
Convex Modeling with Priors

by

Benjamin Recht

B.S., University of Chicago (2000)
M.S., Massachusetts Institute of Technology (2002)

Submitted to the Media Arts and Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Media Arts and Sciences

April 14, 2006

Certified by. .
Neil Gershenfeld

Associate Professor
Thesis Supervisor

Accepted by .
Andrew B. Lippman

Chairman, Departmental Committee on Graduate Students

2

Convex Modeling with Priors

by

Benjamin Recht

Submitted to the Media Arts and Sciences
on April 14, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

As the study of complex interconnected networks becomes widespread across disciplines,
modeling the large-scale behavior of these systems becomes both increasingly important
and increasingly difficult. In particular, it is of tantamount importance to utilize available
prior information about the system’s structure when building data-driven models of complex
behavior. This thesis provides a framework for building models that incorporate domain
specific knowledge and glean information from unlabelled data points.

I present a methodology to augment standard methods in statistical regression with
priors. These priors might include how the output series should behave or the specifics of
the functional form relating inputs to outputs. My approach is optimization driven: by for-
mulating a concise set of goals and constraints, approximate models may be systematically
derived. The resulting approximations are convex and thus have only global minima and
can be solved efficiently. The functional relationships amongst data are given as sums of
nonlinear kernels that are expressive enough to approximate any mapping. Depending on
the specifics of the prior, different estimation algorithms can be derived, and relationships
between various types of data can be discovered using surprisingly few examples.

The utility of this approach is demonstrated through three exemplary embodiments.
When the output is constrained to be discrete, a powerful set of algorithms for semi-
supervised classification and segmentation result. When the output is constrained to follow
Markovian dynamics, techniques for nonlinear dimensionality reduction and system identi-
fication are derived. Finally, when the output is constrained to be zero on a given set and
non-zero everywhere else, a new algorithm for learning latent constraints in high-dimensional
data is recovered.

I apply the algorithms derived from this framework to a varied set of domains. The
dissertation provides a new interpretation of the so-called Spectral Clustering algorithms
for data segmentation and suggests how they may be improved. I demonstrate the tasks of
tracking RFID tags from signal strength measurements, recovering the pose of rigid objects,
deformable bodies, and articulated bodies from video sequences. Lastly, I discuss empirical
methods to detect conserved quantities and learn constraints defining data sets.

Thesis Supervisor: Neil Gershenfeld
Title: Associate Professor

3

4

Convex Modeling with Priors

by

Benjamin Recht

PhD Thesis

Signature Page

Thesis Advisor. .

Neil Gershenfeld

Associate Professor

Department of Media Arts and Sciences

Massachusetts Institute of Technology

Thesis Reader .

John Doyle

John G. Braun Professor

Departments of Control and Dynamical Systems, Electrical Engineering, and

BioEngineering

California Institute of Technology

Thesis Reader .

Pablo Parrilo

Associate Professor

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

5

6

Acknowledgments

I would first like to thank the members of my committee for providing invaluable guidance
and support. My advisor, Neil Gershenfeld, encouraged me to pursue my diverse interests
and provided a stimulating environment in which to do so. John Doyle took me under his
wing and introduced me to the wide world of robustness. Pablo Parrilo shared his many
insights and creative suggestions on this document and on the score of papers we still have
left in the queue.

The work in this thesis arose out of a long-running collaboration with Ali Rahimi.
Most of the results contained herein are distilled from papers we have written together
or ideas composed in late nights of brainstorming and coding (with some bickering). I’d
like to thank him for such a fruitful collaboration. This document benefited from a careful
reading by Ryan Rifkin who provided many useful comments and corrections. Aram Harrow
suggested a simple proof of Theorem 4.2.4. Along with being my co-conspirator on the
Audiopad project, James Patten provided the hardware and his time for the acquisition of
the Sensetable data in Chapter 5. Andy Sun and Jon Santiago assisted in the collection of
the Resistofish data also discussed in Chapter 5. Kenneth Brown, Bill Butera, Constantine
Caramanis, Waleed Farahat, Tad Hirsch, and Dan Paluska also provided helpful feedback.

I’d especially like to thank Raffaello D’Andrea for his friendship and mentorship during
my graduate career. I’d like to thank everyone else I have collaborated with during my stay
at MIT including Ethan Bordeaux, Isaac Chuang, Brian Chow, Chris Csikszentmihalyi,
Trevor Darrell, Saul Griffith and Squid Labs, Hiroshii Ishii, Seth Lloyd, Yael Maguire,
Cameron Marlow, Jim McBride, Ryan McKinley, Ravi Pappu, Jason Taylor, Noah Vawter,
Brian Whitman, and the students of the MIT Media Lab. I have learned more in these
collaborations with my peers than anywhere else in my graduate career. I would also like
to acknowledge my other fellow travellers in the Physics and Media Group: Rich F., Ara
K., Raffi K., Femi O., Rehmi P., Manu P., Matt R., Amy S., and Ben V.

None of this work would have been possible without the diligent staff of the CBA office.
I’d like to thank Susan Murphy-Bottari, Kelly Maenpaa, and Mike Houlihan for all of their
help, hard work, and support. I also extend my gratitude to Linda Peterson and Pat Solakoff
in the MAS office for making it easier to leap over the hurdles that accompany the graduate
school process.

My involvment in the Boston electronic music scene has served as an important coun-
terpoint to and release from my academic work. Notable shout outs go to The Fun Years,
The Dan Bensons Project, Mike Uzzi, The Saltmine, Unlockedgroove, The DSP Music
Syndicate, The Appliance of Science, non-event, Beat Research, Spectrum, Jake Trussell,
Anthony Flackett, Collision, Don Mennerich, Eric Gunther, Fred Giannelli, and Stewart
Walker. We are the reason Boston is the drone capital of the universe.

Of course, I am deeply indebted to Mom and Dad for their endless support. I’d like to
thank my sister Marissa for putting up with my bad attitude longer than any reasonable
person would have. And finally, I’d like to thank Lauren, without whom I would have
probably finished this thesis, but it wouldn’t have been half as good.

This work was supported in part by the Center for Bits and Atoms (NSF CCR-0122419),
ARDA/DTO (F30602-30-2-0090), and the MITRE Corporation (0705N7KZ-PB).

7

8

Contents

1 Introduction 21

1.1 Contributions and Organization . 23

1.2 Notation . 24

2 Mathematical Background 27

2.1 Basics of Convexity . 27

2.1.1 Convex Sets . 27

2.1.2 Convex Functions . 28

2.1.3 Convex Optimization . 31

2.2 Convex Relaxations . 34

2.2.1 Nonconvex Quadratically Constrained Quadratic Programming 36

2.2.2 Applications in Combinatorial Optimization 40

2.3 Reproducing Kernel Hilbert Spaces and Regularization Networks . . . 47

2.3.1 Lessons from Linear Regression 49

2.3.2 Reproducing Kernel Hilbert Spaces 51

2.3.3 The Kernel Trick and Nonlinear Regression 53

3 Augmenting Regression with Priors 57

3.1 Duality and the Representer Theorem 58

3.2 Augmenting Regression with Priors on the Output 63

3.2.1 Least-Squares Cost . 64

3.2.2 The Need for Constraints . 66

3.2.3 Priors on the Output . 68

9

3.2.4 Semi-supervised and Unsupervised Learning 71

3.3 Augmenting Regression with Priors on Functional Form 72

3.3.1 The Dual of the Arbitrary Regularization Problem 73

3.3.2 A Decomposition Algorithm for Solving the Dual Problem and

Kernel Learning . 75

3.3.3 Example 1: Finite Set of Kernels 76

3.3.4 Example 2: Gaussian Kernels 78

3.3.5 Example 3: Polynomial Kernels 80

3.4 Conclusion . 83

4 Output Prior: Binary Labels 85

4.1 Transduction, Clustering, and Segmentation via constrained outputs . 87

4.2 RKHS Clustering is NP-HARD . 90

4.3 Semidefinite Approximation using Lagrangian Duality 94

4.4 Eigenvalue Approximations and the Normalized Cuts Algorithm . . . 98

4.4.1 The Normalized Cuts Algorithm 99

4.4.2 Average Gap Algorithm . 101

4.5 Numerical Experiments . 103

4.6 Conclusion . 105

5 Output Prior: Dynamics 107

5.1 Related Work . 108

5.2 Model for Semi-Supervised Nonlinear System ID 110

5.2.1 Semi-supervised Algorithm . 115

5.2.2 Unsupervised Algorithm . 117

5.3 Relation to System Identification . 118

5.4 Interactive Tracking Experiments . 119

5.4.1 The Dynamics Model . 120

5.4.2 Synthetic Results . 120

5.4.3 Interactive Tracking . 123

5.4.4 Calibration of HCI Devices . 124

10

5.4.5 Electric Field Imaging: . 129

5.5 Conclusion . 131

6 Output Prior: Manifolds of Low Codimension 135

6.1 Learning Manifolds of Low Codimension 136

6.2 Basis Functions and Polynomial Models 137

6.3 Lifting to a General RKHS . 138

6.4 Null Spaces and Learning Surfaces 139

6.5 Choosing a Basis . 141

6.6 Learning Manifolds . 141

7 Conclusion 145

A Linear Algebra 149

A.1 Unconstrained Quadratic Programming 149

A.2 Schur Complements . 150

A.3 More Quadratic Programming . 150

A.4 Inverting Partitioned Matrices . 151

A.5 Schur complement Lemma . 151

A.6 Matrix Inversion Lemma . 152

A.7 Lemmas on Matrix Borders . 152

B Equality Constrained Norm Minimization on an Arbitrary Inner

Product Space 155

11

12

List of Figures

2-1 Left and Middle: Two convex sets. In each set a line segment is drawn

between two points in the set and this line never leaves the set. Right:

A nonconvex set. Two points are shown which cannot be connected by a

straight line that doesn’t leave the set. 28

2-2 Left: A convex function. One can readily check that the area above the

blue curve contains all line segments between all points. Right: The red

segment demonstrates that the region above the graph is not convex. . . . 30

2-3 The convex set is separated from the points not in the set by half-spaces.

The bold dashed line separates the plane into two halves, one containing

the point x and the other containing the convex set. 31

2-4 The set of possible pairs of g(x) and f(x) are shown as the blue region. Left:

Any hyperplane which has normal (µ, 1) intersects the y-axis at the point

f(x∗) + µ>g(x∗) where x∗ minimizes L(x, µ) with respect to x. Middle:

A hyperplane whose y intercept is equal to the minimum of f(x) on the

feasible set. The dual optimal value is equal to that of the primal Right: No

hyperplane can achieve the primal optimal value. The discrepancy between

the primal and dual optima is called a duality gap. The dual optimum value

is always a lower bound for the primal. 34

2-5 Left: Given four point, a variety of exact fits are shown. A prior on the

function is required to make the problem well-posed. Right: Regularization

Networks place a “bump” at each observed data point to fit unseen data. . 47

13

4-1 In Normalized Cuts, an outlier can dwarf the influence of other points,

because points away from the mean are heavily weighted. Sliding the outlier

(indicated by the arrow) along the x-axis can shift the clustering boundary

arbitrarily to the left or the right. Without the outlier, Normalized Cuts

places the boundary between the two clusters. 102

4-2 Because Normalized Cuts puts more weight on points away from the mean,

it prefers to have the ends of the elongated vertical cluster on opposite sides

of the separating hyperplane. 102

4-3 The data set of Figure 4-1 is correctly segmented by weighting all points

equally. The outlier point doesn’t shift the clustering boundary significantly. 104

4-4 The data set of Figure 4-2 is correctly segmented by weighting all points

equally. 104

5-1 A generative model for a linear system with nonlinear output. The states st

are low-dimensional representations lifted to high dimensional observables

xt by an embedding g. 118

5-2 Forcing agreement between projections of observed xt and a Markov chain

of states st. The function f maps observations to outputs of a linear system. 119

5-3 The covariance between samples over time for various (A,C) pairs. The

x-axis represents number of samples from −1500 to 1500. The y-axis shows

covariance on a relative scale from 0 to 1. (top-left) Newtonian dynamics

model used in the experiments. (top-right) Dynamics model using zero ac-

celeration. (bottom-left) Brownian Motion model. (bottom-right) A second

order model with oscillatory modes. 121

14

5-4 (top-left) The true 2D parameter trajectory. Semi-supervised points are

marked with big black triangles. The trajectory is sampled at 1500 points

(small markers). Points are colored according to their y-coordinate on the

manifold. (top-middle) Embedding of a path via the lifting F (x, y) =

(x, |y|, sin(πy)(y2 + 1)−2 + 0.3y). (top-right) Recovered low-dimensional

representation using our algorithm. The original data in (top-left) is cor-

rectly recovered. (bottom-left) Even sampling of the rectangle [0, 5]×[−3, 3].

(bottom-middle) Lifting of this rectangle via F . (bottom-right) Projection

of (bottom-middle) via the learned function g. g has correctly learned the

mapping from 3D to 2D. These figures are best viewed in color. 122

5-5 (left) Isomap’s projection into R2 of the data set of Figure 5-4(top-middle).

Errors in estimating the neighborhood relations at the neck of the manifold

cause the projection to fold over itself. (right) Projection with BNR, a semi-

supervised regression algorithm. There is no folding, but the projections are

not close to the ground truth shown in Figure 5-4(top-left). 122

5-6 The bounding box of the mouth was annotated for 5 frames of a 2000 frame

video. The labelled points (shown in the top row) and first 1500 frames were

used to train our algorithm. The images were not altered in any way before

computing the kernel. The parameters of the model were fit using leave-

one-out cross validation on the labelled data points. Plotted in the second

row are the recovered bounding boxes of the mouth for various frames. The

first three examples correspond to unlabelled points in the training set. The

tracker is robust to natural changes in lighting, blinking, facial expressions,

small movements of the head, and the appearance and disappearance of

teeth. 125

5-7 The twelve supervised points in the training set for articulated hand tracking

(see Figure 5-8). 125

15

5-8 The hand and elbow positions were annotated for 12 frames of a 2300 frame

video. The labelled points (shown in Figure 5-7) and the first 1500 frames

were used to train our algorithm. The images were not preprocessed in

any way. Plotted in white are the recovered positions of the hands and

elbows. Plotted in black are the recovered positions when the algorithm is

trained without taking advantage of dynamics. Using dynamics improves

tracking significantly. The first two rows correspond to unlabelled points in

the training set. The last row correspond to frames in the last 800 frames

of the video, which was held out during training. 126

5-9 An image of the Audiopad. The plot shows an example stream of antenna

resonance information. Samples from the output of the Sensetable over a

six second period, taken over the trajectory marked by large circles in the

left panel. 129

5-10 (left) The ground truth trajectory of the tag. The tag was moved around

smoothly on the surface of the Sensetable for about 400 seconds, produc-

ing about 3600 signal strength measurement samples after downsampling.

Triangles indicate the four locations where the true location of the tag was

provided to the algorithm. The color of each point is based on its y-value,

with higher intensities corresponding to higher y-values. (right) (middle)

The recovered tag positions match the original trajectory. (right) Errors

in recovering the ground truth trajectory. Circles depict ground truth loca-

tions, with the intensity and size of each circle proportional to the Euclidean

distance between a points true position and its recovered position. The

largest errors are outside the bounding box of the labelled points. Points in

the center are recovered accurately, despite the lack of labelled points there. 130

5-11 Once f is learned, it can be used it to track tags. Each panel shows a ground

truth trajectory (blue crosses) and the estimated trajectory (red dots). The

recovered trajectories match the intended shapes. 130

16

5-12 (left) Tikhonov regularization with labelled examples only. The trajectory is

not recovered. (middle) BNR with a neighborhood size of three using nearest

neighbors. (right) BNR with same neighborhood settings, with the addition

of temporal neighbors. There is folding at the bottom of the plot, where

black points appear under the red points, and severe shrinking towards the

mean. 131

5-13 The Resistofish senses humans by detecting the low-level electric fields that

couple them to ground. The hand couples capacitively to a resistive sheet

with electrodes on the sides. The time constant of the RC pair that couple

the hand to the sheet are measured by undersampling timing the impulse

response of a voltage change at each electrode. 132

5-14 The resistive sheet and the two dollar sensor that make up the Resistofish

hardware. 132

5-15 Two different algorithms were used to measure the mapping from the RC

time constants to the position of the hand. (left) A sample trajectory.

(middle) The recovered trajectory under the supervised algorithm. (left)

The recovered trajectory by the unsupervised regression algorithm. Note

that the trajectory is rotated, but the geometry is correctly recovered. . . 132

5-16 The top row is recovered using the supervised algorithm. The bottom row

is recovered by the unsupervised algorithm. The middle panels is the re-

covered traces of someone writing ”MIT.” The right-most panels are the

recovered traces of someone writing ”Ben.” The mapping recovered by the

unsupervised algorithm is as useful for tracking human interaction as the

mapping recovered by the fully calibrated regression algorithm. 133

6-1 The SPHERE data set. 200 points were sampled from a gaussian with unit

variance and then normalized to have length 1. This sampling procedure

generates a uniform distribution on the sphere. 142

17

6-2 The first four figures show the zero-contours of four functions whose coeffi-

cients span the null-space of lifted data for SPHERE. The final figure shows

the intersection of these four surfaces. This plot is computed by calculating

the zero contour of the sum of the squares of the four functions. 143

6-3 The DOUGHNUT data set. 200 points were sampled uniformly from the

box [0, 2π]×[0, 2π] and then lifted by the map (x, y) 7→ (cos(x)+1
2 cos(y) cos(x), sin(x)+

1
2 cos(y) sin(x), 1

2 sin(y)) . 143

6-4 The first four figures show the zero-contours of four functions whose coeffi-

cients span the null-space of lifted data for DOUGHNUT. The final figure

shows the intersection of these four surfaces. This plot is computed by

calculating the zero contour of the sum of the squares of the four functions. 143

6-5 The SWISS data set. 1000 points were sampled uniformly from the box

[0, 5]× [0, 6] and then mapped (x, y) 7→ (x, |y| cos(2y), |y| cos(2y)). 144

6-6 The first four figures show the zero-contours of four functions whose coeffi-

cients span the null-space of lifted data for SWISS. The final figure shows

the intersection of these four surfaces. This plot is computed by calculating

the zero contour of the sum of the squares of the four functions. 144

18

List of Tables

2.1 Examples of kernel functions . 52

4.1 Clustering performance. 105

19

20

Chapter 1

Introduction

We are currently building systems that produce more data at higher rates than ever

before. With the advent of faster computers and a deluge of measurements from

sensors, surveys, and gene arrays, building simple models to describe complex physical

phenomena is a daunting challenge. Deriving simple models from data with principled

tools that leverage a priori knowledge rather than expert tuning and annotation is

of tantamount importance. Gaining intuitive understanding of these models and the

modeling tools is equally important.

In this thesis, I will argue that if I can pose a modeling problem in terms of

structured goals and constraints, then I can apply tools from convex optimization

to automatically generate algorithms to efficiently fit the best model to my data.

In many regards, the main contribution is in problem posing. Not all problems

can be posed as convex optimizations, but I will demonstrate through a variety of

applications that this methodology is widely applicable and very powerful.

Recently, a great deal of interest has emerged around modeling complex systems

with mathematical programming – the applied mathematics concerned with optimiz-

ing cost functions under a set of constraints. Many modeling, analysis, and design

questions can be phrased as a series of goals and constraints. What is the shortest

route from my house to work? What is the optimal strategy for managing con-

gestion on the internet while maintaining user satisfaction [63]? How can an array

of oscillators maximize their phase coherence [47]? Using the tools of mathematical

21

programming, a well-phrased problem statement alone can provide sufficient informa-

tion to guarantee properties of system behavior, derive protocols for achieving optimal

performance, and verify the convergence of the dynamics that solve the optimization.

A special class of mathematical programs are the convex programs. Notable con-

vex programs are the well-known problems of least-squares and linear programming

for which very efficient algorithms exist. Building on these two examples, algorithms

for convex optimization have matured rapidly in the last couple of decades. Today,

the solution of convex programs is typically no more complicated than that of ma-

trix inversion and the techniques have been applied in fields as diverse as automatic

control, electronic circuit design, economics, estimation, statistical machine learning,

and network design [15]. This puts the burden on the applied mathematician to

either phrase a problem in a convex form or to recognize when this is not possible in

an efficient manner.

Of course, not all problems can be phrased as convex optimizations. There are

well-known classes of problems believed to be intractable independent of the applied

solution technique. However, convex techniques have produced extremely good ap-

proximations to many known hard problems. Such approximations, called relaxations,

provide guaranteed error bounds to intractable problems. Beginning with the work

of Goemans and Williamson on approximating the NP-HARD problems MAX-CUT

and MAX-2-SAT [37] in combinatorial optimization, an industry of approximating

intractable problems to high tolerance has developed [31, 50, 52]. Whereas heuristic

searches like genetic algorithms and simulated annealing provided no insight into the

values they would output, the convex methods produce guaranteed error margins.

Inspired by these relaxations, this thesis will develop tools that exploit convexity

to build approximate data-driven models incorporating expert a priori knowledge.

My approach is cost function driven. By summarizing the modeling problem as a

set of goals and constraints, I will systematically produce a convex representation

of the problem of tractable size and an algorithm in the new representation which

approximates the original formulation.

22

1.1 Contributions and Organization

In Chapter 2, I will provide a brief review of the mathematical foundations upon

which this thesis rests. Beginning with an overview of convexity, I will summarize the

theory of convex relaxations and Lagrangian duality, and I will discuss the connections

with function learning on Reproducing Kernel Hilbert Spaces (RKHS), a powerful

functional representation where the optimal mappings are sums of functions centered

around each data point.

In Chapter 3, I will present a powerful cost function that can be applied to a

vast array of data-driven modeling problems and can be optimized in a principled

way. By augmenting the simple problem of fitting the best function in an RKHS to

a set of data with a set of priors, I will produce a very general and powerful cost

function for modeling with priors. This optimization seeks to jointly find the best

model relating data to attributes, the labels of the unlabelled data, and the best space

of functions to represent the relationship. The optimization will be convex in all of

these arguments. In particular, I will present several novel results about learning

kernel functions. I will provide a general formulation of the learning algorithms that

may be solved with semidefinite programming. I will derive solutions to learning the

width of Gaussian kernels. Finally, I will show how to search for the best polynomial

kernel using semidefinite programming.

In Chapter 4, the first prior on the output will be presented. By restricting the

desired outputs to be binary labels, a family of optimization problems for segmenta-

tion, clustering, and transductive classification can be derived. I will show that even

though the prior is so simple, all of the resulting optimizations are NP-HARD and

no efficient algorithm to solve them exactly can be expected. In turn, I will present

approximation algorithms using semidefinite programming. These semidefinite pro-

grams may be prohibitively slow for very large numbers of examples, so I will also

present an additional family of relaxations that reduce to eigenvalue problems. These

eigenvalue problems recover the well-known Spectral Clustering algorithms. This

function learning interpretation provides insight into when and how such algorithms

23

fail as well as how they can be corrected.

In Chapter 5, I describe a dynamics prior that results in a family of semi-

supervised regression algorithms that learn mappings between time series. These

algorithms are applied to tracking, where a time series of observations from sensors

is transformed to a time series describing the pose of a target. Instead of defining

and implementing such transformations for each tracking task separately, the algo-

rithms learn memoryless transformations of time series from a few example input-

output mappings. The learning procedure is fast and lends itself to a solution by

least-squares or by the solution of an eigenvalue problem. I discuss the relationships

with nonlinear system identification and manifold learning techniques. The utility of

the dynamics prior is demonstrated on the tasks of tracking RFID tags from signal

strength measurements, recovering the pose of rigid objects, deformable bodies, and

articulated bodies from video sequences. For such tasks, these new algorithms re-

quire significantly fewer examples compared to fully-supervised regression algorithms

or semi-supervised learning algorithms that do not take the dynamics of the output

time series into account.

Finally, in Chapter 6, I consider the problem of learning constraints satisfied

by data. I show how to learn a space of functions that is constant on the data set

and suggest how to select a maximal set of constraints. I show how this algorithm

can learn descriptions of data sets that are not parsable by existing manifold learning

algorithms. In particular, I show that this new algorithm can learn manifolds that

are not diffeomorphic to Euclidean space.

1.2 Notation

This section serves as a glossary for the mathematical symbols used in the text. R

denotes the real numbers and Z denotes the integers.

Vectors will be denoted by bold face lower case letters. Matrices will be denoted

by bold face capital letters or capital Greek letters. The components of vectors and

matrices will be denoted by subscripted non-bold letters. For example, the component

24

of the matrix A in the ith row and jth column is denoted Aij.

The transpose of a matrix A will be denoted by A>. The inverse of A is denoted

A−1. When A is not necessarily invertible, the pseudoinverse of A is denoted by A†.

11d denotes the d × d identity matrix. If its dimension is implied by the context,

then the subscript will be dropped. The vector of all ones is denoted 1.

x ≥ 0 means that each component of x is nonnegative.

An n × n matrix A is positive semidefinite if x>Ax ≥ 0 for all x ∈ Rn. Given

two positive semidefinite n × n matrices A and B, A � B means A −B is positive

semidefinite. In particular, if A is positive semidefinite then we may write A � 0.

The “�” relationship is a partial ordering on the semidefinite cone.

If x is an n-dimensional vector, diag x denotes the diagonal matrix with x on its

diagonal. If, on the other hand A is an n × n matrix, diag(A) denotes the vector

comprised of the diagonal elements of A. For example

diag

 x1

x2

 =

 x1 0

0 x2

 ,

diag

 a11 a12

a21 a22

 =

 a11

a22

 .

Let M be a matrix partitioned as

M =

 A B

B> C


The Schur complement of A in M is defined to be

(M|A) = C−B>A†B

and the Schur complement of C in M is

(M|C) = A−BC†B>

25

The pseudoinverses are replaced by inverses when A or C are invertible. Some useful

facts on Schur complements are presented in Appendix A.

The expected value of the random variable x will be written as E[x]. If there is

confusion about the probability distribution, the expected value with respect to the

distribution p will be denoted Ep[x].

26

Chapter 2

Mathematical Background

2.1 Basics of Convexity

Beginning with Karmakar’s famed interior point algorithm for linear programming [53],

rapid advances in algorithms for efficiently operating with convex bodies have ren-

dered convex programs generally no harder to solve than least-squares problems. Once

a goal is phrased as a convex set of constraints and costs, it can usually be solved

efficiently using a standard set of algorithms. Furthermore, a growing body of work in

formulating problems in a convex framework shows a wide applicability across fields.

This brief section will provide an overview of the features of convexity that make it

such an attractive modeling tool. There are three objects which can be convex: sets,

functions, and programs. I will describe what convexity means for each of these in

turn.

2.1.1 Convex Sets

A set Ω in Euclidean space is convex if it contains all line segments between all points.

For every x1 and x2 in Ω and every t between 0 and 1, the point (1− t)x1 + tx2 is in

Ω. Figure 2-1 shows two convex sets and one nonconvex set. Many familiar spaces

are convex. For example, the interior of a square or a disk are both convex subsets

of the plane. There are other more abstract convex sets that commonly arise in

27

Convex Sets

Convex Non-convex

x

x2

x

x2

x

x2

Figure 2-1: Left and Middle: Two convex sets. In each set a line segment is drawn
between two points in the set and this line never leaves the set. Right: A nonconvex set.
Two points are shown which cannot be connected by a straight line that doesn’t leave the
set.

mathematical modeling such as the set of possible covariance matrices of a random

process. On the other hand, sets which are not convex abound as well. Neither the

set of integers (try, for example, x1 = 1, x2 = 2, and t = 0.5) nor the set of invertible

matrices are convex, and much of the art of convex analysis lies in recognizing when

a set is convex.

An important tool for recognizing convex sets is a dictionary of operations that

preserve convexity. For example, if Ω1, . . . , Ωm are convex, then their intersection⋂m
i=1 Ωi is convex. If Ω is convex then any affine transformation of Ω, {Ax+b|x ∈ Ω}

is convex. Furthermore, the premimage of an affine mapping is also convex. That is,

if Ω is convex, then so is {x|Ax + b ∈ Ω}.

2.1.2 Convex Functions

The epigraph of a function f : D → R is the set

epi(f) = {(x, y) : x ∈ D y ≥ f(x)} (2.1)

A convex function is a real-valued function whose epigraph is convex. That is, if the

set of all points lying above the value of the function is convex, then the function is

convex (see Figure 2-2). Any linear function is convex as are quadratic forms arising

28

from matrices with positive eigenvalues. Indeed, a quadratic form f(x) = x>Qx

with Q = Q> is convex if and only if Q � 0. To see this, note that Q � 0 implies

Q = A>A for some A. Then

x>Qx = x>A>Ax = ‖Ax‖2 (2.2)

and thus if (x1, y1) and (x2, y2) are in epi(f) and t ∈ [0, 1,],

f(tx1 + (1− t)x2) = ‖A(tx1 + (1− t)x2)‖2

≤ t‖Ax1‖2 + (1− t)‖Ax2‖2

= tf(x1) + (1− t)f(x2)

≤ ty1 + (1− t)y2

(2.3)

proving that (tx1 + (1− t)x2, ty1 + (1− t)y2) ∈ epif . Conversely, if Q is not positive

semidefinite, let v be a norm 1 eigenvector corresponding to eigenvalue λ < 0. Then

(−v, λ) and (v, λ) are in epi(Q), but (0, λ) is not, so f is not convex.

As a consequence of (2.3),when the domain of f is Rn, f is convex if and only if

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) . (2.4)

Many other simple functions are not convex including the trigonometric functions

sine, cosine, and tangent and most polynomial expressions. An important feature

of convex functions is their lack of local minima: if two points minimize a convex

function locally, then both points achieve the same function value as do all the points

along the line segment connecting them. This is one of the crucial features which

makes the minimization of convex functions feasible.

Just as was the case with convex sets, there are a variety of operations that

preserve the convexity of functions. For instance, if f(x) is convex then f(Ax + b)

is convex. If f1, . . . , fn are convex, then so is a1f1 + · · · + anfn for any non-negative

scalars ai.

Less obviously, convex functions are closed under partial maximization. Given a

29

Convex Functions
Convex Non-convex

Figure 2-2: Left: A convex function. One can readily check that the area above the blue
curve contains all line segments between all points. Right: The red segment demonstrates
that the region above the graph is not convex.

family of convex functions fα(x) with α in an index set I, fm(x) = supα fα(x) is a

convex function. This can be verified by observing

epi(fm) = {(x, y) : x ∈ D y ≥ fm(x)}

= {(x, y) : x ∈ D y ≥ sup
α

fα(x)}

= {(x, y) : x ∈ D y ≥ fα(x)∀α ∈ I}

= ∩α∈I{(x, y) : x ∈ D y ≥ fα(x)}

(2.5)

which is an intersection of convex sets and must be convex. Two immediate corollaries

are that if f1, . . . , fn are convex, then maxi fi(x) is convex and, if for all y, f(x,y) is

convex in x, then supy f(x,y) is convex. It is worth noting that f does not need to

be convex in both x and y for this to hold.

For differentiable functions that map Rn to R, convexity may be checked by

inspecting derivatives. If f is differentiable, f is convex if and only if f(y) ≥

f(x) +∇f(x)>(y − x) for all y. If f is twice differentiable f is convex if and only if

∇2f is positive semidefinite.

30

2.1.3 Convex Optimization

We will denote optimization problems

minimize f(x)

subject to x ∈ Ω
(2.6)

by the short hand

min f(x)

s.t. x ∈ Ω
(2.7)

A convex program or convex optimization seeks to find the minimum of a convex

function f on a convex set Ω. As was the case with convex functions, all local minima

of convex optimizations are global minima. Remarkably, if testing membership in the

Ω and evaluating f can both be performed efficiently, then the minimizer of such a

problem can be found efficiently [39]. The most ubiquitous convex program is the

least-squares problem which seeks the minimum norm solution to a system of linear

equations. In this case f is a convex quadratic function and Ω is Euclidean space.

A fundamental property of convex sets is that they are the intersection of all half-

spaces which contain them. That is, if a point x does not lie in a convex set, then the

Euclidean space can be divided into two halves, one half containing x and the other

half containing the convex set. This property suggests that when trying to find an

Hahn-Banach Theorem

x

Figure 2-3: The convex set is separated from the points not in the set by half-spaces. The
bold dashed line separates the plane into two halves, one containing the point x and the
other containing the convex set.

31

optimal point in a convex set, one could also search over the set of half-spaces which

contain the set (see Figure 2-3). Applying this reasoning to optimization, consider

the optimization, called primal problem,

minimize f(x)

subject to gj(x) ≤ 0 j = 1, . . . , J .
(2.8)

Here f , g1, g2, . . . , gj are all functions. This is a typical presentation of an optimization

problem: the set Ω is the set of all x for which gj(x) is nonpositive for all j = 1, . . . , J .

In linear programming, both the f and all of the gj are linear maps.

The Lagrangian for this problem is given by

L(x, µ) = f(x) +
J∑

j=1

µjgj(x) (2.9)

with µ ≥ 0. The µj are called Lagrange multipliers. In calculus, we searched for

values of µ by using ∇xL(x, µ) = 0. Here, note that solving the optimization is

equivalent to solving

min
x

max
µ≥0

L(x, µ) (2.10)

The Dual Problem is the resulting problem when the max and min are switched.

max
µ≥0

min
x
L(x, µ) (2.11)

The dual program has many useful properties. First, note that it provides a lower

bound of the primal problem. We can show this by appealing to the more general

logical tautology

min
x

max
µ≥0

L(x, µ) ≥ max
µ≥0

min
x
L(x, µ) (2.12)

Indeed, let f(x,y) be any function with two arguments. Then f(x,y) ≥ minx f(x,y).

Taking the max with respect to y of both sides shows maxy f(x,y) ≥ maxy minx f(x,y).

32

Now take the min of the right hand side with respect to x to show that

min
x

max
y

f(x,y) ≥ max
y

min
x

f(x,y) . (2.13)

The dual program is always concave. To see this, consider the dual function

q(µ) ≡ min
x
L(x, µ) = min

x
f(x) +

J∑
j=1

µjgj(x) (2.14)

Now, since minx(f(x) + g(x)) ≥ (minx f(x)) + (minx g(x)), we have

q(tµ1 + (1− t)µ2) = min
x

t

(
f(x) +

J∑
j=1

µ1jgj(x)

)

+ (1− t)

(
f(x) +

J∑
j=1

µ2jgj(x)

)

≥ tq(µ1) + (1− t)q(µ2)

(2.15)

which shows that q is a concave function and hence the dual problem is a convex

optimization.

There is a nice graphical interpretation of duality. The image is the set of all

tuples of numbers {(f(x), g(x))} for all x. In the image, the optimal value is equal

to the minimum crossing point on the y-axis [12]. The dual program seeks to find

the half-space which contains the image and which has the greatest intercept with

the f(x) axis. As shown in Figure 2-4, the maximum of the dual program is always

less than the minimum of the primal program.

Duality is a powerful and widely employed tool in applied mathematics for a

number of reasons. First, the dual program is always convex even if the primal is not.

Second, the number of variables in the dual is equal to the number of constraints in the

primal which is often less than the number of variables in the primal program. Third,

the maximum value achieved by the dual problem is often equal to the minimum of

the primal. One such example when the primal and dual optima are equal is when f

and all of the gj are convex functions and there is a point x for which gj(x) is strictly

33

Duality

f(x)

optimum

(µ, 1)

f(x*)
(µ*,1)

f(x*)

g(x)

(µ*,1)

Figure 2-4: The set of possible pairs of g(x) and f(x) are shown as the blue region. Left:
Any hyperplane which has normal (µ, 1) intersects the y-axis at the point f(x∗) + µ>g(x∗)
where x∗ minimizes L(x, µ) with respect to x. Middle: A hyperplane whose y intercept is
equal to the minimum of f(x) on the feasible set. The dual optimal value is equal to that of
the primal Right: No hyperplane can achieve the primal optimal value. The discrepancy
between the primal and dual optima is called a duality gap. The dual optimum value is
always a lower bound for the primal.

negative for all j. Finally, if the primal program is not convex or not strictly feasible,

it is often possible to bound the duality gap between the primal and the dual optimal

values. Estimating the duality gap is often difficult and, in many cases, this gap is

infinite. However, for many practical problems, several researchers have discovered

that one can meticulously bound the duality gap and produce sub-optimal solutions

to the primal problems whose cost is only a constant fraction away from optimality.

This is the study of convex relaxations.

2.2 Convex Relaxations

It is well known that finding the best integer solution to a linear program is NP-

HARD. Many of the most successful and popular techniques for dealing with these

generally hard problems solve the linear program for the best real valued solution,

ignoring the constraint to the set of integers. One gets a lower bound on the optimum,

and techniques such as branch and cut or branch and bound can be implemented.

This is the most famous example of a convex relaxation. Indeed, this relaxation is well

motivated by Lagrangian duality as the program obtained by dropping the integrality

34

constraint has the same dual program as the primal integer program.

A series of surprising results have been developed over the last ten years using

quadratic programming, rather than linear programming, to approach combinatorial

problems. The general nonconvex quadratic program is also NP-HARD, and many

hard combinatorial problems are naturally expressed as quadratic programs. For ex-

ample, the requirement that the variable x takes on values 0 or 1 can be expressed by

the quadratic constraint x2 = x. The dual program of a general nonconvex quadratic

program is a semidefinite program. Such optimizations can be solved efficiently using

interior point methods [99] among other possible convex optimization techniques. For

many structured quadratic constraints, one can actually estimate the worst case dual-

ity gap. Moreover, for many problems of interest, there exists a randomized algorithm

that produces a vector whose cost is within a constant factor γ < 1 of the optimal

primal value. A randomized algorithm which satisfies such an inequality is called a

γ-approximation. There are several examples of hard problems in combinatorial op-

timization where γ is greater than 1/2. Indeed, for the famed MAX-CUT relaxation

of Goemans and Williamson, γ ≤ 0.878 [37]. This is a great achievement considering

that the existence of a polynomial time approximation to MAX-CUT with γ ≥ 0.95

would imply P = NP , an equality which the majority of researchers in theoretical

computer science think is highly unlikely [43].

In this section I will summarize these techniques providing a unified presentation

of the duality structure of nonconvex quadratic programs and how these duals can be

used to provide bounds on combinatorial optimization problems. In Section 2.2.1, we

will show that the Lagrangian dual of the general nonconvex quadratically constrained

quadratic program is a semidefinite program. In Section 2.2.2 we will study how to

bound the duality gap and to produce primal feasible points with near optimal cost.

35

2.2.1 Nonconvex Quadratically Constrained Quadratic Pro-

gramming

Let us begin with the general nonconvex quadratically constrained quadratic program

min x>A0x + 2b>0 x + c0

s.t. x>Aix + 2b>i x + ci ≤ 0 i = 1, . . . , K
(2.16)

with x ∈ Rn. This problem is again NP-HARD (a recurring theme). It is, of course,

well known that this problem is solvable efficiently when the Ai are positive semidef-

inite, but in the situation where they are not, we have to rely on more sophisticated

techniques for estimating the optimum.

Let’s now examine the structure of the Lagrangian dual problem. First, we make

a variable substitution to get the equivalent optimization

min y>Q0y

s.t. y>Qiy ≤ 0 i = 1, . . . , K

y2
0 = 1

(2.17)

where y is an n + 1 dimensional vector and

Qi =

 ci b>i

bi Ai

 . (2.18)

We can think of y as the original decision variable x with a 1 stacked on top.

The optimal value of Problem (2.17) is the same as (2.16). Any optimal solution

of (2.16) can be turned into a minimizer for (2.17) by setting x = [1,x]. Since

y>Qy = (−y)>Q(−y), any optimal solution for (2.17) can be turned into an optimal

solution for (2.16) by choosing the solution with y0 = 1.

Problem (2.17) has a particularly elegant dual problem. The Lagrangian for the

36

reformulated problem is then

L(y, µ, t) = y>Q(µ, t)y + t (2.19)

where

Q(µ, t) = Q0 +
K∑

i=1

µiQi − tδ00 (2.20)

Minimizing with respect to y, we obtain negative infinity if Q(µ, t) has any negative

eigenvalues. In turn, we find that the dual function is given by

q(µ, t) =

t Q(µ, t) � 0

−∞ otherwise

(2.21)

and hence the dual problem is

max t

s.t. Q0 +
∑K

i=1 µiQi − tδ00 � 0

µ ≥ 0

(2.22)

This optimization is called a semidefinite program as the search is over the cone of

positive semidefinte matrices. The dual can be solved efficiently using interior point

methods [99] among other possible convex optimization techniques.

Note that we don’t worsen the dual bound by introducing the ancillary variable

y0. To see this, observe that we can break the dual program apart as follows

max
µ,t

min
y
L(y, µ, t) = max

µ
max

t
min

y0

min
y1,...,yn

L(y, µ, t) (2.23)

For now, ignore the µ maximization and consider the optimization

max
t

min
y0

min
x

 y0

x

>  c b>

b Q

 y0

x

+ t(1− y2
0) (2.24)

Performing the minimization with respect to x, we either get negative infinity or, if

37

the matrix is positive semidefinite, we get the Schur complement of the quadratic

form

max
t

min
y0

y2
0(−b>Q−1b + c− t) + t (2.25)

By inspection, the saddle point of this optimization is given when

t = −b>Q−1b + c

y2
0 = 1

(2.26)

but that means

max
t

min
y0

min
x

 y0

x

>  c b>

b Q

 y0

x

+ t(1− y2
0) =

min
x

 1

x

>  c b>

b Q

 1

x


(2.27)

That is, the dual values with or without the additional variable y0 are the same.

It is instructive to now compute the dual of the dual. A straightforward application

of semidefinite programming duality yields the semidefinite program

min Tr(Q0Z)

Tr(QiZ) ≤ 0 i = 1, . . . , K

Z00 = 1

Z � 0 .

(2.28)

We can show that this relaxation can be derived by dropping refractory nonconvex

constraints from the original primal program. This is similar to the relaxations of

integer programming that utilize the linear program obtained by relaxing the inte-

grality constraint. In the quadratic case, the constraint that we drop is a constraint

on the rank of the matrix Z. To see this, first observe that we have the identity

y>Qy = Tr(Qyy>) (2.29)

38

and we can prove a simple

Proposition 2.2.1 Z = yy> for some y ∈ Rn if and only if Z is positive semidefinite

and has rank 1.

Proof If Z is positive semidefinite, we can diagonalize Z = VDV> where V is

orthogonal and D is diagonal. Without loss of generality, rank(Z) = 1 implies that

D has d11 > 0 and zeros elsewhere. Then if v1 is the first column of V,

Z = d11v1v
>
1 = (

√
d11v1)(

√
d11v1)

> (2.30)

Setting y =
√

d11v completes the proof. The converse is immediate.

Using this proposition, we can reformulate the original quadtratic program (2.17)

as

min Tr(Q0Z)

Tr(QiZ) ≤ 0 i = 1, . . . , K

Z00 = 1

Z � 0

rank(Z) = 1

(2.31)

The rank constraint is not convex, so a natural convex relaxation would be to drop

it. Lo and behold, the resulting optimization is the semidefinite program (2.28).

Unlike the case of integer programming, for structured Qk we can actually es-

timate the worst case duality gap for this relaxation. In special cases, by solving

problem (2.28), we can find a real number γ ≤ 1 and use a randomized algorithm to

produce a vector y which is feasible for the optimization (2.17) such that

E[y>Q0y]

y>∗Q0y∗
≥ γ . (2.32)

where y∗ is the optimum solution of the nonconvex problem. A randomized algorithm

which satisfies such an inequality is called a γ-approximation. In the next section we

39

will describe a particular application of this technique to combinatorial optimization.

2.2.2 Applications in Combinatorial Optimization

Consider the special nonconvex quadratic program

min
x∈{−1,1}n

x>Ax (2.33)

Where A is an arbitrary symmetric n × n matrix. This problem is inherently com-

binatorial, and not surprisingly, is NP-HARD. We can write this as an nonconvex

quadratically constrained quadratic program using the following extended represen-

tation

min x>Ax

x2
i = 1 i = 1, . . . , n

(2.34)

The transformation of a set constraint into an algebraic constraint turns out to be

the crucial idea. Indeed, there is no apparent duality structure to (2.33) as the

only constraint is integrality. Once we have constraints, we can follow our nose and

construct the dual program of (2.34)

min
∑

i

λi

s.t. A + diag(λ1, . . . , λn) � 0

(2.35)

and we can use semidefinite programming duality again to find a relaxation for (2.33)

min TrAZ

s.t. diag(Z) = 1

Z � 0

(2.36)

This particular relaxation has been studied extensively in the literature, and led

to a major breakthrough when Goemans and Williamson showed how to use it for

40

approximating the maximum cut in a graph. Before we proceed, let us quickly review

some terminology from graph theory.

Let G = (V, E) be a graph and let w : E → R be an arbitrary function. A

cut in the graph is a partition of the vertices into two disjoint sets V1, V2 such that

V1 ∪ V2 = V . Let F (V1) denote the set of edges which have exactly one node in V1.

By this definition F (V1) = F (V2). The weight of the cut is defined the be

w(F) =
∑
f∈F

w(f) (2.37)

Consider the optimization

MC(G, w) = max w(F (U))

s.t. U ⊂ V
(2.38)

If the weight function such that w(e) = 1 for all e ∈ E, we denote the optimum

solution as MC(G). This optimization is called MAX-CUT and is another of the

classic optimization problems which are provably NP-HARD.

We can transform the optimization into an integer quadratic program by deriving

the equivalent optimization problem

max
1

2

∑
(u,v)∈E

wuv(1− xuxv)

s.t. x ∈ {−1, 1}|V |
. (2.39)

The equivalence can be seen as follows: for every set U ⊂ V , let χU denote the

incidence vector of U in V and set x(U) = 2χU − 1. Then if u ∈ U , and v ∈ U ,

xuxv = 1 and hence the edge between them is not counted. On the other hand if

u ∈ U and v 6∈ U , xuxv = −1. It follows that 1
2
(1− xuxv) = 1, and the edge between

them is counted with weight wuv.

We can rewrite this optimization in the form of (2.33) by introducing the Laplacian

41

of G. The Laplacian is the |V | × |V | matrix defined by

Luv =


−wuv (u, v) ∈ E∑

v′∈Adj(v) wvv′ u = v

0 otherwise

(2.40)

where Adj(v) is the set of vertices adjacent to v. It is readily seen that (2.39) is

equivalent to

max
x∈{−1,1}|V |

1

4
x>Lx (2.41)

Now we can apply the techniques developed in Section 2.2.1 to the max cut problem

to yield the relaxation

max
1

4
TrLZ

s.t. diag(Z) = 1

Z � 0

. (2.42)

As noted before, we can solve this relaxation using standard algorithms for semidefi-

nite programming.

Thus far we have not addressed the issue of the duality gap at all. We only know

that (2.42) is an bound on the maximum cut in the graph. The breakthrough occurs

in the algorithm providing a cut, that is, a primal feasible point, from the optimal

solution of the relaxation. Consider the following algorithm:

(i) solve (2.42) to yield a matrix Z

(ii) sample a y from a normal distribution with mean 0 and covariance Z

(iii) return x = sign(y)

if we define sign(0) = 1, x will always be a vector with 1’s and −1’s and hence is

primal feasible. As promised, we can characterize the expected quality of it’s cut.

42

Theorem 2.2.2 (Goemans-Williamson) The algorithm of Goemans and Williamson

produces a cut such that
E[cut]

MC(G)
≥ γ (2.43)

with γ ≥ 0.87856.

The proof relies on two lemmas, the first just a bit of calculus

Lemma 2.2.3 For −1 ≤ t ≤ 1, 1
π

arccos(t) ≥ γ 1
2
(1− t) with γ ≥ 0.87856

The proof of this can be found in [37], or can be immediately observed by plotting

arccos.

The second lemma involves the statistics of the random variable x called a probit

distribution. Determining the exact probability of drawing a particular x is practically

infeasible to write down in closed form [46], and even approximating the probability

would require an intensive Markov Chain Monte Carlo method (see for example [91]).

Yet, if we only desire second order information, the situation is considerably better.

Lemma 2.2.4 If y is drawn randomly from a Gaussian with zero mean and covari-

ance Z

Pr[sign(yi) 6= sign(yj)] =
1

π
arccos(Zij) (2.44)

Proof Let n = |V | and let ei, 1 ≤ i ≤ n denote the standard basis for Rn. We

have

Pr[sign(yi) 6= sign(yj)] = 2 Pr[yi > 0, yj < 0]

= 2 Pr[e>i y > 0, e>j y < 0]

= 2 Pr[v>1 w > 0, v>2 w < 0]

(2.45)

where w is drawn from a Gaussian distribution with zero mean and covariance 11 and

v1 = Z1/2ei, v2 = Z1/2ej. Note that since Z has ones on the diagonal, the vectors v1

and v2 lie on the unit sphere Sn ⊂ Rn. Hence, the last probability is the ratio of the

volume of the space {x ∈ Sn : v>1 x > 0, v>2 x < 0} to that of Sn. This is the ratio of

43

the angle between v1 and v2 to 2π. Thus we have

Pr[sign(yi) 6= sign(yj)] = 2
arccos(v>1 v2)

2π

=
1

π
arccos(Zij)

(2.46)

which completes the proof.

We can now proceed to prove the quality of the Goemans-Williamson relaxation.

Proof [of Theorem 2.2.2] For any edge e ∈ E, let δe denote the indicator function

for e in the cut. Then the expected value of a cut is

E[cut] =
∑
e∈E

weE[δe] =
∑
i<j

wij Pr[sign(yi) 6= sign(yj)]

=
1

π

∑
i<j

wij arccos(Zij)

≥ γ
1

2

∑
i<j

wij(1− Zij)

=
1

4
γ Tr(LZ)

(2.47)

So we have E[cut] ≥ γ 1
4
Tr(LZ) ≥ γMC(G).

Remarkably, this technique of sampling from a probit distribution generalizes to a

wide class of problems in combinatorial optimization. Notably, Nesterov generalized

the results of Goemans and Williamson to a 2/π-approximation for the more general

optimization problem [68]

max
x∈{−1,1}n

x>Ax (2.48)

with A � 0. His technique rephrases (2.48) as a nonlinear semidefinite program, and

then uses the partial order on the semidefinite cone to yield his bound.

Let arcsin(M) denote the component-wise arcsin of the matrix M.

Theorem 2.2.5 (Nesterov)

max
x∈{−1,1}n

x>Ax =
2

π
max

Z�0,diag(Z)=1
Tr(A arcsin(Z)) (2.49)

44

Proof If X is a matrix of all 1’s or −1’s then 2
π

arcsin(X) = X. Also note that for

any x ∈ {−1, 1}n, xx> is feasible for the left hand side of the equation. Therefore

right hand side is less than or equal to the left hand side. On the other hand, for

any positive semidefinite Z we have seen that for x drawn from Z by the random

rounding procedure

Pr[xi 6= xj] =
1

π
arccos(Zij) (2.50)

Furthermore, E[xixj] = 1 − 2 Pr[xi 6= xj] and 1 − 2
π

arccos(t) = arcsin(t) for all

−1 ≤ t ≤ 1 Hence for any Z which is feasible for the left hand side and for the

optimal x∗ for the right hand side, we have

x∗>Ax∗ ≥ EZ[x>Ax] =
2

π
Tr(A arcsin(Z)) (2.51)

showing that right hand side is greater than or equal to the left hand side and com-

pleting the proof.

To get rid of the arcsin, we use the following property about the partial ordering

of positive semidefinite matrices.

Lemma 2.2.6 If Z is semidefinite and all of its components all between −1 and 1

arcsin(Z) � Z (2.52)

Proof First note that if |Zij| ≤ 1 for all i and j, then the Taylor series for the

component-wise arcsin converges. That is,

arcsin(Zij) = Zij +
1

6
Z3

ij +
3

40
Z5

ij + . . . (2.53)

If A and B are positive semidefinite then the matrix C defined as Cij = AijBij is

also positive semidefinite [45]. Hence we have that arcsin(Z)−Z is a series of positive

semidefinite matrices and is hence positive semidefinite. That is arcsin(Z) � Z.

Theorem 2.2.7 (Nesterov) Let x∗ denote an optimal solution to (2.48). Using the

45

random rounding technique produces an approximation to the solution of (2.48) with

E[x>Ax]

x∗>Ax∗
≥ 2

π
(2.54)

Proof Let Z be the solution to the relaxed problem. If we draw x from Z using

the random rounding procedure we get

E[x>Ax] =
2

π
Tr(A arcsin(Z)) ≥ 2

π
Tr(AZ) ≥ 2

π
x∗>Ax∗ (2.55)

because arcsin(Z) � Z.

Much research has been invested into extending these results. For particular

classes of positive semidefinite matrix “A,” new bounds on other NP-complete prob-

lems have been produced. These include a .874-approximation for maximum directed

cut, a .941-approximation for maximum 2-satisfiability, a 7/8-approximation for max-

imum 3-satisfiability, and improved bounds on the number of colors required to color

a graph and the number of cuts required to partition a graph [50][52] [31] [38]. All

of these algorithms in one way or another use the random rounding technique or a

variant thereof.

In some sense, this random rounding is nearly optimal for extracting primal feasi-

ble solutions with near optimal cost. Karloff showed that for MAX-CUT, even if one

adds an infinite number of valid linear inequalities to the optimization, there exist

problems for which the expected value of the random rounding procedure is exactly

0.878 [51]. Feige showed that even if the random rounding process were derandomized

to produce an optimal cut from Z, then the 0.878 bound still holds in the worst case

[30]. Finding an alternative or generalization of Lagrangian duality for approximating

these integer quadratic programs remains an actively pursued area by researchers in

combinatorial optimization.

The applications in this thesis are inspired by these original algorithms and ex-

tend them to study the operators on high-dimensional spaces. I will apply these

tools directly to problems in statistical inference by combining duality tools with

Regularization Networks, a powerful representation which makes infinite dimensional

46

Underconstrained

y

x

Regression (nonlinear)

y

x

Figure 2-5: Left: Given four point, a variety of exact fits are shown. A prior on the
function is required to make the problem well-posed. Right: Regularization Networks
place a “bump” at each observed data point to fit unseen data.

function fitting problems finite.

2.3 Reproducing Kernel Hilbert Spaces and Reg-

ularization Networks

One of the most popular and powerful methods for nonlinear function fitting is the

optimization based approach with the unfortunately cumbersome name Tikhonov

regularization over a Reproducing Kernel Hilbert space. Famous examples of lin-

ear least-squares regression, radial basis functions, and support vector machines are

all special cases of this framework. Tikhonov regularization both provides a low-

dimensional representation of the functions to be fit and, since the resulting opti-

mization is convex, efficient algorithms for determining the function. The resulting

function fit can be parameterized with the same number of parameters as training

data points, and there are powerful mathematical results showing that, even in the

absence of knowledge of the process generating x and y, the generalization is nearly

optimal [19].

In function fitting, one is given pairs of points (x1, y1), . . . , (xn, yn) and asked to

infer a mapping function that takes as input x and returns y. What is the best

f : X → Y that agrees with our data? What is the best f which generalizes to a new

data point xnew? What are efficient algorithms to approximate this best f with only

knowledge of the data?

47

First we need to define a notion of “best.” Suppose that the pointwise cost

for making an error is a function is given by a convex cost function C(f(x), y). For

example, one might choose the least-squares cost (f(x)−y)2. Support vector machines

uses the cost max(1−f(x)y, 0). This cost assigns no penalty when |f(x)| > 1 and has

the same sign as y. It assigns a linearly increasing penalty as when these conditions

are not satisfied. For a fixed C(f(x), y)

f ∗ = arg min
f

∫
X,Y

C(f(x), y)p(x, y)dxdy (2.56)

would be the ideal function relating x’s and y’s. The cost function is called the risk.

Choosing f according to this rule is called risk minimization.

However, if the probability distribution p(x, y) from which x and y are drawn

is unknown, risk minimization is not possible. Estimating p(x, y) from sparse data

is notoriously difficult and can require an exponential number of samples to get a

satisfactory estimate. However, it is often easy to directly estimate

f ∗L = arg min
f

L∑
i=1

C(f(xi), yi) (2.57)

This cost function is called the empirical risk. hoosing f according to this rule is

called empirical risk minimization.

In the limit of infinite data, the law of large numbers says that the empirical risk

converges to the true risk exponentially fast for a fixed function f . However, we are

still left with the problem that there is no good way to search over the set of all

functions. To fix this, we can restrict f to a specific class of functions H called the

hypothesis space. Then we can try to find

f ∗L = arg min
f∈H

L∑
i=1

C(f(xi), yi) (2.58)

Even here, there are usually too many available f ∗L which fit the data in the

hypothesis space. For example, in the simple case of fitting a linear function to data,

48

if there are less samples than input dimensions, then there are an infinite set of linear

functions that fit the data exactly. We get around this problem by introducing a

measure of smoothness ‖f‖ and try to search for a reasonably smooth function which

fits the data

f ∗L = arg min
f∈H

L∑
i=1

C(f(xi), yi) + λ‖f‖2 (2.59)

The addition of the norm penalty to an optimization is called Tikhonov Regularization.

By adding the norm penalty, the problem becomes well posed and in many cases has

a unique solution. Furthermore, when the norm penalizes complexity, only simple

models are optimal. For the remainder of the thesis, Tikhonov Regularization of

Empirical Risk Minimization will be referred to simply as Tikhonov Regularization,

but the reader should be aware that we are using this term in a rather restricted

setting.

When C is a convex function, Tikhonov Regularization is a convex optimization

over a (possibly infinite dimensional) space of functions. Our next goal is to establish

a class of functionsH and smoothness measures ‖f‖ for which we can compute f ∗L effi-

ciently, the computation is robust to noise in the data, and the functions f generalize

well and are expressive enough to describe real world functional relationships.

The choice of a Reproducing Kernel Hilbert Space (RKHS) as a space of candidate

functions results in a well-posed problem satisfying all of these requirements. In the

next two sections we describe how the Tikhonov Regularization problem is solved for

linear regression, and then show how Tikhonov Regularization on an RKHS is solvable

using the same techniques as linear regression, allowing for fitting with nonlinear

functions that are dense in the continuous functions.

2.3.1 Lessons from Linear Regression

Consider the simple case of fitting the best f(x) = w>x for some vector w. Set

C(f(x), y) = (f(x)− y)2 (2.60)

49

so that we are solving a least squares fitting problem. Let the smoothness measure

on f be the ordinary norm of w

‖f‖2 = ‖w‖2 (2.61)

Then the cost function is

min
w

L∑
i=1

(w>xi − yi)
2 + λw>w (2.62)

Let X = [x1, . . . ,xL] be the matrix with each columns corresponding to each data

point in the example set and y be the vector of labels yi. X is called the data matrix.

Linear regression seeks to find the w that optimizes

min
w
‖X>w − y‖2 + λw>w (2.63)

Taking a derivative with respect to w and solving for w∗ gives

w∗ = (XX> + λ11)−1Xy (2.64)

It is instructive to rewrite this vector as only a function of the Gram matrix of

the data. By simple algebra, we can check

X(λ11 + X>X) = (XX> + λ11)X (2.65)

The matrix G := X>X is called the Gram matrix of the data, and has entries

Gij = x>i xj. values. G is N × N and we only need to know how to compute

inner products to compute its entries. Using the identity (2.65), we can rewrite our

expression for the optimal w as

w∗ = X(λ11 + G)−1y (2.66)

Furthermore, letting c = (G + λ11)−1y we have that the optimal linear function is

50

given by

f ∗(x) =
L∑

i=1

(cixi)
>x =

L∑
i=1

ci(x
>
i x) (2.67)

Let us now remark on some of the many useful properties of linear regression.

First, all that is required to compute the optimal f is one matrix inversion. This

matrix only involved inner products amongst data products. The resulting solution is

a linear combination of the data points acting as functions. To compute this function

at a test point, we compute a linear combination of inner products between the test

point and the data points. Linear functions are somewhat restrictive for general

modeling, but fortunately Reproducing Kernel Hilbert Spaces are spaces of nonlinear

functions such that Tikhonov Regularization has all of the convenient computational

properties of linear regression.

2.3.2 Reproducing Kernel Hilbert Spaces

Let Ω ⊂ Rd be compact. Suppose that k : Ω×Ω → R is a symmetric positive definite

function in the sense that for all v1, . . . ,vJ ∈ Ω, c1, . . . cJ ∈ R

J∑
i,j=1

cicjk(vi,vj) ≥ 0 . (2.68)

We call such a k a positive definite kernel. We will denote the function which maps

u to k(v,u) by k(v, ·). Some examples of kernels are given in table 2.3.2.

A kernel which satisfies K(x1,x2) = K(‖x1 − x2‖) is called a radial basis kernel.

It turns out that the only RBF Kernels which are positive for all dimensions of the

input data are mixtures of Gaussians

K(x1,x2) =

∫
exp(−C‖x1 − x2‖2)p(C)dC (2.69)

where p ≥ 0 [86]. The set of such mixtures is equivalent to the set of radial kernels

with K(x1,x2) = f(‖x1 − x2‖2), (−1)k dkf
dxk (r) ≥ 0 for all k ≥ 0 and r ≥ 0. Such an f

is called completely monotonic.

51

kernel functional form
linear K(x1,x2) = x>1 x2

standard polynomial K(x1,x2) = (1 + x>1 x2)
d

fourier K(x1,x2) = exp(ik>(x1 − x2))
radial kernels functional form
gaussian K(x1,x2) = exp(−C‖x1 − x2‖2)

inverse multiquadric K(x1,x2) = (‖x1 − x2‖2 + C)−1/2

Table 2.1: Examples of kernel functions

Given J points, v1, . . . ,vJ ∈ Ω, a consider functions of the form

f(u) =
J∑

j=1

cjk(vj,u) (2.70)

where k is a positive definite kernel. When k is radial, such an expression is called

a radial basis function. For a fixed kernel, the set of all such functions over all finite

subsets of Ω forms a linear inner product space. First define for all u,v ∈ Ω

〈k(u, ·), k(v, ·)〉 := k(u,v) . (2.71)

By linearity, this can be immediately extended to inner products of functions of the

form (5.9). The completion of this inner product space is called a Reproducing Kernel

Hilbert Space. This is because the kernel acts as a linear evaluation functional on this

Hilbert space. Indeed, defining Lu to be the functional which maps f to f(u) we see

that for a function f of the form (5.9)

〈k(u, ·), f〉 =

〈
k(u, ·),

J∑
j=1

cjk(vj, ·)

〉
=

J∑
j=1

cjk(vj,u) = f(u) = Lu(f) . (2.72)

Since Ω is compact, each of these functionals Lu must be bounded with a universal

constant B

|Luf | ≤ B‖f‖ . (2.73)

It is quite easy to show that any Hilbert space in which the evaluation functionals are

52

bounded, there is a positive definite kernel for which Lu(f) = 〈k(u, ·), f〉 [105]. This

explicit identification of the Hilbert Space structure underlying such kernel models

not only helps make proofs trivial, but also results in simple algorithms for solving

optimizations with functions in the RKHS as design variables.

Reproducing Kernel Hilbert Spaces have many favorable properties that make

their study worthwhile. First, there are a variety of choices of k which make the

RKHS dense in L2 such as the Gaussian kernel

k(u,v) = exp(−κ‖u− v‖2) . (2.74)

Several results exist estimating the average distance to functions in L2 for finite

data sets [77, 69, 19]. Second, when the RKHS norm is used as a regularizer or

complexity measure for function fitting, the estimated function is insensitive to small

changes in the data set such as removing or replacing data points [14]. Finally, it has

been shown that kernel functions provide excellent approximations of least-squares

regression functions even when the underlying probability distribution that generates

the data is unknown [19, 29, 70].

2.3.3 The Kernel Trick and Nonlinear Regression

There is another construction of RKHS directly from the kernel that makes the con-

nection to linear regression explicit. Suppose we lift each data point xi with a high

(infinite) dimensional vector x̂i := Φ(x) via some prescribed mapping Φ and then

solve the linear regression problem with the lifted data. We can interpret this as cre-

ating a very long list of “features” of each data point and using the features to solve

the linear regression problem.

Let K be a positive definite kernel. By Mercer’s theorem

K(x1,x2) =
∞∑
i=1

λiφi(x1)φi(x2) (2.75)

and the sum converges absolutely.

53

If we lift x by the rule

x̂ = [
√

λ1φ1(x),
√

λ2φ2(x), . . . ,
√

λkφk(x), . . .] (2.76)

we find that,

〈x̂1, x̂2〉 = K(x1,x2) (2.77)

The functions φ(x) are the promised features. These features can be computed by

solving an integral kernel eigenvalue problem, but such computations are not always

tractable. Fortunately, we do not need to compute them for most applications. The

matrix K with entries Kij = K(xi,xj) is called the kernel matrix. Unless confusion

arises, I will abuse notation and use K for the kernel matrix and K(x1,x2) for the

kernel function. K is the lifting of the Gram matrix. By the positivity of the kernel,

we know it is a positive semidefinite matrix.

Consider α =
∑

i cix̂i. We can directly compute the norm of ‖α‖2
K := α>α as

‖α‖2
K =

∑
i,j

cicjx̂
>
i x̂j = c>Kc ≥ 0 (2.78)

If x is another point in RD, then

α>x̂ =
∑

i

ciK(xi,x) (2.79)

so we can interpret α as a function on the original space X. The kernel trick to

tackle nonlinearities is to replace any x>1 x2 in a linear problem with K(x1,x2). This

is implicitly lifting the data into an RKHS, and, though it may appear ad hoc, is

perfectly rigorous. In particular, replacing the Gram matrix with the kernel matrix,

the solution to the linear regression problem with the lifted data will be

f(x) =
L∑

i=1

ciK(xi,x) (2.80)

where c = (K + λ11)−1y>. In the next chapter we will give a direct proof that this f

54

is optimal using a more general theorem called the Representer theorem.

From a practical perspective, any linear function estimation problem which can

be phrased in terms of inner products can be “kernelized” into a nonlinear version

by replacing all inner products in the problem with kernel evaluations. Thus, the

problems of PCA [87], ICA [4] and graph clustering [89] were generalized to their

nonlinear counterparts. In the next chapter I will present a straightforward framework

for augmenting the power of Tikhonov regularization with constraints on the function

outputs that generalizes all of these methods.

55

56

Chapter 3

Augmenting Regression with

Priors

This chapter lays out the foundation for the remainder of the thesis. At the core is

a a powerful cost function (Equation (3.20)) that augments the standard Tikhonov

regularization with priors on the labels and the functional form. This cost function

can be applied to a vast array of data-driven modeling problems and can be optimized

in a principled way via Lagrangian duality.

Our starting point is a new proof of the so-called “Representer Theorem” that

shows how almost any norm-regularized cost function we can pose on an RKHS can

be transformed into a finite dimensional problem. We will see that this theorem is an

immediate consequence of a simple duality argument on the RKHS. By dualizing over

the remaining variables in the optimization, we are able to solve joint optimizations

over the function that we are fitting, the labels of the data points, and the kernel that

defines the Hilbert space.

When learning a mapping, Tikhonov regularization can only take advantage of

labelled data, but constraints on the labels of the unlabelled data can also allow us

to leverage this unlabelled data. Using Kernel PCA [87] as a motivating example,

Section 3.2 shows that augmenting the Tikhonov regularization problem with con-

straints on the hidden y values can lead to optimization problems where the optimal

function includes terms involving the unlabelled data.

57

Finally, Section 3.3 discusses how to incorporate priors on the functional form of

f into learning algorithms. This will result in the problem of selecting the best kernel

function for a given problem. The duality argument of Section 3.1 further implies

that all of the augmented Tikhonov Regularization problems are convex in the kernel

function. When the problem is solvable with a fixed kernel and when a particular

optimization problem can be solved over the set of possible kernels that the problem

will admit a subgradient algorithm for selecting the optimal function form and the

optimal labels for the unlabelled data. This has many implications in the field of

“Kernel learning.” In particular, whenever the cost function is quadratic or polyhedral

and the set of possible kernels defines an affine subset of the positive semidefinite

cone then the resulting problem can be phrased as a semidefinite program. The final

sections of the chapter discuss several examples of kernel learning. In particular, a

new algorithm for computing the best polynomial kernel is presented.

3.1 Duality and the Representer Theorem

In Chapter 2 we discussed a simple optimization over a Reproducing Kernel Hilbert

Space and showed that even though the problem was searching over an infinite di-

mensional space, it could be solved using least-squares. In this section, let us begin

with a very general cost Tikhonov regularization problem over an RKHS. Again, we

will search for a real valued function f in the RKHS that operates on data x. We

will also be interested in optimization over a vector of labels u. The variable u is

a mnemonic for unlabelled data to be optimized over, and the variable y will be re-

served for labelled data that are fixed in advance. Let V be any cost function on the

outputs of f on the data {f(xj)} and a vector of labels u.

Consider the norm-regularized optimization

min
f,u

V (f(x1), . . . , f(xN),u) + λ‖f‖2
K (3.1)

The standard Tikhonov regularized regression problem where all of the labels are

58

given as y can be posed in this form by letting V be given as

V (f(x1), . . . , f(xN),y) =
N∑

i=1

(f(xi)− ui)
2 + δ(u− y) (3.2)

the delta function removes the variable u from the optimization and replaces it with

the constant vector y. This is equivalent to adjoining the equality constraint u = y

to the optimization (3.1).

The following theorem has many proofs and is at the heart of why the RKHS

framework is useful. Chapter 2 presented a circuitous proof by appealing to linear

regression. Other more direct proofs can be found in a variety of sources including,

for example, [35, 88].

Theorem 3.1.1 [Representer Theorem] If f is an optimal solution to (3.1), then f

can be expressed in the representation

f(x) =
N∑

i=1

cik(xi,x) (3.3)

This theorem transforms the search over a possibly infinite dimensional space into

the search for a set of N real numbers. The proof I present here will serve as a prequel

to the use of duality in learning in the remainder of the chapter. The representer

form will be an immediate consequence of the solution method. By adding redundant

constraints to the cost function, I will employ Lagrangian duality to eliminate f

in the RKHS. The resulting Lagrange multipliers will precisely be the coefficients

of the expansion (3.3). The proof rests on the following theorem that is proven in

Appendix B.

Theorem 3.1.2 Let V be a real inner product space and let w1, . . . ,wN ∈ V, a ∈ RN .

Let W be the Gram matrix of the wj.

59

(i) The equality constrained norm minimization problem

min
v∈V

〈v,v〉

s.t. 〈v,wi〉 = ai for i = 1, . . . , N

(3.4)

has an associated dual program

max
α
−α>Wα + 2α>a (3.5)

which is an unconstrained convex quadratic program. The primal optimal value

is equal to the dual optimal value.

(ii) Suppose the optimal value of the primal-dual pair is finite. Then the set of dual

optimal solutions is given by

D := {α ∈ RN : Wα = a} (3.6)

and the set of primal optimal solutions is given by

P := {
N∑

i=1

αiwi : α ∈ D} (3.7)

With this theorem in hand, let us proceed to a

Proof [of the Representer Theorem] First, introduce a new variable z ∈ RN and

add the constraints

zi = f(xi) = 〈f, k(xi, ·)〉K (3.8)

to the primal problem for i = 1, . . . N . This results in the optimization

min
f,z,u

V (z,u) + λ〈f, f〉K

s.t. zi = 〈f, k(xi, ·)〉K for i = 1, . . . , N

(3.9)

Now we can dualize over the f variable alone. Since the first summation does not

60

depend of f , we can ignore it when optimizing over f and consider the inner-most

minimization

min
f

〈f, f〉K

s.t. zi = 〈f, k(xi, ·)〉K for i = 1, . . . , N

(3.10)

This is precisely an equality constrained norm minimization on the RKHS of the

form (3.4). By Theorem 3.1.2, the dual optimization is given by the unconstrained

quadratic program

max
c

2c>z− c>Kc (3.11)

This is an unconstrained quadratic program. The set of dual optimal solutions is

given by the set of solutions to Kc = z. When z is in the range of K, the optimal

cost is given by z>K†z. Plugging this into the original problem gives an optimization

free of both f and c.

min
z,u

V (z,u) + λz>K†z

s.t. z ∈ Ran(K)

(3.12)

Given the optimal z∗, we can compute

c∗ = K†z∗

f ∗ =
N∑

i=1

c∗i k(xi, ·)
(3.13)

There are two useful alternative formulations of the Tikhonov regularization prob-

lem. First we can substitute the value Kc in for z and eliminate the z variable. This

results in the standard representer form that appears in the literature

min
c,u

V (Kc,u) + λc>Kc (3.14)

Secondly, to avoid the numerical difficulties involved in the computation of pseu-

61

doinverses, we can employ the Schur complement lemma to yield an equivalent opti-

mization

min
z,u,t

V (z,u) + λt

s.t.

 t z>

z K

 � 0
(3.15)

The equivalence follows immediately from the following simple whose proof can be

found in Appendix A

Lemma 3.1.3 Let A � 0 be n× n, x ∈ Rn, and t ∈ R. Then t x>

x A

 � 0 (3.16)

if and only if x is in the range of A and x>A†x ≤ t.

This reformulation shows that the arbitrary learning problem (3.1) can be formulated

such that the kernel matrix appears only in a matrix inequality of the form of (3.15).

This inequality is convex in the matrix K, and since each entry of K is simply an

evaluation of a kernel function, the optimization is convex in the kernel function. In

particular, if the optimization is jointly convex in z and y, then it it is convex in both

the outputs and the kernel function, and can be solved efficiently. In the Section 3.3

we present a general algorithm for solving this problem. We show that in the case that

the cost and K are both semidefinite representable, then the kernel learning problem

can be solved with semidefinite programming.

As an interesting application of the reasoning used in the proof of Theorem 3.1.1,

we can show that unseen or unconstrained data has no effect on the optimal f . Indeed,

consider the norm minimization problem with N + M data points, the first N fixed,

and the last M free:

min
f,zN+1,...,zN+M

〈f, f〉K

s.t. zi = 〈f, k(xi, ·)〉K for i = 1, . . . , N + M

(3.17)

62

Once again, consider the dual problem with respect to the variables f , zN+1, . . . , zN+M

by forming the Lagrangian with zi fixed for i = 1, . . . , N .

L(f, zN+1, . . . , zN+M , c) = 〈f, f〉 − 2〈f,
N+M∑
i=1

cik(xi, ·)〉+
N+M∑
i=1

cizi (3.18)

Let us first minimize jointly over zi for i = N +1, . . . , N +M . In this case, when any

of the corresponding ci 6= 0 for i = N + 1, . . . , N + M , the Lagrangian is unbounded

below. Therefore, ci must equal zero in the kernel expansion and the unconstrained

data points have no influence on the optimal f . There is again no duality gap, because

at the dual optimal c, the primal optimal f has norm

‖
N+M∑
i=1

c∗i k(xi, ·)‖2 = c∗>Kc∗ (3.19)

which is the dual optimal value. In the next section, we will demonstrate how to

leverage unlabelled data by constraining the labels of ui at the unlabelled points.

3.2 Augmenting Regression with Priors on the Out-

put

Rather than using a very general cost V , it will be useful to restrict attention to a

more narrow generalization of the least-squares cost of Chapter 2. By a cost function,

I mean a real valued function C : R × R 7→ R such that C ≥ 0 and for every a,

there exists a b(a) such that C(a, b(a)) = 0 and for every b there exists an a(b)

such that C(a(b), b) = 0. Certainly, the least-squares cost satisfies these properties.

In Chapter 4, we will encounter the hinge loss of the support vector machine [101]

which is a also cost function of this form.

Consider the following special case of (3.1)

min
f,u

1

N

N∑
i=1

C(f(xi), ui) + λ‖f‖2
K + S(u) (3.20)

63

where C is any cost function and S is any extended-real valued function on Rn.

Following the same reasoning as in the proof of the Representer Theorem, we must

have that the optimal f has the form of Equation (3.3). This is true for any function

S.

A “prior on output” is just a choice of the function S. The most trivial example

is in the case of the standard regression where for each xi we are given labels ui = yi.

Here

S(y) :=

0 ui = yi ∀i

∞ otherwise

(3.21)

In this case, we can directly minimize over y by plugging these values into the cost

function. Then we can in turn solve for f .

Moving beyond this trivial cost, S, we shall see that a surprising number of well

known algorithms can be cast in the form of Equation (3.20). Furthermore, Chap-

ters 4– 6 will present new novel applications of this seemingly simple framework.

3.2.1 Least-Squares Cost

When the cost is the least-squares cost, we can directly minimize it respect to f and

are then left with an optimization only over the labels u and the kernel matrix K.

Beginning with the optimization

min
f,z

L∑
i=1

(zi − ui)
2 + λ‖f‖2

K

s.t. 〈f, k(xi, ·)〉K = zi

(3.22)

we can construct the joint dual problem over f and z. Again constructing a La-

grangian

L(f, z, c) =
N∑

i=1

(zi − ui)
2 + λ〈f, f〉K − 2λ〈f,

N∑
i=1

cik(xi, ·)〉+ λ

N∑
i=1

cizi (3.23)

64

Minimizing over f yields the representer form (3.11). To minimize over z, note that

we can minimize over each zi individually. By differentiating, we find

min
z

(z − u)2 + 2λcz = −λ2c2 + 2λcu (3.24)

Plugging this into the Lagrangian gives the dual problem

λ maxc −λc>c + 2u>c− c>Kc (3.25)

This can be readily solved to give the optimal solution

c = (K + λ11)−1u (3.26)

Plugging this back into the dual problem yields the following expression for the cost

of the optimal function f in the regularized least-squares problem

CT (u,K) := λu>(K + λ11)−1u (3.27)

called the Tikhonov cost. Equation (3.27) will be a focus throughout. It is jointly

convex in u and K and no matter what cost S(u) we add to the Tikhonov loss, we

can always solve for f to produce a term of this form for y. That is, when we choose

C to be the least-squares cost, Equation 3.20 can be written as an optimization only

over u

min
u

λu>(K + λ11)−1u + S(u) (3.28)

If we want to determine f , we may take the optimal y and let c = (K + λ11)−1y.

Then the optimal f is given by the kernel expansion

f(x) =
N∑

i=1

ciK(xi,x) (3.29)

65

3.2.2 The Need for Constraints

In the case that some of the yi labels are withheld, the standard Tikhonov regular-

ization problem cannot make use of any of the unlabelled data points in the kernel

expansion. Indeed, if a label yk is withheld for a data point xk, we can still include

it in the loss function and solve for the optimal label uk. Without loss of generality,

we may assume k = 1.

min
f,u1

N∑
i=1

C(f(xi), ui) + λ‖f‖2
K

s.t. ui = yi i = 2, . . . , N

(3.30)

Since u1 can always be set to force C(f(x1), u1) = 0, the outputs of f are only

constrained at xi for i = 2, . . . , N . As reasoned in Section 3.1, this means that c1 = 0

in the representer form.

For the least-squares cost, we can derive this result directly by plugging in the

representer form for f(x) and showing that ck = 0. First we solve the optimization

λ min
u1

u>(K + λ11)−1u (3.31)

for u1. To do so, let y2 denote the vector of labels 2 to N . Partition the kernel matrix

around the first entry as

K =

 K11 K12

K21 K22

 (3.32)

where K11 is 1 × 1, K12 = K>
21 is 1 × (N − 1) and K22 is (N − 1) × (N − 1). Let

Q = (K + λ11)−1 be partitioned in the same way as K

Q =

 Q11 Q12

Q21 Q22

 (3.33)

66

Then, ignoring the constant multiple λ, we would like to solve

min
u1

u2
1Q11 + 2u1Q12y2 + y>2 Q22y2 (3.34)

since the last term is not a function of u1, we can ignore it. Using the least squares

formula and the form of the inverse of a partitioned matrix found in Appendix A, we

find

u1 = − 1

Q11

Q12y2

= −(K|K22)(−(K|K22)
−1K12K

−1
22)y2

= K12K
−1
22 y2

(3.35)

Note that if f ∗2 is the minimizer of the optimization trained on x2, . . . ,xL, then

u1 = f ∗2 (x1). Now we can plug this form into the function learned from x1, . . . ,xL

c1 = Q11u1 + Q12y2 = 0 (3.36)

as claimed.

The preceding reasoning shows that one may consider Tikhonov regularization as

an optimization over labelled and unlabelled examples. The functional representation

does not make use of the unlabelled data, but the hidden labels and the representer

form can be optimized simultaneously. On the other hand, if we can yield functional

representations that use the unlabelled data if we constrain the outputs at those data

points away from their automatic solution in Tikhonov regularization. This will be

illustrated in the sequel.

67

3.2.3 Priors on the Output

Let us now present our first example of how constraints allow for representer forms

that exploit the unlabelled data. Consider the cost function

S(u) =

0 1
N

∑N
i=1 u2

i = 1

∞ otherwise

(3.37)

This cost enforces the constraint that the set of labels must have empirical variance

1. Consider the situation when there are no labels given at all. If we adjoin the

preceding cost to the Tikhonov cost, we can form the optimization problem

min
f,u

N∑
i=1

(f(xi)− ui)
2 + λ‖f‖2

k

s.t.
1

N
u2

i = 1

(3.38)

Using the form for the least squares cost, this reduces to

min
u

λu>(K + λ11)−1u

s.t. u>u = N,

(3.39)

This is an eigenvalue problem, the optimal solution of which is the greatest eigenvector

of K scaled so that it has norm
√

N . In particular, the optimal u is not 0. This is

because we only allow non-zero solutions by enforcing the variance constraint. Having

computed the optimal u, we can, again solve for the optimal function f . Since u is

nonzero, the kernel expansion will include terms from all of the data even though no

labels were given.

Let us now consider the situation where we are looking for d functions f (i), i =

1, . . . , d, at once. Again, we will provide no labels for the data but will supply a

variance constraint. Let f(x) denote the vector valued function from RD to Rd with

ith component f (i). We will search for a matrix of labels U with Uij denoting the

hidden label for data point xj and component i. Uj will denote the vector of labels

68

for point xj. We can form the cost function

min
f ,U

N∑
i=1

‖Ui − f(xi)‖2 + λ

d∑
i=1

‖f (i)‖2
K

s.t.
1

N
UU> = 11,

(3.40)

where the norm of each dimension of f is penalized individually and the labels are

required to have the identity matrix as their empirical covariance. Substituting in

the representer form for each component of f , we can define a matrix of weights C

such that

f (i)(x) =
N∑

i=1

Cijk(xi,x) (3.41)

The optimization (3.40) can then be rewritten as:

min
C,U

‖U−CK‖2
F + λ TrCKC> (3.42)

s.t.
1

N
UU> = 11, (3.43)

where ‖ · ‖F is the Frobenius norm, K is the kernel matrix of the xj.

Rewriting (3.42) as

min
C,U

d∑
i=1

 Ui

Ci

>  11 −K

−K K2 + λK

 Ui

Ci

 (3.44)

s.t.
1

N
UU> = 11, (3.45)

where Ci is the transpose of the ith row of C and Ui is the transpose of the ith row

of X, we may minimize over C to find

C∗
i = (K + λ11)−1Ui (3.46)

plugging this optimal value back into the cost function yields a minimization only

69

over U

min
U

d∑
i=1

U>
i (K + λ11)−1Ui (3.47)

s.t.
1

N
UU> = 11, (3.48)

Now the optimal U∗
i are the d largest eigenvalues of the kernel K. Let γ1, . . . , γd

be the largest eigenvalues of K and v1, . . . ,vd be the corresponding orthonormal set

eigenvectors. It follows that the optimal C∗
i are given by

C∗
i =

√
N

γi + λ
vi (3.49)

Substituting this C∗
i into the representer form gives us a solution for f∗

f (i)(x) =

√
N

γi + λ

N∑
j=1

vijK(xj,x) (3.50)

To summarize, finding the optimal U∗ reduces to extracting the d largest eigenvectors

of the kernel matrix K. The rows of the optimal C∗ are scaled versions of the rows

of U∗.

This first example of regression with an output prior provides a function learning

interpretation of the kernel principal components algorithm (KPCA) of Schölkopf et

al.[87]. KPCA uses the kernel trick of Chapter 2 to “kernelize” the standard principal

component analysis problem from pattern recognition. Instead of operating on the

data points xj, they perform KPCA of the covariance matrix of the lifted data x̂j in

a Reproducing Kernel Hilbert Space. KPCA returns the functions h1, . . . , hd given

by

hi(x) =
1
√

γi

N∑
j=1

vijk(xj,x) (3.51)

70

from which we see that the f ∗i are multiples of the solution to the kpca problem

f ∗i =

√
γi

(γi + λ)2
hi . (3.52)

This interpretation reveals that KPCA looks for a smooth function f that projects

the sequence of observations X to a low-dimensional sequence U so that the dimen-

sions of U are orthogonal to each other and have unit sample variance. By placing

an additional prior on the hidden sequence U, we can refine this algorithm to take in

to account a wide range of priors. In particular, in Chapter 5 we can constrain the

U to have linear Gaussian dynamics and in Chapter 6 we will search for unit norm

functions that are zero on all of the given examples.

3.2.4 Semi-supervised and Unsupervised Learning

A semi-supervised, or transductive, learning problem is one where we are given N

data points x1, . . . ,xN with labels for those i that are in a subset S ⊂ {1, . . . , N}.

For our purposes, all semi-supervised algorithms are of the form

min
f,u

1

N

N∑
i=1

C(f(xi), ui) + λ‖f‖2
K + S(u)

s.t. ui = yi for i ∈ S

(3.53)

with S a given extended real-valued function.

Unsupervised learning problems are those where we are given N data points

x1, . . . ,xN and no labels at all. For example, the optimization that re-derives ker-

nel PCA is an unsupervised learning problem. In this case, we must guarantee that

minu S(u) ≤ S(0) or else the optimal function and labels will both be identically zero.

In all of our applications, we will set S(0) = ∞ to avoid this trivial solution. In the

KPCA case, we forced the variance of the output to be the identity matrix, and so

the all-zero solution was not feasible.

71

3.3 Augmenting Regression with Priors on Func-

tional Form

Suppose that we know f is an element of a Reproducing Kernel Hilbert Space, but

we do not know the best form for the kernel function. For example, in the case of a

Gaussian kernel,

k(x1,x2) = exp(−C‖x1 − x2‖2) (3.54)

modification of the parameter C greatly changes the character of the function space.

When C is very small, k is nearly the constant function, and when C is large, k(x, ·)

approaches a delta function at x. What is the best way to set this parameter C?

The problem of selecting the kernel best suited to a fitting problem from a family

of kernels is called “kernel learning.” Kernel learning consists of two components:

selecting the best parametrization of a family of kernels and choosing the best cost

functional over these parameters. One of the most popular methods used in the

machine learning community is minimizing the leave-one-out error [17]. It turns out

that even the simple problem of selecting the best parameter C for a Gaussian kernel

by minimizing the leave-one-out error is not convex and can be quite computationally

intensive even find a local minimum.

Kernel Learning has received a good deal of attention of late. Simple local search

methods to directly minimize the Tikhonov cost have been proposed [17], but such

minimizations are often not convex and may result in undesirable local minima.

Lanckriet et al [56] have shown how to apply semidefinite programming to choose

the best convex combination of a finite set of kernels for support vector machines.

But if one was searching over more than one parameter, such convex combinations

cannot efficiently grid the entire space of kernels. Even for searching for the best

convex combination of Gaussian kernels, it has been shown that one kernel for each

data point is necessary to achieve optimality [1].

Our approach in this section is to directly minimize the Tikhonov regularization

problem augmented with a prior on the output to select the best outputs y and best

72

kernel K in a set K simaltaneosuly. We have already seen that the arbitrary Tikhonov

regularization problem (3.1) is convex in the kernel matrix K and hence in the kernel

function itself. We will show furthermore that as long as we can solve the problem

max
K∈K

v>Kv (3.55)

for all v ∈ RN , then we can solve the dual of the kernel learning problem. In

particular, if K is a convex set, then the resulting primal optimization is convex.

When the cost function can be solved by semidefinite program for a fixed K and if

K can be defined as a projection of the semi-definite cone, then the kernel selection

problem can be solved by semidefinite programming. We will end the discussion with

three examples of different families of kernels and the computational considerations

for each.

3.3.1 The Dual of the Arbitrary Regularization Problem

Whereas in Section 3.1 we derived the representer theorem by dualizing over the

RKHS decision variable in the general Tikhonov Regularization problem (3.1), we

could have derived a joint dual program over all of the decision variables z, u and

f . In this case we would need to minimize the Lagrangian with respect to all of the

variables at once. Furthermore, we can be even more ambitious and dualize over the

reproducing kernel itself! Our approach in this section is to directly minimize the

general Tikhonov regularization problem (3.1) to select the best outputs u and best

kernel K in a set K simultaneously. In particular, we have already seen that if K is a

convex set, then the resulting primal optimization is convex in K. In this regard, all

of the problems addressed in this work are convex the kernel matrix K and hence in

the kernel function itself.

Beginning with the optimization (3.9), construct the Lagrangian over all of the

variables

L(f, z,u, k, c) = V (z,u) + λ〈f, f〉K + 2λ
N∑

i=1

ci(zi − 〈f, k(xi, ·)〉K) (3.56)

73

and minimize over each variable in turn. First, we have seen that for fixed z, u, and

k, we can minimize over f to yield

V (z,u) + 2λc>z− λc>Kc (3.57)

The remaining optimization is now directly a function of the kernel matrix K. The

function

V ∗(c,d) := max
z,u

c>z + d>u− V (z,u) (3.58)

is called the conjugate dual of V [12]. It is easy to check that this function is convex.

Minimizing with respect to f ,z, and u gives the dual problem

max
c
−V ∗(−2λc, 0)− λ max

K∈K
c>Kc (3.59)

There are many consequences of this derivation. First, whereas the primal was a

joint optimization over infinite dimensional Hilbert spaces and the functions therein,

the dual problem is always an optimization over RN where N is the number of data

points. In the following section, I will describe a simple subgradient algorithm for

optimizing (3.59) when we can efficiently extract the maximizing K for each c and

can compute V ∗.

If V is a strictly convex function and the set K is convex and has a point in the

relative interior, then the optimal value of this optimization is equal to the optimal

value of the primal optimization. That is, there is no duality gap. In particular, we

can extract the optimal kernel by finding the maximizer

K∗ = arg max
K∈K

c∗>Kc∗ (3.60)

The specifics of the set K completely determine the complexity of this kernel

learning. For example, if K can be represented as a set of linear matrix inequalities

and V is quadratic or piecewise linear, then (3.59) is a semidefinite program. This

generalizes all of the algorithms presented in [56] to generic cost functions with ar-

74

bitrary priors on the the u values. In the case that K is not convex, then the dual

of the dual program can be interpreted as searching over the convex hull of K. The

final sections highlight some special cases of K.

3.3.2 A Decomposition Algorithm for Solving the Dual Prob-

lem and Kernel Learning

We consider a simple subgradient algorithm for solving (3.59) under the assumption

that we can solve the problem

max
K∈K

v>Kv (3.61)

and can compute the function V ∗(v) for all v ∈ Rn.

Define the functions

q(c) := V ∗(2λc, 0) + m(c)

m(c) := max
K∈K

c>Kc
(3.62)

and let D denote the domain of V ∗. We seek to minimize q. First, we compute

subgradients. Note that

∂q(c) = 2λ∂V ∗(2λc, 0) + ∂m(c)

∂V ∗(c) = {z∗ ∈ RN : c>z∗ − V (z,u) = max
z,u

c>z− V (z,u)

∂m(c) = {K∗c : K∗ ∈ K and c>K∗c = max
K∈K

c>Kc}

(3.63)

which yields the following subgradient algorithm. Choose a sequence of step sizes tk

with
∑∞

k=1 tk = ∞ and tk → 0.

(i) Begin with a random c ∈ D

(ii) Set s = z∗+K∗c where z∗ ∈ arg maxz,u 2λc>z−V (z,u) and K∗ ∈ arg maxK∈K c>Kc.

(iii) Let c = (c− tks)+ where (·)+ denotes the orthogonal projection onto D

(iv) Let k = k + 1 and repeat.

75

This algorithm will compute an optimal solution, c∗ to the convex program (3.59).

Furthermore, when V is strictly convex the outputs of the optimal function f are given

by

f ∗(xi) = zi

z∗ = arg max
z

2λc>z− V (z,u)
(3.64)

and if K is a convex set with a point in its relative interior, then an optimal kernel is a

maximizer of K∗ ∈ arg maxK∈K c>Kc. The analysis of convergence of this algorithm

can be found in a variety of places including [7, 11, 12].

3.3.3 Example 1: Finite Set of Kernels

Let us consider the simple case where K is the finite set of kernels {K1, . . . ,KM}.

The dual problem is

−min
c

(V ∗(c) + max
1≤i≤M

c>Kic) (3.65)

or

−min
c,γ

(V ∗(c) + γ)

s.t. c>Kic ≤ γ

(3.66)

the associated dual of this problem amounts to learning the best convex combination

of the M kernels

min
z,t,p

V (z,y) + λt

s.t.

 t z>

z
∑M

i=1 piKi

 � 0

p ≥ 0,
M∑
i=1

pi = 1

(3.67)

In particular, this semidefinite program generalizes the algorithm in [56] where the

cost function was assumed to be a support vector machine loss. This problem takes

76

on an interesting form when the cost is the least-squares cost

min
f,K

L∑
i=1

(f(xi)− yi)
2 + λ‖f‖2 (3.68)

As we have noted before, applying the Representer Theorem and solving for f gives

the Tikhonov cost

CT (K) := λy>(K + λ11)−1y (3.69)

This is convex in K. Indeed if we parameterize K as

K =
T∑

i=1

αiKi (3.70)

then by the Schur Complement Lemma

min
α

λy>(K + λ11)−1y = min
t,α

λt

s.t.

 t y>

y
∑T

i=1 αiKi + λ11

 � 0
(3.71)

which is a semidefinite program.

We may apply any set of linear constraints to the αi and preserve convexity.

In particular, if αi are on the T -simplex then we are searching for the best convex

combination of a given set of kernels.

mint,α λt

s.t.

 t y>

y
∑T

i=1 αiKi + λ11

 � 0

αi ≥ 0
∑T

i=1 αi = 1

(3.72)

Since C(z) = (y− z)2, then we have seen in Section 3.2.1 that C ∗ (c) = 1
4
c2 + cy.

77

The dual program for this problem is thus given by

maxc,γ −c>c + 2y>c− γ

s.t. c>Kic ≥ λγ
(3.73)

This is quite similar to Lanckriet’s Kernel selection program for the SVM [56]. In

particular, this can be solved using a second-order cone programming solver [61] which

is generally more efficient than solving a semidefinite program.

3.3.4 Example 2: Gaussian Kernels

Let K be the set of all Gaussian kernels

K = {K(x,y) = exp(−θ‖x− y‖2) : θ > 0} (3.74)

For a fixed data set, let K[θ] denote the kernel matrix generated from the Gaussian

kernel with parameter θ. In this case the dual of the kernel selection problem is the

semi-infinite program

−min
c,γ

(V ∗(c) + γ)

s.t. c>K[θ]c ≤ γ ∀θ ≥ 0

(3.75)

This problem is convex and strictly feasible as if we let γ ≥ supθ c>K[θ]c, we can

satisfy the all of the inequalities strictly.

The dual of this dual problem amounts to selecting the best kernel from the convex

hull of the Gaussian kernels. Using the dual, we can provide an elementary proof that

the optimal selection for convex combination of Gaussian kernels for a data set with

N points is given by a convex combination of N kernels. This result was derived in [1]

by a lengthy argument assuming a differentiable cost V .

However, for an arbitrary convex cost, the expansion is an immediate result of

classic results from semi-infinite optimization (see, for example, [36, 44, 62] for a

proof).

78

Theorem 3.3.1 Given a semi-infinite optimization

min
x

f(x)

s.t. g(x,y) ≤ 0, ,y ∈ Ω

(3.76)

with x ∈ Rn, Ω ⊂ Rm compact, f convex, suppose there exists a x̂ such that g(x̂,y) <

0 for all y ∈ Ω. Then x∗ is a global minimizer of (3.76) if and only if there exist

µ1, . . . , µn ≥ 0, y1, . . . ,yn ∈ Ω such that

∇f(x∗) +
n∑

i=1

µi∇g(x∗,yi) = 0 (3.77)

The proof of this theorem is a mild generalization of the classical Slater condition

to the semi-infinite case. One shows that 0 is in the convex hull of {∇f(x∗)} ∪

{∇g(x∗,y) : y ∈ Ω} and that the coefficient of ∇f(x∗) can always be chosen to be

non-zero. Then, by Caratheodory’s theorem, such a convex combination can be found

using only n vectors.

As an immediate consequence, we have

Corollary 3.3.2 For any convex cost V , the optimal kernel for (3.86) with K as in

(3.74), the optimal K is given by

K∗ =
N∑

i=1

piK[θi] (3.78)

for some nonnegative pi,θi with
∑

i pi = 1

Proof The optimization (3.75) is strictly feasible. By Theorem 3.3.1, a necessary

and sufficient condition for optimality of is the existence of pi,θi with
∑

i pi = 1 such

that

z∗ + (
N∑

i=1

piK[θi])c
∗ = 0 (3.79)

and that there is no duality gap. Thus, the optimal kernel has the desired form.

Equation (3.79) is nothing more than the KKT conditions for the dual problem.

79

From a practical perspective, this result is discouraging. It seems excessive to

have one kernel for every data point in the training set. This is especially true in

the case of the Gaussian kernels where there is only one parameter to optimize. For

smooth cost functions V , the cost function (3.86)is Lipshitz continuous in the single

parameter C, and, arguably, a simple search like Brent’s 1-d optimization algorithm

would find the optimal solution by solving the Tikhonov regularization problem for

a few choices of C.

Furthermore, even when content to search for a large convex combination of ker-

nels, the optimal centers θi can be difficult to find. Argyriou et al [1] propose a

greedy algorithm that is not even guaranteed to converge after n steps. Indeed, it

may converge arbitrarily slowly. For these reasons, it is interesting to consider the

case of polynomials where the search is convex in the kernel parameters.

3.3.5 Example 3: Polynomial Kernels

Polynomials are attractive for kernel learning as the positivity of polynomial kernels

is easy to characterize and they can be parametrized as a subset of the semidefinite

cone. In this section, we will first characterize the set of polynomial functions that

are positive definite. Then we will describe semidefinite program for selecting the

optimal polynomial kernel.

Let x ∈ Rd and denote the vector of monomials of degree less than or equal to p

by x̃p.

Theorem 3.3.3 Let k(x,y) be a symmetric polynomial of degree 2p on a compact

set of infinite cardinality Ω ⊂ Rd. Then k(x,y) is a positive definite kernel on Ω if

and only if

k(x,y) = x̃>p Qỹp (3.80)

for some positive semidefinite matrix Q.

There are several properties of this theorem that are worth remarking upon. First,

for those familiar with positive polynomials, note that there is no ambiguity in the

80

definition of the matrix Q unlike in the case of polynomials where Q is only defined

as an affine subspace. Second, in the kernel learning optimization (3.86), the matrix

Q appears linearly in the constraint and we can directly minimize with respect to

this variable. Any prior information about the terms to include in Q or relations

amongst the components of Q can be immediately included in the optimization. We

now present a simple proof for the theorem.

Proof [of Theorem 3.3.3]

Sufficiency of Equation (3.80) can be seen by picking x1, . . . ,xN ∈ Ω and c1, . . . , cN ∈

R. Let X̃ = [x1, . . . ,xN] and c = [c1, . . . , cN]>. Then since Q � 0 we have

N∑
i,j=1

cicjk(xi,xj) = c>X̃>QX̃c ≥ 0 (3.81)

proving that k is a positive definite kernel.

To prove the converse, first note that by Mercer’s Theorem,

k(x,y) =
∞∑
i=1

λiΦi(x)Φi(y) (3.82)

where ∫
Ω

k(x,y)Φi(y)dy = λiΦi(x) (3.83)

and λi ≥ 0. The theorem will be proven if we can show that the series (3.82) is finite

and that all of the eigenfunctions are polynomials. In this case, we can construct the

positive semidefinite matrix Q in Equation (3.80) by letting qi be the vector such

that Φi(x) = q>i x̃p. Plugging this into the Mercer expansion gives

k(x,y) =
I∑

i=1

λix̃
>qiq

>
i ỹ (3.84)

Let Q :=
∑I

i=1 λiqiq
>
i . It is a positive combination of outer products and hence must

be positive semidefinite as desired.

To prove that the Mercer expansion is a finite sum of polynomials, consider the

81

functions indexed by y ∈ Ω

fy(x) := k(y,x) (3.85)

Finite sums
∑N

j=1 αjfyj
are polynomials of degree at most p. Hence, the span of the

fy lies in the finite dimensional subspace of L2(Ω) consisting of polynomials of degree

less that or equal to p. Since all finite dimensional subspaces of L2(Ω) are closed,

all of the limit points of the set of fy must be polynomials of degree less that or

equal to p. In particular, the integral on the left hand side of (3.83) is a limit point

of the fy and must be a polynomial. Consequently all of the Φi are polynomials of

degree at most p. It remains to prove that there are only a finite number of Φi in

the expansion. But this follows because Φi are an orthonormal sequence in a finite

dimensional subspace of L2(Ω), completing the proof.

Algorithmically, we can take advantage of this theorem as follows. First, let

X = [x1, . . . ,xN] denote the data matrix and X̃ = [x̃1, . . . , x̃N] denote the matrix of

data lifted to a list of monomials of degree less than or equl to p. The kernel learning

optimization for polynomial kernels is given by

min
z,t,Q

V (z,y) + λt

s.t.

 t z>

z X̃>QX̃

 � 0

Q � 0

(3.86)

By making Q sufficiently large, this cost of this optimization can be made arbitrarily

small. Thus, we must constrain the maximal value for Q. This can be done in a

variety of ways, but the easiest constraint to adjoin is Tr(Q) ≤ β for some β > 0.

This can be also adjoined to the cost as a penalty function when the value β is not

known explicitly. On the other hand, there is no reason not to just have β = 1 as

this simply sets a scale for the polynomial feature space.

82

3.4 Conclusion

In this chapter, I have shown that an arbitrary Tihkonov cost function can be aug-

mented with priors on hidden labels, and then jointly optimized over the functions,

kernels, and labels. Using tools from Lagrangian duality, I have shown that these

optimizations are tractable, and recover a variety of learning algorithms.

The remainder of this document will focus on particular instances of the cost

function S(y). In Chapter 4, I will require that yi = ±1. This problem, though NP-

HARD, will generalize the standard kernel methods for clustering and transduction.

In Chapter 5, I will require that y lie near the outputs of a linear dynamical system.

This will serve as a powerful method for transforming time series with very few

examples and dimensionality reduction. Finally, in Chapter 6, I will require that y

be a constant vector. This will result in a method for learning manifolds of low-

codimension with applications in anomaly detection. As we have seen, all of these

algorithms are also convex in the kernel function, so if prior information on functional

form is provided, then it can be incorporated into these learning algorithms as well.

83

84

Chapter 4

Output Prior: Binary Labels

One of the most successful applications of Tikhonov regularization on Reproducing

Kernel Hilbert Spaces has been data driven classifiers. Classifiers return discrete class

labels as output. For instance, a classifier could take as input an image and return

whether the image was of a cat or a dog, or it might take a piece of music and return

whether it was written by Mozart or Beethoven. A common approach to training

such classifiers is to provide labels y = ±1 for each x in the training set. If a training

example is in the first class it is assigned a 1. If it is in the second class, it is assigned

a −1.

The classification algorithms differ in their choice of cost function. Most famous

is Vapnik’s Support Vector Machine [13, 101] where the cost function is the so-called

hinge loss

V (f(x), y) = max(0, 1− f(x)y) . (4.1)

This cost function assigns no penalty if f(x) is of the same sign as y and is of

greater magnitude than 1 and assigns a linearly increasing penalty otherwise. Another

method, regularized least-squares classification, just uses the least-squares cost. Even

though it might not make intuitive sense to use a least squares cost for classification,

the RLSC algorithm, when well tuned, performs as well as the SVM and has certain

computational advantages [84, 83].

In this chapter we will look at the situation where some of the class labels are

85

withheld. In the absence of the labels, we will constrain the output values to be either

+1 or −1. This constraint is non-convex, and as we will see, finding the optimal

labels is NP-HARD. However, we will show that we can approximate the optimal

labels with a variety of algorithms. Using Lagrangian duality, we will develop a

class of semidefinite programming problems that approximate the semi-supervised

classification and segmentation problems arising from Tikhonov regularization with

quadratic or polyhedral cost functions.

The semidefinite programs we derive can be solved quickly for sets of a few hun-

dred examples. For problems where there are thousands of variables, however, the

semidefinite programming problems may not even fit in memory. To fix this prob-

lem, we discuss a class of eigenvalue approximations derived from these semidefinite

programs. These approximations include the well-known spectral clustering algo-

rithms [103]. In particular, this derivation reveals the functions that the spectral

clustering algorithms are implicitly learning.

The semi-supervised classification problem is often called transduction. Several

algorithms have been proposed to solve the transductive problem introduced in [100].

Joachims provides a local search method for the transductive SVM which is fast but

subject to local minima [49]. Similarly, Smola et al present a local-search method for

solving the transductive problem for the least-squares cost [94]. In [25], the authors

construct a relaxation of the standard support vector machine problem by relaxing the

rank one product outer product of the labels vector. Unfortunately, since they relax

the dual form of the SVM rather than the primal Tikhonov regularization problem, the

resulting semidefinite program cannot be solved for more than one hundred variables.

The relaxation we present can be solved for a several thousand variables by solving

the associated dual.

In the case when no labels are given at all, we are searching for a function which

divides a data set into two classes. This unsupervised learning can be interpreted

as segmentation or clustering, where, instead of fitting a mixture model to tessellate

the data, we search for a smooth function whose zero set passes through the data

separating it into two sets.

86

The Normalized Cuts clustering algorithm of Shi and Malik, although originally

presented as spectral relaxation of a graph-cut problem, can be interpreted as a

relaxation of the unsupervised Tikhonov regularization problem. Normalized Cuts

views the data set as a graph, where nodes represent data points and edges are

weighted according to the similarity, or “affinity”, between data points. This is the

starting point of many other graph-based clustering algorithms [103, 2]. The affinity

matrix used in these algorithms is a kernel matrix derived from some positive definite

function and hence is a Gram matrix on some RKHS. We show that Normalized Cuts

may be interpreted as learning a function in this RKHS that labels points by the sign

of this function.

This new interpretation of Normalized Cuts reveals that it weights data points

away from the mean of the data set more than those in the center of the data set.

This weighting causes Normalized Cuts to sometimes break elongated clusters and to

be sensitive to outliers. By defining a eigenvalue relaxation that gives equal weight

to all data points, we derive a clustering algorithm (the Average Gap algorithm)

that does not exhibit these problems. Finding labels under this new gap reduces to

thresholding the top eigenvector of a matrix.

This chapter only presents 2-way clustering algorithms. If more clusters are

sought, each 2-way cut can be further subdivided by running the clustering procedure

recursively [90].

4.1 Transduction, Clustering, and Segmentation

via constrained outputs

Since most classification algorithms are trained with y labels set to either +1 or −1,

an intuitive solution to utilize the unlabelled data is to constrain the unlabelled data

to be either plus one or minus one. Let L = N + M with the points x1, . . . ,xN

labelled the points xN+1, . . . ,xN+M unlabelled. The optimization we shall study for

the remainder of the chapter is

87

Problem 1 RKHS Transduction Find a set of assignments to optimize

min
f,uM

L∑
i=1

C(f(xi), ui) + λ‖f‖2
K

s.t. ui = yi i = 1, . . . , N

ui ∈ {−1, 1} i = N + 1, . . . , N + M

(4.2)

The resulting algorithm depends only on the choice of the cost function C and how to

best constrain ui to be binary. This optimization seeks to minimize a convex function

over the non-convex set u ∈ RM : ui = ±1. We will see in the next section that even

for the least squares cost, this problem is NP-HARD for a generic RKHS.

There are several different cost functions one could consider. The first is the

least-squares cost

Problem 2 Transductive Regularized Least Squares Find a minimizer for (4.2)

when C(f(x), y)) = (f(x)− y)2

As previously derived, we may plug in C(f(x), y) = (f(x)− y)2 and solve for the

optimal f to yield the optimization over the unlabelled points

min
uM

λ

 yN

uM

> (K + λ11)−1

 yN

uM


ui ∈ {−1, 1} i = N + 1, . . . , N + M

(4.3)

There are two different costs which we will consider, inspired by the support vector

machine. The first is the hinge loss. The second is a hard margin loss that does not

allow for yif(x) to be less than 1.

Problem 3 Transductive Support Vector Machine Find a minimizer for (4.2)

when C(f(x), y)) = max(0, 1− f(x)y)

Problem 4 Hard Margin Transductive Support Vector Machine Find a min-

imizer for (4.2) when C(f(x), y)) = δ+(1− f(x)y)

88

For both notational simplicity and the clarity of presentation, we will formulate

the SVM transduction problems using the form of (3.15) in Chapter 3:

min
z,t

V ({(zi, yi)}) + λt

s.t.

 t z>

z K

 � 0
(4.4)

Let the matrix A span the null-space of the kernel K. Then, by applying the Schur

complement lemma and Lemma A.7.2 from Chapter 3 we can rewrite (4.4) as

min
z

V ({(zi, yi)}) + λz>K†z

s.t. Az = 0

(4.5)

Let us apply this to Problems 3 and 4. First, the transduction problem with the

standard form of the SVM with a hinge loss is given by

min
z,uM

N+M∑
i=1

ξi + λzK†z

s.t. uizi ≥ 1− ξi

ui = yi i = 1, . . . , N

ui ∈ {−1, 1} i = N + 1, . . . , N + M

ξi ≥ 0

Az = 0

(4.6)

Second, the using the hard margin, we get the problem

min
z,uM

λzK†z

s.t. uizi ≥ 1

ui = yi i = 1, . . . , N

ui ∈ {−1, 1} i = N + 1, . . . , N + M

Az = 0

(4.7)

89

In this case, the regularization parameter λ is only acting to scale the cost function,

and does not directly effect the optimal z or uM . We will omit this parameter in the

further references to the this problem. We will show in the next section that all three

cost functions are NP-HARD.

Before proceeding, let us remark that in the case that no labelled examples are

available, we need to ensure that the trivial labelling f(xi) = 1 is not in the RKHS.

When there are no labels, we will adjoin the constraint
∑N

i=1 f(xi) = 0 to the opti-

mization to avoid this redundancy.

4.2 RKHS Clustering is NP-HARD

We will first show that the clustering problem with least squares cost and no labels,

is NP-HARD. Then we will show that providing an incomplete set of labels the

semisupervised problem is also NP-HARD. Finally, we will show that the variants

related to the SVM are also NP-HARD.

While the following arguments should the reader that is unreasonable to expect

to solve these segmentation problems exactly, this section should not be discourag-

ing! Even the well-known problem of K-Means clustering is NP-HARD, yet heuristic

coordinate ascent algorithms have proven successful for many applications. The re-

mainder of the chapter will apply the approximation techniques from Chapter 2 to

yield powerful algorithms that, in practice, perform quite well.

Our proofs of hardness will be through reductions from the Number Partitioning

Problem, one of the fundamental NP-Complete problems [32].

Problem 5 The number partitioning problem (NPP): Given a set of integers

A = {a1, . . . , aN}, does there exist a partition of A into two subsets U and V such

that the respective subset sums are equal?

This problem is NP-complete even under particular restrictions. For example, if

one requires that ||U | − |V || ≤ 1, the problem is NP-HARD. Similarly, if, for a fixed

constant c, we are given the assignments for the first cN elements, the problem is

NP-HARD.

90

Problem 6 The “semi-supervised” number partitioning problem (SNPP):

Given a set of integers A = {a1, . . . , aL}, two integers l and k such that k + l < cL,

does there exist a partition of A into two subsets U and V such a1, . . . , ak ∈ U ,

ak+1, . . . , ak+l ∈ V such that that the respective sums are equal?

This problem is equivalent to the Problem 5. To see this define a new set

B = {
k∑

i=1

ai −
l∑

j=k+1

aj, al+1, al+2, . . . , L} (4.8)

If the answer to Problem 6 is YES, then let U and V be the partitions of the set

A. Define U ′ to be the set of all elements aj ∈ U with j > k + l. Define V ′ to be

the set of all elements aj ∈ V with j > k + 1. Then U ′ ∪ {
∑k

i=1 ai −
∑l

j=k+1 aj}

and V ′ are partitions of B with equal subset sums. Similarly, if there is a partition

of B into two sets with equal subset sums, we can construct a partition for A. As a

result of this discussion, we will show in what follows that the unsupervised learning

problem is generically hard, and, as an immediate corollary we will deduce that the

semi-supervised problem is also NP-HARD.

The following lemma identifies NPP with a particular quadratic optimization. We

will reduce the optimization to this form by picking a particular set of input data.

Lemma 4.2.1 The number partitioning problem is equivalent to finding a minimizer

of the binary quadratic program

min
u

u>aa>u

s.t. u2
i = 1

(4.9)

Proof Let U and V partition A. Let ui = +1 if ai ∈ U and ui = −1 if ai ∈ V .

Then the difference between the subset-sums of U and V is

∑
aj∈U

aj −
∑
ak∈V

ak =
L∑

i=1

uiai (4.10)

Therefore, A can be partitioned into a pair of sets with equal sums if and only if there

91

exists a y such that
∑L

i=1 uiai = 0. Since

u>aa>u = (
L∑

i=1

uiai)
2 ≥ 0 , (4.11)

then A has a partition if and only if the minimum of (4.9) is zero.

The following theorem is an immediate consequence of the preceding discussion.

Theorem 4.2.2 Problem 2 is NP-HARD.

Proof Given an instance of NPP, we will reduce it to a clustering problem as

follows. Let a = [a1, . . . , an]> be the column vector containing the elements of the set

a. For i = 2, . . . , N , Let {a/||a||,v2, . . . ,vN} be an orthonormal basis for Rn. Let

K =
[

v2 . . . vN

] [
v2 . . . vN

]>
(4.12)

Finally, let λ be any positive rational number. It is easy to check that

(
1

λ
K + 11)−1 =

1

(1 + λ)||a||2
aa> +

λ

1 + λ
11 (4.13)

and hence

arg min
u2

i =1
u>(

1

λ
K + 11)−1u = arg min

u2
i =1

u>aa>u (4.14)

therefore, if one can find the optimal cluster assignments, one can find the optimal

partitioning of A. It is clear that the analysis remains the same if some of the yi

labels are given or if we require the two clusters to be balanced. This completes the

proof.

Since Problem 2 is a subproblem of Problem 1, we have the following

Corollary 4.2.3 Problem 1 is NP-HARD.

To proceed to the proofs that transduction with the Support Vector Machine

costs is NP-HARD, we introduce a variant of the quadratic program for least-squares

clustering with inequality constraints

92

Problem 7 Given a positive definite N × N matrix Q, find a minimizer of the op-

timization

min
u

u>Qu

s.t u2
i ≥ 1

(4.15)

Theorem 4.2.4 Problem 7 is NP-HARD

Proof We will show how this problem can be used to solve the NPP problem. Let

a be an integer vector. There exists a partition of this vector into two subsets with

equal sums if we can find a binary u such that u>aa>u < 1.

Let Qβ = aa> + β11. Let

uβ = arg min
u2

i≥1
u>Qβu (4.16)

then for all q with qi ∈ {+1,−1},

u>β aa>uβ + β‖uβ‖2 ≤ q>aa>q + β‖q‖2 (4.17)

Since q2
i = 1 for all i, ‖q‖2 = N , so we have

β(‖uβ‖2−N) ≤ q>aa>q−u>β aa>uβ ≤ q>aa>q ≤ max
zi∈{−1,+1}

q>aa>q = ‖a‖1 (4.18)

Since the left-hand side is bounded for all β, we have

lim
β→∞

‖uβ‖2 = N (4.19)

Furthermore, it is easy to check that for u with all entries of magnitude greater than

or equal to 1, the closest vector of norm N is v = sign(u).

Since the function u>aa>u is continuous, there exists a δ such that if ‖ sign(uβ)−

uβ‖ < δ, then

| sign(uβ)>aa> sign(uβ)− u>β aa>uβ| <
1

2
(4.20)

93

if we choose β large enough, then ‖ sign(uβ) − uβ‖ < δ and hence we can solve the

problem NPP.

Now, as corollaries, we can show

Theorem 4.2.5 Problem 4 is NP-HARD.

Proof Let u = Kc. Then we can rewrite Problem 4 as

min
u

u>K†u

s.t. ui ≥ 1

1>u = 0

Au = 0

(4.21)

of which Problem 7 is a special case.

Theorem 4.2.6 Problem 3 is NP-HARD.

Proof By making the regularization parameter small, we can approximate the

solution to Problem 4. In particular, this would lead to being able solve NPP.

4.3 Semidefinite Approximation using Lagrangian

Duality

As noted in the previous section and in Chapter 2, we may identify the constraint

ui ∈ {−1, 1} with the quadratic identity u2
i = 1. By using this constraint, we may

consider all subproblems of Problem 1 with quadratic or polyhedral costs V as Non-

convex Quadratically Constrained Quadratic Programs (NCQCQP). This set of op-

timization problems are, as discussed in Chapter 2, NP-HARD, but admit powerful

approximation algorithms via their associated Lagrangian dual problem.

Here we present the primal-dual pair of semidefinite programs associated with

the RLS cost. We will use this cost function and the random hyperplane algorithm

presented in Chapter 2 to produce feasible labels assignments for the unlabelled data.

94

Given N+M data points x1, . . . ,xN+M and labels for the first N points, y1, . . . , yN ,

we want to infer cluster assignments for the remaining M points. Let us group as

vectors yN the labels of the first N data points and uM the (unknown) labels of the

last M data points. Also, let us partition the Kernel matrix of the data as

K =

 KNN KNM

KMN KMM

 (4.22)

Let Q = (K + λ11)−1 and partition this matrix like K to give the optimization

minuM

 yN

uM

>  QNN QNM

QMN QMM

 yN

uM


s.t. u2

i = 1 for i = N + 1, . . . , N + M

(4.23)

This may be further simplified by lumping together the labelled data points. Let

yp := QMNyN and let T := y>NQNNyN . Then the optimization simplifies to

minz,uM

 z

uM

>  T y>p

yp QMM

 z

uM


s.t. u2

i = 1 for i = N + 1, . . . , N + M

z2 = 1

(4.24)

This problem has the same form as the combinatorial optimization problems stud-

ied in Chapter 2. However, rather than maximizing a positive definite form on

{−1, 1}n, we are minimizing a positive definite form on the non-convex set {−1, 1}n

and we cannot produce a γ-approximation for any reasonable γ. As we have seen, such

an approximation would provide guarantees on solving NPP. On the other hand, the

random rounding procedure still can produce primal feasible uM with good clustering

performance. Furthermore, even though we cannot produce a γ-approximation, we

can estimate how well such a procedure is working by comparing the primal cost of

the sampled uM to the dual bound provided by (4.25). If a sampled uM achieves the

dual optimal, then we have produced a primal optimal uM .

95

To review, the semidefinite relaxation of (4.24) is given by the semidefinite pro-

gram

minZ Tr

 T y>p

yp QMM

Z


s.t. Zii = 1

Z � 0

(4.25)

with Z an M + 1×M + 1 matrix. The randomized approximation algorithm would

proceed as follows

(i) Solve the semidefinite program (4.25) to yield an optimal positive semidefinite

matrix Z.

(ii) Sample x from a gaussian with mean 0 and covariance Z.

(iii) Set [z,uM] = sign(x) sign(x1). This guarantees z = 1.

(iv) Continue to sample until the cost of u in (4.24) is sufficiently small.

When there are no labels, and the constant functions are elements in the RKHS,

the trivial labelling f(xi) = 1 is often the lowest cost solution to the least-squares

clustering problem. To avoid this trivial solution, we may to adjoin the constraint∑N
i=1 f(xi) = 0 to the optimization. Unfortunately, the Tikhonov cost is no longer

of the form (4.23). We can solve the Tikhonov regularization problem with this new

constraint as follows. Consider

min
f

N∑
i=1

(f(xi)− yi)
2 + λ‖f‖2

K

s.t.
N∑

i=1

f(xi) = 0

(4.26)

The dual problem is now given by

min
c,d

λc>c− 2y>c + (c + d1)>K(c + d1)> (4.27)

96

which can be solved to give the optimal Tikhonov cost

y>(K̂ + λ11)y (4.28)

with

K̂ = K− K11>K

1>K1
(4.29)

That is, adding the balancing constrain amounts to shifting the kernel matrix.

This shift has an intuitive explanation in the RKHS: it amounts projecting kernels

centered at the data onto the space orthogonal to their mean m = 1
N

∑N
i=1 k(xi, ·).

To see this, define the linear operator

Pv = v − 〈m,v〉
〈m,m〉

m . (4.30)

K̂ is readily seen to be the Gram matrix of the functions Pk(xi, ·) for i = 1, . . . , N .

Note that P2 = 1 and compute the Gram matrix as the infinite dimensional matrix

outer product

K̂ = [k(x1, ·), . . . , k(xN , ·)]>P [k(x1, ·), . . . , k(xN , ·)] (4.31)

Minimizing cost (4.28) with the constraints u2
i = 1 can be performed using the ran-

dom rounding procedure described above. This algorithm performs quite well as

demonstrated out in the experiments.

In the next section, we will show that we can also approximate the least-squares

clustering problem via the generalized eigenvalues of the kernel matrix and a family

diagonal matrices. These approximations will turn out to be the family of algorithms

called Spectral Clustering.

97

4.4 Eigenvalue Approximations and the Normal-

ized Cuts Algorithm

It is well understood that a quadratic program with exactly one quadratic constraint

admits a solution by a generalized eigenvalue method. In particular, if we begin with

the transductive algorithms of this chapter and produce a convex combination of the

quadratic constraints, we can produce approximations to clustering and transduction

that can be solved faster than standard semidefinite programs.

Let us begin with the least-squares clustering problem

min
u

u>(K̂ + λ11)−1u

s.t. u2
i = 1

(4.32)

Given any αi, we can approximate this problem with the optimization

min
u

u>(K̂ + λ11)−1u

s.t.
N∑

i=1

αiu
2
i =

N∑
i=1

αi

(4.33)

Or, equivalently in matrix form

min
u

u>(K̂ + λ11)−1u

s.t.u> diag(α)u = 1>α

(4.34)

This problem can be solved by finding the largest generalized eigenvalue of the pair

of matrices K̂ + λ11, diag(1/α)). By choosing different α, we get different algorithms.

Before showing that this can reproduce Normalized Cuts, let us first show that

the bounds of the primal clustering cost produced by these eigenvalue relaxations are

always more conservative than the semidefinite programming relaxations.

Theorem 4.4.1 The dual of (4.32) achieves a higher cost than the relaxation (4.34).

98

Proof The dual of (4.32) is the semidefinite program (see Chapter 2):

max
γ

N∑
i=1

γi

s.t. (K̂ + λ11)−1 − diag(γ) � 0

(4.35)

The dual of (4.34) is:

max
β

β

s.t. (K̂ + λ11)−1 − β diag(α) � 0

(4.36)

There is no duality gap between (4.34) and this dual (4.36). The dual (4.35) optimizes

over an arbitrary diagonal matrix, whereas the dual (4.36) optimizes over a more

constrained diagonal matrix. Therefore (4.34) is a lower bound on the dual (4.35)

of the clustering SVM problem. Since both of these are lower bounds on the primal

clustering SVM problem (4.32), solving (4.35) yields a value closer to the optimum

of (4.32) than does solving (4.34).

4.4.1 The Normalized Cuts Algorithm

This section provides a brief review of the Normalized Cuts algorithm. Given a set

of data points x = {xi|xi ∈ Rd, i ∈ 1..N}, and an “affinity” measure k(x, y), build

the affinity matrix K with Kij = k(xi, xj). A common choice for k is the Gaussian

kernel k(x, y) = exp
(
−‖xi−yi‖2

2σ2

)
. The affinity matrix K defines the weights on a fully

connected graph where each node corresponds to a data point xi and Kij is the weight

of the edge between node i and node j. Assigning each xi a label yi ∈ {−1, +1} cuts

the graph into a set A of the vertices with label -1 and a set B of vertices with labels

+1. The cost cut(A, B) is the sum of the weight of the edges between vertices in A

and vertices in B. The goal of Normalized Cuts [90] is to find the cut that minimizes

the following cost function:

cut(A, B)

(
1

Vol(A)
+

1

Vol(B)

)
, (4.37)

99

where Vol is the sum of the weights in a set. This cost function is designed to penalize

cuts that are not well balanced. Finding the optimal Normalized Cut is NP hard, so

the Normalized Cuts algorithm optimizes a relaxation of the above:

v∗ = arg maxv
v>D− 1

2KD− 1
2v

v>v

s.t. v>D1 = 0

D is a diagonal matrix whose iith entry is the sum of the ith row of K, and 1 is the

column vector of all ones. The optimum v is the second eigenvector of D− 1
2KD− 1

2

(we casually refer to the nth eigenvector of a matrix as a shorthand for the eigen-

vector corresponding to the nth largest eigenvalue). The components of v∗ are then

thresholded to yield a vector in {−1, +1}N :

ŷ = sgn(v∗). (4.38)

This is the labeling as reported by Normalized Cuts. We refer to this algorithm as

the Normalized Cuts algorithm (or just Normalized Cuts) and the unrelaxed cost

function (4.37) as the Normalized Cut cost. Other relaxations for (4.37) are possible

[108], but we do not provide an interpretation for these relaxations here.

Of course, since K is a kernel matrix, we should immediately suspect that there

is a tie-in with the theory of reproducing kernel Hilbert spaces. Indeed, if we set

αi = 1/(di) in (4.34), then as λ goes to zero, we recover normalized cuts as an

eigenvalue approximation to the least-squares clustering problem.

To see the equivalence, consider the generalized eigenvalue equation

K̂v = µ diag(1/α)v = µDv (4.39)

It is easy to see that 1 is a generalized eigenvector of K and D, and it is shown in [90]

that it corresponds to the largest eigenvalue. Furthermore, any other generalized

100

eigenvector is orthogonal to D1 = θK1. Now

K̂1 = K1− K11>K

1>K1
1 = 0 (4.40)

and if v is another generalized eigenvector corresponding to eigenvalue µ, then

K̂v = Kv − K11>K

1>K1
v = Kv − K1

1>K1
(
1

θ
1>Dv) = Kv = µDv (4.41)

so the largest generalized eigenvector of K̂ and D is v∗, the second eigenvector of K̂

and D.

The particular choice of the weight factor 1/di in is an implicit design choice in the

Normalized Cuts algorithm. It gives greater weight to points with low affinity to the

remainder of the data set. This weighting appears to make Normalized Cuts sensitive

to outliers, which is undesirable. The only benefit we see in this weighting is that

finding a solution to equation (4.34) is simplified, because the second eigenvector of

automatically satisfies 1Dv = 0. Other weightings are possible and will be explored

in later sections.

Using the representer form, we can produce the function that Normalize cuts uses

to label space. By plotting the zero-contour of such a function, we can illustrate some

of the weaknesses of the algorithm. Figure 4-1 demonstrates Normalized Cuts’ sensi-

tivity to an outlier. By sliding one outlier along the x-axis, the clustering boundary

can be arbitrarily shifted to the left or to the right. Figure 4-2 shows that Normalized

Cuts will split elongated structures, because according to its weighting, it is favorable

to have points on opposite ends of an elongated structure land on opposite sides of

the separating plane.

4.4.2 Average Gap Algorithm

If equal weight is given to every point, the outlier and splitting problems are attenu-

ated. Set αi = 1/N in Equation (4.34). This shall be referred to as the Average Gap

Algorithm [80]. In this case,the quadratic constraint becomes
∑N

i=1 ui = N . In this

101

−4 −2 0 2 4 6 8 10 12 14 16

−4

−3

−2

−1

0

1

2

3

4

Figure 4-1: In Normalized Cuts, an outlier can dwarf the influence of other points, because
points away from the mean are heavily weighted. Sliding the outlier (indicated by the
arrow) along the x-axis can shift the clustering boundary arbitrarily to the left or the right.
Without the outlier, Normalized Cuts places the boundary between the two clusters.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4-2: Because Normalized Cuts puts more weight on points away from the mean, it
prefers to have the ends of the elongated vertical cluster on opposite sides of the separating
hyperplane.

102

case, we only need to compute the maximum eigenvalue of K̂. This is quite similar

to the Factorization Approach proposed by Perona and Freeman [76], but, crucially,

using the eigenvectors K̂ instead of K

Proposition 4.4.2 The label assignments from the average gap algorithm are sgn(v)

where v is the largest eigenvector of K̂.

Proof By setting αi = 1/N , we are left with computing the largest generalized

eigenvector, v, of K̂ and 11. This is, of course, just the largest eigenvector of K̂. The

labelling function is given by

f(x) =
N∑

i=1

cik(xi,x) (4.42)

with Kc = v. Then the labels of the data are given by

ŷi = sgn(f(xi)) = sgn([Kc]i) = sgn(vi) (4.43)

Section 4.5 shows that this new hyperplane algorithm works as well as Normalized

Cuts, and is less susceptible to outliers. We will refer to it as the Average Gap

algorithm. Compare Figure 4-3 with Figure 4-1. The outlier does not affect the

clustering boundary, no matter how far it is from the main body. Adding several

outliers eventually does move the boundary (not shown). Also compare Figure 4-4

with Figure 4-2. The elongated cluster is not split up. No stretching of the elongated

cluster causes it to be split.

4.5 Numerical Experiments

We compared Normalized Cuts (NCUT), the Average Gap (AVGGAP) algorithm,

and the semidefinite relaxation of least-squares clustering (CSDP) on datasets from

the UCI repository [20]. The Wisconsin breast cancer data set (cancer1) and the

new diagnostic dataset (cancer2) were originally obtained from the University of

103

−4 −2 0 2 4 6 8 10 12 14 16

−4

−3

−2

−1

0

1

2

3

4

Figure 4-3: The data set of Figure 4-1 is correctly segmented by weighting all points
equally. The outlier point doesn’t shift the clustering boundary significantly.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4-4: The data set of Figure 4-2 is correctly segmented by weighting all points
equally.

104

dataset n CSDP CSDP AVGGAP AVGGAP NCUT
linear gaussian linear gaussian

wine 130 100 100 56 86 97
cancer1 683 91 91 91 91 91
cancer2 569 97 98 97 97 97

ionosphere 351 70 90 60 90 57

Table 4.1: Clustering performance.

Wisconsin Hospitals, Madison. We also used the first two classes in the wine recog-

nition dataset (wine) and the ionosphere dataset (ionosphere). In all of data sets,

clustering performance is the percentage of correctly assigned labels to each class.

Because of the balancing constraint
∑N

i=1 f(xi) = 0, none of the algorithms assigned

the same label to the entire data set.

The semidefinite program for the least-squares clustering was solved using the

bundle method [40]. We were able to run sets of one hundred points in a few seconds

and sets of two thousand points in about five minutes on a dual Xeon 2.8 GHZ

machine.

The clustering algorithms were all compared using a gaussian with kernel param-

eter tuned such that C = 2∗maxi,j(‖xi−xj‖). The CSDP and AVGGAP algorithms

were also run using linear kernels. The Normalized cuts algorithm cannot cluster

using a linear kernel as it requires the kernel to be everywhere non-negative. Table

4.5 reports the performance of the algorithms. In all cases, the SDP does as well or

better than the other algorithms. In some instances, like in the wine or ionosphere

data sets, the eigenvalue relaxations may perform quite poorly.

4.6 Conclusion

Due to the binary constraints, transduction, clustering, and segmentation are all

hard combinatorial problems. We presented two families of approximations using

Lagrangian duality.

We have provided a function learning interpretation for the Normalized Cuts re-

105

laxation of Shi and Malik and showed that it can be thought of as an approximation

to regularized least-squares clustering. Our interpretation of Normalized Cuts can

also be used to justify semi-supervised versions of it as well, although we did not

explore this possibility in this chapter. In fitting this function, Normalized Cuts pays

more attention to outliers, and so fails to recover sensible clusters in some cases.

We showed how to avoid this pitfall by weighting all data points equally. The reg-

ularized least-squares clustering problem is better approximated by the semidefinite

approximation.

106

Chapter 5

Output Prior: Dynamics

Learning the mapping between samples of two different time series is a ubiquitous ap-

plication of function fitting. For example, in tracking, one transforms a time series of

observations from sensors to the pose of a target; one can generate computer anima-

tion by transforming a time series representing the motions of an actor to vectorized

graphics; and system-identification learns the transformation between the inputs and

outputs of a plant. Depending on the details of the application, different domain-

specific information is leveraged to design particular algorithms, but exploiting latent

dynamics models improves the performance of all such algorithms.

In this chapter, we consider consequences of imposing dynamics priors on the labels

u. Such priors enable the transformation a variety of time series with surprisingly few

output examples. The main contribution is a synthesis of a semi-supervised regression

model that takes finds a function whose outputs are consistent with with physical

dynamics defined by a linear-Gaussian Markov chain. The optimization allows a user

to label a few data points to specify a coordinate system and to provide guidance to

the algorithm when needed.

We demonstrate the utility of these optimization methods with an interactive

tracking system where the user specifies a desired output for a few key samples in

a time series of sensor measurements. These examples, together with the unlabelled

portion of the time series, allow the system to compute a function that maps as-yet

unseen measurements to the desired representation. Using synthetic data, we will

107

show that this interactive tracker can be used to perform transformations of manifold

learning when the data is time ordered. We also demonstrate the tracker on different

real-world examples as well. An articulated body tracking experiment where the user

specifies positions of the subject’s limbs in a video sequence illustrates the robustness

of the framework even when no video pre-processing is applied. We show how to

calibrate a HCI device by transforming the voltages induced in a set of antennae by

a Radio Frequency ID (RFID) tag to the position of the tag with only four labelled

examples and with no labels at all.

The algorithms operate on the sensor data directly and do not require any pre-

processing. In particular, we are able to recover excellent representation with very

sparse sampling: in the video example, the input examples are raw pixel values of

640x480 images and we can learn a tracker with 12 examples. Furthermore, in the

sensor network experiments, we show that our unsupervised algorithm can recover an

excellent approximation of the target trajectory, up to scaling and orientation, with

no examples whatsoever.

5.1 Related Work

Manifold learning techniques [97, 85, 8, 27, 106, 16] find a low-dimensional represen-

tation that preserves some local geometric attribute of the high-dimensional observa-

tions. This requires identifying data points that lie in a local neighborhood along the

manifold around every high-dimensional data point. When the manifold is sparsely

sampled, these neighboring points are difficult to identify, and the algorithms can

fail to recover any meaningful structure. Our algorithm obviates the need to search

for such neighbors by utilizing the time ordering of data points instead. Jenkins and

Mataric [48] suggest artificially reducing the distance between temporally adjacent

points to provide an additional hint to Isomap about the local neighborhoods of im-

age windows. We also take advantage of dynamics in the low-dimensional space to

allow our algorithm to better estimate the distance between pairs of temporally ad-

jacent points along the manifold. This requires only fine enough sampling over time

108

to retain the temporal coherence between video frames, which is much less onerous

than the sampling rate required to correctly estimate neighborhood relationships in

traditional manifold learning algorithms. While various semi-supervised extensions

to manifold learning algorithms have been proposed [42, 78], these algorithms still do

not take advantage of the temporal coherence between adjacent samples of the input

time series.

The semi-supervised regression approaches of [109] and [9] take into account the

manifold structure of the data. But they also rely on brittle estimates of the neigh-

borhood structure, and do not take advantage of the time ordering of the data set.

These semi-supervised regression methods are similar to our method in that they also

impose a random field on the low-dimensional representation. The work presented

here augments these techniques by introducing the temporal dependency between

output samples in the random field. It can be viewed as a special case of estimating

the parameters of a continuously-valued conditional random field [55] or a manifold

learning algorithm based on function estimation [93].

Nonlinear system identification (see [34, 98] and references within) provides an-

other framework for introducing dynamics into manifold learning. In this context, the

frames in the video are modeled as observations generated by a Markov chain of low-

dimensional states. Nonlinear system identification recovers the parameters of this

model, including an observation function which maps low-dimensional states to im-

ages. This usually requires approximate coordinate ascent over a non-convex space,

making the algorithms computationally intensive and susceptible to local minima.

Dynamic Textures [28] sidesteps these issues by performing linear system identifica-

tion instead, which limits it to linear appearance manifolds. Instead of searching for

a mapping from states to images, as would be done in nonlinear system identifica-

tion, we search for a mapping from images to states. This results in an optimization

problem that is quadratic in the latent states and the parameters of the projection

function, making the problem computationally tractable and not subject to local

minima.

109

5.2 Model for Semi-Supervised Nonlinear System

ID

Let us assume that we are presented with a time series xt ∈ RD and we want to

learn a memoryless mapping f : RD → Rd such that f(xt) = ut and the output time

series ut satisfies a prescribed dynamics model. We will consider two scenarios. In

the semi-supervised setting, we suppose that for a few samples t ∈ S, we are given

desired values for the ut = yt outputs. In the unsupervised setting, we will only

assume that the ut values agree with the expected values implied by the dynamics

model.

Consider each component f i of f = [f 1(x) . . . fd(x)] separately. If the desired

output of f i were known to be yi
t, we could use the standard Tikhonov regularization

on a RKHS to solve for the best approximation of f i:

min
f i

T∑
t=1

‖f i(xt)− yi
t‖2 + λk‖f i‖2

k. (5.1)

But in our scenario, none or only a few yi
t labels are provided by the user.

Let us assume that we know a priori that the time series of the ut
i is the output

of a linear Gaussian time invariant system

zt+1 = Azt + ωt

ut = Czt + νt

(5.2)

The Gaussian random variables ωt and νt have zero-mean and known covariance ma-

trices Λω and Λν respectively. The matrices A, C and Λω, and Λν specify the desired

dynamics, and are parameters of the optimization. Furthermore, we assume that the

sample x0 agrees with the stationary dynamics of the linear system. Certainly, the

mean of x0 is 0. To compute its covariance, Λ0, we assume that it is observed in the

110

stationary regime such that

Λ0 = E[ztz
>
t] = E[zt+1z

>
t+1]

= E[(Azt + ωt)(Azt + ωt)
>]

= E[Aztz
>
t A> + Aztω

>
t + ωtz

>
t A> + ωtω

>
t]

= E[Aztz
>
t A> + ωtω

>
t]

= AE[ztz
>
t]A> + Λω

= AΛ0A
> + Λω

(5.3)

That is, Λ0 is the solution to the discrete Lyapunov equation

AΛ0A
> − Λ0 + Λω = 0 (5.4)

We can compensate for the absence of labels at every data point by forcing f i(xt)

to agree with the position component of the corresponding ut using additional penalty

terms. The semi-supervised optimization is given by

min
f,u,z

d∑
i=1

T∑
t=1

‖f i(xt)− ui
t‖2 + λk‖f i‖2

k

+ λd

(
T∑

t=2

‖zt −Azt−1‖2
Λω

+ z>1 Λ−1
0 z1 +

T∑
t=1

‖ut −Czt‖2
Λν

)
s.t. ut = yt for t ∈ S

(5.5)

The first line is just a Tikhonov Regularization penalty on all of the component

functions of f . The second line favors functions whose outputs could have been

produced by the LTI system (5.27). Indeed, when all of the ut are given, iteratively

minimizing the second cost function over zt recovers the well-known Kalman Filter.

The regularization parameter λd may be tuned to reflect how much one trusts the

dynamics model. The equality constraint enforces the given labels for the given

samples in S.

In the unsupervised case, we can again appeal to Kernel PCA as described in

111

Chapter 3. In the limit of being driven by whitenoise, the ut emitted from the system

(5.27) will be colored white noise with statistics:

E[ut] = 0

E[utu
>
t] = Λu

(5.6)

Λy can be directly computed from Λ0

E[yty
>
t] = E[(Czt + νt)(Czt + νt)

>]

= E[(Cztz
>
t C> + νtν

>
t]

= CΛ0C
> + Λν

(5.7)

And our unsupervised cost is

min
f,u,z

d∑
i=1

T∑
t=1

‖f i(xt)− ui
t‖2 + λk‖f i‖2

k

+ λd

(
T∑

t=2

‖zt −Azt−1‖2
Λω

+ z>1 Λ−1
0 z1 +

T∑
t=1

‖ut −Cxt‖2
Λν

)

s.t.
T∑

t=1

ut = 0

1

T

T∑
t=1

utu
>
t = Λu

(5.8)

These cost functions fit right into the prior on output framework. In particular,

the optimal f will be given by weighted sum of kernels centered at each xt:

f i(x) =
T∑

t=1

ci
tk(x,xt) , (5.9)

where the vector ci contains the coefficients for the ith dimension of f .

The cost function of optimizations (5.5) and (5.8) is quadratic in coefficiencts of

the kernel expansion for f , c and in the hidden states of the LTI system, z. Since

112

these quantities are unconstrained, we can minimize the cost function directly. Let

S(u) := min
f,z

d∑
i=1

T∑
t=1

‖f i(xt)− yi
t‖2 + λk‖f i‖2

k

+ λd

(
T∑

t=2

‖zt −Azt−1‖2
Λω

+ z>1 Λ−1
0 z1 +

T∑
t=1

‖ut −Cxt‖2
Λν

)
(5.10)

We will now show that S(u) is a positive definite quadratic form in y. Indeed, we can

split this cost in half:

S(u) = min
f

d∑
i=1

T∑
t=1

‖f i(xt)− ui
t‖2 + λk‖f i‖2

k

+ λd min
z

(
T∑

t=2

‖zt −Azt−1‖2
Λω

+ z>1 Λ−1
0 z1 +

T∑
t=1

‖ut −Cxt‖2
Λν

)
=: T (u) +K(u)

(5.11)

We have shown that

T (y) = λr

d∑
i=1

yi>(K + λr11)−1yi (5.12)

The second term can also be written down explicitly. First, define the NT × NT

matrices

Â :=



A −11 0 · · ·

0 A −11 0 · · ·
. . .

0 · · · 0 A −11

0 · · · 0 0 11


Λ̂ := diag(11T−1 ⊗ Λω, Λ0)

(5.13)

113

and note

K(u) = min
z

 u

z

>  11⊗ Λ−1
ν 11T ⊗ (Λ−1

ν C)

11T ⊗ (C>Λ−1
ν) ÂΛ̂−1Â + 11T ⊗ (C>Λ−1

ν C)

 u

z


= u>

(
11⊗ Λ−1

ν − 11T ⊗ (Λ−1
ν C)(ÂΛ̂−1Â + 11T ⊗ (C>Λ−1

ν C))−111T ⊗ (C>Λ−1
ν)
)

u

= u>
(
11T ⊗ Λ + (11T ⊗C)(ÂΛ̂−1Â)−1(11T ⊗C>)

)−1

u .

(5.14)

The first equality is the standard solution to the quadratic program, and the sec-

ond equality follows from the matrix inversion lemma. Both results are derived in

Appendix A.

While this cost function looks a bit unwieldy, we can simplify it by realizing that

the quadratic form is nothing more than the inverse of the joint covariance of the ut

Λu :=
(
11T ⊗ Λν + (11T ⊗C)(ÂΛ̂−1Â)−1(11T ⊗C>)

)
(5.15)

In turn, we can use the Gaussian statistics of the LTI system to compute Λu

Proposition 5.2.1 Λu is a symmetric, positive-definite, block Toeplitz matrix and

for s ≥ t

Λu
st = CAs−tΛ0C

> + δstΛν (5.16)

Proof Since

E[usu
>
t] = CE[xsx

>
t]C> + δstΛν (5.17)

we need only compute E[xsx
>
t]. Suppose without loss of generality that s ≥ t

xt =
t∑

j=0

At−jωjxs =
s∑

k=t+1

As−kωk + As−txt (5.18)

Since ωk is i.i.d, E[xsxt] = E[As−txtxt] = As−tE[xtxt] = As−tΛ0. This proves the

proposition.

114

We may now combine the two quadratic forms to yield a joint optimization over

u

S(u) = λru
> (K⊗ 11d + λr11dT))−1 u + λdu

>Λu−1u =: u>Su (5.19)

where S is the sum of two positive definite quadratic forms and is hence positive

definite. In this regard, it now becomes apparent how to solve for the u labels.

In the semi-supervised case, we will be minimizing a positive definite quadratic

form over a subset of the ut with those ut with t ∈ S held fixed. This amounts to

solving a system of linear equations. We will present a fast method to solve this

particular system in the next section.

In the unsupervised case, we minimize a positive definite quadratic form subject

to a linear constraint forcing the ut to be zero mean and a set of quadratic constraints

enforcing the second moments of the individual ut variables. We will see that this

problem can be solved as an eigenvalue problem when we assume that the hidden

dynamical system is composed of d independent Markov chains.

Note that in both cases, we first recover the labels u. The function f mapping x’s

to u’s can be found by setting ci = (K + λ11T)ui.

5.2.1 Semi-supervised Algorithm

Under the constraints that ut = yt for t ∈ S, we may partition the vector u into

the labelled components and the unlabelled components: u =: [yLuU]. That is, yL

denotes the vector composed of all the yt with t ∈ S stacked on top of each other

and uU denotes the vector composed of all the unlabelled points with t 6∈ S. We

may minimize the quadratic cost with respect to uU and holding yL fixed giving the

well-known least squares solution

u∗U = −S−1
UUSULyL (5.20)

Indeed, a direct algorithm for solving the semi-supervised problem would be to

compute the matrix S, and then compute this quantity. For large T and d, this

115

requires four matrix inverses each of size Td which may be undesirable. Here we

present an algorithm that is much faster in practice.

First note that we can write

min
u1,u2


u1

yL

u2

yL



>  λr (K⊗ 11d + λr11dT)−1 0

0 λdΛ
u−1




u1

yL

u2

yL


s.t. u1 = u2

(5.21)

Introducing a Lagrange multiplier β to enforce the equality constraint, gives the

Lagrangian

L =


u1

yL

u2

yL



>  λr (K⊗ 11d + λr11dT)−1 0

0 λdΛ
u−1




u1

yL

u2

yL

+ β(u1 − u2) (5.22)

Minimizing with respect to u1 and u2 gives

u1 = û1 +
1

λr

[(K⊗ 11d + λr11dT)−1]−1
UUβ

u2 = û1 −
1

λd

[Λ−1
y]−1

UUβ

û1 = [(K⊗ 11d + λr11dT)−1]−1
UU [(K⊗ 11d + λr11dT)−1]ULyL

û2 = [Λy−1]−1
UU [Λu−1]ULyL

(5.23)

That is, û1 is the solution to the Tikhonov regularization problem adjusted by the

Lagrange multiplier term. û2 is the estimation of the outputs of the LTI system

also adjusted by a Lagrange multiplier term. We can simplify these equations by

employing the formula for the inverses of partitioned matrices found in Appendix A

116

and rewriting the last two lines as

û1 = [K⊗ 11d + λr11dT]UL[K⊗ 11d + λr11dT]−1
LLyL

û2 = Λy
ULΛy

LL
−1

yL

(5.24)

We can solve for β by setting u1 = u2

β = (
1

λR

[(K⊗ 11d + λr11dT)−1]−1
UU +

1

λD

[Λ−1
y]−1

UU)−1(û2 + û1)

= (
1

λR

(K⊗ 11d + λr11dT |U) +
1

λD

(Λy|U))−1(û2 + û1)
(5.25)

where (A|U) denotes the Schur complement AUU −AULA
−1
LLALU .

Thus, the algorithm works by first solving for ŷi, then computing the Lagrange

multiplier, and then adjusting the initial estimates. The first step is a least squares

problem with a matrix inversion of size |S| and a matrix multiplication of size |S| −

T × T . The second step requires computing Schur complements and solving a |S| −

T×|S|−T system of linear equations. Finally, the correction step involves a system of

equations with one of the Schur complements, and is again solving a |S|−T ×|S|−T

system of linear equations. Overall, this procedure is more efficient than directly

computing the quadratic form S that requires computing explicit matrix inverses.

5.2.2 Unsupervised Algorithm

In the case of the unsupervised algorithm, we will now present an eigenvalue problem

for when the underlying model consists of d independent Markov chains with one-

dimensional outputs. In this case, we can compute cost function for each chain

independently, and sum them together to yield the joint optimization

min
u

d∑
i=1

ui> (λr(K + λr11)−1 + λdT
−1
)
ui

s.t.
∑

t

ut = 0

∑
t

utu
>
t = α11

(5.26)

117

ggg

st st+1 st+2A A

xt xt+1 xt+2

… …

Figure 5-1: A generative model for a linear system with nonlinear output. The states st are
low-dimensional representations lifted to high dimensional observables xt by an embedding
g.

This can be solved with an iterative eigenvalue solver as follows. First compute

the matrix A = (λr(K + λr11)−1 + λdT
−1)−1. Then, ensure that ui has zero mean,

compute the projection onto the zero-mean subspace P := 11 − 11>/T . Then the d

largest eigenvalues of PAP are the optimal assignments for ui.

5.3 Relation to System Identification

Figure 5-1 depicts a standard generative model for time series generated by observing

a Markov chain with a nonlinear objective function. The latent state evolves according

to some Markov chain of states zt, t = 1 . . . T . At each time step, a nonlinear function

g : Rd → RD maps a linear function of the state yt = Czt to a D dimensional output

vector xt. Effects not accounted for by g are modeled as iid noise modifying the

output of g.

Learning the parameters of this generative model from a sequence of observations

y1, . . . ,yT can be computationally expensive [34, 98] even when the dynamics of the

hidden Markov chain are known. Instead of solving for g in this generative model, we

recover a projection function f : RD → Rd that maps images to their low-dimensional

representation in a random field. This random field consists of a function f that

maps the sequence of observed images to a sequence in Rd that evolves in accordance

with a Markov chain. The random field mirrors the generative model of Figure

5-1 by modeling the interactions between a Markov chain, the observations, and

supervised points provided by the user. Figure 5-2 depicts a random field describing

118

st st+1 st+2

yt yt+1 yt+2

A A

C C C

xt xt+1 xt+2

f f f

… …

Figure 5-2: Forcing agreement between projections of observed xt and a Markov chain of
states st. The function f maps observations to outputs of a linear system.

the factorization prescribed by (5.5).

In the case when the noise which corrupts the nonlinear output function is small,

and when g is 1− 1, our algorithms approximate this standard system identification

problem by searching for a pseudoinverse for g. Searching for this pseudoinverse is

advantageous because, when D >> d, the number of functions one fits might be more

than the number of samples. Furthermore, our resulting optimizations are convex,

do not have local minima, and admit efficient algorithms, all of which plague the the

related work that searches for g.

5.4 Interactive Tracking Experiments

To compare with Isomap, LLE and Laplacian Eigenmaps, we relied on source code

available from the respective authors’ web sites. We also compare against Belkin

and Nyogi’s graph Laplacian-based semi-supervised regression algorithm [9], which

we refer to as BNR in this section. We used our own implementation of BNR.

The experiments elucidate the following features of the regression with dynamics

prior. Explicitly taking into account the dynamics of the low-dimensional process

obviates the need to build the brittle neighborhood graphs that are common in man-

ifold learning and semi-supervised learning algorithms. This renders our algorithm

less sensitive to errors in estimates of neighborhoods.

The assumed dynamics model does not need to be very accurate. Indeed, in what

follows we will use a very simple model described below that does not match the

true dynamics for any of the experiments. This model captures the time coherence

119

of related samples and that correlations vanish over time. Furthermore, we produce

very good results with very few labelled examples that do not need to capture all the

modes of variation of the data.

5.4.1 The Dynamics Model

In all of these experiments, we use an intuitive dynamics model that yields surprisingly

good results. All of our applications are assumed to be tracking objects with physical

mass. Because we know the low-dimensional process is smooth, we assume the hidden

state evolves according to second-order Newtonian dynamics:

A =


1 Av 0

0 1 Aa

0 0 1

 , (5.27)

C = [100] . (5.28)

The components of the state have intuitive physical analogs: the first component

corresponds to a position, the second to velocity, and the third to acceleration. This

dynamics model allows for a smooth fall off in the covariance between time frames.

The decay of covariances of various linear models is shown in Figure 5-3.

Each component of the output is assumed to evolve independently in time. Putting

this all together, we may search for each component individually, greatly speeding up

the performance of the algorithm.

5.4.2 Synthetic Results

We first demonstrate our algorithm on a synthetic 2D manifold embedded in R3. The

neighborhood structure of this manifold is difficult to estimate from high-dimensional

data, so traditional manifold learning techniques perform poorly on this data set.

Taking into account the temporal coherence between data points and using user

supervision alleviates these problems.

Figure 5-4(top-middle) shows an embedding of the 2D Markov process shown in

120

-1500 -1000 -500 0 500 1000 1500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1500 -1000 -500 0 500 1000 1500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1500 -1000 -500 0 500 1000 1500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1500 -1000 -500 0 500 1000 1500

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5-3: The covariance between samples over time for various (A,C) pairs. The x-
axis represents number of samples from −1500 to 1500. The y-axis shows covariance on a
relative scale from 0 to 1. (top-left) Newtonian dynamics model used in the experiments.
(top-right) Dynamics model using zero acceleration. (bottom-left) Brownian Motion model.
(bottom-right) A second order model with oscillatory modes.

121

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

1
2

3
4

0.511.522.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

yx

z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

2
4

0.511.522.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y
x

z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

Figure 5-4: (top-left) The true 2D parameter trajectory. Semi-supervised points are marked
with big black triangles. The trajectory is sampled at 1500 points (small markers). Points
are colored according to their y-coordinate on the manifold. (top-middle) Embedding of a
path via the lifting F (x, y) = (x, |y|, sin(πy)(y2 + 1)−2 + 0.3y). (top-right) Recovered low-
dimensional representation using our algorithm. The original data in (top-left) is correctly
recovered. (bottom-left) Even sampling of the rectangle [0, 5] × [−3, 3]. (bottom-middle)
Lifting of this rectangle via F . (bottom-right) Projection of (bottom-middle) via the learned
function g. g has correctly learned the mapping from 3D to 2D. These figures are best viewed
in color.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.4

−0.2

0

0.2

0.4

0.6

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

Figure 5-5: (left) Isomap’s projection into R2 of the data set of Figure 5-4(top-middle).
Errors in estimating the neighborhood relations at the neck of the manifold cause the
projection to fold over itself. (right) Projection with BNR, a semi-supervised regression
algorithm. There is no folding, but the projections are not close to the ground truth shown
in Figure 5-4(top-left).

122

Figure 5-4(top-left) into R3. The semi-supervised points are marked with a large tri-

angle. Figure 5-4(top-right) shows our interpolated results for the unlabelled points.

The interpolated values are close to the true values that generated the data set. Al-

though the process is smooth, it clearly does not follow the dynamics assumed by

Equation (5.27) because it bounces off the boundaries of the rectangle [0, 5]× [−3, 3].

Nevertheless, the assumed dynamics of Equation (5.27) are sufficient for recovering

the true location of unlabelled points.

To assess the quality of the learned function g on as-yet unseen points, we evenly

sampled the 2D rectangle [0, 5]× [−3, 3] and lifted the samples to R3 using the same

mapping used to generate the training sequence. See Figure 5-4(bottom-left and

bottom-right). Each sample inR3 is passed through g to obtain the 2D representation

shown in Figure 5-4(bottom-right). The projections fall close to the true 2D location

of these samples.

We applied LLE, Laplacian Eigenmaps, and Isomap to the data set of Figure 5-

4(top-middle). Isomap produced the result shown in Figure 5-5(left). It is difficult to

estimate the neighborhood structure near the neck, where the manifold comes close

to intersecting itself, so Isomap creates folds in the projection.

Figure 5-5(right) shows the result of BNR. Compared to our result in Figure 5-

4(top-right), the interpolated results are incorrect for most points. Since BNR does

not attempt to enforce any geometric invariance in the projection, it is fairly robust

to the neighborhood estimation problem.

For this and subsequent data sets, neither LLE nor Laplacian Eigenmaps produced

sensible results. This may be due to the low rate at which the manifold is sampled.

5.4.3 Interactive Tracking

Our algorithm is not limited to rigid body tracking. We applied it to a lip tracking

experiment exhibiting deformable motion, and to an upper-body tracking experiment

exhibiting articulated motion. In these experiments, we restricted ourselves to re-

covering the missing labels of the training data and labeling frames acquired under

the same setting from which the training data was gathered. Our algorithm op-

123

erates on the entire frames, as shown in the figures. Images were not in any way

preprocessed before applying our algorithm, though to apply the learned mapping to

different settings, more taylored representations or kernels could be employed. We

tuned the parameters of our algorithm (Av, Aa, the diagonal entries of Λω, and the

weights λd, λs, and λk) by minimizing the leave-one-out cross validation error on the

semi-supervised points using the simplex method.

Figure 5-6 shows frames in a 2000 frame sequence of a subject articulating his lips.

The top row shows the frames that were manually annotated with a bounding box

around the lips. The bottom row shows the bounding boxes returned by g on some

typical frames in the sequence. Only five labelled frames were necessary to obtain

good lip tracking performance. The tracker is robust to natural changes in lighting,

blinking, facial expressions, small movements of the head, and the appearance and

disappearance of teeth.

Figure 5-7 shows 12 labelled images in a 2300 frame sequence of a subject moving

his arms. These frames were manually labelled with line segments denoting the

upper and lower arms. Figure 5-8 shows the recovered limb positions for unlabelled

samples, some of which were not in the training sequence. Because the raw pixel

representation is used, there are very few visual ambiguities between appearance and

pose, and occlusions due to crossing arms do not present a problem.

The utility of dynamics is most apparent in articulated tracking. Setting λd to

zero makes our algorithm ignore dynamics, forcing it to regress on the semi-supervised

examples only. The resulting function produced the limb locations shown in black in

Figure 5-8. Using dynamics allows the system to take advantage of the unsupervised

points, producing better estimates of limb position.

5.4.4 Calibration of HCI Devices

The Audiopad is an interface for musical performance that aims to combine the mod-

ularity of knob based controllers with the expressive character of multidimensional

tracking interfaces [75]. Audiopad uses a series of electromagnetically tracked objects,

called pucks, as input devices. The performer assigns each puck to a set of samples

124

Figure 5-6: The bounding box of the mouth was annotated for 5 frames of a 2000 frame
video. The labelled points (shown in the top row) and first 1500 frames were used to
train our algorithm. The images were not altered in any way before computing the kernel.
The parameters of the model were fit using leave-one-out cross validation on the labelled
data points. Plotted in the second row are the recovered bounding boxes of the mouth for
various frames. The first three examples correspond to unlabelled points in the training
set. The tracker is robust to natural changes in lighting, blinking, facial expressions, small
movements of the head, and the appearance and disappearance of teeth.

Figure 5-7: The twelve supervised points in the training set for articulated hand tracking
(see Figure 5-8).

125

Figure 5-8: The hand and elbow positions were annotated for 12 frames of a 2300 frame
video. The labelled points (shown in Figure 5-7) and the first 1500 frames were used to
train our algorithm. The images were not preprocessed in any way. Plotted in white are the
recovered positions of the hands and elbows. Plotted in black are the recovered positions
when the algorithm is trained without taking advantage of dynamics. Using dynamics
improves tracking significantly. The first two rows correspond to unlabelled points in the
training set. The last row correspond to frames in the last 800 frames of the video, which
was held out during training.

126

that he wishes to control. Audiopad determines the position and orientation of these

objects on a tabletop surface and maps this data into musical cues such as volume

and effects parameters. Graphical information is projected onto the tabletop surface

from above, so that information corresponding to a particular physical object on the

table appears directly on and around the object.

The Audiopad hardware is a result of further development of the Sensetable sys-

tem [74]. The Sensetable tracks each puck using one or two RF tags. A simple type

of RF tag, known as an LC tag, consists of a coil of wire and a capacitor. This circuit

resonates at a specific frequency depending on its inductance and capacitance. Using

clever antenna geometries, these simple structures can be tracked in space using am-

plitude measurements of the tags resonant frequencies. To determine the position of

the RF tag on a two dimensional surface, a modified version of the sensing apparatus

found in the ZowieTMEllie’s Enchanted GardenTMplay set is used [21]. Each tag on

the table resonates at a different frequency, so their positions can be determined inde-

pendently, but there is a fair amount of black art in the decoding of the amplitude of

resonances in the antenna to the tag-positions. As an exemplary embodiment, I will

now describe how to learn the mapping from antenna resonance to tag position using

semi-supervised regression with no knowledge of the particularities of the antenna

geometry.

We wish to learn to map these 10 recorded measurments to the 2D position of the

RFID tag. Previously, a mapping was recovered by hand through an arduous reverse-

engineering process that involved building a physical model of the inner-workings

of the Sensetable, and resorting to trial and error to refine the resulting mappings.

Rather than reverse-engineering this device by hand, we show that it is possible to

recover these mappings semi-automatically, with only 4 labelled examples and some

unlabelled data points. This is a challenging task because the relationship between

the tags position an the observed measurements is highly oscillatory. Once it is

learned, we can use the mapping to track RFID tags. Of course, this procedure is

quite general, and can be applied to a variety of other hardware.

To collect labelled examples, we placed the tag on each of the four corners of

127

the Sensetable and recorded the Sensetables output. We collected unlabelled data

by sweeping the tag on the Sensetables surface for about 400 seconds, and down-

sampled the result by a factor of 3 to obtain about 3600 unlabelled data points. The

four labelled points, along with the few minutes of recorded data were passed to the

semi-supervised learning algorithm to recover the mapping. Figure 5-10(left) shows

the ground truth trajectory of the RFID tag, as recovered by the manually reverse-

engineered Sensetable mappings. The four triangles in the corners of the figure depict

the location of the labelled examples. The rest of the 2D trajectory was not made

available to the algorithm. Figure 5-9(right) shows an example of the output from the

Sensetable. Contrary to what one might hope, each trace of the output does not have

a straightforward one-to-one relationship to a component of the 2D position. Rather,

this relationship is smooth but sinusoidal. For example, when the tag is moved in a

straight line from left to right, it generates sinusoidal traces similar to those shown

in Figure 5-9(right).

The algorithm took 90 seconds to process this data set on a 2.8 Ghz Xeon machine.

The trajectory is recovered accurately despite the complicated relationship between

the 10 outputs and the tag position. See Figure 6. Its RMS distance to the ground

truth trajectory is about 1.3 cm, though the ground truth itself is based on the reverse

engineered tracker and may be inaccurate.

The mapping from measurements to positions is learned can be used to track tags.

The recovered trajectories provide a subjective means of evaluating the accuracy of

the tracker. Individual samples of 10 measurements can be passed to f to recover the

corresponding tag position. Figure 5-11 shows the output of a few test paths. The

recovered trajectories match the patterns traced by the tag.

The mapping cannot be learned from the four labelled examples alone using

Tikhonov regularization, demonstrating that access to unlabelled data and prior

knowledge about dynamics is very helpful in real-world applications. See Figure 5-

12(left). Figure 5-12(middle) shows the trajectory recovered by BNR with its most

favorable parameter setting for this data set. Figure 5-12(right) shows the trajectory

recovered by BNR when temporally adjacent neighbors are counted as part of the ad-

128

10 20 30 40 50 60

−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure 5-9: An image of the Audiopad. The plot shows an example stream of antenna
resonance information. Samples from the output of the Sensetable over a six second period,
taken over the trajectory marked by large circles in the left panel.

jacency graph when computing the Laplacian. As with the synthetic data set, there

is severe shrinkage toward the mean of the labelled points, and some folding at the

bottom. Taking temporal adjacency into account does not significantly improve the

results.

5.4.5 Electric Field Imaging:

Anyone who has walked near a radio has likely noticed that the human body can cause

interference with the transmission. This is because the human body acts as a capacitor

coupling the radio frequencies to ground. This interference has been extensively

utilized in the design of human computer interfaces and musical instruments at the

Media Lab [33] [110] [72].

Some elementary field imaging sensor architectures have been developed by search-

ing complex forward models [92]. A different approach was to combine several simple

sensors [79]. Here I demonstrate a simple, inexpensive architecture based around a

resistive sheet connected to a simple network of sub-dollar microcontrollers.

The Resistofish is a resistive sheet with electrodes along each side (see Figure 5-

14). When a human is in the proximity of the sheet, it couples capacitively to the

sheet. Based on the position of the body, there is a resistance between the coupling

point and the electrodes. If one sensor is charged and another measures current with

low impedance, the charging time can be used to estimate the time constant of the

129

50 100 150 200 250 300 350 400 450

350

400

450

500

550

600

50 100 150 200 250 300 350 400 450

400

450

500

550

600

50 100 150 200 250 300 350 400 450

350

400

450

500

550

600

Figure 5-10: (left) The ground truth trajectory of the tag. The tag was moved around
smoothly on the surface of the Sensetable for about 400 seconds, producing about 3600
signal strength measurement samples after downsampling. Triangles indicate the four lo-
cations where the true location of the tag was provided to the algorithm. The color of
each point is based on its y-value, with higher intensities corresponding to higher y-values.
(right) (middle) The recovered tag positions match the original trajectory. (right) Errors
in recovering the ground truth trajectory. Circles depict ground truth locations, with the
intensity and size of each circle proportional to the Euclidean distance between a points
true position and its recovered position. The largest errors are outside the bounding box
of the labelled points. Points in the center are recovered accurately, despite the lack of
labelled points there.

−450 −400 −350 −300 −250 −200 −150 −100 −50
−650

−600

−550

−500

−450

−400

−350

−450 −400 −350 −300 −250 −200 −150 −100

−600

−550

−500

−450

−400

−350

−450 −400 −350 −300 −250 −200

−580

−560

−540

−520

−500

−480

−460

−440

−420

−400

−300 −250 −200 −150 −100 −50

−580

−560

−540

−520

−500

−480

−460

−440

−420

−400

−400 −350 −300 −250 −200 −150
−600

−550

−500

−450

−400

−400 −350 −300 −250 −200 −150
−600

−550

−500

−450

−400

−400 −350 −300 −250 −200 −150

−580

−560

−540

−520

−500

−480

−460

−440

−420

−400

−380

−400 −350 −300 −250 −200 −150 −100

−600

−550

−500

−450

−400

−350

Figure 5-11: Once f is learned, it can be used it to track tags. Each panel shows a ground
truth trajectory (blue crosses) and the estimated trajectory (red dots). The recovered
trajectories match the intended shapes.

130

0 50 100 150 200 250 300 350 400 450 500

350

400

450

500

550

600

100 150 200 250 300 350 400

350

400

450

500

550

600

100 150 200 250 300 350 400

350

400

450

500

550

600

Figure 5-12: (left) Tikhonov regularization with labelled examples only. The trajectory is
not recovered. (middle) BNR with a neighborhood size of three using nearest neighbors.
(right) BNR with same neighborhood settings, with the addition of temporal neighbors.
There is folding at the bottom of the plot, where black points appear under the red points,
and severe shrinking towards the mean.

RC pair.

Using the four electrode pairs, we trained two hand trackers with the resistive

sheets. The first was made by creating a 7 × 12 grid on the sheet and measuring

approximately 30 samples per point. We then used leave-one-out cross validation

to train a kernel machine to map sensor outputs to hand positions. The second

tracker was made using the unsupervised regression algorithm with a dynamics prior.

Creating a similar 2D tracing, we learned the best mapping, with no parameter tuning

and 200 samples. The results of a test tracing are displayed in Figure 5-15.

Both algorithms recovered geometry to similar accuracy (see Figure 5-16), but

the supervised algorithm was far more laborious to train. While the unsupervised

method only took 30 seconds to acquire the data, and 10 seconds to process it, the

supervised algorithm took nearly an hour to gather the data, and an hour to perform

the cross validation.

5.5 Conclusion

We have presented a semi-supervised regression algorithm for learning the appearance

manifold of a scene from a video sequence. By taking advantage of the dynamics

in video sequences, our algorithm learns a function that projects images to a low-

dimensional space with semantically meaningful coordinate axes. The experiments

131

Learning to Track with Resistofish

$2

Impulse response
Voltage

time

Figure 5-13: The Resistofish senses humans by detecting the low-level electric fields that
couple them to ground. The hand couples capacitively to a resistive sheet with electrodes on
the sides. The time constant of the RC pair that couple the hand to the sheet are measured
by undersampling timing the impulse response of a voltage change at each electrode.

Figure 5-14: The resistive sheet and the two dollar sensor that make up the Resistofish
hardware.

Tikhonov Regularization.
12x7 grid. 2595 examples.
All labels provided.

Unsupervised Algorithm.
200 examples. No labels. Figure 5-15: Two different algorithms were used to measure the mapping from the RC

time constants to the position of the hand. (left) A sample trajectory. (middle) The
recovered trajectory under the supervised algorithm. (left) The recovered trajectory by the
unsupervised regression algorithm. Note that the trajectory is rotated, but the geometry is
correctly recovered.

132

Figure 5-16: The top row is recovered using the supervised algorithm. The bottom row
is recovered by the unsupervised algorithm. The middle panels is the recovered traces of
someone writing ”MIT.” The right-most panels are the recovered traces of someone writing
”Ben.” The mapping recovered by the unsupervised algorithm is as useful for tracking
human interaction as the mapping recovered by the fully calibrated regression algorithm.

demonstrate that this optimization framework is a powerful way to build trackers

with very little domain specific knowledge and very few data points.

133

134

Chapter 6

Output Prior: Manifolds of Low

Codimension

In this final chapter, I will describe a novel algorithm for learning manifolds defined

by observed data. Most algorithms that claim to learn manifolds can only operate

under restrictive locality assumptions, and, even more problematically, can only learn

mappings that are 1-1 [97, 85, 8, 27, 106, 16]. The most simple example of a manifold,

the sphere, breaks all of the present algorithms.

Here, I take a different approach. I will learn functions on the high dimensional

space that are constant on the manifold. These functions will define the manifold

structure, with the space normal to the manifold spanned by the gradients of these

functions.

This method is similar to the novelty deteciton algorithms that use kernels to

generate inequality constraints that bound the data [96, 10, 88]. Here, we will learn

equality constraints, and in turn, implicitly defined manifolds on which the data lie.

135

6.1 Learning Manifolds of Low Codimension

Let M be a surface in embedded in Rd implicitly defined by unknown differentiable

functions f1, . . . , fJ . That is,

M = {x ∈ Rd : fj(x) = 0 j = 1, . . . J} (6.1)

Let us further assume that {Dfj(x)} span a J-dimensional space for every x ∈ M.

Such a surface is a manifold of codimension J by the implicit function theorem.

Let xi be a collection of N points sampled from M via some unknown probability

distribution p on M.

We assume that both p and f1, . . . , fJ are unknown. Let us even assume the

codimension J is unknown. The goal will be to approximate the unknown functions

fj from the data xi

(i) Lift the data to a higher dimensional Hilbert space H via a mapping Φ : Rd →

H.

(ii) Using linear algebra, find a set of vectors aj, j = 1, . . . , k such that a>j Φ(xi) = 0

for all i.

(iii) Return fj(x) := a>j Φ(x)

The only difficulty is in choosing the mapping Φ so that the output function is

stable and produces reasonable models. Following the theme of the thesis, we will

choose fj to live in a Reproducing Kernel Hilbert Space. There are two cases we

will investigate. First, we will discuss the case of finite dimensional liftings and, in

particular, consider the case when fj are polynomials. Then we will focus on the

generic case where fj live in an arbitrary RKHS.

What is the advantage of learning multiple functions which are zero on the data

set? And how many functions are needed to define an implicit surface? The answer

comes from a variant of the implicit function theorem which states that if g : Rd → RJ

with J ≤ d, then if if Dg has rank J at every x with g(x) = 0, then the preimage of

136

0 under g is a manifold of dimension d − J [41]. J is called the codimension of the

manifold. It is the codimension of the tangent space of the manifold in Rd for every

point x ∈M. The co-dimension is stable to small perturbations of the map g. That

is, Dg remains full rank even if g is perturbed by a small amount, and, in turn, the

preimage of 0 remains a d− J-dimensional manifold.

Let us now consider the situation where we have learned L functions gl which are

all identically zero on M. If L < J then the dimension of the zero-set of the gl is

of larger dimension than that of M. If on the other hand, L > J , we know that the

rank of Dg is at most J . In this case, we can use the rank of Dg to estimate the

codimension of the manifold and from this we can try to learn a set of J functions

which are zero only on M. In what follows, we will learn d + 1 functions, more than

could ever be necessary to define M. From these functions, we will estimate both the

codimension of M and the smallest set of functions necessary to describe M.

6.2 Basis Functions and Polynomial Models

The first option to consider is to choose a set of differentiable basis functions bα for

L2(Rd) and lift x to a subset of those functions

Φ(x) :=
[

b1(x) · · · bT (x)
]>

(6.2)

To compute a constraint, compute the SVD of the matrix A = [Φ(x1), . . . , Φ(xN)] If

A does not have full row rank, than any vector in the left null space will suffice for

the desired vector a.

For example, if we wanted the constraint to be algebraic, we could lift to a vector

of monomials of bounded degree

Φ

([
x1 · · · xd

]>)
:=
[

1 x1 · · · xd x1x2 x1x3 · · ·
]>

. (6.3)

The utility of such an approach can be illustrated by supposing the data was drawn

137

from the unit sphere in R3. If we lift the data as

Φ

([
x1 x2 x3

]>)
:=
[

1 x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x2x3 x1x3

]>
(6.4)

one would find the vector

a> =
[

1/2 0 0 0 −1/2 −1/2 −1/2 0 0 0
]>

(6.5)

annihilates all points of the lifting. And this, of course, is the constraint x2
1+x2

2+x2
3 =

1.

6.3 Lifting to a General RKHS

Suppose we wish to search for a radial basis function of the form

f(x) =
∑

i

cik(xi,x) (6.6)

where k(x,y) is a positive definite kernel. Unfortunately, such an expression cannot

define the surface M.

Proposition 6.3.1 Suppose f(x) =
∑

i cik(xi,x). Then f(xj) = 0 for all j if and

only if f(x) ≡ 0.

Proof Since f(x) = 〈f, k(x, ·)〉K in the RKHS,

0 = f(xj) = 〈f, k(xi, ·)〉K = 〈
∑

i

cik(xi, ·), k(xj, ·)〉K (6.7)

implies that f is a vector in the span of k(xi, ·) which is orthogonal to all of the k(x, ·)

which implies that f = 0.

We can conclude from this proposition any non-zero function in the RKHS which

is zero on M must be orthogonal to k(x, ·) for all x ∈M. This inspires the following

approach: let α1, . . . , αs be a basis for the span of {k(x1, ·), . . . , k(xN , ·)}. If we pick

138

some basis functions b1, . . . , bt in the RKHS which are not contained in the span of

the data, we can perform Gram-Schmidt on the set {b1, . . . , bt, α1, . . . , αs} to yield t

functions g1, . . . , gt which are orthonormal in the RKHS and are orthogonal to the

span of the data. We would then have gj(xi) = 0 for all i. And, in the limit of enough

data, we would have gj(x) = 0 for all x ∈M.

In practice, this amounts to fixing the expansion for gj as

gj(x) =
t∑

m=1

ajmbm(x) +
N∑

n=1

cjnk(xn,x) (6.8)

and searching for [a, c] such that gj(x) = 0. That is, searching in the null space of

the rows of

A = [Φ(x1), . . . , Φ(xN)] (6.9)

where

Φ(x) :=
[

b1(x) · · · bt(x) k(x1,x) · · · k(xN ,x)
]>

. (6.10)

There are thus two different interpretations of the lifting when using radial basis

functions. The first is that we have chosen a set of basis functions based on the data

x1, . . . ,xN and then lifted to this basis set as in Section 6.2. The second interpretation

is that we are lifting each data point to the infinite dimensional RKHS under the

mapping x 7→ k(x, ·) and are searching for an element in the RKHS orthogonal to

the data under this lifting.

6.4 Null Spaces and Learning Surfaces

Note that we could have tried to learn a set of functions gj such that

gj(xi) = gj(xk) ∀i, k (6.11)

This function would be constant on the data set. A function that is zero on the data

set could be produced by setting ĝj = gj − gj(x1).

139

Define the extended kernel matrix to be the N×(N + t) matrix K̂ = [K,B] where

B has entries

Bij = bj(xi) (6.12)

For each M , define the (M − 1)×M matrix A[M] to be

A[M]ij =


1 1 ≤ i = j < M − 1

−1 1 ≤ i = j − 1 < M − 1

0 otherwise

(6.13)

that is

A[M] =



1 −1 0 0 . . . 0

0 1 −1 0 . . . 0
. . .

0 . . . 0 1 −1 0

0 . . . 0 0 1 −1


(6.14)

A function of the form (6.16) satisfies (6.15) for all i and k between 1 and N if and

only if A[N]K̂[c, a]> = 0. In particular, the coefficients of the expansion in (6.16) lie

in the null space of A[N]K̂. In this case, we can find the space of all functions that

are constant on the data set.

This approach has a nice generalization to the case where we are searching for a

function that is constant on multiple data sets. For example, if we are given multiple

trajectories of a conservative system, each trajectory will have constant energy, but

two different trajectories will likely have different energy.

In this case, we are presented with data partitioned into disjoint subsets Sk ⊂

{1, . . . , N}. We seek to find gj such that

gj(xm) = gj(xn) if m, n ∈ Sk for some k (6.15)

Assume without loss of generality, that each Sk is a contiguous subset of {1, . . . , N}

of size Nk. In this case, we may define the matrix A = diag(A[N1], . . . ,A[Nk]) and

140

search for coefficients in the null space of AK̂.

6.5 Choosing a Basis

Once a desired space of functions is learned, a basis can be selected by finding a set of

coefficients, C, such that, the functions C are constant on the data, and the gradients

of the functions C

∇gj(xi) =
t∑

m=1

ajm∇bm(xi) +
N∑

n=1

cjn∇k(xn,xi) (6.16)

are linearly independent for each i. Since this condition is linear in the coefficients,

we can jointly search for C that define functions that are constant on the data and

whose span is linearly independent.

6.6 Learning Manifolds

I have performed experiments with several data sets in R3. In all cases, I used a

gaussian kernel as in Equation (2.74) with C = 1. The basis functions were chosen to

be the constant function and the three linear functions x, y, and z. In Figures 6-1 and

6-2 I show the results on fitting the 2-sphere. I generated 200 uniformly distributed

points shown in Figure 6-1 by sampling from a gaussian and then normalizing the

vectors to have length 1. In Figure 6-2 I show the recovered zero-sets for the four func-

tions, with the rightmost frame showing the intersection of the four zero sets. Similar

results were obtained for the confectionary data-sets DOUGHNUT and SWISS and

shown in Figures 6-3, 6-4, 6-5, and 6-6. In all cases, the dimension of the space

spanned by the gradients of the functions which defined the zero-set were correctly

estimated to be 1, the codimension of all of the manifolds.

The learned functions are robust to noise in the data. We can demonstrate this by

showing |gj(x)| < ε on the true manifold. On the SPHERE data set, adding gaussian

noise with covariance 10−311 results in a function which is less that 10−4M on the

141

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5
−1

−0.5
0

0.5
1

1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6-1: The SPHERE data set. 200 points were sampled from a gaussian with unit
variance and then normalized to have length 1. This sampling procedure generates a uniform
distribution on the sphere.

entire sphere where

M = maxj,x gj(x)

s.t. x ∈ [−2, 2]× [−2, 2]× [−2, 2]
(6.17)

142

Figure 6-2: The first four figures show the zero-contours of four functions whose coefficients
span the null-space of lifted data for SPHERE. The final figure shows the intersection of
these four surfaces. This plot is computed by calculating the zero contour of the sum of the
squares of the four functions.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.4

−0.2

0

0.2

0.4

Figure 6-3: The DOUGHNUT data set. 200 points were sampled uniformly from the
box [0, 2π] × [0, 2π] and then lifted by the map (x, y) 7→ (cos(x) + 1

2 cos(y) cos(x), sin(x) +
1
2 cos(y) sin(x), 1

2 sin(y))

Figure 6-4: The first four figures show the zero-contours of four functions whose coefficients
span the null-space of lifted data for DOUGHNUT. The final figure shows the intersection
of these four surfaces. This plot is computed by calculating the zero contour of the sum of
the squares of the four functions.

143

−4
−2

0
2

4−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 6-5: The SWISS data set. 1000 points were sampled uniformly from the box
[0, 5]× [0, 6] and then mapped (x, y) 7→ (x, |y| cos(2y), |y| cos(2y)).

Figure 6-6: The first four figures show the zero-contours of four functions whose coefficients
span the null-space of lifted data for SWISS. The final figure shows the intersection of these
four surfaces. This plot is computed by calculating the zero contour of the sum of the
squares of the four functions.

144

Chapter 7

Conclusion

Beginning with one simple cost function, I have presented a powerful framework for

semi-supervised and unsupervised learning. The optimizations defined by this cost

function can be principally approximated using Lagrangian duality. Furthermore,

these approximations can be optimized efficiently using standard algorithms. In this

way, once we have posed a learning problem in our framework, its solution is immedi-

ate. This puts the burden on the practitioner to pose the problem, not to slave over

creating novel algorithms.

The utility of this framework was demonstrated through four very different appli-

cations. In each case, I adjoined a simple and intuitive prior to the function learning

problem and then showed how such simple additions immediately produced power-

ful algorithms. First, I considered priors on the kernel function that generates the

RKHS. From such priors, new insights into Kernel Learning were derived, and a

novel method for learning polynomial kernels was presented. Second, I showed how

the prior of binary labels lead to powerful algorithms for transductive classification

and segmentation. The segmentation algorithm generalizes the so-called spectral clus-

tering algorithms. Third, I imposed a dynamics prior on the labels and developed an

optimization that can learn a mapping between two time series. This optimization

takes as input examples of how to map individual samples of the input time series to

corresponding samples of the output time series. Because it assumes that the output

time series follows known dynamics, it can also take advantage of unlabelled input

145

samples. Finally, by applying the prior that the hidden function was constant on the

data, a new method for learning manifolds based on implicit functions was derived.

There are a variety of directions that remain to be explored. With a particu-

lar focus on the examples presented in this thesis, there are many interesting open

problems. For clustering, it would be interesting to develop methods for multiclass

classification that do not require successive application of two-way clustering algo-

rithms. It would be useful to devise a method that, when given an initial guess at

the number of clusters, K, tries to find the best K-way partitioning at once. For

the dynamics algorithms, the state transition matrices were fixed a priori. Applying

techniques from system identification [60, 71, 102], it may be possible to learn these

as well by modifying the current optimization. Furthermore, a method for semi-

supervised regression with a nonlinear dynamics model would be of great interest.

The techniques developed in Chapter 6 could be used to empirically study the con-

served quantities of dynamical systems [3, 59]. Furthermore, such methods could be

used for nonlinear system identification by finding the manifolds that are constant on

the trajectories of dynamical systems. There is an endless variety of domain specific

applications that can be derived with new output priors, and it would be interesting

to expand the toolbox of techniques that fall under this framework.

I am particularly interested in exploring further applications of the duality tools

used in Chapter 3. Recall that I was able to construct a proof of the Representer

Theorem using duality on the Hilbert Space of functions. Inspired by the polynomial

relaxation techniques that exploit positivity conditions in the dual problems [58, 73],

I hope to develop new techniques for solving quadratic problems where the primal

problem deals with very high dimensional objects. Such relaxations provide finite

dimensional convex programs that operate on sufficient statistics of the original op-

timization program. For example, in Chapter 3, I only needed to consider the inner

products of the infinite dimensional f with a finite set of vectors. It remains to be

seen if we can generalize past the results of Chapter 3 to provide further insights

into the structure of Reproducing Kernel Hilbert Spaces and devise new techniques

in machine learning.

146

There are two other areas where I believe such techniques can yield powerful new

algorithms. First, there has been substantial activity in the controls community to

develop analysis and synthesis tools for systems consisting of extremely large num-

bers of interconnected subsystems. A large part of this effort has been devoted to

developing tools that scale gracefully with the number of subsystems, and their at-

tendant local sensing, actuating, and computing elements. Clearly for systems that

are comprised of a large number of subsystems, structure must be fully exploited to

obtain tractable analysis and control synthesis algorithms.

Recent work has made a great deal of progress in exploiting the symmetry present

in such systems. Control laws can be distributed such that they only rely on lo-

cal communication, yet can still give rise to desired global behavior, and, in certain

settings, it has been shown that spatially distributed controllers are optimal for the

control of spatially invariant systems [5, 65]. The synthesis of such distributed con-

trollers is often convex [26, 104], and taking the distributed structure of a problem

into account can greatly reduce the complexity of control design without sacrificing

system performance [18].

I want to connect the recently presented techniques for the control design of spa-

tially interconnected systems [22, 23, 24] to the relaxation of duality on Hilbert spaces.

I have shown how these results are in fact applicable to a much larger class of inter-

connection topologies where the symmetry of the interconnection may be noncom-

mutative [81, 82]. The dual techniques developed in this thesis may provide further

analysis conditions which guarantee performance objectives for these interconnected

systems.

Secondly, I want to explore applications in quantum information. For a quantum

system, the Hamiltonian is the mathematical object which both governs the evolution

of the system and the energies of the various configurations. A fundamental problem

is to determine the configuration with the lowest possible energy. Such a configuration

is called the ground state of a given Hamiltonian and its corresponding energy level

is called the ground state energy [57].

The ground state energy is generally NP-HARD to calculate. Even the simple

147

looking problem of configuring an array of small quantum magnets, called spins, to

minimize their interaction energy is NP-HARD [6], although special cases can be

solved analytically [54]. Furthermore, it often requires exponentially many numbers

to describe the ground state itself. Since it is likely impossible to exactly calculate

the ground state or ground state energy of a generic quantum system, alternative

approximate means are needed to gain insight into the structure of the quantum

ground state. Many approximate techniques have been developed. Early techniques

used perturbations around a so-called “mean field” to generate useful estimates of

molecular structure [95]. The Density Matrix Renormalization Group [107] has been

widely successful in the study of chains of identical systems, but does not scale to

arbitrarily coupled topologies. Chemists in the 1950s developed analytic tools for

studying electrons [64, 66] that could only be solved in simple cases until they were

shown half a century later to be solvable by semidefinite programming [67].

I intend to study a new approach to estimating the ground state energy using

approximations of the dual problem. Noting that most Hamiltonians are presented

as sums of products of local interaction terms, redundant constraints amongst these

interactions can be adjoined to the formulation of the ground state problem. These

interactions may be easy to analyze on their own and their energy levels can be added

as redundant constraints. By relaxing the dual, I hope to produce optimization prob-

lems that are polynomial in the number of interactions. I am particularly interested

in exploring how these techniques extend the work on electrons [67] to a more widely

applicable framework and how this new approach might generalize the algorithm to

the Goemans-Williamson algorithm for MAX-CUT [37] to the quantum regime.

148

Appendix A

Linear Algebra

Many of the algebraic manipulations used in this document are based on techniques

derived from minimizing quadratic forms. Here we present some of these derivations.

A.1 Unconstrained Quadratic Programming

Given a matrix A, one can readily check that

min
x

x>Ax =

0 A � 0

−∞ otherwise

(A.1)

This is because if A has any negative eigenvalues, then the cost is unbounded below.

Assume A is positive semidefinite and consider the quadratic program

min
x

x>Ax− 2b>x + c (A.2)

we may, differentiate with respect to x to find that at the optimum

Ax = b (A.3)

If A is invertible then the minimum is −b>A−1b + c

149

A.2 Schur Complements

Let M be a matrix partitioned as

M =

 A B

B> C

 (A.4)

For the simplicity of presentation, let us assume that A and B are invertible. The

Schur complement of A in M is defined to be

(M|A) = C−B>A−1B (A.5)

and the Schur complement of C in M is

(M|C) = A−BC−1B> (A.6)

A.3 More Quadratic Programming

For the quadratic minimization

min
x2

 x1

x2

>  A B>

B C

 x1

x2

− 2

 b1

b2

>  x1

x2

 (A.7)

the optimal x∗2 is given by

x∗2 = C−1(b2 −Bx1) (A.8)

Plug that back into the cost function:

x>1 (M|C)x1 − 2(b1 −BC−1b2)
>x1 (A.9)

Similarly, minimizing over x1 gives the cost function

x>2 (M|A)x2 − 2(b2 −B>A−1b1)
>x2 (A.10)

150

Solving these two reduced quadratic programs gives x∗1

x∗2

 =

 (M|C)−1(b1 −BC−1b2)

(M|A)−1(b2 −B>A−1b2)

 (A.11)

A.4 Inverting Partitioned Matrices

Since  x∗1

x∗2

 = M−1

 b1

b2

 (A.12)

we see that

M−1 =

 (M|C)−1 −(M|C)−1BC−1

−(M|A)−1B>A−1 (M|A)−1

 (A.13)

A.5 Schur complement Lemma

One of the most important tools used throughout the document is the Schur Com-

plement Lemma. This Lemma often allows for the transformation of polynomial

expressions into semidefinite constraints that are linear in the parameters of interest.

Lemma A.5.1 (The Schur Complement Lemma)

M � 0 ⇐⇒ C � 0 and (M|C) � 0 (A.14)

Proof The (=⇒) direction is true because subblocks of positive semidefinite ma-

trices are positive semidefinite and M−1 is positive semidefinite when M is.

To prove the reverse direction, consider minimizing (A.7) with b1 = b2 = 0. Then

for any x,

min
x2

 x1

x2

>M

 x1

x2

 = x>1 (M|C)x1 ≥ 0 (A.15)

and hence minx x>Mx ≥ 0 and M is positive semidefinite.

151

A.6 Matrix Inversion Lemma

(A−BC−1B>)−1 = A−1 + A−1B(C−B>A−1B)−1B>A−1 (A.16)

To check this, apply the partitioned matrix formula twice and set the first blocks

equal to each other.

Standard form: C → −C−1

(A + BCB>)−1 = A−1 −A−1B(C−1 + B>A−1B)−1B>A−1 (A.17)

A.7 Lemmas on Matrix Borders

Lemma A.7.1 Let A � 0 be n× n and x ∈ Rn. Then

Âx =

 x>Ax x>A

Ax A

 � 0 (A.18)

Proof We will have proven the lemma if we can show that v>Âxv ≥ 0 for all

v ∈ Rn+1. Partition v as [v0,v1] with v0 ∈ R and v1 ∈ Rn.

If v0 = 0, then

v>Âxv = v>1 Av1 ≥ 0 (A.19)

Assume v0 6= 0. Without loss of generality, we may assume v0 = 1. Then we have

v>Âxv = x>Ax + 2v>1 Ax + x>Ax =

 v1

x

>  A A

A A

 v1

x


=

 v1

x

> 1 1

1 1

⊗A

 v1

x

 .

(A.20)

The last expression is greater than or equal to zero for all v1 because the all ones

matrix and A are both positive semidefinite, and the tensor product of two posi-

tive semidefinite matrices is positive semidefinite. Therefore, we have shown that

v>Âxv ≥ 0 as desired.

152

Lemma A.7.2 Let A � 0 be n× n, x ∈ Rn, and t ∈ R. Then t x>

x A

 � 0 (A.21)

if and only if x is in the range of A and x>A†x ≤ t.

Proof Suppose x is not in the range of A. Then x = x‖ + x⊥ with x>‖ x⊥ = 0,

x⊥ 6= 0 and x⊥ orthogonal to the range of A. Since A is hermitian, Ax⊥ = 0.

Consequently, if we set

v = − t

‖x⊥‖2
x⊥ (A.22)

then we have  1

v

>  t x>

x A

 1

v

 = t + 2v>x + v>Av

= t− 2t + 0 = −t < 0

(A.23)

violating the assumption (A.21). Similarly, if x>A†x ≥ t, the Schur Complement

Lemma tells us that (A.21) cannot hold.

The converse is an immediate consequence of A.7.1.

153

154

Appendix B

Equality Constrained Norm

Minimization on an Arbitrary

Inner Product Space

Let V be a real inner product space and let w1, . . . ,wN ∈ V , a1, . . . , aN ∈ R. Consider

the optimization

min
v∈V

〈v,v〉

s.t. 〈v,wi〉 = ai for i = 1, . . . , N

(B.1)

We can construct the dual program by introducing Lagrange multipliers λi for i =

1, . . . , N and forming the Lagrangian

L(v, λ) = 〈v,v〉 − 2
N∑

i=1

λi(〈v,wi〉 − ai) (B.2)

Note that, just as in the finite dimensional case, if we maximize this Lagrangian

with respect to λi, then we either get 〈v,v〉 if 〈v,wi〉 = ai for all i or ∞ otherwise.

Hence the problem (B.1) is equivalent to minv maxλ L(v, λ). The dual program is

maxλ minv L(v, λ) and always achieves a lower optimal value than the primal pro-

155

gram. We can explicitly compute the dual as follows

max
λ

min
v
L(v, λ) = max

λ
min

v
〈v,v〉 − 2

N∑
i=1

λi(〈v,wi〉 − ai)

= max
λ

min
v
〈v,v〉 − 2〈v,

N∑
i=1

λiwi〉+ 2λ>a

= max
λ

min
v
〈v −

N∑
i=1

λiwi,v −
N∑

i=1

λiwi〉

− 〈
N∑

i=1

λiwi,

N∑
i=1

λiwi〉+ 2λ>a

(B.3)

Since 〈u,u〉 ≥ 0 for all u ∈ V , the minimum is achieved when

v =
N∑

i=1

λiwi (B.4)

This results in the dual program

max
λ
−〈

N∑
i=1

λiwi,
N∑

i=1

λiwi〉+ 2λ>a (B.5)

If we introduce the matrix Gram matrix of the wi, W, with entries Wij = 〈wi,wj〉, we

can write this problem as an unconstrained convex quadratic program in N variables

max
λ
−λ>Wλ + 2λ>a (B.6)

The set of optimal dual solutions are the solutions of the equation Wλ∗ = a. When

such a solution exists, the dual optimal value is equal to λ∗>Wλ∗, On the other hand,

when no such solution exists, the program is unbounded above. In this case, weak

duality implies that the primal program is infeasible.

When a dual optimal solution exists, consider the minimizer

v∗ = arg min
v
L(v, λ∗) =

N∑
i=1

λ∗i wi (B.7)

156

First note that this vector is feasible for (B.1) because

〈v∗,wj〉 = 〈
N∑

i=1

λ∗i wi,wj〉 =
N∑

i=1

λ∗i Wij = aj (B.8)

Secondly,

〈v∗,v∗〉 = 〈
N∑

i=1

λ∗i wi

N∑
i=1

λ∗i wi〉 = λ∗>Wλ∗ (B.9)

That is v∗ is a primal feasible point whose primal cost is equal to the dual optimum.

This implies that v∗ is optimal for the primal and λ∗ is a geometric multiplier. Fur-

thermore, any primal optimal point v∗ is of the form
∑N

i=1 λ∗i wi for some dual optimal

λ∗, all of which are geometric multipliers.

Let us summarize the preceding discussion.

Theorem B.0.3 Let V be a real inner product space and let w1, . . . ,wN ∈ V, a ∈

RN . Let W be the Gram matrix of the wj.

(i) The equality constrained norm minimization problem

min
v∈V

〈v,v〉

s.t. 〈v,wi〉 = ai for i = 1, . . . , N

(B.10)

has an associated dual program

max
λ
−λ>Wλ + 2λ>a (B.11)

which is an unconstrained convex quadratic program. The primal optimal value

is equal to the dual optimal value.

(ii) Suppose the optimal value of the primal-dual pair is finite. Then the set of dual

optimal solutions is given by

D := {λ ∈ RN : Wλ = a} (B.12)

157

and the set of primal optimal solutions is given by

P := {
N∑

i=1

λiwi : λ ∈ D} (B.13)

158

Bibliography

[1] A. Argyriou, C. A. Micchelli, and M. Pontil. Learning convex combinations

of continuously parametrized basic kernels. In Proceedings of the 18th Annual

Conference on Learning Theory, 2005.

[2] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings, and

graph partitionings. In ACM Symposium on Theory of Computing, 2004.

[3] M. Audin. Spinning Tops. Number 51 in Cambridge studies in advanced math-

ematics. Cambridge University Press, Cambridge, UK, 1996.

[4] F. R. Bach and M. I. Jordan. Kernel independent component analysis. In

International Conference on Acoustics, Speech, and Signal Processing, 2003.

[5] B. Bamieh, F. Paganini, and M. Dahleh. Distributed control of spatially in-

variant systems. IEEE Transactions on Automatic Control, 47(7):1091–1118,

2002.

[6] F. Barahona. On the complexity of Ising spin glass models. Journal of Physics

A, 15:3241–3253, 1982.

[7] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient

methods for convex optimization. Operations Research Letters, 31:167–175,

2003.

[8] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for em-

bedding and clustering. In Advances in Neural Information Processing Systems,

2002.

159

[9] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Computation, 15(6):1373–1396, 2003.

[10] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clus-

tering. Journal of Machine Learning Research, 2:125–137, 2001.

[11] A. Ben-Tal and A. Nemirovski. Non-euclidean restricted memory level method

for large-scale convex optimization. Mathematical Programming, 102:407–456,

2005.

[12] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimiza-

tion. Athena Scientific, Belmont, MA, 2003.

[13] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In 5th Annual ACM Workshop on COLT, pages 144–152,

1992.

[14] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine

Learning Research, 2(3):449–526, 2002.

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2003.

[16] M. Brand. Charting a manifold. In Neural Information Processing Systems

(NIPS), 2002.

[17] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple

parameters for support vector machines. Machine Learning, 46(1–3):131–159,

2002.

[18] R. Cogill, S. Lall, and P. A. Parrilo. On structured semidefinite programs for

the control of symmetric systems. In Proceedings of the Allerton Conference on

Communication, Control, and Computing, 2003.

[19] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin

of the American Mathematical Society, 39(1):1–49, 2001.

160

[20] C. L. B. D. J. Newman, S. Hettich and C. J. Merz. UCI repository of machine

learning databases, 1998.

[21] A. N. Dames. Position encoder. U.S. Patent No 5815091, September 1998.

[22] R. D’Andrea. A linear matrix inequality approach to decentralized control

of distributed parameter systems. In Proceedings of the 36th Conference on

Decision and Control, pages 1350–1354, 1997.

[23] R. D’Andrea and G. E. Dullerud. Distributed control design for spatially inter-

connected systems. IEEE Transactions on Automatic Control, 48(9):1478–1495,

2003.

[24] R. D’Andrea, C. Langbort, and R. Chandra. A state space approach to con-

trol of interconnected systems. In J. Rosenthal, editor, Mathematical Systems

Theory in Biology, Communication, Computation and Finance. Springer, IMA

Book Series, 2003. To appear.

[25] T. De Bie and N. Cristianini. Convex methods for transduction. In Neural

Information Processing Systems (NIPS), 2003.

[26] G. A. de Castro and F. Paganini. Convex synthesis of localized controllers for

spatially invariant systems. Automatica, 38:445–456, 2002.

[27] D. Donoho and C. Grimes. Hessian eigenmaps: new locally linear embedding

techniques for highdimensional data. Technical report, TR2003-08, Dept. of

Statistics, Stanford University, 2003.

[28] G. Doretto, A. Chiuso, and Y. W. S. Soatto. Dynamic textures. International

Journal of Computer Vision (IJCV), 51(2):91–109, 2003.

[29] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support

vector machines. Advances in Computational Mathematics, 13(1):1–50, 2000.

161

[30] U. Feige and G. Schectman. On the optimality of the random hyperplane

rounding technique for MAX-CUT. Random Structures and Algorithms, 2000.

to appear.

[31] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT

and MAX BISECTION. In E. Balas and J. Clausen, editors, Integer Program-

ming and Combinatorial Optimization, volume 920, pages 1–13. Springer, 1995.

[32] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the

theory of NP-completeness. W. H. Freeman, San Francisco, 1978.

[33] N. Gershenfeld. Sensors for real-time cello analysis and interpretation. In

Proceedings of the ICMC, 1991.

[34] Z. Ghahramani and S. Roweis. Learning nonlinear dynamical systems using

an em algorithm. In Neural Information Processing Systems (NIPS), pages

431–437, 1998.

[35] F. Girosi. An equivalence between sparse approximation and support vector

machines. Neural Computation, 10:1455–1480, 1998.

[36] K. Glashoff and S.-Å. Gustafson. Linear Optimization and Approximation.

Number 45 in Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

[37] M. X. Goemans and D. P. Williamson. Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming.

Journal of the ACM, 42:1115–1145, 1995.

[38] M. X. Goemans and D. P. Williamson. Approximation algorithms for MAX-

3-CUT and other problems via complex semidefinite programming. In ACM

Symposium on Theory of Computing, pages 443–452, 2001.

[39] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combi-

natorial Optimization. Number 2 in Algorithms and Combinatorics. Springer-

Verlag, Berlin, 2nd edition, 1993.

162

[40] G. Gruber and F. Rendl. The bundle method for hard combinatorial optimiza-

tion problems. pages 78–88, 2003.

[41] V. Guilleman and A. Pollack. Differential Topology. Prentice Hall, Englewood

Cliffs, New Jersey, 1974.

[42] J. Ham, D. Lee, and L. Saul. Learning high dimensional correspondences from

low dimensional manifolds. In ICML, 2003.

[43] J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859,

2001.

[44] R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods,

and applications. SIAM Review, 35(3):380–429, 1993.

[45] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,

New York, 1985.

[46] W.-Y. Hsiang. On infinitesimal symmetrization and volume for spherical and

hyperbolic tetrahedrons. Oxford Quarterly Journal of Mathematics, 39(2):463–

368, 1988.

[47] A. Jadbabaie, N. Motee, and M. Barahona. On the stability of the kuramoto

model of coupled nonlinear oscillators. In Proceedings of the American Control

Conference, 2004.

[48] O. Jenkins and M. Mataric. A spatio-temporal extension to isomap nonlinear di-

mension reduction. In International Conference on Machine Learning (ICML),

2004.

[49] T. Joachims. Transductive inference for text classification using support vector

machines. In International Conference on Machine Learning, pages 200–209,

1999.

163

[50] D. R. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by

semidefinite programming. In IEEE Symposium on Foundations of Computer

Science, pages 2–13, 1994.

[51] H. Karloff. How good is the goemans–williamson max cut algorithm? SIAM

Journal on Computing, 29(1):336–350, 1999.

[52] H. Karloff and U. Zwick. A 7/8-approximation for MAX 3SAT. In Proceedings

of the 38th Annual IEEE Symposium on the Foundations of Computer Science,

pages 406–415, 1997.

[53] N. Karmakar. A new polynomial-time algorithm for linear programming. Com-

binatorica, 4(4):373–395, 1984.

[54] P. W. Kasteleyn. Graph theory and crystal physics. In F. Harary, editor, Graph

Theory and Theoretical Physics, pages 43–110, London, 1967. Academic Press.

[55] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In Proc. 18th Inter-

national Conf. on Machine Learning, pages 282–289. Morgan Kaufmann, San

Francisco, CA, 2001.

[56] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan.

Learning the kernel matrix with semidefinite programming. Journal of Machine

Learning Research, 5:24–72, 2004.

[57] L. D. Landau and E. M. Lifshitz. Quantum Mechanics (Non-relativistic Theory),

volume 3 of Course of Theoretical Physics. Butterworth-Heinemann, Oxford,

3rd edition, 1977.

[58] J. B. Lasserre. Global optimization with polynomials and the problem of mo-

ments. SIAM Journal on Optimization, 11:796–817, 2001.

[59] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge

Monographs on Applied and Computational Mathematics. Cambridge Univer-

sity Press, Cambridge, UK, 2004.

164

[60] L. Ljung. System Identification. Theory for the user. Prentice Hall, Upper

Saddle River, NJ, 2nd edition, 1998.

[61] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-

order cone programming. Linear Algebra and its Applications, 284:193–228,

1998.

[62] M. López and G. Still. Semi-infinite programming. Technical report, University

of Twente, 2005.

[63] S. H. Low, J. Doyle, and F. Paganini. Internet congestion control. IEEE Control

Systems Magazine, 2002.

[64] P.-O. Löwdin. Quantum theory of many-particle systems. i. physical interpreta-

tions by means of density matrices, natural spin-orbitals, and convergence prob-

lems in the method of configurational interaction. Physical Review, 97(6):1474–

1489, 1954.

[65] N. C. Martins, S. Venkatesh, and M. A. Dahleh. Controller design and imple-

mentation for large-scale systems, a block decoupling approach. In Proceedings

of the American Control Conference, pages 4728–4733, 2001.

[66] J. E. Mayer. Electron correlation. Physical Review, 100(6):1579–1586, 1955.

[67] D. A. Mazziotti. Variational minimization of atomic and molecular ground-

state energies via the two-particle reduced density matrix. Physical Review A,

65(6):062511–1–062511–14, 2002.

[68] Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic opti-

mization. Technical report, CORE Discussion Paper 9719, 1997.

[69] P. Niyogi and F. Girosi. On the relationship between generalization error,

hypothesis complexity and sample complexity for radial basis functions. Neural

Computation, 8:819–842, 1996.

165

[70] P. Niyogi and F. Girosi. Generalization bounds for function approximation from

scattered noisy data. Advances in Computational Mathematics, 10:51–80, 1999.

[71] P. V. Overschee and B. D. Moor. N4sid: Subspace algorithms for the identi-

fication of combined deterministic– stochastic systems. Automatica, 30:75–93,

1994.

[72] J. A. Paradiso and N. Gershenfeld. Musical applications of electric field sensing.

Computer Music Journal, 21(2):69–89, 1997.

[73] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems.

Mathematical Programming Series B, 96(2):293–320, 2003.

[74] J. Patten, H. Ishii, J. Hines, and G. Pangaro. Sensetable: a wireless object

tracking platform for tangible user interfaces. In CHI ’01: Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 253–260,

New York, NY, USA, 2001. ACM Press.

[75] J. Patten, B. Recht, and H. Ishii. Audiopad: A tag-based interface for musical

performance. In New Interfaces for Musical Expression, Dublin, 2002.

[76] P. Perona and W. Freeman. A factorization approach to grouping. In European

Conference on Computer Vision (ECCV), volume 1406, pages 655–670, June

1998.

[77] A. Pinkus. N-widths in approximation theory. Springer, New York, 1985.

[78] R. Pless and I. Simon. Using thousands of images of an object. In CVPRIP,

2002.

[79] R. Post. Personal communication.

[80] A. Rahimi and B. Recht. Clustering with normalized cuts is clustering with a

hyperplane. In Statistical Learning in Computer Vision, 2004.

166

[81] B. Recht and R. D’Andrea. Exploiting symmetry for the distributed control of

spatially interconnected systems. In 42nd IEEE Conference on Decision and

Control, pages 1446–1452, 2003.

[82] B. Recht and R. D’Andrea. Distributed control of systems over discrete groups.

IEEE Transactions on Automatic Control, 49(9):1446–1452, 2004.

[83] R. Rifkin and A. Klautau. In defense of one-vs-all classification. Jorunal of

Machine Learning Reseach, 5:101–141, 2004.

[84] R. Rifkin, G. Yeo, and T. Poggio. Advances in Learning Theory: Methods,

Models and Applications, volume 190 of NATO Science Series III: Computer

and Systems Sciences, chapter Regularized Least-Squares Classification, pages

131–172. IOS Press, Amsterdam, 2003.

[85] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323–2326, 2000.

[86] I. J. Schoenberg. Metric spaces and positive definite functions. The Annals of

Mathematics, 44(3):522–536, 1938.

[87] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[88] B. Schölkopf, R. Williamson, A. Smola, J. Shawne-Taylor, and J. Platt. Sup-

port vector method for novelty detection. In Advances in Neural Information

Processing Systems 12, 2000.

[89] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[90] J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis

and Machine Intelligence (PAMI), 22(8):888–905, 2000.

[91] M. Simonovits. How to compute the volume in high dimension? Mathematical

Programming Series B, 97:337–374, 2003.

167

[92] J. R. Smith. Electric Field Imaging. PhD thesis, Massachusetts Institute of

Technology, February 1999.

[93] A. Smola, S. Mika, B. Schoelkopf, and R. C. Williamson. Regularized principal

manifolds. Journal of Machine Learning, 1:179–209, 2001.

[94] A. J. Smola, R. C. Williamson, S. Mika, and B. Schölkopf. Regularized principal

manifolds. Lecture Notes in Computer Science, 1572:214–229, 1999.

[95] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to

Advanced Electronic Structure Theory. McGraw-Hill, New York, 1989.

[96] D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern

Recognition Letters, 20:1191–1199, 1999.

[97] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[98] H. Valpola and J. Karhunen. An unsupervised ensemble learning method for

nonlinear dynamic state-space models. Neural Computation, 14(11):2647–2692,

2002.

[99] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,

38(1):49–95, 1996.

[100] V. Vapnik. Statistical learning theory. Wiley, 1998.

[101] V. N. Vapnik. The nature of statistical learning theory. Springer, New York,

2nd edition, 2000.

[102] M. Verhaegen and P. Dewilde. Subspace model identification. International

Journal of Control, 56(5):1187–1210, 1992.

[103] D. Verma and M. Meila. A comparison of spectral clustering algorithms. In

http://www.cs.washington.edu/research/spectral, 2003.

168

[104] P. Voulgaris, G. Bianchini, and B. Bamieh. Optimal decentralized controllers

for spatially invariant systems. In Proceedings of the 39th IEEE Conference on

Decision and Control, pages 3763 –3768, 2000.

[105] G. Wahba. Spline Models for Observational Data. Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvania, 1990.

[106] K. Weinberger and L. Saul. Unsupervised learning of image manifolds by

semidefinite programming. In Computer Vision and Pattern Recognition

(CVPR), 2004.

[107] S. R. White. Density matrix formulation for quantum renormalization groups.

Physical Review Letters, 69(19):2863–2866, 1992.

[108] E. Xing and M. Jordan. On semidefinite relaxation for normalized k-cut and

connections to spectral clustering. Technical Report CSD-03-1265, Division of

Computer Science, University of California, Berkeley, 2003.

[109] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaus-

sian fields and harmonic functions. In ICML, 2003.

[110] T. Zimmerman, J. Smith, J. Paradiso, D. Allport, and N. Gershenfeld. Applying

electric field sensing to human-computer interfaces. In Proceedings of CHI’95:

ACM Conference on Human Factors in Computing Systems, 1995.

169

