaving
many devices disenfranchised and in disconnected groups. Similar to computer network evolution where the
Internet was used to bridge together heterogeneous computer systems, I present Internet 0 (10) as a framework
to bridge together heterogeneous devices via Internet Protocols -therefore in a manner that is compatible with
designing globally large computer networks.

I examine the seven following themes of Internet 0. No one of these themes are new, however it is unique
to have them all present in one system:

1. bringing the Internet Protocol all the way to the device level to make devices full network citizens;

2. compiling standards and delayering network protocol stacks to make them computationally efficient
enough to fit into embedded microprocessors;

3. allowing devices to talk to each other directly to remove the necessity of centralized servers and proto-
col converters;

4. advertising a device not only to the network world but also to the physical one to allow direct interac-
tions between objects and objects and also objects and people;

5. slowing down networks to decrease network complexity and therefore simplify network access;

6. using the same modulation scheme across many different media so device designers can be free to
choose their preferred hardware medium but not be isolated from devices that use another; and

7. pushing the engineering politics of open standards to inspire competition not in differing architectures,
but in differing network services.

During this examination, I contrast these themes with the current methodologies used for device networking
and propose new 10 based architectures that can replace the original solutions.
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Chapter 1

The Unshrinkable Internet

The assumptions that govern the development of Internet infrastructure do not scale to the size of embedded

and smaller technologies. Conventional networks take for granted their protocols and speed, however implicit

in all that is the cost of the network - measured not only in the direct monetary cost of the hardware needed to

set up the network, but also in the indirect cost of the desktop computers, of the licensing fees for the operating

systems, of the system administrators needed to keep the network running, and the network installers who

ran all the cabling and setup the access points. If embedded devices need to invoke all this administrative

overhead, then they would be doomed to failure.

The current status quo of device network design (Bluetooth, IrDA, LonWorks, BACNet, etc.) involves

the creation of proprietary networking standards and protocols either as an engineering decision or as a eco-

political move to gather more market share. This has the unfortunate side effect of causing the creation of

incompatible and disconnected device networks; it is currently not possible to take one embedded object and

have any hope at having it communicate with another. Internet 0 (IO) aims to rectify that by introducing

a framework within which to design a device network that has the same characteristics as other currently

deployed device networks, but also remains open to future development while being compatible with global

networking.

Before discussing the 10 framework in more detail, the design principles of the Internet should be con-

sidered first - notably the use of the Internet Protocol and "end-to-end" system design. The Internet is the

inspiration for this work, and many of the main themes of this work are born out of direct consideration of

the Internet's design.

1.1 Design principles of the Internet

The Internet is, by definition, the largest computer network ever built. It has two lessons to thank for its

success: the use of the Internet Protocol (IP) as its communications substrate, and for guidance of the end-to-



end argument [SRC84]. IP created a uniform communications medium that could bring together the original

heterogeneous networks of pre-Internet. The end-to-end argument has, for the last twenty years, provided

architects and engineers a framework within which to think about networking design in a way that has allowed

the Internet to grow so quickly.

IP is the "bottleneck" of networking. There are many different hardware networking implementations

and there are also a multitude of networked applications, however they all utilize the Internet Protocol as

their transport. This allows for both modularity and interoperability of all these networked devices - it means

that no matter how a device is connected to the Internet, a computer can communicate with another computer

on the network without knowing anything about the underlying network technology. All that is required of

a computer to be able to join an IP network is the ability to prepend data with the extra 20 bytes of the IP

header. All that is required of a networking technology is the ability to carry these particular packets. Hosts

can then be interconnected by a myriad of these networking technologies to create the Internet.

Embodied in IP is also the principle of "end-to-end" [SRC84] which states that "...functions placed at low

levels of a system may be redundant or of little value when compared with the cost of providing them at that

low level." Saltzer, Reed, and Clark are stating that whenever you are dealing with a network of intermediaries

(not only computer networks), that those in the middle should not attempt to replicate the functions which

embody the intelligence of the communication as that leads a system designer down a slippery slope of

replication of functions throughout this chain. Instead, a system designer should carefully construct a network

where those in the center do the minimum necessary (provide transport, connectivity, storage, etc.) to allow

those actually actively participating in a transaction to handle the details. Those at either end know exactly

what is needed, whereas those in the center can only make assumptions and guesses - which may be found

to be incorrect.

This design framework is seen in the network design of the Internet. Its classic example is the separation

of the transmission control protocol (TCP) from IP by Danny Cohen. In the original specification, IP had

transmission control, meaning that a packet was guaranteed to reach its destination in the same order that the

source sent it (with respect to other packets from the same source to the same destination). Cohen argued

that this was not useful for all applications and it was especially detrimental to real-time voice applications -

instead, TCP should be be negotiated and used by the end points; the ends of the network know exactly what

they need, and they should implement it whereas the center of the network simply shuttles packets around.

1.2 Scaling those principles down

Scaling the use of the Internet Protocol and the end-to-end argument was once thought to be quite difficult.

IP is not used in many device networks today, perhaps demonstrating a fear of the complexity of the IP stack

(as most associate an IP stack with an operating system which they do not want in their embedded devices

if not necessary) and also of the complexity of an IP network. Using an IP based network invokes questions



surrounding the distribution of IP addresses and the peculuarities of network configuration. Questions about

hardware and software deployment, scalability, and manageability are also very common - and all of this

may seem daunting when attempting to IP-enable a light switch.

In this thesis, I present a framework to address these issues. This work differs from current networking

technologies such as X10, LonWorks, CEBus, BACnet, ZigBee, Bluetooth, USB, IRDA, HomePlug, SPI,

I2 C as none of them are based firmly around the lessons of the Internet and all of them will eventually face

the same scaling issues in global naming, routing, and interoperability that the Internet has already faced.

Internet 0 is an attempt at allowing devices to communicate at the IP level to allow them to reap the benefits

of a very mature networking standard.

Chapter 2 discusses the very notion of bringing the Internet Protocol to the leaf node. I will review

the IP, UDP, and TCP layers and present a method for implementing it in a simple enough fashion that it

can be embedded in devices with very little computational power and memory. Compressing these protocol

stacks are performed with lessons learned from Chapter 3. In the same way that compilers generate low-level

machine code from a high level language, we create a small IP stack by optimizing and eliminating portions

of the IP specification.

Once every device is able to speak native Internet Protocols, the network itself still has to be made very

simple to install and maintain. Doing that means removing centralized dependencie - the focus of Chapter 4.

Part of that is the removal of any centralized control; all interaction needs to occur with the peers themselves

and not with a server in the middle of the network. To make this happen, I am introducing, in Chapter 5, a

paradigm of physical identification and access to happen alongside network identification and access.

Finally, none of this would be possible if conventional networking hardware technology is required as

the majority of that equipment is well above the monetary cost threshold of any given device that we wish to

network. Chapter 6 proposes a device network that is "fast enough" for devices, but also slow enough to make

the network simple. As a modulation scheme, Chapter 7 discusses using an ultra-wide band-like modulation

scheme that can be used in an end-to-end fashion on the network.

-------- -- -- -





Chapter 2

Internet Protocol to the Leaves

Running the Internet Protocol all the way to the devices is the main drive behind interdevice-internetworking.

Specifying a standard protocol for all devices to talk means that all devices can inter-operate as well as

operate as part of the larger global network. Historically, engineers have stayed away from using native IP in

all portions of a device network or system because of the fear that implementing the stack was too difficult

to do properly', however this mentality has unfortunately left networks fragmented in a myriad of different

protocols - almost resembling the days of networking before the dominance of the Internet. No two device

networks can talk to each other, without a stateful protocol converter sitting between them and whenever

ether side changes its protocol it requires that the converter be upgraded also. That converter becomes the

bottleneck to the entire system. The Internet Protocol is meant to fix that by introducing a single generic data

format that can be used across all networks.

While fears of implementation complexity may have been true in the past, it has been possible to create

an IP stack (with UDP and/or TCP parsing) that can fit on a $2 8-pin microcontroller for a while now 2 and

following Moore's law will only provide cheaper and smaller microprocessors from here on out. This means

that it is inconceivable to not consider using IP. If we wish to be using the Internet Protocol all the way to

the leaves of any network, a simple and cost-effective solution must be provided so that any relatively cheap

processor can natively parse and react to these packets.

2.1 Why not IP?

Many dissenters believe that IP should not be used because the IP header alone is 20 bytes (see table 2.1)

that must be prepended to any data along with an additional 12 bytes or 20 bytes for UDP (table 2.2) or TCP

headers (table 2.3). If the data being transmitted is smaller or possibly not significantly bigger than that byte

IIP is almost always used now to the leaf node of desktop and server computer networks, it is not however, always deployed to the
leaf nodes in networks of embedded devices.

2John Romkey connected his toaster directly to the Internet in 1990.



limit, they argue, then it is possible that transmitting IP is not the proper thing to do. Especially if operating

on power-constrained links, they believe that it may be undesirable to transmit the extra 20 to 40 bytes as

there may be a hard and fast power budget that this would violate.

2.1.1 IP compression

Compression of IP headers is possible in a standard way [DNP99], however the compression received is only

meant for long-lived TCP/IP connections as it recognizes that in a long-lived flow values in the header are

rarely changing - it simply sends the changing values of the TCP/IP header, which optimistically can be

reduced down to 5 bytes per packet. For these reasons, it does not function as well for short lived TCP/IP

flows, nor for UDP connections 3. For even tighter compression it is possible to use an entirely compressed

stream thereby compressing not just the packet headers, but the entire data also.

The side effect of any type of compression is the requirement that either side utilize more processing

power and also more memory. Not only will one side need to compress and the other side need to decompress,

but both sides will need to keep very careful track of the state of the system in order to properly compress

and decompress the data.

2.1.2 Transmitted bits / power

Secondarily, it should be recognized that the transmission of the bits is not the most power consuming portion

of a radio. It is actually the amplifier that is needed to receive the signal. There are two variables that need

to be accounted for: the first is the amount of power needed to turn on the amplifier and the second is the

amount of power needed to keep the amplifier running. The receiver will want to jointly optimize the amount

of time that the amplifier is left on (the constant power draw) as well as the number of times the amplifier is

switched on (the large transient draw).

There are also additional strategies that can be used to minimize the energy needed by the receiver. It is

possible to scheduling time intervals at which point it should turn on its amplifier to listen for a packet, and

that packet can also contain a hint from the transmitter as to how long the receiver should keep its amplifier

on in order to receive all the data that it intends to transmit. This also reflects an observation that there may

be many information sources on the network that are not necessarily information sinks. Those information

only sources do not require the amplifier as part of their design. They could, instead, have a non-amplified

receiver that is only used for short range communication on programming or for physical access (see chapter

5).

3 Although one could imagine an application layer compression scheme based about RFC2507 that is used for UDP "flows".

mom



2.2 Notes about the IPv4 header

IPv4 4 is a relatively simple protocol as all it provides are two services to the network: addressing and fragmen-

tation. Addressing deals with the location of a "name" on the network (it is the job of higher level protocols

and applications, such as the domain name system, to handle the mapping from names to addresses) while

fragmentation handles the delivery of packets which are too large to traverse a given network. Anything and

everything else (such as reliability, flow control, etc.), are left to higher level protocols on the network - if

they are even desired and necessary.

Before delving into the implementation a micro-IP stack, it is helpful to have table 2.1 as a quick review

of the contents of the stack itself. Each of these fields in the IP header serve a very particular purpose, and

when one is implementing a fully functional IP stack, each field needs to be processed. However, there are

many simplifying assumptions that can be made about the values in those fields when building a micro-IP

stack.

2.2.1 Type of Service

This field indicates the quality of service this packet is supposed to receive and while it is possible to imple-

ment the quality of service (QoS) on the receiving end by preferentially processing incoming packets, this

field is typically used by the network itself to allow certain packets to pass through routers at a prioritized

rate [AGK99]; certain research implementations do use this ToS field [SD94], however it is widely ignored

in standard implementations. It is quite safe to set the value of the bits to be 0 (normal and routine delay,

throughput, and reliability) when transmitting an IP packet, and completely ignoring the bits upon reception

of the IP header.

2.2.2 Identification and Fragmentation

Fragmentation deals with the situation where IP is being used to bridge together two networks that have

different maximum transmission units (MTUs). For example, if a network that allows maximum packet sizes

of MTU 1 bytes is connected, and is required to send packets through a network that only allows MTU 2,

where MTU 1 > MTU 2 , it is possible that some packets traversing that boundary are too big and the gateway

may need to fragment certain packets. As defined by IPv4, the gateway is required to divide the d bytes of

data in the IP packet under the following conditions

p + size(IP header) < MTU 2

np > d

4 While this work was tailored to the fourth version of the Internet Protocol, it is relatively straight forward to extend it to the sixth
version. That does remain as future work.



Table 2.1: The various fields, and their associated sizes, in the IP header.

Header field I Field size Field contents

Version 4 bits this represents the version of the IP header that is being sent. In
the case of IPv4, these four bits are always set to Ob0100 (4).

Internet Header Length 4 bits the length of this particular IP header in 4-byte words. It is
almost always safe to assume that these four bits will be Ob0101
(5), meaning the header is 20 bytes long. This value will only
be different if there are IP options present in the IP header.

Type of Service 1 byte a representation of the quality of service that this packet desires.
A packet can ask for variances on the amount of delay, through-
put, and reliability that it receives while being relayed through
the network.

Length 2 bytes the length of this entire packet in bytes.
Identification 2 bytes a tag that can be used to reassemble fragmented packets; if a

packet has been fragmented, then this value can be used to de-
termine which fragmented packets belong to the original packet
as the ID will be the same across the fragmented versions of an
original packet.

Fragmentation Flags 3 bits bits stating whether this packet has been fragmented, or whether
this packet will allow itself to be fragmented. If a packet does
not allow itself to be fragmented, and it is necessary for it to be
so, then the intermediary that needs to break up the packet will
simply drop it.

Fragmentation Offset 13 bits these bits represent the location of fragmented data (if applica-
ble) within the original unfragmented data buffer.

Time to Live 1 byte the maximum number of hops that a packet can be transmitted
through on the Internet to prevent looping and lost packets. This
value is decremented by one every time this packet is routed
through an intermediary host, and if this value ever reaches 0,
then this packet is dropped.

Protocol 1 byte this details the protocol that this IP packet is wrapping; this byte
could say that the packet is wrapping a packet of UDP, TCP, or
any other protocol.

Header Checksum 2 bytes here is contained a 2-byte one's complement of all the bytes in
the IP header. These two bytes are used to make sure that the
packet header has not been damaged during transmission.

Source Address 4 bytes the IPv4 address of this packet's sender.
Destination Address 4 bytes the IPv4 address of this packet's destination.



The first n - 1 packets will have exactly p bytes of data in them, and the nth packet has the remainder

(d - p(n - 1) bytes). Each of the new n packets all have the identical IP header as the original packet, except

that

1. the more fragments bit must be set in the first n - 1 packets (not in the nth packet),

2. the fragmentation offset field in all n packets must be set to pw where w is the number packet (w < n),

and

3. the checksums must reflect these changes.

The IP sender (unless it is the bridge - which this micro-IP stack is not meant for) never needs to concern

itself with fragmentation rules. It merely needs to transmit packets which are smaller than the MTU of its

attached medium. The IP receiver, on the other hand, does need to concern itself with the above, as it is it's

job to reconstruct those fragmented packets into the larger packet before handing it off to a higher level.

Defragmentation can be quite memory consuming as the receiver needs to reassemble all packets with

the same identification field into a single large packet. It may be possible, if the packets are received in

the proper ordering (as dictated by the fragmentation offset field monotonically increasing) to process each

packet individually - however if the packet IDs are not increasing, then it will require out of layer knowledge

as to what to do with the packet. In the worst case, the received will need to buffer any out of order fragments

and wait until the in order fragment appears. For this reason, some micro-IP implementations may choose

not to implement IP defragmentation, and may simply ignore any packet which has more fragments bit set,

or has the fragmentation offset field set to a non-zero number.

The transmitter, on the other hand, should use a monotonically increasing value in the identification field

for each packet it plans to send (this is easily accomplished by having 16-bits of state initialized to a random

value at start-up) in case fragmentation does occur down the line. As a micro-IP stack is usually tailored to

sending and receiving small IP packets, this stack should also set the "don't fragment" bit in the control flags

field.

2.2.3 Time to Live

The time to live (TTL) field, is yet another one of those fields that the sender or receiver of IP packets need

not worry about (unless it is an intermediary host). This field was put in place to prevent packets from getting

lost and retransmitted in a loop on the network. When passing an IP packet, a router (or any other host) needs

to decrement this TTL field and then update the checksum on the packet accordingly. If the TTL field reaches

0, the packet is dropped and the host (optionally) sends an ICMP packet back to the sender to inform it that it

has dropped the packet. As long as the sender sets the TTL value "high enough", then the packet should be



delivered to its destination5 . The receiver never needs to concern itself with the TTL field, as an intermediate

host would have dropped the packet if the TTL was not set high enough.

2.2.4 Checksum

The checksum field are two bytes that contain the one's complement sum of all 16 bit words in the packet's

header. When a packet is received, the receiver must confirm that the checksum is correct and that the packet

is addressed to it. Neither one of these on its own is sufficient as a packet could be addressed to this node

through an error in the packet header contents.

Again, for memory reasons, the checksum may have to be computed on the fly as the packet is being

received. As data is streaming in, the processor may compute the one's complement sum on two bytes at a

time for the first 20 bytes (or more, if the IP header is longer). If at the reception of those first 20 bytes, the

sum is not OxFFFF, the packet can be immediately discarded.

In the transmission of the packet, the checksum will need to be computed before the transmission of the

entire header; the checksum cannot be computed on the fly, as the checksum is embedded in the header itself

and does not trail it. However, all the data necessary to compute the checksum is known at the beginning of

the transmission, so the computation of it only requires ten 16-bit additions with carry.

2.2.5 Addresses

The IP address gives a clue to the network locality of a particular node. In the current use of IPv4 (along with

classless inter-domain routing [FLYV93]), the address is denoted by four bytes which correspond to which

portion of the Internet hierarchy that address is connected to. Routing is not the concern of the sender or the

receiver as it either places packets on the ether, or has packets delivered to it by the ether. All that the sender

or the receiver needs to concern itself with is addressing a packet properly, or whether an incoming packet is

addressed to it.

Determining whether the packet is addressed to it requires the receiver to determine if the four bytes

matches the receiver's IP address, or if the packet's destination matches the broadcast address of the subnet

that the node is on. For example, if a node has an IP address of a.b.c.d on a subnet with a network mask

of w.x.y.z, then it can either receive packets that are addressed to a.b.c.d, or to the broadcast address of

(~ w Ia).(~ xlb).(~ yIc).(~ zId) (replace all positions with the "0" bits in the netmask with "1" bits in the

address).

2.3 Implementing a micro-IP stack

Given the notes from section 2.2, it is straight forward to construct the state diagram of the receiving side of

an IP-stack as shown in figure 2-1. There are a few assumptions that are made in this diagram:
5 Linux is quite conservative as its default TTL value is 64, where as Microsoft Windows sets its TTL values in the 128 range.



Figure 2-1: The state diagram of the receiving end of a micro-IP stack

1. An "out of band" (with respect to the IP packet) mechanism is used to signal, at least, the beginning of

the IP packet such as the ones found in SLIP and Ethernet framing;

2. packets are delivered one byte at a time;

3. and fragmented packets are ignored.

Transmitting packets from the IP stack does not justify a state diagram out of simplicity. Before trans-

mitting, the node needs to know the protocol that the data is encoding (TCP, UDP, etc.) along with its cor-

responding protocol value (0x06 for TCP or Ox10 for UDP) [RP94], the destination address for this packet,

the length of the data to be sent, and the knowledge that the data can be streamed out upon request (the data

has to be streamed out as a requirement of this stack is that it cannot buffer the entire packet to be transmit-

ted in memory). The checksum can be partially precomputed as most values are constant - the only values

which may change are the length of the packet, the packet identifier, the protocol, and the destination address

- those values can be used to update the precomputed checksum easily. Therefore, the IP stack need only

start transmitting a series of bytes: Ox45 for the version and Internet header length fields, the two bytes for

the length of the of the data, the current two bytes for identification that the processor is using, Ox00 for the

flags and fragment offset, Ox3C (or something similar) for the TTL value, the appropriate protocol value, the

computed checksum value, this node's IP address, and the destination IP address. Once all this has been sent,

the transmitting data can be simply streamed out after it.

MUM.



2.4 TCP vs. UDP

Almost all packets found on the Internet are either user-datagram protocol (UDP) [Pos80b] packets or trans-

mission control protocol (TCP) [Pos8ld] packets. The former provides a simple wrapping around the IP

protocol along with the added abstraction layer of ports on top of addresses, and the optional protection

against corrupted data through the use of the UDP checksum. TCP, on the other hand, provides a reliable

"connection" - the TCP stack allows the sender and receiver to communicate via a stream that then gets

packetized and delivered only to be reassembled exactly as it is sent with the property that the bandwidth

can be allocated between other TCP streams simultaneously. The TCP stack guarantees that packets will be

processed by the receiver in the same order as the sender transmitted them and without error in the data.

However, there are trade offs between the two. UDP is connectionless, meaning that any associations

between packets has to be handled by the application layer. There are no guarantees that the packet will ever

get delivered to the destination host, and there is no mechanism for the transmitting host to know whether the

packet arrived. Additionally, the UDP checksum may be explicitly set to 0, which means that the packet is

transmitted without any checksum computation, and therefore the data may be corrupted.

TCP allows the sender to write a stream of data, and the stack handles the division of the data into packets

and transmits them to be reassembled on the far end. To achieve this reliable transmission a connection first

needs to be setup between two hosts (which involves the transmission of at least 2 packets back and forth

- the SYN and the SYN/ACK packet) before any data can be transmitted. Then as data is being sent, the

receiver needs to acknowledge using ACK packets. However, this expense is well paid when attempting to

establish a SSH connection, or when moving large amounts of data as in both cases it would be horrendous

if data was lost or corrupted in transit.

While all the error recovery and suppression in TCP is very useful, it does make designing applications

that require real-time updates to be nearly impossible. Consider an example application which monitors the

price of a stock on the market. It is possible to transmit the second-to-second varying stock price over a TCP

connection, however once one packet gets lost, all other packets are held up until the sender and receiver can

recover from that particular error; the sender and receiver are attempting to retransmit data that, by the time

that it is recovered, will be stale. If, on the other hand, the real-time data is sent using UDP packets, each

packet will need to have a sequence ID (or time stamp) associated with it so the receiver can know when one

packet is newer or older than another (as the ordering of the delivery is not guaranteed), however if one of

the packets gets lost, the receiver need not worry - it simply waits for a newer packet to come along. The

same argument applies to real-time audio and video transmission over a network. If using a TCP stream,

when one portion of the media gets lost, then the rest of the stream is held up causing this stream to be no

longer in real-time. On the other hand, if UDP packets are used, and if a packet is lost, then the receiving

application can simply insert a burst of static - the person or people listening and watching will notice a slight

disturbance, but then the stream will progress "live".

There are cases, however, where making the decision is not so straight forward. Take the common Internet



Table 2.2: The various fields, and their associated sizes, in the UDP header.

Header field J Field size | Field contents
Source Port 2 bytes the port which sourced this packet. This field is optional, and

can be left as 0.

Destination Port 2 bytes the port to which this port is addressed to.
Length 2 bytes the length, in bytes, of the UDP header and associated data.
Checksum 2 bytes the 16-bit one's complement of the UDP pseudo-header and

data.

o example of a light-bulb and a switch. On an error-less and congestion free network, transmitting a UDP

packet from the switch to the light to ask it to turn on seems appropriate as it is small and not complex.

However, when this switch gets installed in a commercial building with many simultaneous events occurring

on the network, there is a chance that the packet may get lost. It may prove to be undesirable for a user to

attempt to turn on or off the lights, but then have nothing happen when the packet gets lost. What this boils

down to is where should the acknowledgment and retransmission occur - should it happen at a TCP/IP level,

or should it happen at "layer 8"6? At layer 8, the person will notice that the lights did not turn on, and have

to press the button again. The status quo between lights and switches may be maintained if TCP/IP is used

between the light and switch, at the cost of a significant increase in network traffic. Only one UDP packet is

needed to turn the lights on, where as at least 5 packets are needed if done via TCP7 . Needless to say, this is

a debate that is not to be settled easily - therefore, to remain compatible with either, both a micro-UDP and a

micro-TCP stack needs to be discussed.

2.5 Implementing a micro-UDP stack

As said before, UDP only adds two items of consequence to IP - it introduces the notion of ports, and it

provides an optional checksum over the data in the packet (see table 2.2). Because of this simplicity, it is

fairly trivial to implement a micro-UDP stack as shown by the state diagram in figure 2-2.

Upon reception of the packet's bytes, the source and destination ports are stored8 , the length of the packet

is recorded, and finally the UDP checksum must be recorded too. The length of the packet is necessary

because it will tell the receiving stack how many bytes it should be reading off the network before resetting

all state in the micro-IP stack. The UDP checksum comprises both a pseudo header (containing the source

IPv4 address, the destination IPv4 address, the protocol, the total length of the data, the UDP header), and

the UDP data. If at the end of receiving all the required bytes the checksum is not OxFFFF, then the UDP

stack must signal that all the data from the last received packet is invalid. If the UDP header reports the UDP
6 Ben Bauer and Andrew Patrick have proposed human-factors extensions to the seven layer model [BP].7 SYN from light switch to light bulb, SYN/ACK from light bulb back to the switch, ACK with data to the bulb, ACK with FIN to

the switch, and FIN back to the bulb again
8 This is an application specific choice as some programs will react differently depending on what port number sent the packet. Other

programs simply do not care and can safely ignore.
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checksum == OxFFFF

Figure 2-2: The state diagram of the receiving end of a micro-UDP stack
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Table 2.3: The various fields, and their associated sizes, in the TCP header.

Header field | Field size Field contents
Source Port 2 bytes the port which sourced this packet.
Destination Port 2 bytes the port to which this port is addressed to.
Sequence Number 4 bytes the data byte number that is being transmitted.
Acknowledgment Number 4 bytes if the ACK bit is set, this contains the number of the byte up to

which the receiver is acknowledging has been received.
Data Offset 4 bits the number of 4-byte words in the header. This is almost always

set to ObO101 (5) unless there are TCP options set in the header.
Explicit Congestion Notifi- 2 bits used by an intermediary host to note that its queues are getting
cation full.
Control Bits 6 bits signals the state of the packet - whether it contains an ACK,

SYN, etc.

Window 2 bytes the number of data bytes that the receiver is willing to accept
before it will send an ACK back.

Checksum 2 bytes the 16-bit one's complement of the TCP pseudo-header and
data.

checksum as 0, it means that no checksum computation need be performed.

Transmitting UDP packets is quite simple, with the only complication being whether the UDP checksum

is to be filled in with a non-zero value. If the checksum is to be filled in, then it would be prudent to know

the 16-bit one's complement sum of the data before it is transmitted so the data does not have to be buffered

in memory for the computation. With that data, it is possible to compute the rest of the checksum.

2.6 Implementing a micro-TCP stack

The micro-TCP stack is a bit more difficult to implement than the micro-UDP (section 2.5) for two reasons:

the amount of state necessary, and the act of synchronizing two parties over a lossy channel. Both the sender

and the receiver need to keep track of the information on the address/port pair9 so as to attempt to keep

synchronized in what state they believe the connection to be in.

2.6.1 Micro-TCP receiving

The receiving end of the micro-TCP stack (as illustrated in figure 2-3) has the job of accepting the packet,

acknowledging the start of a connection, making sure that we are receiving the right "number" packet, ac-

cepting the data in the packet, and also confirming that the packet has not been damaged in transmission.

State has to be tracked on a connection by connection basis that includes the following

1. The source IP address of the connection,

2. the source port,
9 Simply having a series of packets between two hosts is not enough to constitute a connection - there needs to be an association

between address and port pairs so as to be able to distinguish multiple streams between two hosts.
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Figure 2-3: The receiving end of a micro-TCP stack.



3. the destination port,

4. the current sequence number, and

5. the state of the connection (whether it is still in the "establishing" state, "established" state, or "clos-

ing").

All the receiving state can be tracked in less than 13 bytes'o for each connection that the stack would like to

deal with simultaneously. A very simplistic stack that knows that its clients will only be sending one packet

messages can get away with only attempting to manage one, or a few, simultaneous connections. But any

stack that needs to deal with larger streams, will want to deal with multiple data structures.

If all the receiving state data structures are full, then there are two appropriate strategies for dealing with

this connection. The first involves the creation of a "pending" queue where the source address and port of the

connection is recorded in a FIFO, and if a data connection structure is freed before the TCP timeout, then an

item from that queue can be dealt with. However, if an item cannot be dealt with before the timeout, or if a

queue is undesirable in the first place, then the packet should be explicitly dropped and rejected back to the

source with a FIN packet and the requester is free to try again at a later time. It is also recommended that a

timer be also used to "time-out" connections that have not been heard from for a while as processors using

the micro-TCP stack may run out of resources or suffer from particular denial of service attacks [MVS01].

For simplicity's sake, the stack keeps reporting the window size back as one to prevent multiple packets

from being transmitted simultaneously without ACKs". Having a window size of one has the property that

when a packet is received who's sequence number does not exactly match the next sequence number that the

packet can be buffered (if there is enough memory to do so), or simply silently dropped under the assumption

that the sender will retransmit it when appropriate.

There are only two different failures that the stack watches for: a SYN packet over an already opened

connection and receiving a packet without a SYN over a non-open connection. In both of these cases, the

stack responds by sending a FIN back, and then terminates the link. The stack does not honor any other TCP

options or extensions, and the connection rate will be limited by the need to keep only one window slot open

and the processor's speed.

2.6.2 Micro-TCP transmitting

When a TCP/IP stack wishes to transmit data to another host, it first must start the transmission by sending a

TCP SYN packet to the requested IP address and port number. From there, the state diagram of the transmitted

can be represented by figure 2-4. The required state on the transmitter mimics the state needed by the receiver

as both need to keep track of the same information.

104 bytes for the source IP address, 2 bytes for the source port, 2 bytes for the destination port, 4 bytes for the current sequence
number, and 2 bits for the connection state.

11Having a larger window size does mean more throughput on the data (to a limit), but it also means more state that is accrued on both
the receiver and the transmitter.



Figure 2-4: The transmitting end of a micro-TCP stack.
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The complication on the transmitting end is that the receiver dictates the size of the TCP window to be

used. This poses a huge problem for memory-constrained devices that cannot buffer more than a packet's

worth of information for the retransmit, and the only solution here is to completely ignore the window size

and only send one packet at a time and wait for the acknowledgment of that packet before proceeding any

further. Unfortunately, this will greatly limit the speed of the connection - but that should not be a large issue

for most Internet 0 applications.

2.6.3 Bidirectional micro-TCP

Both of the previous two sections (2.6.1 and 2.6.2) have each individually discussed either the receiving or

transmitting side of the TCP stack. It is possible, however, for either end of the TCP connection to transmit

and receive data - that requires a blending of the two state diagrams. As the same data structures are being

used on either side of the connection, it is relatively straight forward for either side to transmit and receive.

The two state diagrams can be run simultaneously on both sides, the only thing to note is that on either side,

ACKs and data can both be transmitted on the same packets that are going out. It is also possible to have a

half closed connection where one side of the connection issues a FIN packet to the other side. However, if

the other side is not ready to terminate the connection yet, it is free to keep it open and transmitting data.





Chapter 3

Compiling standards

A compiler's job is to take instructions written in a higher level language, and produce the implementation

of those specifications in a much lower level language. Along compiling the code, there are optimizations

that can be run along with it - certain "tricks" that can make the code run even faster, take up less memory

than specified, or even remove whole sections of the software that are not being used. Compilation is the

one unifying concept to take away from the micro-IP/UDP/TCP implementations (sections 2.3, 2.5, and 2.6)

as each one of those programs is an optimized and distilled version of the RFC which explains how that

specification should work ([Pos8lb], [Pos80b], and [Pos8ld]). Each one of those implementations perform

almost exactly as the RFC dictates, just not explicitly. At no point was the packet handled by one layer in the

ISO/OSI model at a time. Instead, the packet is handled by cross-talk in the layers - information is gathered

from a combination of the layers to make processing more light weight.

Most software systems are designed with abstractions, however, because that makes it simple to handle.

The by-product is usually a larger compiled code size, which also requires either a bigger processor, more

memory, hardware complexity, and cost. The smaller and simpler the compiled code can become, the simpler

and cheaper the processor to run it can be.

3.1 Abstractions

Abstractions are necessary in order to make a project manageable by a person or by a team of engineers -

without them there would be no way to build scalable modules that can be individually verified and then

integrated. These separations take form in everything from the UML design documentation, to the language

being used for the software engineering, to the "interfaces" and method signatures being maintained between

the different developers working on a project.



3.1.1 Language choice

Language choice is one of the largest abstraction decisions one can make. Given a particular hardware

architecture, one could write low-level machine code or move one level up to one's choice of a particular

assembler variant - both of these is very wedded to the processor being used, and the software written is not

portable to any other processor (or even other arrangements of processor and supporting hardware), however

this software is bound to operate very quickly.

At a higher abstraction layer sits languages such as C which allows authors to write (most) code in a way

that is independent of the architecture that is to be executing the code. The author simply takes for granted

that there is a compiler that can convert those procedural statements into assembly code - however the real

measure is how small can the C compiler make the assembly code. Can it make it smaller than a skilled

assembly programmer? Most of the time not, because there are limits to how much as a compiler can infer

about a written piece of software written in C. Languages also do go to higher levels reaching LISP and Java

which are very far removed from the actual hardware. Java, for example, runs inside a virtual machine which

itself is just another layer of software that is being executed on the hardware itself.

Any large software project written entirely in assembly will not be able to be scaled outside the manage-

ment of a single engineer, simply because the language does not provide any facilities that aids it. It is usually

very difficult for another engineer to look at an isolated block of assembly code and understand what is truly

occurring in the processor as there are many non-obvious dependencies and no protection being enforced by

the compiler. Those reasons and because all the vagaries of the hardware are encapsulated and hidden by the

compiler, are the two reasons to go with compiled code.

It does need to be recognized, however, that this language abstraction layer does add some overhead as a

compiler can only do so much and only the actual engineer who is writing the software can gruel know what

goal he is attempting to meet by authoring the given piece of code.

3.1.2 Modularity

Another very common form of abstraction in software systems is modularity. Modularity allows a team to

divide up a large system into separately develop-able pieces that can be individually written and tested before

integration into a larger project. This abstraction has fans in both management and engineering because it

both allows multiple people to be working simultaneously on different portions of a project (thereby speeding

up development time), and it also allows software errors to be located more quickly as each piece of a system

can be individually examined.

Software engineers work in a modular environment by defining "interfaces" between different code seg-

ments. One engineer way know that another is expecting that he can call a certain function with a given

signature in his code - so the first engineer structures all his software around that one entry point into the

iFor example, the Linux kernel can be cross compiled for over ten different architectures from a single code base.



software. The other engineer can then take for granted that when he calls that given function, a defined set of

operations will occur. Neither of them is required to know the details of the other's operations in that the first

engineer need not know anything about the calling function, and the second engineer need not know anything

about the called function. They just need to agree on this interface.

While the advantages of modularity are very clear, it too also leads to larger software sizes. State can

be accidentally replicated on both sides of an interface with both sides tracking a variable or set of variables

when both could be sharing data. Processing time could be wasted attempting to handle an error that one side

knows will never occur. And finally, features could be implemented on either side that neither side is actually

using.

3.1.3 In the IP stack

The conventional ISO/OSI network model involves seven layers as show in table 3.1. Traditionally, each of

these layers are specified and implemented by different parties who simply agree on the interface between

the two layers. Hardware engineers make the decisions about the inter-connection of devices at layer 1 and

their corresponding software engineers implement the functionality of the "driver" that is to be installed on

the computer to control that piece of hardware. A third group (usually within the development team working

on the operating system) implements library which handles the network layer and the transport layer. And

then finally, application engineers work from there on up.

This myriad of people working within this framework can lead to a nightmare if not for the agreed upon

interfaces and abstractions. Application engineers need not know anything about layers 4 and 3, only that

they will perform as expected and that there is a standardized API to talk to those layers. Operating system

engineers working at layers 4 and 3 should not need to know the exact details of how layer 2 is operating,

only that they have defined an API that the layer 2 device driver is utilizing. And finally, layer 2 engineers

may not absolutely nothing about the intricacies of hardware, but they do know about the interface that they

have negotiated with the layer 1 engineers.

These abstractions and agreements allow for a very generic operating system that will allow any network

application to run. The API to access the network layer provides methodology to deal with failures and

reports detailed error messages if anything goes wrong (such as two different programs attempting to open

the same port, etc.). A program also needs to operate only on a specific level, leaving the uncertainties of

the other layers (uncertainties on how they operate or the particulars of their operation) to other parts of the

operating system.

3.2 Removing abstractions

The implementation of the micro-stacks in the previous chapter show why removing these abstraction layers

and "compiling" the code is such a huge win. Given a specification of the network interface and the physical



Table 3.1: The seven ISO/OSI network layers.

Layer number Layer name Layer purpose

1 Physical this layer is the physical medium itself, and
usually involves discussion of the connectors
between the medium and the computer.

2 Data link here the representation of the data on the
medium itself is discussed. For example, all
notions of Ethernet frames, and Ethernet ad-
dresses are discussed in this layer.

3 Network IP fits in at this layer. Consider this to be the
bottleneck between all the layers - there is a
multitude of physical layers (which spawn a
variety of data link layers) and there is a mul-
titude of different applications that sit above
IP

4 Transport now that all the data is coming in as packets,
this is where the sockets sit and wrap all the
packetized data as UDP or TCP or via any
other API.

5 Session from this point on, we have data in the net-
work, but it has yet been undefined in what
format the data is formatted in. This layer is
involved in defining that information.

6 Presentation/Syntax a common problem with computer networks
is the representation of data [Coh81]. This
layer's specific purpose is to make sure that
all that data gets transformed in a way that the
application layer (and higher) and the session
layer (and lower) can both be happy with.

7 Application finally, this is where all the applications (usu-
ally software) lives. As the final end point,
this is where authentication and privacy are
handled and this is where network services
are handled.



interactions needed to make a light switch and bulb work, a very small and specialized code base can be

created to make that happen. Analyzing a light bulb and light switch that uses HTTP GETs to intercommu-

nicate and SLIP-like network framing, we can begin to remove items from a conventional implementation.

The HTTPd can have features such as PUT and POST removed, and the string parser for the GET statement

can be configured to look only for the specific URL that the HTTPd responds to (otherwise simply return a

HTTP 404 error). Out of the networking layer, the UDP parser can be completely removed, all code to deal

with packet window scaling can be removed from the TCP stack, the IP layer does not need to deal with IP

fragmentation, and the list goes on. By breaking the abstraction layer, it is possible to determine what features

and requirements are needed of the lower layers in the network, and remove those that are not necessary, and

compress those that are necessary by allowing cross-talk.

Putting some numbers to the above example, I deployed a research version of a HTTPd (a HTTP along

with a TCP/IP stack) on a 28-pin PIC microprocessor in under 3.5 kilobytes of compiled code with a utiliza-

tion of less than 100 bytes of RAM and a current draw of less than 0.01 amps. It would be impossible to

compile the networking code base of Linux, for example, and install it on a microcontroller. Additionally,

that layered stack needs a processor that pulls over an amp of current and has megabytes free in memory. Re-

moving abstraction layers is just an optimization that recognizes which portion of the stack can be removed.

3.2.1 Framework for analyzing delayering

The one example above shows that if there is cross-talk between layers of a protocol, it may be possible to

compress down the complexity, and therefore the size, of the stack. Future work involves attempting to design

a "compiler" for layered protocols in order to create smaller ones as inspired by the work of Mung Chiang,

Assistant Professor of Electrical Engineering at Princeton University [ChiO4]. It is possible to create a jointly

optimal design of congestion control and power control for wireless networks, and questions are whether the

same analysis can be performed for other combinations of layers in the ISO/OSI stack.

------ --- ---





Chapter 4

Peers do not need servers

In the Internet 0 context peer-to-peer (P2P) means that any two nodes have the direct ability to talk to each

other without having to go through an intermediary. This idea manifested itself in chapter 2 in the desire to

allow all devices to talk the same protocol so that they can communicate without a "protocol converter" doing

all the translation - this allows for a more open network. As future work, P2P in the 10 context also means

distributed controllers and algorithms.

As a paradigm, P2P refers to two equal nodes exchanging information directly rather than going through

a central broker to get the same information [MKL+]. These systems are naturally distributed as every node
has access to information, state, and operations which are not available for every node to have local access

to, so therefore its the job of the node to disseminate access to the masses; each and every node has to take

on the role of a client when it wants information that it does not have, but it can equally as often have to

serve up information to nodes that are requesting it. The main draw to this type of systems is that they
address scalability problems for data storage [SMK+01] and computation [WHH+92] in ways that client-

server systems cannot because they introduce notions of redundancy and locality into the network'.

4.1 Client-Server

Client-server systems can be thought of as the relationship between a library and a library patron: the library

contains all the information and the library patron goes to request and retrieve the information he or she

wants. The library has the centralized information that all the patrons want to get access to, and the patrons

all know that the library houses that information centrally.

Another more relevant example is the relationship between a web server and a web browser. The web

browser is a "dumb" piece of software that, on its own, cannot perform much. The web server, on the other

hand, has the information and the web client has to access and retrieve the information. For example, when

1There is also an argument to made about the lawsuit circumvention in a P2P network as opposed to a client-server system, however
that is out of the scope for this thesis.
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Figure 4-1: An example topological representation of a client-server model. The darkened central node is the
server that all the grayed out clients are attempting to access. At no point do the clients contact each other as
they all rely on the server.

you wish to access http: / /www. cnn. con, your web browser contacts the server at www. cnn. com and

asks it for information which it then renders to the screen2 . Your web browser knows nothing about the

information that it is going to be presented, and its only job is to present it.

Lastly, the terminal-mainframe relationship is yet another example of the client-server paradigm. The

mainframe houses all the information and all the software, whereas the terminal simply renders that informa-

tion out to the user. When a user is accessing a spreadsheet or database, the terminal simply sends the user's

key strokes to the mainframe which then sends back a series of characters to be displayed on the terminal.

No state is saved on the terminal's end of the connection.

It is quite simple to fail these centralized systems. Take September 11th, 2001 - shortly after the attacks

on the World Trade Center, people all across the world flooded the Internet with requests for information

from all the major news network web sites. Even with their slight attempts (at the time) to distribute their

web serving capabilities, every one of the news sites eventually shut down that day under the load. A model

similar to the Akamai one of data distribution may have been the perfect solution for that day. Through tricks

with the DNS system, every client may have been redirected to a server that is either geographically closer to

them (to control the flow of Internet traffic) or to one that is less loaded than the others (to alleviate stress on

the servers). A distributed system such as that one may have fared better on that day.

2Ignoring any distributed caching system that cnn. com may be using. However, even if you do take that into account, it does follow
the same model of a client-server relationship, the network is just changing which server you are accessing.
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Figure 4-2: An example topological representation of a peer-to-peer model. No node in this graph can be
considered as "central", as all nodes talk to each other. It is possible to remove a node that will separate the
graph, however that gap can then be bridged by any two nodes.

4.2 Peer-to-Peer

P2P systems, can be thought to be a little more like social systems. Take "tape trading" groups that record

live concerts and then make copies to disseminate to other people around the world. No one person has all

the live recordings of all the musical shows around the world, and if a person does want to obtain a particular

recording, he or she needs to search amongst all his peers in this community to find out who has a copy of

that content for duplication. However, the real benefit to designing a system in this manner is that no one

person has to keep all the content in a single place - a person only needs to keep content that he or she is

interested in, or if he or she is feeling benevolent then he or she may keep some extra content around for the

good of the network. Each node is of a common status within the network, and each has to interact with each

other.

Gnutella is an example of a software P2P system that is deployed and running on the Internets. In the

Gnutella network, each node creates a bi-directional connection to a number of other Gnutella nodes. When

a node initiates a search of the network, that search message is propagated to all nodes that it is connected to,

and so-on (with some consideration taken into account for the time-to-live on the message, and some memory

to prevent a search message from looping on the network). If a node has a piece of content that matches the

search, then that node informs the originating node of the "hit". The originating node may then choose to

contact that node to ask for a download of that file.

3Most people also associate the original Napster as a P2P system, however they are partially incorrect. It is true that the peers directly
contact each other to deliver files to each other, however the search on the Napster network was centralized: all nodes would publish a
list of the files they are sharing to a central Napster node to which any node could search to get a pointer to the node that is hosting the
file. From that pointer, the node could initiate the direct file transfer.
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Figure 4-3: An example topological representation of a hybrid client-server and peer-to-peer model. As in
figure 4-1, the darkened circles are the servers, however now they are acting as peers amongst each other. The

grayed out circles are still clients, however, who are communicating directly with the servers in the network.

It is worth also noting that P2P systems also come in a variety of hybridizations (see figure 4-3) [YGM01].

For example, consider the electronic mail systems on the Internet: an e-mail client is usually setup to send

its mail via a single simple mail transmission (SMTP) server. That server, however, is rarely the destination

of that e-mail, and it is that server's responsibility to parse the destination of the e-mail, contact the appro-

priate SMTP server, and deliver the message. Those two SMITP servers are "peers" in this network, but the

originating e-mail client is a client to those servers.

4.2.1 Client-server vs. P2P

Both client-server and P2P systems have their benefits. In the client-server camp, the most notable one is that

client-server systems are quite simple to engineer. All the intelligence and data are in one place, and it makes

it simple to make inferences and decisions. The clients only need to see is a rendering of what is going on in

the system and have no authority over any of the data. However, this system is also quite vulnerable to attack

and failure: by simply failing the central server, the entire system becomes unusable; there is no redundancy

in this system. Also, a client-server system may be inelegant for particular problems. For example, take a

situation where a client wants to affect a change of state onto a different client in the system - in a client-server

system, the change needs to be "routed" through the central server first. If these changes are happening fairly

rapidly with may clients attempting to affect many other clients, the central server becomes the bottleneck in

this system. If that central server becomes overloaded, or fails, then no client can affect another.

While this may all seem to be a resounding endorsement for P2P systems, keep in mind that P2P systems

can be slightly more difficult to engineer properly. There are distributed consistency problems, the data is



not located in one place so therefore an efficient distributed search mechanism is required [SWO2], there are

partial failures that can happen in the network, and the list goes on. However, the major benefit is that there

is no single point of failure in the entire system: if a single node goes down, it will take down any state and

threads of execution that are associated with it. The rest of the network will remain up and running.

Going back to the ever present light switch and light example: consider a "smart home" that brokers all

the messages in the house. If that server ever goes down, then the entire house stops functioning. This is

very far from the status quo of how light switches and bulbs operate in a house today as there is no single

point of failure in a home today (save for the electrical system). If the smart home has the switches and

bulbs functioning as peers on the home network, then there is no single point of failure that can disrupt their

communication. If, by chance, the light switch or bulb breaks, then only those two nodes are affected and the

rest of the network can proceed as though nothing has happened.

Simply stated, if constructing a network of Internet Protocol enabled devices, the devices can and should

be designed to intercommunicate directly with each other to reduce the number of external dependencies in

the network.

4.2.2 Message Passing Algorithms

Future work in Internet 0 encompasses a study of graphical message passing, and the applicability of these

mathematical models to networking. The basis of this work are factor graphs and the sum-product algorithm

[KFL01] where the probabilistic relationships between dependent variables are indicated, and that is used to

pass probabilities through the network until a solution is relaxed out. This algorithm has the natural ability to

decompose a problem into its hierarchical parts that exhibits decentralization and locality - exactly the same

two properties of a P2P system. It is the hope that these types of algorithms will allow a network to make

decisions and compute in ways that are currently only done in centralized systems.

4.3 Hierarchy

Although the infrastructure of Internet 0 is designed in a peer-to-peer fashion, this does not mean that there is

not a place for a centralized server, or supernode, somewhere in the network. For example, Google provides

an invaluable resource to the WWW, without which, the WWW would continue to function, however would

not be as useful as it would be nearly impossible to locate information; the centralized indexing that Google

provides adds value to the network, but without it the network would continue to operate. More generally,

these supernodes can provide high level functionality that cannot be obtained from a single device in the

network. As said many times before, the network should not require centralized nodes, however it should be

recognized that centralized nodes have a place as controllers and data aggregators. These supernodes fill a

niche that a single node in a distributed network cannot.



4.3.1 Data aggregation

Each individual node in the network may know about its particular state and history, however no node should

be expected to know the detailed state and history of any other node, let alone the entire network. For exam-

ple, each node in a distributed array of sensors may be producing a continuous stream of data that does not

make much sense without the "context" of the other nodes in the network. While each node could listen to all

the data in the network and individually infer the larger view of the data set, it seems redundant and perhaps

computationally impractical to do so. This applies to sensors that may be on a battlefield collecting infor-

mation about the terrain and the enemy, to amperage meters in different locations on a campus: individual

pieces of data may be interesting, but no decision can be made without seeing all the data simultaneously.

4.3.2 Centralized control

Centralized control follows directly from data aggregation (section 4.3.1). There are cases when individual

nodes talking to other individual nodes makes sense, such as the example of the light switch talking to the

bulb. This example can even be expanded to a daisy chain of events such as having the talking to the bulb

who then relays a message to a thermostat which then determines whether the room is too hot or too cold and

activates the HVAC system for the room. Of course, this daisy chain of events does not necessarily scale.

Additionally, consider synchronization issues. For example, any life threatening piece of machinery

that may be controlled with an Internet 0 data-bus. Each individual portion of the machine could be made to

operate and make decisions on its own, or the portions of the machine could be designed to accept instructions

from a centralized node on-board that is issuing commands. The latter is more preferable in the case that the

machine needs to be shut down quickly in an emergency situation. A single command to the central controller

could cause it to disengage the entire machine whereas if the machine is built with distributed controls then

a command would need to be issued to all controllers on board for the machine to shut down. Centralized

synchronization is easy - distributed is not [GC93].

4.3.3 Hierarchical organization

Lastly, hierarchical control follows from the hybridizations of peer-to-peer systems (shown in figure 4-3).

Attempting synchronization of clocks around a network [Mil94] requires a tree of computing nodes simply

as an optimization - overwhelming a single node with time requests would constitute a distributed denial of

service attack. Therefore to mitigate this issue, the Network Time Protocol (NTP) constructs strata of servers.

Stratum 0 servers are those machines who actually have physical access to the time, whether they be attached

to an atomic clock, or synchronized via a GPS connection. While the majority of the network would like to

connect to these servers, they simply are not allowed to do so to protect those nodes from the vagaries of the

network connection. Instead, the stratum 0 nodes are connected to a stratum 1 node who in turn connects to

many other stratum 1 nodes (for synchronization) and a myriad of stratum 2 nodes (for distribution). From



there on, its open season.

The two items of note from these types of systems is that while a hierarchical organization alleviates load

on the "supernode", it does introduce a variance that goes up as you go further and further away from the

root [Min99]. An entirely P2P system (section 4.2) may experience an overload of certain peers, however it

will not have a problem with false information 4. Issues of trust in the network become very apparent, and

perhaps the only way to deal with it is to create a trust structure in the system [Zis97] as this type of system

will become very useful in architectures where individual nodes provide valuable information, but not enough

processing or memory to provide network connectivity to the entire world.

4 Unless the node with the information is deliberately lieing.





Chapter 5

Physical Identity

One fairly unique and high-level concept for an Internet 0 network is the notion of physical identification

and access to the devices. One of the original requirements for the creation of a unified global network of

computers was to enable access to resources no matter where the user is physically located - unfortunately

that exact feature may doom Internet 0 type networks. As Internet 0 devices may be used to control critical

and non-critical members of an environment, a different paradigm for identification and access is necessary:

physical in cooperation with the online.

There are certain types of interactions that one would like to make with physical access to the device or

the network. Again, with the light bulb and the switch, one simply wants to be able to turn on the light bulb

via the switch. You should not need to manifest a computer to make that happen - the light switch should be

the conduit to the network. But also, there are security concerns that can be addressed with physical access.

One can lock out access to a network node, simply because he or she does not have a means to physically get

to it.

Before interacting with a device, however, one must first identify it. Identity is a subject that grows

without bounds when it comes to computers. For people, identity is relatively easy (but not entirely) - for

computers, this can be a very daunting task. How does a computer know which other computer it is talking

to? How does a computer which person it is talking to? How does a person know which computer he or she is

talking to? And, how does a person, via a computer, know whom he or she is talking to? Computers need to

deal with identity on many different levels: the network level, the physical level, and at a logical level. Each

of these types are distinct, however, when used in different combinations, the identity becomes more than a

sum of the individual parts.

Once two computers can identify, then we can add a physical aspect of proximity to the equation.



5.1 Identity

As mentioned above, there are three types of identities to assign to an Internet 0 device. Network identity

involves the IP address of a node, physical identity is the (mostly) unique identifier for a device, and finally

there is the logical identity which is the relationship between an object and the rest of the world.

5.1.1 Network

Network identity is type of computer identity that most people are familiar with. Computers are assigned an

Internet Protocol address either directly by a network administrator, or indirectly through a DHCP server -

and this identity is how other computers from around a network or the Internet can use to address messages

to this computer. This IP address on its own cannot be used as an identity because that address is assigned to

that computer solely based on its location within the network.

IP addresses are not assigned permanently to computers, and when that computer moves, it may get

assigned a new address. If a laptop is taken from the owner's office network and connected to the owner's

home network, for example, it will inevitably be assigned a different IP address'. This occurs because the

computer has changed its location on the Internet and addresses are assigned to computers to make global

routing simpler - classless inter-domain routing (CIDR) [FLYV93] relies on IP addresses to be handed out

in a hierarchical fashion. Before CIDR was introduced, IP addresses were handed out in a static manner,

meaning that when an organization did physically move or change Internet Service Providers (ISPs) they

could take their IP address block with them. This, unfortunately, has the side effect of forcing routers to keep

information on every single IP block, and possibly every single IP address for routing purposes. CIDR means

that routers can instead keep information about that hierarchy instead; pre-CIDR each router on the planet

would need to keep information about where a given computer is, but post-CIDR, a far away router only

needs to know a "broad" idea of where a computer is globally, and the closer routers will have more details

about the location. The far away routers are relying on the closer routers to know more.

Another reason that the IP address may not be the best identifier for a computer is partly because there

is a shortage of IPv4 addresses on the planet. This problem manifests itself for a couple of reasons: the first

being that there is only enough addressing space for 4,294,967,296 computers (232). While that may seem

like a large number, the real underlying problem is how those addresses are assigned. MIT, for example, has

a class A block - the entire 18.0.0.0/255.0.0.0 address space - giving it enough addressing for 16,777,216

computers (224). An organization like MIT does not have over 16 million active devices, so the rest of the

world is at a loss.

Another reason is due to the pricing structure for access to the Internet. ISPs traditionally charge per IP

address or per IP address block instead of paying for access to the Internet. While this benefits some (those

IThere are, of course, work-arounds to this. There are a few mobile host protocols [MS93] and also virtual private network (VPN)
solutions that proxy IP at different levels to allow a computer to have a "static" IP address. They do use packets to go bouncing all
through the Internet, however.



mainly who transfer a large amount of data over their network connection), it penalizes the average user who

may have more than one network device in their possession, but only use ones at a time. The common solution

for a home that has broadband access is to buy a "home router": a combination firewall, DHCP server, and

NAT [EF94] box. The combination of the DHCP server and the NAT box allows the router to obtain the one

IP address assigned to that broadband connection, and then assign globally unroutable addresses to all the

machines on the inside of the network. Whenever a packet destined for the outside world is transmitted from

the inside network, the gateway rewrites the packet to come from the gateway's IP address. When a response

comes back, the gateway can again translate that packet for the internal network. This ISP pricing structure

has the side effect of causing all the machines on the inside of the network to be directly unroutable to the

outside world (as they are all identified by the same IP address to the outside world) and also use IP addresses

inside the NAT that are used in other NATs around the world.

These two reasons make IP addresses, on their own, be an unsatisfactory identifier.

5.1.2 Hardware

In computer networking, a media access control (MAC) address is the physical identifier of the network

interface. The MAC address is designed to operate at level 2, and provides a guaranteed unique address that

is used in Ethernet [RP94], 802.11, ATM, and a other networking technologies. This guaranteed uniqueness

provides the ability for two network cards to communicate with each other without any issues from layer 3,

where addresses (IP) are not guaranteed to be unique. However, maintaining this guaranteed uniqueness is

an administrative nightmare.

In order to obtain a block of addresses to utilize, one has to contact the IEEE registration authority and

request a 48-bit block. The IEEE makes sure never to assign the same block of addresses to two different

parties, at the cost of having to purchase either an "organizationally unique identifier" or an "individual

address block" at the cost of $1650 and $550 respectively. The cost associated is with the maintenance of the

IEEE database and to limit the number of people making frivolous requests for MAC address blocks. The

side effect is that this does lock out smaller developers and experimenters from creating network interfaces

to guarantee a protection which probabilistically does not need to be enforced2 .

This makes the MAC address methodology might make an appropriate identifier, save for the prohibitive

cost and administrative overhead to do so.

5.1.3 Logical

Logical identity solidifies notions of "my computer", or "the light switch by the door". Issues of trust and

relationship are wrapped up in those two statements. A user trusts and expresses a relationship with the

2
1n 1998 the Certified Software Corporation (CSC) attempted to purchase a block of MAC addresses with the purpose of reselling

smaller hierarchical chunks to prototypers and low quantity developers. Their attempt was stopped by the IEEE under the premise that
the organizationally unique identifier that was sold to the CSC was to be only used in products manufactured by the CSC.



data and threads of execution on his or her computer, and the logical identity of the light switch states its

relationship with any other appliance in the room or in the building. Unfortunately, due to the nebulousness

of this type of identity, there is no computationally algorithmic way to assign and maintain them. There

is a real notion that is being expressed in this type of identity that is missing in many computer systems -

relationships.

Currently, computers have no notions of long term relationships. The best attempt at one is the recording

of the public keys of SSH servers that a computer connects to. Recording these keys helps prevent later man-

in-the-middle attacks. However, this relationship does not reflect any changes in the system that may occur.

When one first connects to another machine, the SSH public key is recorded, and that is held for granted

every time that machine is connected to again.

Also, computer networks have no notions of physical proximity. There is nothing in the IP layer or in the

hardware layer that specifies spatial positioning. Given that a subnet may be as small as room, or as large

as a continent means that nothing can be really inferred from the network address. Hardware addresses are

also not useful as they are effectively physically spread randomly around the world. A logical identity of "the

light switch in the room with that light" does say something, however.

5.2 Generating Identities

Because all Internet 0 devices do need an identity of sorts, there needs to be an algorithmic way to generate

them. One hardware address is needed for each device to as provide a nearly-unique identifier for this device,

and then at least one IP address is necessary so that the device can get connectivity.

5.2.1 IP

IP identities cannot be given to devices at manufacturing time because, as mentioned above, CIDR requires

that devices be assigned IP addresses according to where in the hierarchy they are located. However, because

as stated in chapter 4, an Internet 0 network cannot assume the existence of a DHCP on the network, so

therefore an IP address needs to be generated at runtime.

Internet 0 borrows IP address allocation from the zero configuration specification [SAA03]. When a

device first comes online, it issues a DHCP request to the network. If the server is heard from, then the device

can assume all the information given to it. However, if no server is heard from (after a series of requests),

then the following needs to occur so that the device can assign itself a link-local address:

1. Choose a random address from the 169.254/16 subnet (except any address in 169.254.0/24 and not in

169.254.254/24),

2. send an ARP "who-has" request for the chosen IP address, and

3. if an ARP response is heard from, repeat from step 1.



4. Otherwise, send an ARP response claiming the address, then

5. defend the IP address by responding to ARP requests for this address.

Whenever the network interface of the device is reset (rebooting, power cycling, awakening from sleep),

then the above procedure must be repeated. As an optimization, the address could be written to non-volatile

memory, and upon reset skip step 1 and start immediately at item 2.

5.2.2 Hardware

Again, hardware addresses cannot be assigned at manufacturing time as it becomes infeasible to maintain a

centralized registry of any considerable size, and still allow experimenters to participate in the network. For

that reason alone, random hardware address generation is needed.

Fortunately, generating these hardware addresses are simpler than generating IP addresses (section 5.2.1)

- simply choose a run of 64 iid bits. There may not even need to be a necessity to defend this chosen hardware

address as the probability of two 64 iid bit sequences colliding is 1 in 1.84 x 1019 (where as, the probability

of two IP addresses in the zero configuration subnet colliding is about 1 in 6.50 x 104).

5.2.3 Random number generation

The most difficult portion of both address generators mentioned is the creation of the random number se-

quence. A linear feedback shift register is the first type of generator that comes to mind - given m bits of

state, the LFSR can output a repeating sequence of 2"' pseudo-random bits (after those 2' bits are outputted,

the exact same sequence will be outputted again). The LFSR needs to be initialized first, however, with a

seeded value for the first tap sequence. On a personal computer, it may be ideal to stuff the tap sequence

with the current time, however a microprocessor does not have that luxury. It may be possible to, instead,

leave those bits of state in an uninitialized state on power-up; whatever values are electrically present in the

registers can be taken to be the random start up state. Another possibility may also be possible to sample

bits over the network interface (even if it is not initialized) and feeding that into the taps. If the taps are not

initialized into their ideal start state, then the length of the sequence generated by the LFSR will be shorter

than 2"*.

Another, more tempting, proposition is to use a physical process, such as a physical one-way function

[Pap03] for the random number generation - either as the hardware address or as a seed for a LFSR.

5.3 Access

Physical access, along with identity, changes aspects of the scenario. While it may be possible to properly

identify a device over the network, it may not always be ideal to allow programming over a network. It has

already been stated that servers should not be necessary to interact with the network (chapter 4) - physical



access to the device follows that requirement by allowing people to program the network without a server.

Physical access also changes aspects of security with respect to the network.

5.3.1 Programming paradigm

It may be helpful to work through a scenario to demonstrate a physical programming paradigm. One could

imagine a few different network topologies, the first having a centralized broker with whom all the light bulbs

and switches interact with. From there it is easy to change any associations, as one just has to modify the

database on that one broker. This scenario is obviously rejected as it does not follow any of the framework

that has already been laid out in chapter 4.

The second scenario has all the light switches and bulbs interacting with each other directly. There does

not exist one place in the entire network that has access to all the associations in the network. Because of this,

one has to deal with the light bulbs and switches directly. Each bulb and switch could export a network API

that allows you to set the association over the network. Unfortunately, unless some type of authentication

scheme is put into place, this means that anybody who has access to that network (and therefore, possibly

anybody on the Internet) can control which switches are talking to which bulbs. It also has the added incon-

venience of requiring that a third network appliance be used to modify the network. This again, is going to

have to be rejected.

For a third situation, consider a network as described in scenario two, except there is no network API for

establishing device associations. Instead, to cause an association one needs to physically access the switch

and the light bulb and possibly press a toggle switch, or perform some type of interaction with both that

coerces them to interact with each other over the network; each one requests the other for an association.

This type of physical programming does away with the unfortunate side effect of allowing associations to be

created over the network and also does not require another device to make the connection.

5.3.2 Consequences for security

The third situation above (section 5.3.1) also raises interesting points about securing these networks. While

future work does include the development of a secure way to interact with these small and embedded network

devices, physical access to the device does and will continue to play a very important role in the network.

Take an elevator that is controlled via an Internet 0 bus: while it may be convenient to display information

about the elevator over the network, at no point do you want random people to be able to modify the state of

the elevator from any point in the network. The simple solution is to hide the access point behind a lock and

key and if third party does not have possession of that key, then nothing can be done to affect the state of the

device, even with network access to it.

Another interesting aspect are future cryptographic protocols which involve physical identity. The current

proposal for security involves symmetric encryption so that two devices may prove to each other that they



know the same shared secret. However, most encryption mechanisms (whether they be public/private or sym-

metric key cryptography) are agnostic towards the "distance" between the two parties. Each party could be

attempting to prove themselves to the other from across the room, or halfway across the planet. A possibility

is to include a short-range 10 transceiver on a device for identification purposes, that requires the two devices

that are interacting with each other to be within close proximity. This changes some of the assumptions that

can be made in the design of the cryptographic protocol, because any attempts at identifying a third party

when they are not physically close by can be simply ignored.





Chapter 6

Big Bits

Most development in networking technology is dedicated to going as fast as possible because it means saturat-

ing all available bandwidth on the channel. For the Internet, hardware research is devoted to faster-than-terabit

Internet 2 links while software research delves into saturating those links [JWL04]. What is being forgotten,

however, are two crucial points

1. A light bulb does not need to watch video on demand, and

2. there are many hidden costs of pushing bits quickly.

These two points are the motivation to slowing down the speed of the Internet 0 network to be "fast enough"

and causing the bits in the media to grow large. Going slower means less cost and complexity in the network

- in the end it means more functionality for Internet 0 devices.

6.1 Fast-enough networks

Pushing a bit very quickly through a network means cost of hardware, costs of installation, and costs of

maintenance (see section 6.3). A slow bit, however, is very cheap. Knowing this, we can create a framework

that will help us determine a reasonable upper bound on the bandwidth necessary for a home or building. First

consider the traditional light bulb and switch - the only intercommunication needed for the two involves the

transmission of a message from the light switch asking the light bulb to turn on. As shown in chapter 2, a TCP

light switch and light bulb may require as many as five packets to be interchanged to confirm that the light has

indeed changed state (as this TCP light switch and bulb pair will require more bytes to be transmitted than its

UDP counterpart, it is reasonable to use it as the upper bound). According to table 6.1, it takes approximately

240 bytes to change the state in a light bulbi.

'Of course, this data is only necessary to change the state in the building. In order to maintain the status quo, no packets need to be
shuffled around.



Table 6.1: The packets, along with their associate sizes, that need to be transmitted
and a light bulb to request a change of state.

between a light switch

Packet contents Packet size
The initial SYN packet from the light switch to the light bulb. This re- 40 bytes
quires 20 bytes for the IP header, and then another 20 bytes for the TCP
header).
The light bulb needs to respond with a SYN/ACK TCP/IP packet. 40 bytes
The light switch can then ACK the SYN/ACK along with the request for -60 bytes
the light to turn on. Again, the TCP/IP header is 40 bytes, but then there
is the data. Assuming a HTTP GET is used, that will take, conservatively,
20 bytes.
Now the light bulb needs to acknowledge the reception of this packet, -60 bytes
send data that confirms that the light bulb has been turned on or off, and
also set the FIN flag to terminate the connection. 40 bytes for the TCP/IP
header, and then another 20 bytes for the HTTP response.
Lastly, the light switch needs to respond with the FIN bit set in the TCP 40 bytes
header to close its end of the connection.

As a desired goal would be to keep within the expected requirements of a light bulb and a light switch,

it would be ideal that when the switch is pressed that the light turn on "immediately". Given that the human

reaction time can be measured in tenths of a second, an appropriate time requirement can be stated as "within

a tenth of a second of a light switch being pressed, the light bulb should begin its power-on sequence". 240

bytes need to be transmitted through the network within a 0.1 seconds, therefore that sets the network speed

to be 18.75 kbps2 .

The probability of two people switching the state of two independent light switch and bulb pairs on

the same Internet 0 network is quite small, however if that did occur, there are number of different packet

interweaving that could occur (approximately 1000 of them) - however, we need only consider the worst

case: one light pair's entire set of packets is processed on the network before another pair's. Meaning that

one switch will turn on within a tenth of a second, while the other will turn on within two tenths of a second. If

that is unacceptable, then simply doubling the speed of the network will allow two switches to simultaneously

turn on within one tenth of a second.

This framework is the appropriate way to determine the speed necessary on the network. First, the band-

width needed for a single set of interactions to occur must be accounted for. Then the probability of a collision

of two of those sets of events must be considered and the speed of the network scaled up accordingly.

2A slightly different argument states that only 140 bytes need to be transmitted for the light to turn on, as the 60 bytes from the light
bulb acknowledging the change state request, along with the 40 bytes from the switch closing its end of the connection happen after the
light turns on. Following that computation through means that a network speed of only 10.94 kbps is needed to turn on a the light bulb
within an average person's reaction time.
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Figure 6-1: A wire, modeled as a resistive element that also has a parallel capacitance and inductance, with a
signal being transmitted over it.

6.2 Bits have size and shape

If you consider that bits travel at approximately 2c in copper and in fiber optic cable, a given bit rate translates

to a bit having a particular size on a network as dictated by

I- =length of a bit (6.1)
r

where c is in meters per second and r is the rate that the information is being transmitted in bits per second.

This means that on a one gigabit network each bit is just under 20 centimeters long and on a 18.75 kbps link

as described above (section 6.1), each bit has a size of just over 10 kilometers. A building who may have its

longest link at 100 meters can afford a data rate of about 2 megabits per second.

When transmitting at a bit rate that puts the size of the bit significantly smaller than the size of the network,

then one is operating as if one were in the "near field"3 - for the above example, that means operating at a

megabit a second over distances of less than 200 meters. Intuitively, this means that (chances are) at any

given time the receiver is seeing exactly what the sender is transmitting. All multi-path reflections can be

ignored because during that time interval the entire system has equilibrated out. To be a little more concrete,

take for example a wire that has a step function being transmitted across it - approximately during the time

the signal stays constant (at either high or low) the receiver sees the same constant signal.

If we update the model of the wire to have a given resistance, capacitance, and inductance (see figure

6-1), then a few complications arise. Figure 6-1 has a transfer function of H(s) = s2 cLRist+R across the

parallel capacitor and inductor. Given a step function as an input, the response over the capacitor and inductor

ends up as

v/4C LR2 _ L2 L v'4C LR2 _ L2 _Lt
Vo(t) = 1 - (cos t + sin t)e+- (6.2)

2 V4CLR 2 - L 2  2

This system settles down rather quickly after the step response; the influence of the exponential decreases

by a factor of a hundred after t > 92. If the input signal is stepping between 0 and 1 rather slowly, then

3 The Near-Field Forum (NFC) recently founded by the Nokia Corporation, Royal Philips Electronics, and Sony Electronics use this
term in a slightly different way to mean communication via electromagnetic coupling. For this thesis, it is being used to mean simplified
communication.



for the majority of the time (after the transient portion of the equation has died out), the system equilibrates

out to what the transmitter is transmitting. However, if the sender is transmitting very quickly (and therefore,

switching between the 0 and 1 input fairly rapidly), then a qualitative mess is occurring on the wire.

To further complicate the situation, if the wire is not impedance matched on both sides then a mis-

match occurs on the amount of energy being sent down the wire. If the source impedance does not equal

the complex conjugate of the load impedance, there will be an inefficient power transfer between the two -

meaning a reflection of a portion of the transmitted energy back to the source. These spurious "echos" inside

the transmission will possibly confuse the receiving node.

6.3 The cost of high speed bits

The theory laid out in section 6.2 all translates to physical implementation issues and costs. Having "small"

bits on the wire requires agile radios that can cope with high speed transmissions and the transients that are

caused by the impulse response of the wire. Ethernet transceivers today cost $10 at unit cost, which can be

more than the cost of the device that we are attempting to network.

Along with the proper radios, the proper cabling is required for transmission. Transmissions are usually

sent differentially over twisted-pair cables to reduce coupling due to mutual inductance - hence Ethernet's use

of category 5 cable, which consists of four twisted pairs of copper wire supporting up to 100 MHz frequencies

and speeds up to a gigabit per second. The complexity of the wire, and the tolerances to which it needs to be

manufactured are reflected in its monetary cost. Additionally, these wires have to be very carefully impedance

matched on both ends, otherwise reflections and energy loss are bound to over power the system.

The cost of these high speed bits unfortunately do not stop at the price to pay for the radios and the

cabling. Because of the strict requirements on the transmission medium, these cables cannot be arbitrarily

split to create random topologies; the cables are meant to be used only for point-to-point links and cannot be

spliced into two wires in the hopes that it will work. In order to split a wire, an impedance matched radio

is necessary at every termination, and hence the need for hubs and switches at every desired split. Not only

does choosing the right hub or switch require experience and knowledge, but laying out the wire into the right

topology for a building does too. Equipping a building for a high speed wired network is no longer a blue

collar job, however many buildings are having the network integrated into their building design meaning that

a series of networking engineers are needed during the architectural stage, and also at the building stage to

install the all the proper gear.

All of the above changes when operating a lower speed network. Radios become simpler because they

do not have to operate in a domain where transients and echos are occurring, as they can just wait until the

network settles down; hardware costs go down as radios and cables become cheaper. Also, because we are

not as worried about impedance matched wires, it is possible to simply split a wire wherever necessary. An

entire building can be wired for Internet 0, low speed networking, simply by running a series of wires, and



splicing them every time a split is necessary. No hubs or switches necessary.





Chapter 7

End-to-end modulation

Modulation schemes attempt to represent information for transmission through a given medium. As Internet

0 devices can be connected to any given number of media, a more traditional train of thought would require a

medium dependent modulation scheme so its specific properties, such as the pass-bands and time delays, can

be properly and rigorously accounted for. In the spirit of IP to the leaf nodes (chapter 2), however, another

possibility emerges: use one modulation scheme across all possible media.

The same arguments that are applied to unifying different network protocols into IP can be considered

for using a single modulation scheme in an "end-to-end" fashion. Notably, it means that the representation of

information is independent of the carrier that is transmitting it. If information needs to change what medium

it is traveling over, there needs to be no complicated intermediary receiving and demodulating the data on one

side to then only remodulate and transmit it again on the other side - instead, the data can be simply passed

along; all that is required in the middle of the network are "dumb" nodes that can amplify a signal. Similar

to how no intermediary hosts on the Internet need to process the data in the packet itself, they simply need to

forward a packet along, the intermediate hosts in an end-to-end modulation scheme need only pass along the

modulated data without ever actually processing it.

A comparison can be made to Morse code. This modulation/protocol can be used across any number

of media: electrical charges over long wires strung across the Midwest, smoke signals, banging on the hull

of boat, to flashing a flashlight. In fact, a repeater is possible just by mimicking the dots and dashes that

are observed by the intermediary; at no point does a repeater have to demodulate the information and then

remodulate it. In both Morse code and in the Internet 0 end-to-end modulation scheme, the information is

represented the same way across a variety of media.



7.1 Modulation

Modulation is defined as the process of representing information for transmission. For example, amplitude

modulation (AM) takes the information to be transfered, and encodes it into the amplitude of a carrier fre-

quency. AM is a very simple modulation scheme that functions very well over media that have an easy ability

to transmit variances in the amplitude of a signal, unfortunately most naturally occurring noise is white (an

additive Gaussian white noise signal), and AM modulation is going to be very susceptible to interference

from it. On the positive side, it is very simple to implement both the transmitter and the receiver of the signal

as an oscillator will allow you to modulate the signal, and a phased locked loop will allow for demodulation.

This simple example illustrates a few key points of what needs to be taken into account when selecting a

modulation scheme: the capabilities of the medium being transmitted over, the type of noise that the signal

is bound to encounter over the channel, and the complexity of the transmitter and receiver pair needed to

establish communication.

Unfortunately optimizing those usually means that different modulations are chosen for different media:

IrDA can be used for IR transmissions, FM for radio links or even ultrasonic links, differential serial for wired

links, and the list goes on. As mentioned above, traditional thought leads to very different modulations that

is dependent on the medium.

7.2 Impulse radio

The promising exception to the "different modulations for different media" rule is impulse radio [WS98].

Commonly known as "ultra-wide band", this scheme was originally designed for radio links, but it is tempting

to imagine an extension of this scheme that functions across any media. Impulse radio uses pulses of very

short duration whose energy is spread very thinly from DC to the speed of the click itself (a nanosecond

click spreads from DC to 1 GHz). Assuming that the onset of the click can be very accurately measured,

careful positioning of the click can allow for many simultaneous users of a channel while being impervious

to multi-path reflections [WSOO].

A click is effectively measuring the impulse response of the medium - the transmitter is "hitting" the

medium with a very short, but very large, amount of energy that the medium rings with. Transmitting a click

over a medium can be done very trivially - for an RF link it simply means emitting a short burst of energy

through an antenna, for an IR link it means blinking an LED, and for a water link it means inducing a tidal

wave. Conceptually, reception is rather straight forward and requires a match filter to catch the impulse on the

receiving end'. Even a microcontroller has excellent time resolution, and therefore the output of that match

filter can be fed directly to a microcontroller who can then precisely position the impulse in time.

'It may be even simpler. As the pass-bands of the medium, or of any of the media that the impulse may have traveled through, is not
known a priori, it may be difficult to construct an exact match filter to catch the input. Assuming an AWGN (additive white Gaussian
noise) channel has a given amount of energy, a receiver may simply be able to look for a sharp increase of energy in the channel during
a given time interval.
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Figure 7-1: The placement of a zero bit and a one bit. ti = 2tc where te is the length of a click interval and
where ti must be greater than the impulse response of the media transmitting the data. to is the time after the
start of tc and 2to = ti to expect a 0 bit and ti is the time to expect a 1 bit.

Noise rejection is performed both by having the transmitters insert enough energy into the medium to get

above the noise floor, but mostly by careful positioning of the impulses onto the channel. Traditional impulse

radio uses a pseudo-random time hopping sequence [LMLL03] to allow for noise rejection and multi-user

access - if the impulses are only allowed to be transmitted during very particular, and pseudo-random, slots,

then it is very hard for noise or other transmitters to catastrophically interfere with the transmission.

7.3 Internet 0 Clicks

Internet O's "clicks" are directly inspired by impulse radio (section 7.2). Instead of utilizing a spreading code,

Internet 0 relies on self consistency in the placement of the clicks. Figure 7-1 defines the location of a 0 and

1 bit given a particular interval. Each bit is divided into two slots in a Manchester-like encoding scheme. t,

is the "click interval" and ti is exactly half that (2ti = tc). ti is bounded at the lower end by the length of the

impulse response of a medium as that allows for the medium to settle after an impulse has been sent; if ti is

not bounded by the impulse response, then it may be difficult to determine the start of two successive clicks.

The 0 bit is to be transmitted precisely at the center of the first ti in a te, and the 1 bit is to be transmitted at

the center of the second ti.

An entire byte is framed by a start and stop bit sequence which is a te long and where there are two clicks,

one occurring at to and the other at ti from t. This byte framing has the characteristic that it allows for the

sequence to be self clocked and therefore operate at any timescale. When receiving the impulses, the distance

between the clicks in the start byte defines the length of ti (and therefore the length of to and t1 ), and also

the start of the entire byte sequence. Another aid is that the receiver knows that it expects a start sequence,

followed by 8 bit sequences ordered with the most significant bit first, followed by a stop sequence. If any of

the expected tis are empty, then an error has occurred and the entire byte can be rejected.



II Pt I I . 11111 1 Ii 1
start 0 1 1 0 0 1 1 1 stop

Figure 7-2: An example byte sequence encoding ObOl 100111 (103) - pre- and post-pended are a start and
stop sequence which involves encoding two clicks within te for framing and self clocking.

7.3.1 Decoding click sequences

Given a timeline of click events, each click timestamped, an exhaustive O(n 2 ) search can reveal all the

encoded bytes:

1. Start at a specific click (with a timestamp of n), and

2. pick another following click (with a timestamp of m where m > n). Consider n and m to be the start

sequence - this means that the ti = m - n, ti = 2to, tc = 4to, and the start of the byte is at n - to.

Call that t,.

3. From there, look for eight data bits (bits 7 through 0 as the bits are ordered MSB) such bn = ts + (8 -

n)tc + to or bn = t, + (8 - n)tc + ti. All eight must be present.

4. Then look for the two stop bits at t, + 9tc + to and t, + 9tc + t1 . Again, both must be present. If they

are, then a byte has been located and decoded.

5. Continue for all n.

Assuming the impulses are being received by a device with good time resolution, this specification has

the property that any spurious noise (manifested by extraneous clicks) can be trivially rejected because prob-

abilistically they will be inconsistent with the byte sequence (as shown in figure 7-3).

It is possible, however, that given a sequence of bits with a particular te created from a sequence of bytes

could have larger patterns of bytes (a tc, where t, > tc) which are entirely self consistent - figure 7-4

shows this quite clearly. In simulation, one transmitter encoded a string of 100 bytes at a tc of 100 (unitless),

however when the receiver decoded the bit sequence it not only recovered the entire original sequence, but

also (on average) another 900 other bytes all with click lengths ranging from 200 to 3500.

There are a few strategies that can be used to discard those extraneous bit sequences. The first is to use

a spreading sequence to carefully place the positioning of the beginning a byte sequence. By positioning

the byte sequences in such a manner, it is possible to eliminate the need to search through all possible n

as stated in the algorithm above. There is still a possibility for spurious bit sequences, but the probability

is greatly diminished. Producing the sequence on the transmitter can be implemented in software and the
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Figure 7-3: This bit sequence (presumably embedded in an entire byte) can be rejected as te $ to and te f t1 ;
the start bit sequence as shown in figure 7-2 defines those lengths, and the receiver can reject any spurious
bits that do not match those values.
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Figure 7-4: A plot of the number of bytes received at different click lengths when there is, in reality, only one
sender transmitting 100 bytes with to = 100. There are "resonances" at 10tc and another at 20tc.
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Figure 7-5: A plot of the number of bytes received at different click lengths when the receiver is rejecting
any click interval that has more than 5 intervening clicks. There is only one transmitter who is transmitting
100 bytes with a tc = 100.

sequence can be locked upon using a noise-locked loop or similar [Vig03] on the receiver end. An interesting

property of this setup is that a transmitter can use a spreading sequence to transmit without consideration of

whether the receiver is locking onto that spreading sequence, and using it to obtain coding-gain against the

other extraneously decoded byte sequences; even if the receiver is not attempting to synchronize and use the

spreading signal, the receiver can simply run the decoding algorithm and retrieve the information.

The receiver can also perform a significant amount of filtering on the clicks that it is receiving. One simple

filter is to reject any click pairing that has more than a number of intervening clicks (see figure 7-5). In other

words, no two subsequent clicks can be considered to belong to one byte if there are more than i other clicks

occurring between them. Some knowledge is reflected in choosing the value of i, but when properly chosen,

the number of extraneous other bytes decoded drops off significantly.

Another possibility is that a receiver can make two assumptions about the transmitter: a transmitter is not

going to change its tc in the middle of its stream, and that a transmitter is going to be sending a series of bytes

in succession. One the receiver sees a series of bytes with the same tc, it can start to make the assumption

that that is the te of the transmitter. However, this assumption alone is not sufficient as that may confuse the

receiver into believing that the transmitter is transmitting at a te = 10tc or te = 20tc. Therefore, the receiver

must also examine whether the bytes being received are overlapping as that would mean that the receiver is

- ----- -- Mob.



transmitting two simultaneous bit sequences (which we assume it is not doing). Upon that examination, it is

revealed that all the extraneous bytes in figure 7-4 are overlapping with other bytes - only those bytes with

to = 100 can be ordered as a non-overlapping stream. Those bytes with a tc = 10t, or a te = 20tc all have

their byte sequences overlapping and occurring simultaneously. Also, a sender's byte sequences are usually

sent in tight succession. This means that after the last click in the stop sequence, the first click in the start

sequence can occur as early as ti after that.

At the time of this writing, no one of these strategies have been settled upon as the "best".

7.3.2 Decoding in the presence of noise

This modulation scheme functions quite well in the presence of noise in the channel. A series of tests were

performed with a single sender transmitting 100 bytes with a tc = 100 in the presence of AWGN (see figure

7-6). Up to a noise floor of under -1 dB, this strategy functioned quite well rejecting noise that was spuriously

detected as clicks. The number of extraneously decoded bytes were within the same number of bytes decoded

in a noise free channel (figure 7-4).

After about -1 dB of noise, the frequency of the random clicks passes a threshold where they begin to

occur often enough that the decoding algorithms will begin to find many byte sequences where there are

none. Even filtering, as described above, only does clean up the received byte sequences (as the tes of the

decoded bytes are spread almost as white noise) to an extent. Even if the receiver ignores click pairings with

more than a given number of interleaving clicks, there are still a large number of clicks that can be formed

under that limit. The only real possibility in such high noise situations for filtering is to more carefully design

the hardware match filter (instead of using the nafve energy detector discussed above) to more discriminately

fire only when an impulse is received. While the software algorithm will function, it will be prohibitively

computationally expensive.

7.3.3 Decoding in the presence of multiple users

The one quite tantalizing aspect of impulse radio is the ability to cope with multiple users on the shared

channel. Ultra-wide band treats all other users as "noise" when it is using its spreading sequence to time hop

its positioned pulses; because the pseudo-random sequence is instructing the receiver to look at the channel

at only very specific instants, any other impulse in the channel that is not occurring in that window is ignored.

Internet 0, instead, relies on the self consistency of the byte sequences. In essence, it makes use of the fact

that simultaneous byte sequences can be decoded.

In order to work properly, the transmitter needs to choose a random te on start-up and stay with that te

value for as long as it is operating. It is very important that the te value be randomized, otherwise catastrophic

collisions are possible in large networks of similar devices (see figure 7-7). Even a simple strategy of picking

a mean te value, and then randomly settling on a te value within a deviation of that simplifies the amount
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Figure 7-6: The number of decoded bytes with respect to a given level of AWGN on the channel as performed
by the given decoding algorithm with filtering based on the number of intervening clicks. All tests were
performed with one sender sending 100 bytes with a t, = 100. The intervening click decoding strategy is
fairly impervious to random noise below a certain level (save for the extraneous bit sequences that have not
yet been filtered out) - however once a large number of random clicks is introduced (around a SNR of -I dB),
then the decoding algorithm begins to unwrap a large number of extraneous bytes even when fighting against
intervening clicks.



of work that the receiver needs to perform (see figure 7-8). The receiver simply needs to run the decoding

algorithm listed above, and then it can associate streams by assuming that each transmitter is not going to be

changing its te value, and that each transmitter is going to be sending its bytes in succession. Using those

two pieces of information, the receiver can string together the bytes into streams. It won't necessarily know

which transmitter is transmitting which stream2, however the receiver is able to separate out the streams.

The real draw to this type of information organization is that multiple access is now very simple to

implement. Assuming that the transmitter is not transmitting at the same te as another (although it may

still be possible, but computationally expensive, to separate out two transmitters at the same tc), then the

transmitters can blindly transmit onto a channel - there is no need for the transmitter to determine whether

another is using the channel to schedule around it. The receiver will, in most cases, be able to decode the

given click sequence.

7.3.4 Breaking abstraction layers for decoding

Another very important heuristic that can be used for decoding is in the knowledge that this bit stream

is carrying IP packets. Given that out-of-layer information, the receiver has the following more pieces of

information and its disposal3:

1. The length of the packet,

2. the protocol of the packet,

3. and the checksum of the packet.

The length of the packet can tell the receiver how many more bytes to search for on this channel, while

the protocol of the packet can deliver a few hints as to the structure of the data (specifically the next header)

that we are going to be looking for. The checksum is very useful in that it can allow us to verify that the

receiver is actually decoding the proper data. The checksum also becomes invaluable in the situation where

noise causes the receiver to see a bit sequence that can decode to more than one byte4 - the checksum can

help filter out which one of those byte possibilities is the correct one.

2Unless it is encoded in the stream, such as the source address in an IP packet.
3Some of this information can only be trusted after the entire header has been received and the checksum verified, of course.
4This can happen if a noisy click occurs exactly at the location of a 0 bit when the transmitter is sending a 1 bit, or visa versa.
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Figure 7-7: A plot of the number of bytes received (unfiltered and filtered) associated to the te value decoded

at, with different click lengths in the presence of 10 senders who are all sending 10 bytes at a t, = 100.

Unfortunately, it becomes nearly impossible to form associations and streams keyed against senders with this

plot as there is no way to distinguish between the senders (the data could be misinterpreted as a single sender

at tc = 100 instead of multiple senders).
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Chapter 8

Open Standards

Internet 0 is based around the same philosophical thought that the Internet is developed around: open up the

standards that govern interactions. Allowing access to these specifications increases the ability for experi-

mentation and innovation in ways that are not possible on closed systems. Access means shifting the market

from building infrastructure, to building better infrastructure. Access means that everybody from students

working on class projects, to massive corporations looking to develop unique solutions to problems can all

work at the same base.

Mike O'Dell, former CTO of UUNET articulated this mindset very well in an e-mail message when

discussing the spread of wireless community networks

Biology will out-innovate the centralized planning "Department of Sanctified New Ideas" ap-

proach every time, if given half a chance. Once the law of large numbers kicks in, even in the

presence of Sturgeon's Law ("90things happen that the progeny are at least interesting, and some

are quite vigorous.

"Nature works by conducting a zillion experiments in parallel and most of them die, but enough

survive to keep the game interesting." (The "most of them die" part was, alas, overlooked by

rabid investors in the latter 90s.)

This is how the commercial Internet took off, and this remains the central value of that network

... You don't need permission to innovate.

You get an idea and you can try it quickly. If it fails, fine - one more bad idea to not reinvent

later. But if it works, it takes off and can spread like wildfire.

8.1 The failure of the American phone system

For contrast, consider the American cellular phone system. Until only recently, the US phone system had a

myriad of competing infrastructures from Sprint's CDMA network to AT&T/Cingular's TDMA network to



Verizon's own CDMA network. The cellular phone consumer was left choosing a cellular phone provider

simply by its network coverage map and not by the services provided. Simultaneously, these networks closed

off access to the cellular phone manufacturer from the consumer - you had to purchase your cellular phone

from the service provider you signed a contract with. A consumer could not simply purchase a phone from

Nokia and then use it on the Sprint network. This was very different from the Europeans who settled fairly

quickly onto the GSM standard for cellular phone connectivity thereby allowing Europeans to use their cellu-

lar phones anywhere on the continent. And, because the infrastructure was standardized and open, manufac-

turers could produce their own GSM phones and expect it to work anywhere. Consumers were not wedded

to a series of phones that their service provider supports and they were free to purchase any GSM cellular

phone and place their SIM card within it.

Arguably, this openness in the phone system has also lead to the fast rise of SMS technologies and the

deploying of many more information services on the European networks. To launch a similar application on

a network of a stateside provider requires much back and forth with marketers and executives at that network

to convince them that the application is "worthwhile". This puts complete control in the network provider

and stifles innovation. In the open European system, one simply purchases access to the network because, as

a business case, if one provider does not give a consumer access, the consumer will simply go to another one.

If a group of artists, students, or business people, wanted to create an information service that an end-user

could interact with over a cellular phone, there is no company that they need to convince to deploy their

application on, they simply need to purchase access to the network.

Although for any given link, the American technologies may have better sound or data quality, the closed

interoperability of the networks has doomed it to failure. "Worse is better" when it comes to the deploying of

these networks.

8.2 Internet 0 competitors

The lessons of openness all appear in the development of the Internet and are echoed in O'Dell's e-mail

above. It is because of the generality and freedom of the Internet did a network that was once used primarily

for login into remote machines evolve into one that electronic mail could be transferred over, to one where

Gopher ran wild, and finally to one where the World Wide Web dominates in its usage. At no point did

any one person determine that a particular way of organizing global information was a better way - people

were free to experiment in parallel, and the more popular way would always win out. Because people simply

negotiate access to the network, without having to defend their reason as to why they want to get access. And

because the network specifications are open in the way that you interact with the network, did the Internet

evolve the way it did with any random software and hardware developer being able to deploy their products

and making the Internet a richer place.

In contrast to the open system, there are a few competitors to Internet 0 which are not as open: Echelon's



LonWorks, UPnP, and BACnet are two of them. Both of these has a few nuances that close out the system

either in the engineering, or in the business domain.

8.2.1 LonWorks

LonWorks is one of the more predominant networks used for building control systems today. However, to

develop systems using this control network requires membership to the Open Systems Alliance - a group

of corporations lead by Echelon technologies, the main producer and designer of LonWorks technologies.

However, development requires joining either the "Authorized Network Integrator" or "LonWorks Integrator"

programs - both of which necessitates the purchase of a STARTUP package. Sadly, obtaining the title of

either of these integrators does not necessarily mean that one is empowered to create devices that can be

integrated into a network speaking LonTalk, but instead it means that the organization is recognized as being

able to deploy a network and devices into it. In order to actually develop devices and software that interact

with the network directly requires licensing the LonTalk protocol, as the Echelon corporation has a patent on

the specification.

8.2.2 UPnP

UPnP is the universal plug-n-play standard that is meant to allow a device to automatically configure itself

on a network. Obtaining the standards for UPnP (such as the Internet Gateway Device standard) is simple,

however advertising the product as UPnP compliant requires registration into the UPnP Implementors Cor-

poration at a $5000 per year fee. Therefore, while it is possible to create a UPnP compliant device, it is not

allowed to advertise it to the world as UPnP compliant unless one joins the corporation. This leaves many

smaller developers and experimenters in a catch-22.

8.2.3 BACNet

This third competitor, BACNet, is the most open of the three being discussed. BACNet is a global ISO

standard that defines the networking protocol that is to be used between any two nodes in the network.

Additionally, the standard is free for anybody to obtain and implement. However, there is no transparency

into the organization for protocol development. If another feature is needed in the protocol, there is no

standard way to add it. The benefit of Internet 0 is that only the lower layer protocol is defined, and it allows

any other standard to be implemented at the higher levels (including BACNet, if desired).

8.3 Openness in Internet 0

It is the hope that by relying and championing completely open Internet standards, the development of inter-

device inter-networks will be spurred on as anybody can implement it. Every niche in the networking will



be filled, or at least occupied, by somebody who is willing and interested to take charge - whether it be

networking via drop-outs in LED illumination, to networking via short range pulses in the 2.4 GHz domain,

to networking via the ground-water pipes in a home - all can be interoperable and all similarly functional.

None of what is said above should be needed to be articulated, however, it sometimes needs to be said to

spur competition in the development of services, and not in the development of infrastructure.



Chapter 9

Conclusion

While all the previous themes do provide a methodology to create a device network that is interoperable

with itself at the modulation layer and compatible with the global Internet on the protocol level - all of the

presented are only possible because of careful observations and engineering. No one of those stages were

rigorously designed and analyzed as they were only put together out from engineering experience. On other

words, what is still lacking is a firm theoretical foundation on anything presented above.

There are questions as to whether the protocols used on the Internet are even the correct ones to be used

in a device setting. More questions present themselves about delayering, and how it applies to engineering

practice. And finally, there more open paths when considering peer-to-peer and decentralized systems.

9.1 Protocol correctness

Chapter 2 discussed the need for the use of Internet Protocols in inter-device networks as a way to maintain

compatibility with the global Internet. The IP protocol, as well as the TCP one, were designed by a group of

smart people who, engineering-wise, strongly felt that the protocol was correct. Only recently have groups

begun to model the Internet and protocols [LAWD04] and this modeling has asked questions as to whether

our current implementations are the optimal ones [PWDLO4] [GG03]. The consensus is that TCP and IP

are the correct solutions to networking, however a few optimizations can be made to TCP involving ACK

transmission times for performances improvements [JWLO4].

What is lacking, however, is an analysis of optimal, yet minimal, protocols that achieve the same goals

of IP with a minimum number of states. The creation of the state diagram for the micro-IP stack (figure

2-1) shows an attempt from the standpoint of a software engineer, however can it be done better and be done

smaller? Could IP be further optimized if one is assuming a global network of not only computationally

powerful machines such as desktop computers and rack-mount servers, but also those of light switches and

bulbs?



9.2 Delayering

The concept of working across software layer boundaries was mentioned in chapter 3. Metaphorically, one

would like to consider a network specification to be a software program that a compiler then optimizes down.

To do this, one needs to be able to represent the layers of a system individually, but then jointly optimize

across them to hopefully create a smaller and more efficient system. Analysis such as this have already been

performed to balance out the network and the physical layer in wireless networks [Chi05], however the more

general question is whether to layer or not [ChiO4] when designing multi-layer protocols.

The micro-TCP stack presented in chapter 2 (see figures 2-3 and 2-4), and the statement of breaking

the abstraction layer to use IP information in decoding end-to-end modulated clicks (section 7.3.4) are two

examples of creative engineering that has only been tested in simulation and not tested with mathematical

rigor. Using joint estimation techniques may give us better insight on how to do that better, or how to bring

in other axes of information.

9.3 Peer-to-peer message passing

Lastly, peer-to-peer systems as described in chapter 4 have been used in engineering practice as a way of

harvesting more computation and storage [YGM01] [But02]. While some work is being done in creating

compilers that can take directions for an entire network and produce software that runs on each individual

node to collectively create the desired behavior [SeeO2], most work simply has smart people who craft the

protocols and split up the computation manually. The product-sum algorithm [KFL01] provides some insight

on how to distribute probabilistic computations amongst communicating nodes, and work in this field may

involve the distribution of routing algorithms or other control algorithms throughout the network.

9.4 Final remarks

As said above, Internet 0 is simply a framework for reasoning about and designing interoperable device

networks. Most device networks do embody subsets of the seven themes presented, but no framework except

10 involves all of them. However, most device networks have not yet attempted to scale to the size of the

Internet - there is much anecdotal and theoretical proof that has scaled properly, it seems irresponsible not to

use it, or at least learn from it. 10 provides a collection of thoughts that if implemented correctly could lead

to the rapid development of devices that are capable of not only communicating across a PCB board, but also

across the world.
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