
Matrix Multiplication with Asynchronous Logic Automata

by
Scott Wilkins Greenwald

B.A. Mathematics and German, Northwestern University, 2005
M.S. Scientific Computing, Freie Universitit Berlin, 2008

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010
@Massachusetts Institute of Technology 2010. All rights reserved.

ARCHIVES
MASSACHUSETTS INSTITUTE

OF L ECKNOLO?

S EP 14

~L IBR/-\RIE S

I

'I!

author:

Program in Media Arts and Sciences
September 2010

i~1,I
certified by:

Neil Gershenfeld
Professor of Media Arts and Sciences

Center for Bits and Atoms, MIT

accepted by:

Pattie Maes
Associate Academic Head

Program in Media Arts and Sciences

d 1-7

Matrix Multiplication with Asynchronous Logic Automata

by Scott Wilkins Greenwald

B.A. Northwestern University, 2005
M.S. Freie Universitdt Berlin, 2008

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences
at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2010
@Massachusetts Institute of Technology 2010. All rights reserved.

Abstract

A longstanding trend in supercomputing is that as supercomputers scale, they become more difficult to
program in a way that fully utilizes their parallel processing capabilities. At the same time they become more
power-hungry - today's largest supercomputers each consume as much power as a town of 5000 inhabitants
in the United States. In this thesis I investigate an alternative type of architecture, Asynchronous Logic
Automata, which I conclude has the potential to be easy to program in a parametric way and execute very
dense, high-throughput computation at a lesser energy cost than that of today's supercomputers. This
architecture aligns physics and computation in a way that makes it inherently scalable, unlike existing
architectures. An ALA circuit is a network of 1-bit processors that perform operations asynchronously and
communicate only with their nearest neighbors over wires that hold one bit at a time. In the embodiment
explored here, ALA circuits form a 2D grid of 1-bit processors. ALA is both a model for computation and
a hardware architecture. The program is a picture which specifies what operation each cell does, and which
neighbors it communicates with. This program-picture is also a hardware design - there is a one-to-one
mapping of logical cells to hardware blocks that can be arranged on a grid and execute the computation.
On the hardware side, it can be seen as the fine-grained limit of several hardware paradigms which exploit
parallelism, data locality and application-specific customization to achieve performance. In this thesis I use
matrix multiplication as a case study to investigate how numerical computation can be performed in this
substrate, and how the potential benefits play out in terms of hardware performance estimates. First we
take a brief tour of supercomputing today, and see how ALA is related to a variety of progenitors. Next ALA
computation and circuit metrics are introduced - characterizing runtime and number of operations performed.
The specification part of the case study begins with numerical primitives, introduces a language called Snap
for design for in ALA, and expresses matrix multiplication using the two together. Hardware performance
estimates are given for a known CMOS embodiment by translating circuit metrics from simulation into
physical units. The theory section reveals in full detail the algorithms used to compute and optimize circuit
characteristics based on directed acyclic graphs (DAG's). Finally it is shown how the Snap procedure of
assembling larger modules out of modules employs theory to hierarchically maintain throughput optimality.

Thesis supervisor:
Neil Gershenfeld
Professor of Media Arts and Sciences
Center for Bits and Atoms, MIT

Matrix Multiplication with Asynchronous Logic Automata

by Scott Wilkins Greenwald

(cI /,

Thesis reader:
Alan Edelman

Professor of Mathematics
Massachusetts Institute of Technology

Matrix Multiplication with Asynchronous Logic Automata

by Scott Wilkins Greenwald

Thesis reader:

(7 U) Jack Dongarra
Professor of EECS

University of Tennessee, Knoxville

Acknowledgements

This work was supported by MIT's Center for Bits and Atoms, the U.S. Army Research Office under grant
numbers W911NF-08-1-0254 and W911NF-09-1-0542, and the Mind-Machine Project.

I would like to thank my advisor Neil Gershenfeld for giving me and my collaborators Forrest Green and
Peter Schmidt-Nielsen the opportunity to work on this interesting project together at this great institution.
Thanks to Neil also for gathering support for the project - both financially and by getting others interested
with his enthusiasm - as well as for the time he spent advising me on this thesis and all of us on this project.
I would also like to thank my readers Alan Edelman and Jack Dongarra for their support and the time they
spent giving input on the content of the thesis. Thanks to Jonathan Bachrach, Erik Demaine, Forrest Green,
Bernhard Haeupler and Peter Schmidt-Nielsen for valuable discussions and related work done together on
this project. Thanks also to David Dalrymple, Guy Fedorkow, Armando Solar-Lezama, and Jean Yang for
valuable comments and discussions had together in the course of this research. Thanks to the Mind-Machine
Project team for helping to identify the important questions. Also thanks to the members of my group for
their constant support - Amy, Ara, Manu, Kenny, Max, Jonathan, Nadya, Forrest, Peter - also John and
Tom in the shop, and Joe and Nicole for their facilitation.

On the personal side, I would like to thank my mother Judy, father Ken and grandmother Patricia for giving
me both the upbringing and means to pursue the education that allowed me to get to this point. Thanks
to Constanza for being tele-presently there for me on a daily basis through many months in front of the
computer. Thanks to M 4 my family in Boston - Michael, Mumtaz, Malika, and Meira for their hospitality
in having me over for dinner regularly and providing valuable emotional support. Thanks to my roommate
Damien for encouraging me and for always listening to both rants and raves concerning research as well as
life in general, and roommate Per for teaching me how to accomplish goals and not be deterred by menial
tasks or obstacles.

Thanks go out to.... everyone back in Fort Collins - my family circle there Mom, Dad, Granny, Don, as
well as friends through the years - Dave, Seth, Maria, Ki. Holdin' it down in Boston, Marcus and Mike S.
Freunde in Berlin, danke dass ihr immer fuer mich da seid, Lina, Martin, Davor, Torsten, Hone, Nate, Jerry,
Marco R. In der Schweiz, Marco T, always keeping me honest. New York crew - Nate, Jamie, Miguel, also
Christian. At the Lab - Richard, Jamie, Marcelo, Haseeb, Ryan O'Toole, Forrest, Max, Jonathan for always
being up for some fun, and Newton for being a friend and mentor. Jonathan B, thanks for your friendship
beyond the work context. My uncle Chuck for being my ally in fun and teaching me about the wind, and
Candy for great holidays and hosting me in Madison. The Jam/Ski jammers - thanks for your wisdom and
giving me something to look forward to every year - Mcgill, Major, Cary, Joey, Jimmy 0, Gino, and the
rest. Also Olli E for good times in the Alps, sorry I couldn't make it this year - I had a thesis to write!
Grazie alla famiglia Carrillo - Rosanna, Antonio, Giovanni, Carmen per il loro affetto e la loro ospitaliti,
and Sharon for lessons on cynicism. Camilla for always being a friend.

Contents

1 Introduction: Scaling Computation 8

2 Supercomputing Today, Lessons of History, and ALA

2.1 Software Today: Complex Programs for Complex Machines .

2.2 Hardware Today: Power Matters

2.3 History's Successes and Limitations

2.4 ALA aligns Physics and Computation.....

3 What is Computation in ALA?

3.1 An ALA embodiment: 2D Grid of 1-bit processors..........

3.2 The Picture is the Program, the Circuit is the Picture

3.3 Performance of Circuits......

3.3.1 Realization...............

3.3.2 Observables.........

3.4 Properties and Results . . .

4 Building an ALA Matrix Multiplier

4.1 The Target Systolic Array / Dataflow Scheme

4.2 Primitive Operations for Numbers.....

4.2.1 Number Representation.........

4.2.2 Addition..............

4.2.3 Multiplication................

4.2.4 Selection and Duplication......

4.3 Design Language: "Snap" ..

4.3.1 Primitives for spatial layout

4.3.2 Primitive for interconnect: Smart Glue

4.3.3 Modules made of Modules: the hierarchical building block .

4.4 Matrix Multiplier in "Snap"........

10

. 10

. 11

. 12

. 13

19

. 19

. 21

. 21

. 21

. 21

. 24

. 24

. 25

. 26

. 26

5 Results: Simulated Hardware Performance 29

5.1 HPC Matrix Multiplication in ALA Compared 29

5.2 Simulating ALA ... 32

5.3 Benchmarking ALA ... 33

5.3.1 Definition of Metrics .. 33

5.3.2 Data on ALA Matrix Multiplier........................ 35

6 Graph Formalism and Algorithms for ALA 37

6.1 Formalism to Describe Computation * 37

6.1.1 Net, State, Update 37

6.1.2 Computation ... 38

6.2 Realization and Simulation * 38

6.2.1 Dependency Graph............................. 39

6.2.2 Realization.................................. 39

6.3 M etrics * . 40

6.4 Calculation of Throughput........................ 41

6.5 Optimization of Throughput: Algorithmic *............. 44

6.6 Optimization of Throughput: Examples By Hand. 44

6.6.1 Adder.................................. 44

6.6.2 Multiplier................................ 44

6.6.3 Matrix Multiplier............................... 45

7 A Guide to "Snap": Hierarchical Construction with Performance Guarantees 48

7.1 Hierarchy and the Abstraction of Modules............ 48

7.2 The Induction Step: Making a Module out of Modules and Preserving Performance 49

7.3 DAG-flow: The Anatomy of a Sufficient Framework . 50

7.3.1 Input Syntax and Assembly Procedure . 50

7.3.2 Construction Primitives and Module Objects: Inheritance and Derivation of Attributes 51

8 Conclusion 52

A Formal Results 54

A.1 Stability under asynchronous updates......................... 54

B Benchmarking Code 56

C Example Layout Code 60

C.1 Periodic Sequence generation.......................... 60

Bibliography 62

List of Figures

3.1

3.2

Example of an update

Example computation: one-bit addition . .

4.1 Matrix Product Example .

4.2 Matrix Product Tile Specification

4.3 Data Flow Tile...............

4.4 Full Adder and Serial Ripple Carry Adder

4.5 Pen-and-Paper Binary Multiplication . . .

4.6 Flow Chart Diagram of ALA Multiplication . . .

4.7 ALA Integer Multiplication Circuit

4.8 Selection and Duplication Modules.

4.9 ABC Module example .

4.10 CBA Module Example .

4.11 ALA Tile.

5.1 Update scheme used in librala. Credit: Peter Schmidt-Nielsen . . .

6.1 Low-throughput Example..................

6.2 High-throughput Example

6.3 Throughput and Latency Example

6.4 Finite Dependency Graphs

6.5 12-gate adder with throughput-limiting cycle highlighted.

4-bit addition, before and after computation, showing max-throughput

ALA High-Throughput Multiplication..........

Pipelined 2 x 2 matrix multiply in ALA

7.1 Merging Complete Graphs with Glue

.

.

.

Chapter 1

Introduction: Scaling Computation

Supercomputing is an important tool for the progress of science and technology. It is used in science to gain
insight into a wide variety of physical phenomena: human biology, earth science, physics, and chemistry.
It is used in engineering for the development of new technologies - from biomedical applications to energy
generation, technology for information and transportation. Supercomputers are needed when problems are
both important and difficult approach - they help to predict, describe, or understand aspects of these
problems. These machines are required to process highly complex inputs and produce highly complex
outputs, and this is a form of complexity we embrace. It is neither avoidable, nor would we want to avoid
it. The sheer size and quantity of details in the systems we wish to study calls for a maximal ability to
process large quantities of information. It is this desire to scale that drives the development of computing
technology forward - that is, the will to process ever-more complex inputs to yield correspondingly more
complex outputs. Performance is usually equated with speed and throughput, but successful scaling involves
maintaining a combination of these with ease of design, ease of programming, power efficiency, general-
purpose applicability, and affordability as the number of processing elements in the system increases.

Looking at today's supercomputers, the dominant scaling difficulties are ease of design, ease of programming
and power efficiency. One might suspect that affordability would be an issue, but sufficient funding for
supercomputers has never been a problem in the countries that support them the most - presumably because
they have such a significant impact the benefits are recognized to far outweigh the costs. Today, much more
than ever before, the difficulties with scaling suggest that we cannot expect to maintain success using the
same strategies we have used thus far. The difficulty of writing programs that utilize the capabilities of the
machines is ever greater, and power consumption is too great for them to be made or used in large numbers.
The complex structure of our hardware appears to preclude the possibility of a simple, expressive language
for programs that run fast and in a power-efficient way. Experience with existing hardware paradigms, in
light of both their strengths and their weaknesses, has shown that successful scaling requires us to exploit
the principles of parallelism, data locality, and application-specific customization.

The model of Asynchronous Logic Automata aligns physics and computation by apportioning space so that
one unit of space performs one operation of logic and one unit of transport in one unit of time. Each interface
between neighboring units holds one bit of state. In this model adding more computation, i.e. scaling, just
means adding more units, and not changing the entire object in order to adapt to the new size. It also means
that computation is distributed in space, just as interactions between atoms are; there are no privileged
points as one often finds in existing architectures, and only a single characteristic length scale - the unit of
space.

Many topologies and logical rule sets exist which share these characteristics in 1D, 2D, and 3D. In the
embodiment explored here, ALA circuits form a 2D grid of 1-bit processors that each perform one operation
and communicate with their nearest neighbors, with space for one bit between neighboring processors. The
processors execute asynchronously, and each performs an operation as soon as its inputs are present and its
outputs are clear. This is both a paradigm for computation and a hardware architecture. The program is a
picture - a configuration which specifies what operation each cell does, and which neighbors it communicates

with. This program-picture is also a hardware design - there is a one-to-one mapping of logical cells to
hardware blocks that can be arranged in a grid and execute the computation. Hardware embodiments
are studied in Green [2010], Chen [20081, Chen et al. [2010] and a reconfigurable version is presented in
Gershenfeld et al. [20101. Upon initial inspection, we will see that by aligning physics and computation,
ALA has the potential to exploit parallelism, data locality, and application-specific customization while also
maintaining speed, ease of design and programming, power efficiency, and general-purpose applicability.

There are two types of applications on the horizon for ALA to which the analysis here applies. The first is a
non-reconfigurable embodiment which could be employed to make "HPC-On-A-Chip" - special-purpose, high-
performance hardware devices assembled from ALA. This type of design will be explored quantitatively in
this thesis. Another context to which the analysis presented here applies and is useful is that of reconfigurable
embodiments. Initial efforts at reconfigurable hardware exhibited prohibitive overhead in time and power,
but with some clever-but-not-miraculous inventiveness we expect that the overhead can be brought down.
Achieving the level of performance where the advantage of reconfigurability justifies the remaining overhead
in time and power is an engineering problem that we surmise can be solved.

In this thesis, I use matrix multiplication as a case study to investigate how numerical computation can
be performed in this substrate, and how the potential benefits play out in terms of hardware performance
estimates. First, in Chapter 2 we take a brief tour of supercomputing today, and see how ALA is related to a
variety of its progenitors. Next in Chapter 3 ALA computation and circuit metrics are introduced - allowing
us to talk about a computation's runtime and number of operations. Chapter 4, the specification part of
the case study, begins with numerical primitives, introduces a language called Snap' for design for in ALA,
and expresses matrix multiplication using the two together. Hardware performance estimates are given in
Chapter 5 for a known embodiment by translating time units and token counts from ALA simulation into
physical units. This comparison is able to be performed without simulating full circuits at the transistor
level. Chapter 6 comprises the theory portion of the thesis, detailing the algorithms used to compute and
optimize circuit characteristics based on directed acyclic graphs (DAG's). The final Chapter 7 is a "Guide
to Snap," which most importantly shows how the procedure of assembling larger modules out of modules
employs the theory to hierarchically maintain throughput optimality.

1 codeveloped by Jonathan Bachrach with Other Lab

Chapter 2

Supercomputing Today, Lessons of
History, and ALA

In this chapter I paint a picture of the software and hardware landscape of today in which ALA was conceived.
There is a wide variety of hardware for computation - and each kind leverages a different advantage which
justifies it in a different setting. ALA occurs as an intersection point when the bit-level limit of many different
concepts is taken - a point where physics and computation align - and therefore appears to be an interesting
object of study. In the first section I review evidence that programming today is difficult and surmise that
the complexity of programs is rooted in the complexity of hardware. Next I talk about the cellular automata
of both Roger Banks [19701 and Stephen Wolfram [20021 as differing attempts at simple hardware. I contrast
these with ALA, showing the differences in where the simplicity and complexity reside.

2.1 Software Today: Complex Programs for Complex Machines

As the world's supercomputers have grown in size, the difficulty of programming them has grown as well -
that is, programming paradigms used to program the machines don't scale in a way that holds the complexity
of programs (lines of code, ease of modification) constant. Perhaps even more importantly, once a program
is prepared for some number of cores, it is a substantial task to modify it to work with some other number of
cores on some other slightly different architecture. This is whether or not the new program is "more complex."
Many resources have been invested in alleviating this problem in the past decade. One major effort has been
DARPA's High Productivity Computing Systems project, running from 2002 to 2010 and involving IBM,
Cray, and Sun. Each of these companies developed a new language in connection with its participation.
This program has undoubtedly yielded important new paradigms and approaches for programming today's
supercomputers. However, each of these languages is very large in size, making learning to program in any
one of them a major investment of effort on the part of an individual programmer. In all likelihood this is
an indication that programming today's supercomputers is fundamentally a complex task.

How did this come to be? Must writing programs be so difficult? When the Turing/von Neumann architec-
ture was developed in the 1940's, the abstraction of sequential execution of instructions stored in memory
was what allowed computer science to be born. Since then, most computer science has been an extension
of it in spirit. When parallelism was introduced, sequential languages were given special parallel constructs,
but remained otherwise unchanged. The giant languages that are most adapted to programming today's het-
erogeneous architectures reflect the amalgamation of this ecology of species of hardware which has resulted
from the incremental process of scaling; fixing problems one by one as they occur - caches to remedy slow
access to RAM (generating data locality), multiple CPU's to gain speed when speeding up the clock was
no longer possible (parallelism), addition of GPU's for certain types of computation (optimization through
customization). Each such introduction of new organs in the body of hardware has given birth to new and

corresponding programming constructs which add to the complexity of choreographing computation. In
July 2010, David Patterson published an article describing some of the "Trouble with Multicore," focusing
on language aspects of the difficulties in parallel computing today[Patterson, 2010].

One might suppose that this complexity in the environment makes complex hardware and complex programs
somehow unavoidable. Or that choreographing large physical systems is fundamentally hard. Certainly there
is one aspect of "complexity" for which this holds true - the number of processing elements must go up in
correspondence to the number of significant degrees of freedom in the data. On the other hand, I claim
that another type of complexity - manifested in heterogenaity of hardware structure - is indeed avoidable.
Fundamentally, there is evidence that simple programs can behave in a complex way and perform complex
operations, if there is a sufficient number of degrees of freedom in the processing substrate. If we say the
substrate is a piece of graph paper, sufficient degrees of freedom can be obtained by making the graph paper
(but not the boxes) larger. In constrast to this conception of structural simplicity with many degrees of
freedom, the supercomputers of today are complex in structure, making them difficult to program.

Viewed from this perspective, the concept of ALA is to reintroduce both simple programs and simple ma-
chines. The idea of using simple machines goes back to a computing model presented by Roger Banks in
his 1970 thesis Cellular Automata[1970]. In his CA, a 2D grid of identical cells is synchronously updated
using an update rule that considers only the near neighborhood of a cell in the previous state of a system
to determine its new state. Banks shows that a logic function can be implemented in this model using a
roughly 10 x 10 patch of the grid. In this way a heterogeneous network of logic functions can be constructed
to perform a desired computation. A different form of automata computing has been proposed by Wolfram,
wherein instead of generating an elaborate array of interconnected logic gates as an initial condition and
projecting logic onto it, we take binary states as a form of native representation, and study what simple
programs on simple substrates can do. The practical difficulty with either variety of cellular automata as
a model for hardware is their combination of low information density and the requirement for strict global
synchrony. ALA takes the Banks approach, maintaining the concept of choreographing logic to be performed
on bits in an anisotropic grid, as opposed to the Wolfram approach which seeks emulated characteristics of
physical systems in the spatial structure of an isotropic computational grid. Now, addressing the "simplicity"
of this model: as such, programs constructed of logic functions are not necessarily "simple" programs - they
must be expressed in some simple way in order to earn the title of simplicity. We'll attempt to do this
in ALA, along with relaxing the requirement for synchrony. What I refer to as the simplicity of programs
in ALA does not manifest itself as literal uniformity - we use a language which leverages hierarchy and
modularity in (simple) program specifications to specify very non-uniform programs. Recall that an ALA
program is a picture which specifies what operation each gate does and which neighbors it communicates
with - this picture may appear irregular and complex in spite of the simplicity of the program that specified
it.

2.2 Hardware Today: Power Matters

What was once an after-thought for hardware designers - how much power a piece of hardware consumes
to perform its logical function - has now become the primary basis upon which candidate technological
innovations in hardware are to be judged viable or not in high-performance computing. No longer is it
only a question of speed - a great amount of attention is given to the speed/power tradeoff represented by
supercomputer performance. The supercomputer that currently tops the TOP500, Jaguar, consumes 6.95
megawatts of power performing the Linpack benchmark. This equals the average per capita amount of power
consumed by 4,900 people in the United States 1. Responses to alarming figures such as this are manifested
in numerous ways. One example is the introduction of the Green500 in 2005 (chun Feng and Cameron),
which poses an alternative measure of success in supercomputing - power-efficient supercomputing - and
thus challenges the exclusive authority of the speed-only TOP500 ranking. Another show of regard for power
consumption in computing took place in 2007 with the forming of a global consortium, the Green Grid [gre,

1 Based on total total national energy consumption. According to the US Energy Information Administration, the United
States consumed 3.873 trillion kilowatt hours in 2008, which makes per capita energy consumption 1.42 kilowatts.

2010], focused on a variety of efforts to bring down power consumption in computing. This consortium
notably involves the worlds largest computing hardware manufacturers - Intel, IBM, and many more.

2.3 History's Successes and Limitations

Now let's take a tour of today's technology and some of its history in order to extract the most important
lessons learned - in terms of what scales and what does not. The combination of goals that we'll keep in mind
are speed, energy efficiency, ease of design and programming (get the program, perturb the program), and
general applicability. Ease of programming consists both of the ease of writing a program from scratch, as
well as the ease of modifying a program to work on a system with different parameters (processors, number
of cores, etc.). The primary principles I'll be referring to are parallelism, data locality, and optimization
through customization. Parallelism is associated with increased speed, but often worse energy efficiency,
ease of programming, and general applicability. Leveraging data locality is good for speed and saves power
by eliminating unnecessary data transport, but strategies can be difficult to program and/or not generally
applicable. Optimization through customization is good for speed and power, but is difficult to program,
and strategies don't carry over between specialized applications. Considering these principles one-by-one,
we'll see where they've been successful, but how each technology employing them has failed on some other
account to scale gracefully.

Parallelism

Since the mid-1960's there has been an uninterrupted trend towards multi-processor parallelism in general-
purpose computing, corresponding to increasing speed in performance. Originating in high performance
computing, in the mid-1960's single-CPU machines such as the IBM Stretch were outperformed by Cray
computers which introduced parallel processing in the form of peripheral CPU's feeding a single main CPU.
Even as much attention was given to increasing processor clock speeds until a wall of practicality was hit in
2004, parallelism grew in the same way, leading up to today's massively parallel machines. As of June 2010,
top500.org listed seven machines each with over 100,000 cores [Meuer et al., 2010]. While these enormous
machines perform impressive computations, they also suffer from poor programmability and extreme levels of
power consumption. In personal computing, the trend towards parallelism emerged somewhat later, it once
again corresponds to sustained increases in performance. The first consumer 64-bit processor was the IBM
PowerPC 970 announced in late 2002 [20071. The first consumer dual-core processors hit the market in 2005
with AMD's release of the dual core Opteron 120101. As of 2010, commodity PC's with up to eight cores (dual
quad-core) are common in the market place. One problem with this form of growth in personal computing
is that each discrete size and number of processors, when assembled into a PC, requires an extensive process
of adaptation and optimization before it can derive any benefit from increased parallelism. Summarizing,
parallelism in CPU's has been a success in speed, affordability, and general-purpose applicability, but now
suffers from difficulties with power consumption and ease of design and programming.

The past several years have seen a rise in a significant new instance of successful multiprocessor parallelism
in personal computing - the GPU. These appeared first in 1999 with the release of nVidia's GeForce 256, and
today come in flavors which package up to several hundred cores in a single unit. For example, the nVidia
Fermi weighs in at 512 stream-processing cores{2010]. GPU's have excellent performance in applications
which are amenable to SIMD representation - trading off general-purpose applicability in favor of optimiza-
tion through customization for performance. Efforts to scale GPU's have been relatively successful so far -
however currently the model also requires much effort to go from one size to the next, each jump requiring
its own redesign phases and set of creative solutions for problems not previously encountered. Similar to
CPU's, the track record of GPU's shows success in speed and affordability, but differ in the broadness of
their applicability - GPU's being much more restrictive.

Data Locality

The principle of exploiting data locality is avoiding unnecessary transport of data. In the traditional von
Neumann model, nearly every bit the CPU processes has to travel some intermediate distance from memory
to processor which is "always equal". It is neither closer if it is used more, nor further if it is used less. By
introducing forms of locality, energy can be saved and speed gained.

GPU's and CPU's both use multiple levels of caches to gain speed and save energy by exploiting data locality.
Optimizing cache coherency for CPU's is an art that is both difficult and very architecture-dependent, and
the same can be said for GPU's. That is, data locality is introduced for speed at the cost of making design
and programming more difficult.

The systolic array is one member of the family of architectures that exploits data locality natively. Systolic
arrays enforce the use of only local communication, and as such avoid problems scaling problems associated
with introducing long wires. For certain types of problems, most notably adaptive filtering, beamforming,
and radar arrays - see for example Haykin et al., 1992 the economics have so far worked out in a way that
made systolic arrays a viable investment in developing custom hardware - winning by optimization through
customization. The principle of systolic system relies on a synchronized "pulse" or clock, and one problem
with scaling them is the power cost of distributing clock signals. In any case Systolic arrays do a great job
of taking advantage of parallelism and minimizing the use of long wires, but apply to a very particular set of
algorithms which are amenable to implementation this way (including the matrix multiplier demonstrated
in this thesis), losing on general-purpose applicability.

Optimization through Customization

Now let us turn our attention to special-purpose computing. In high-performance special applications, such
as image and sound processing, custom-designed integrated circuits use parallelism to speed up specific
mathematical operations, such as the discrete Fourier transform and bit sequence convolutions, by maxi-
mally parallelizing operations - this usually involves introducing redundancy, which costs power but boosts
performance. These specialized designs perform well - the only problem with them is that they are opti-
mized for one particular set of parameters to such a great degree that they generally won't work at all if
naively modified. Not only are small changes in parameters non-trivial - large changes in parameters require
completely different strategies since various scale-dependent elements cease to work - wires get too long,
parasitic capacitances take over, and so on.

FPGA's have been used since the early 1990's in some applications to derive many of the benefits of custom
hardware at a vastly reduced development cost: FPGA's require only software to be designed and not
physical hardware. This is a testament to the fact that cost and ease of design are being optimized. As a
rule of thumb, to perform a given task, an FPGA implementation uses about 10 times more energy than a
full-custom ASIC, and about 10 times less than a general-purpose processor would require. They abstract
a network of processors that perform 4-bit operations by using look-up tables to simulate interconnect.
FPGA's can indeed be configured to operate in a very parallel way, but they suffer both from problems
of design and programmability in terms of parametric modification. Currently it is hard to make a bigger
FPGA, and it's hard to program two FPGA's to work together.

2.4 ALA aligns Physics and Computation

When we consider the "limit" of many of these areas of general- and special-purpose computing, ALA can be
both derived from that limit, as well as side-step some of the difficulties associated with scaling which we have
seen are present in each one. Recall that this limit is interesting because occurs at a point where concepts
of space, logic, time, and state are equated - in one unit of space it performs one unit of logic and one unit
of transport in one unit of time, and the interface between neighboring units of space hold one bit of state.
Aligning these concepts means aligning physics and computation. This is the limit of multi-core parallelism

because it uses anywhere from hundreds to billions of processors in parallel to perform a computation, but
doesn't suffer from difficulties in scaling because it respects data locality. In a similar way it is the limit of
FPGA's and GPU's, but scales better because the only characteristic length scale introduced is the size of a
single cell. If configured in a uniform or regular way, it looks much like a systolic array, but is asynchronous
so it doesn't suffer from difficulties with the power cost of operating on a global clock. It is asynchronous
and distributed like the Internet, but has the ability to be pipelined better because of the substrate's regular
structure. ALA is also a cellular automaton in the sense of R. Banks [1970]and J. Conway 19701, but one
with a large rule set and a large number of states, some of which we separate into the static state of our
logic gates. It has the addition property of independence of update order at one granularity, which allows
us to evaluate updates in a distributed, local, and asynchronous fashion.

Each of these progenitors brings with it wisdom from which lessons can be learned in the development of
ALA. We want designs to be scalable so as to avoid difficulties associated with characteristic length scales
which are appropriate for some applications but not for others. We want programs to be parametric so
they don't have to be rewritten to fit a similar application with only slightly different parameters. We
want designs to be hierarchical and modular so that they remain manageable even when their complexity far
exceeds that which can be perceived at once by a programmer. Based on the idea of asynchronous processors
that communicate only locally, we believe that these goals can be achieved.

Chapter 3

What is Computation in ALA?

Inspired by the idea that physical systems are composed of many units of space which each contain a certain
amount of information, interact locally, and have the property that these local interactions causally induce
changes which propagate throughout the system, we translate this idea into an asynchronous computing
abstraction. We postulate a computing substrate in which logical nodes are arranged in a grid and single
tokens can occupy the edges between the nodes. Edges are directional and nodes configured to have either
one or two input edges, and between one and four output edges (distinct edges of opposite orientation are
allowed). Whenever a node has a token on every one of its inputs and no token on any of its outputs, it
performs an operation which pulls tokens from its inputs, performs a logical operation on them, and then
returns its result as tokens on its outputs.

We pose the question: could this substrate be useful for performing numerical and mathematical computa-
tions? Answering this question requires answering a number of subsidiary questions: (i) can we program it?
(ii) can we implement it and if so how does it compare to existing technologies and architectures? As a first
step towards answering these questions, we'll need to first describe the model in detail, then define what a
program is, and then examine on what basis we might compare this platform to other platforms.

3.1 An ALA embodiment: 2D Grid of 1-bit processors

The version of asynchronous logic automata discussed here uses a square grid of logic gates with nearest-
neighbor (N,S,E,W) connections. Tokens used for input/output are passed between the gates, and operations
performed asynchronously - each gate fires as soon as both (i) a token is present on each of its inputs and
(ii) all of its outputs are clear of tokens The gates are AND, OR, NAND, XOR, COPY, DELETE, and
CROSSOVER. An AND gate with both inputs pointed in the same direction is referred to as a WIRE
gate, and an XOR with both inputs in the same direction is a NOT. The gates COPY and DELETE
are asymmetric, using one input as data and the other as a control, and can produce or destroy tokens,
respectively. The input/output behavior of each gate is tabulated below.

We denote 0 tokens with blue arrows, and 1 tokens with red.

Figure 3.1: Example of an update

.. :: : .::::::..::::..:: , :::::::::: :::, :::::::::::::: X: .:::::. :::. - . c - ::::::::::::::::::::::::::

AND Gate

Glyph D
Inputs 2

Outputs 1,2,3,4

Behavior in1 in2 out
0 0 0
0 1 0
1 0 0
1 1 1

NOT Gate

NAND gate with equal inputs

Glyph >0

Inputs 1
Outputs 1,2,3,4
Behavior in out

0 1
1 0

COPY Gate

Glyph

Inputs 2
Outputs 1,2,3,4

Behavior in inc out in'
0 0 0 x
0 1 0 0
1 0 1 x
1 1 1 1

WIRE Gate

AND gate with equal inputs

Glyph

Inputs 1
Outputs 1,2,3,4

Behavior in out
0 0

OR Gate

Glyph ID
Inputs 2

Outputs 1,2,3,4
Behavior in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

DELETE Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in inc out

0 0 0
0 1 x
1 0 1
1 1 x

NAND Gate

Glyph [Do
Inputs 2

Outputs 1,2,3,4
Behavior in1 in2 out

0 0 1
0 1 1
1 0 1
1 1 0

XOR Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 0

CROSSOVER Gate

Glyph

Inputs 2
Outputs 2

Behavior in1 in2 out1 out2
0 x 0 x
x 0 x 0
1 x 1 x
x 1 x 1
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

3.2 The Picture is the Program, the Circuit is the Picture

Because the ALA architecture is distributed and asynchronous, the concepts program and computation need
to be defined. In ALA "the picture is the program," in the sense that viewing a representation of the state of
a circuit is sufficient information to execute it. A circuit can be viewed as executing a program, which takes
a set of inputs and computes a desired set of outputs, if we select input sites to feed in data as sequences
of tokens and output sites to monitor sequences of tokens emitted. Figure 3.2 shows an example layout and
computation.

One very important property of computations in ALA is that they are deterministic - causality is enforced
locally everywhere, so that the result is guaranteed to be correct and consistent.

1 Dom+o +++0 o+0+o

+D 00D .o +tDD

++ + ~ ++ ~+m *o+ +o+ +1, 0D+0+0 0+40+0 0+*D0+0

+0+0 DD 4120 Du*D 0 D*D
+* +t + *+*

Figure 3.2: Example computation: one-bit addition

3.3 Performance of Circuits

Now that we know what is meant by computation, we can ask some important questions about the "perfor-
mance" of such circuits. Four very important measures for program/circuit execution are latency, throughput,
energy, and power. That is, how long does it take to get an answer, how frequently can answers be had,
how much energy to does it take to get an answer, and how much power does the circuit consume if it is
continuously producing answers? In today's hardware these questions are general answered in terms of global
clock cycles and the energy that is consumed. Since ALA circuits are asynchronous, we need to characterize
circuits in a slightly different way which will still have the effect of telling us when to expect answers and at
what cost.

It turns out that by considering the net of dependencies defined by circuit layouts, we can formally describe
gate firing times in terms of both (i) token arrival times from the outside world and (ii) the times required
by tokens to propagate and gates to perform their operations in some hardware or software embodiment.
An instance of distributed evaluation of this sort, in which each firing of each gate is indexed and assigned a
time, is called a realization. Based on the concept of realization, we can translate and define the observables
latency, throughput, energy, and power for these circuits.

3.3.1 Realization

In real applications, the asynchronicity of these circuits allows them to both react to external inputs whenever
they become available, and also only to perform operations when they are necessary - when the circuit is
static, it doesn't do anything. Done right in hardware, this means the circuit consumes no power to do
nothing. This is not generally the case for today's hardware, except in specific circumstances when special
measures are taken. When we design these circuits it isn't feasible to simulate every possible timing of token
arrival at input gates. We need a robust way of characterizing circuit performance irrespective of the behavior
of the outside world in any particular instance. For this purpose, we use define a model for simulating circuit
evaluation in discrete time - an entire circuit is considered to have some initial state in which positions of
all tokens are known. Then, all cells which are ready to fire in that state are at once updated, producing
a second discrete-time state. We can proceed in this way in "bursts" performing "burst-updates" in which
all cells that are ready to fire do fire from one step to the next. As such, we can describe realizations of a
circuit in discrete time, assigning an integer time to each firing of each gate as the circuit executes. From
here on we will refer to burst updates as units of time. In Chapter 6 it will be shown rigorously that these
pseudo-synchronous updates are indeed very accurate at characterizing the behavior of our circuits.

In addition to burst updating, another assumption that is useful when characterizing circuits is the notion
of streaming. That is, when inputs are assumed to be available whenever inputs are ready to accept them,
and circuit outputs are always clear to drain output tokens the circuit produces. When inputs are streamed
to circuits which begin in some initial state, evaluation at first occurs in an irregular way, producing outputs
at some variable rate. After some amount of time they settle down into an equilibrium streaming state. I

.:-

consider these phases of evaluation - the initial and equilibrium modes - separately and in relation to one
another when defining observables.

3.3.2 Observables

Using the burst-update model to discretize the times at which events occur, it is possible to define our
observables in a straight-forward way. More formal definitions will be given in Chapter 6.

Definition (Throughput). The throughput of a gate in a circuit is the average number of times a cell fires
per unit time in the equilibrium mode of evaluation

Definition (Latency). The latency between an input and an output gate is the delay in units of time
between when the input gates fires and when the output gate fires a corresponding output token. The notion
of correspondence is defined by tracing the logical path of a token through the circuit. When streaming in
equilibrium, the latency between an input and an output gate may follow some regular pattern. What is
most often of interest is the average latency, which I'll usually refer to as latency.

Definition (Energy). The amount of energy required for a computation is the number of cell firings within
the circuit (not including the motion of tokens along data lines outside the circuit in question) which are
logically required to produce the output bits from the input bits. Note that this number doesn't depend on
the discrete-time model, only on the logical dependencies within the circuit.

Definition (Power). The power consumed by a circuit is the number of cell updates per unit time in the
equilibrium mode of evaluation. This number depends explicitly on the assumption of the discrete-time
model.

3.4 Properties and Results

ALA has several important theoretical and practical properties. Because of cellular modularity, power
required for a computation can be computed by counting tokens fired. Execution time can be efficiently
computed by making assumptions about time required to update cells, and the result is quantifiably robust.
Simulation can be done fast in parallel, and when cells are assumed to all take unit time to update, this
fast simulation also reflects expected time of firing events in a hardware implementation. If the dataflow
graph of a computation contains no cycles, throughput can be optimized in an ALA circuit such after in
initial latent period, results are produced as fast as output cells can fire. There is a constructive procedure
that allows for this optimization to be maintained through the process of creating modules from submodules
and treating them as "black boxes." Each instance of optimal module assembly requires only solving a
problem that concerns only the modules own submodules at a single level of hierarchy, and not a global
problem involving all fine circuit details. Because of the blackbox property and existence of the algorithmic
optimization procedure, layout in ALA lends itself well to abstraction in a programming language.

Chapter 4

Building an ALA Matrix Multiplier

Serving the goal of evaluating ALA as a strategy for designing hardware, I have selected matrix multiplication
as an end goal to construct and profile in this thesis. Since establishing an intuitive and powerful interface
with programmers is of critical importance for viable computing substrates, my collaborators and I have
made a substantial effort to develop and language and implementation that automate aspects of circuit
layout that are irrelevant to function, and to specify function as succinctly as possible. In the first section
I'll introduce the "source" specification - a systolic array for matrix multiplication - which we'll aim to
automatically lay out by the end of the chapter. In the next section, the primitive operations addition,
multiplication, selection, and duplication are constructed "manually" by mapping familiar representations
into ALA. In the following section the primary language constructs for the language Snap are introduced.
In the final section I illustrate the use of Snap first at a very low level to construct a circuit for subtraction,
and then finish up at a high level with matrix multiplication.

4.1 The Target Systolic Array / Dataflow Scheme

The type of specification we'll use for matrix multiplication draws from the theory and practice of both
systolic arrays and dataflow programming. The major distinction is that it applies the principles on a
single-bit level, when they normally apply to blocks that process words and perform multiple operations.
The one-bit ALA substrate is universal, so it's possible to implement any systolic array (or any irregular
structure), although the asynchronicity property means that scheduling is not explicitly necessary. When
dataflow programming is considered at the one-bit level, there is a one-to-one mapping between dataflow
nodes and hardware nodes, subject to the constraint the graph be embeddable in the plane. Recall that
we have both crossovers and the ability to buffer additionally in a way that affects geometry but not logic,
making this constraint somewhat benign.

To implement matrix multiplication in ALA we construct an n x n array of tiles that perform similar
functions. Let's suppose we want to compute the product C of a matrix A with a matrix B. We represent
the matrices as column vectors, so that the elements of columns occur in sequence along parallel channels -
the desired configuration is show in Figure4.1.

In order to produce this flow of data, each tile performs five functions:

(i) select an element w from an incoming vector of B and reads it into a register.

(ii) direct the incoming column vector of B unmodified to its neighboring tile to the south

(iii) repeatedly multiply the selected element w successively with elements v of a column vector of A that
arrive in sequence.

k m

4 n

A B C a b-+ie2-+ [e
a c k mn) ak+ cl am+ cn

b d I n bk + d I bm + din

c d -+ - t

ak + cl am+ cn
bk + dl bm + dn

Figure 4.1: Matrix Product Example

W, S,

W2 5,

W/ S

VIV, V 1, E l -*V IV

I I

w, s s'=w;+v
W1 I I, J

Figure 4.2: Matrix Product Tile Specification

(iv) directs the incoming column vector of A unmodified to its neighboring tile to the east

(v) add the products obtained (step iii) successively to the elements s of a third vector and passes the
sums s' to its neighboring tile to the south. These sums are the elements of a column of C which are
accumulated as they work their way from north to south.

This is illustrated in Figure 4.2.

Now we need to synthesize a dataflow diagram of the internals of the tile in terms of functional blocks. This
is pictured in Figure 4.3.

This scheme is similar to one that appears in Fig 4b, p. 250 of Moraga [1984] - the version that appears
there differs from this one in that it does not include the select/ duplicate operation - the element of w
selected by the select/ duplicate in my model is assumed to have been preloaded and the issue of performing
the preloading is not addressed. Note that there are a total of four levels of representation involved: (1)
gates, (2) primitives (addition, etc), (3) systolic array tiles, (4) assembly of tiles. The plan for this chapter
will be to acquire the means to turn this functional block / dataflow description for a matrix multiply into
a parametric ALA circuit.

vec 1 partial sum

vec 2 + 1 1 y vec 2

vec new partial sum

Figure 4.3: Data Flow Tile

4.2 Primitive Operations for Numbers

In order to do hierarchical construction of circuits that perform numerical operations, we need a level of

primitives above individual logic gates upon which to build higher level operations. In the case of matrix

multiplication, the necessary intermediate primitives are addition, multiplication, selection, and duplication,
as depicted in Figure 4.3.

4.2.1 Number Representation

Many number representations can be implemented in ALA. Numbers can be represented on parallel channels,
in sequence, or anywhere in between (e.g. sequences of several bits on several channels). Representations can

be fixed-length or variable length, and can range from very short to very long. Integer, fixed point, or floating

point numbers could be implemented. Non-binary representations (still using 0- and 1-tokens) are thinkable

as well - a unary representation could represent numbers as the lengths of 0-token sequences separated by
1-tokens, or decimal representations could represent digits individually or in groups as sequences of binary

bits of fixed length. Native arithmetic operations could then work within these representations. Each

possible number representation represents a certain trade-off between power, speed, and latency that varies

by algorithm and application. With proper theory developed, it is conceivable that the right representation

could be dialed in very precisely on a per-application basis.

In this thesis I use unsigned integers represented as fixed-length bit strings in sequence. This is likely the

simplest representation to work with, hence a wise choice for an initial exploratory effort.

4.2.2 Addition

The kernel of the one-bit serial adder is a full adder, the input/output behavior of which is shown in the

table of Figure 4.4. In order to make a streaming asynchronous adder, we implement the full adder in its

familiar form in ALA, with the modification that the carry output is wired back into the carry input, and a

0 token initialized on this wire. This is shown in Figure 4.4.

4.2.3 Multiplication

In this section we aim to illustrate correspondences between heuristic and implementation in ALA in the

example of integer multiplication. We look at the algorithm in three different representations. Firstly we

A O+D+0 0

B ,Cou +0+0 D#D
CinD7 S

4 '+.04)40+0

Figure 4.4: Full Adder and Serial Ripple Carry Adder

1 0 0 1
X 1 1 0 1

1 0 0 1
0 0 0 0

1 0 0 1
1 0 0 1

1 1 1 0 1 0 1

1 0 0 1
X 1 1 0 1

0 0 0 1 0 0 1
0 0 0 0 0 0 0
0 1 0 0 1 0 0
1 0 0 1 0 0 0

1 1 1 0 1 0 1

Figure 4.5: Pen-and-Paper Binary Multiplication

look at the familiar pen-and-paper heuristic. We then unpack this as a flow chart of states that is amenable
to implementation in ALA. Finally we see the ALA circuit which exhibits both the spatial structure of the
heuristic and a spatial structure according to the stages in the flow chart representation.

To begin, Figure 4.5 illustrates the binary version of the familiar technique for performing multiplication
with pen and paper. Partial products are obtained by multiplying individual digits of the lower multiplicand
B by the entire string A. In the right part of the diagram, O's are added to explicitly show the complete
representation of the summands that are added to produce the product. We will use these in order to
represent the operation in ALA (note that other representations within ALA are possible).

fan

A 1001

B 1 1 0 1

1 0 0 1

11kh+ 1 1 1 1 +

* 0 0 , -
0 0 o o -Mpad S0 0100 1- Ia0 00 00a0 0 -

product
* LZ10 i0MAO

Figure 4.6: Flow Chart Diagram of ALA Multiplication

The input labeled A in Figures 4.6 and 4.7 is analogous to the upper number in pen-and-paper multiplication,
B is the lower, and we'll say that these have n and m bits, respectively. In the example, n = m = 4. In
Figure 4.6 we assign a color to each stage of the computation, and different shades in the gray scale gradient

{s, Cot }{A, B, Cin}
{0,0,0}
{1,0,0}
{0, 1,0}
{1, 1,01
{0,0, 1}
{1,0, 1}

{0, 1, 1}
{1, 1, 1}

{0,0}
{1, 0}

{1, 0}
{0,1}
{0, 1}
{1, 1}

....

to different channels which compute in parallel in the course of the computation. The contents of the gray
boxes indicate the bits that pass through the corresponding point in the circuit in the course of the example
computation 1001 * 1101.

The same color and shading schemes are used in Figure 4.7 depicting the ALA circuit. The two schemes are
conflated and imposed on the ALA circuit structure to indicate coincident spatial distribution of channels
and stages. We now look at the ALA implementation of each of the stages in detail.

Ocop

o4 o40 ono
to o ~ + t +t

F : AA 0 Legend
serial/parallel convert

[1] * (m 1) ± [0] clearin th bintem t aeupae

n i t 0s fanout/multiply

0 0+0 + + * *pad

0 0 V0 +0add

botom with seraaacoer stage e inutBisfis fanoucurneddacet ito it coresonding AN ultiplat on.ac

coand c-addg.oa cotrol supemsch1n+ne]l is b-pd(in ith nta ts th extes on bit font-

frmp-ngldt-ropachper mutpliastotedpcttg. The picturedinitialiation usstheiogcgts cthe COYhe hs
rosbe forweennnech rn-it prodct o havngm a difnt bit seeced. withted the prdcpperngst

thael orrectsthesfirs (loatinficn)btonutenx channel.Tepaeoftisufcen for etitn he fon-paddihe
right stageAN ate bhnelo ceates COP long wfiths biti loo aeed gitrviescp the t conditinceo
terminate- the sequecnceinaftee mit n t. Fialythae rightote. gt es o0tebt utieter-i

substring htcrepnst the pfducnfomt/emultiply stage (these sqecso ' n ' are iitisAND'it copies ofthlesan

moste significan bits ofackr-bpoductndso). This acve s wtheofttwn summandsofteora itodce in mlia

from sie of Firer 4 .5.

mo t sg ii a t bi soBh -i p ro d u cts.T i le v s u wi h u m a d of t e or tin o uc d n t e
rgtsdof Figure 4.5.AAItge utpiato ici

..

F]] [E

QFOZ F0 0

4 FI

0 0 04.0=E *-HO1 0 0 F Q

t 4 tCY!010 -"o- 1 ' -O= *_..0 D A - D:F 1 0 0.

DD D- DD D-D *0D0 O - 0 0
is t* is t A if 4 8 4 4 Vt

D..0F F FF[D

"0 D..O-"D .O D 00:D_71 F071:B[0*no Q, 0
00 -0 *~z *0z F 0 ' 0'

~~ 00 *D.0%D *.D ' ~ 0

0*00*

nextt pata prouct an so tn prgesn onarsutltefnlu mrermtelwrms

(a). Seqein Genrto DupliReistrMdlocnSlc/ulct

The core concFigures4.8:selection and Duplication r otolddlt nd odulesoprepctvly o

Finllytin the prumpl se stihfnrpadd: summian iomng neuec of dat aresume, cadinghrom tsaopntol
bottom.ne uppoermoost addrersumsdethe wto upermst prtil pots, thle nexrta ms that um wth the

nt pta produc t, andridi so n progressaig doownwars uenileth final sum eergfromthei loer-most

4.2. udslecto an Duplicati- io rsnttoisue-avrymllcssfsqensisufcetfr

the crepoes of selection and duplication arge ontrole dletbe anicntroled copy rhetsectively Forth
selaeti the rincipenesraitfowd themresa noindeunc fdt bits aop, a eonnAp nd C..The ischm a ionro
sequencetoinhone-to-oned correpnence wihtedt0btwt1hevle0fr0aabt.ha rob

"selelc"o alowe to passl (ot, dleted),i andmlfr to that arno selectteed (dlcotred They simpleowa
ton prde arioi sequence is pswhait lop mase seuenilcets grow hinewar growinthe feitop izea
isntundesrable salgarithi-ed representaton ist us an very sallclas of Isequenes cois uficieto

phaamestriig coer htgneraes tfheer cmpessd btlop, cane butpe fondins ofapeenx of te sch is

given as data, we need a way to read the data bits into some kind of register, emit copies of the data some
desired number of times, and then clear the register by reading in new data. A design for such a circuit is
show in Figure 4.8c. (figures: Sequence Generator for seven 0's terminated in a 1, Duplication with clearing,
Select/ Duplicate for 4 x 4 matrix, 16-bit words)

For the purposes of m x n matrix multiplication, we need to be able to select one word out of each n in a
sequence and make m copies of it -i.e., we need a selection module followed by a duplication module. In
the figure we show such a module for a 4 x 4 matrix multiply with 16-bit words.

4.3 Design Language: "Snap"

In this section we'll see how to put the pieces together. The three primary functionalities we need are relative
spatial alignment, interconnect, and the ability to define new modules as a collections of interconnected

..

a _0
b %iN - +p c(a+b)

4 U 4 U 4 V A I t

t I t 4 A t
o-o-0-o-0-o- 0.. 0000Ko-

S it it 4 4 it

U V 4 U t 4 V 4 U ti U 4 It '
-o--o D=D o o -o - 0 00..o D-D-DD

t i f 4 8 i 4 t I U

t t 4 t I t i UiUt I i I
-07@00' D:J7 0 0 '1, 01!0 07!0: 0'D. '-0 0! 1-1I YD~:

Figure 4.9: ABC Module example

submodules. The basic facilities for each of these will be addressed in the subsections that follow. The
language Snap was developed in collaboration with Jonathan Bachrach.

In DAG-flow we specify a circuit construction procedure that alternates between vertical and horizontal
concatenations. We begin by stipulating that individual modules have their inputs on the left and outputs
on the right - arbitrarily choosing an axis. We introduce two primitive operations - (i) producing module
columns by vertical concatenation of modules that operate in parallel, and (ii) horizontal concatenation of
sequences of columns that are connected unidirectionally. Without loss of generality, we assert that these
connections be directed from left to right, and specify them as permutations that map outputs of one column
to inputs of the next. These are not strictly permutations since we allow fanout of single outputs to multiple
inputs.

Once we have a specification of such a circuit, we begin layout with a pass of assembling columns in which
we equalize width. Then, beginning by fixing the left-most column at the x=0, we add columns one-by-
one, connecting them with smart glue, which takes as input potential values associated with the outputs
and inputs in question, and buffering properly. This procedure could also be performed in parallel in a
logarithmic number of sequential steps - pairing and gluing neighboring columns preserves the ability to
optimally buffer connections between the larger modules thus assembled. In order to augment the class
of circuits that can be defined using DAG-flow, we also introduce a rotation operator, which allows us to
assemble sequences of columns, then rotation them and assemble columns with these as modules.

4.3.1 Primitives for spatial layout

Here I'll briefly go over two indispensable programming constructs for two-dimensional layout: horizontal
concatenation (hcat) and vertical concatenation (vcat). The idea is straightforward - a list of blocks/modules
is aligned horizontally or stacked vertically. The constructs can be nested to create hierarchy.

Consider this example. Given the blocks we have from the previous section, suppose we want to make a
module that computes c (a + b). One way of specifying this in data flow would be as in Figure 4.9.

In Snap we specify this as

ABC = hcat[vcat[wire,adder] ,multiplier]

and get the circuit also shown in Figure 4.9.

......

t

bABC tb ABC 1*0-0=0-0 0*110b c(a+b)

(a) Module with Glue (b) Glue Module

Figure 4.10: CBA Module Example

4.3.2 Primitive for interconnect: Smart Glue

Notice that in the Snap construction of the c(a+b) example that we end up with a circuit that requires the
inputs to be spatially ordered from top to bottom (a, b, c). Suppose, however, that they aren't in that order
- instead they're in the order (c, b, a). We have two options - either we tear our module apart (although in
this simple example we could use some symmetry to accomplish this by just mirroring the layout vertically
- but for the sake of generality we suppose this isn't so), or we produce an adapter, which we refer to as
smart glue or just glue, to spatially permute the input channels. Now what we want is this, shown in Figure
4.10a.

By assuming that inputs come in on the left and outputs go out on the right, we can specify the connections
in a glue module by a sequence of ordered pairs. The inputs and outputs are indexed according to their
spatial ordering from bottom to top, so in this case the glue is specified as glue[{1, 3}, {2, 2}, {3, 1}] and the
module CBA generated by the syntax

CBA = hcat[vcat[wire,wire,wire],glue[{1,3},{2,2},{3,1}],ABC]

This glue module is shown in Figure 4.10b.

4.3.3 Modules made of Modules: the hierarchical building block

I tacitly presented the previous examples without highlighting several critical Snap behaviors which made
them possible.

The first of these was the use of identifiers in hierarchy - I defined ABC in the first example, and used it as
a submodule when defining CBAin the second example. That is, making modules-out-of-modules is a critical
capability that allows circuits to be hierarchically constructed. The reason this is so important in this and
many other systems that use hierarchy is that it allows us to, roughly speaking, define things of dimension
n using only log(n) expressions or lines of code.

The second capability can be called block padding - this means that when things are aligned horizontally or
stacked vertically, the input and output channels of submodules are padded with wires so as to reach the
edges of the bounding box of the new module. This way we avoid the hard problem of routing i/o through
an arbitrary maze of structure. Instead we guarantee that at each level generating interconnect is only a
problem of connecting points on the edges of adjacent rectangles. Observe, for example, that the single-gate
"wire" in the specification of Figure 4.9 was padding into a sequence of wire gates in Figure 4.9. Hence the
glue module in the second example only needed to solve the problem of connecting an aligned vertical set of
points on the left with another such set on the right, as is visible in Figure 4.10b.

................ ... ::::::::::::

d_ o-o o-o o.o 0
0 00 006 0-.0 0

o0'0. 0 0 00 0

0 '0-00-0-0 '.0 0 000 0I 4 4 A44 I

0 o 00 -- 0 0 0 0 0 0

* -z -z 44 4 -64 4- - 4-.. 4$ d-4--~

0 00 000 0000 0 0

44 4 .o AU -o 4 4 44 - -
0 0- o" 0000 00-0000 0

0 '-o o- 0-0--b e 9. '. 0-o-0 000 '-- - - - - - - -'- - - - - - - - - - 0 - - o

4.4 M4r 4 ix M lpi in"S

Th fis4hn4e edt oiscneti to a foma wher deenenie flwfo o-obto n

0, 0=0 0=0 0 0o 0 0 @ D*O *D000

0 -~02 *0:6D 0- 0: ' 0 0-0 0-0 0110 0-D.0 0 0-0 D-D0DZD 044 , 44 I44- j0 4 1 i'f 4 4 44 4 4 4
0 D'0=D' D. 0:D 0 01 0 0*@ D O @ 000 0

0 .oc *.oo' 0 0 '0 0 070 0-0 0000 0-D 0 0D!D-:0 0

alternate~# bewe spcfyn modle an seiyncoetiof nighbori columns

0 *'O=D *,.m o- cD-0o- 0 0 '0 0 '' ' 0 0D00

0 D D 0-0-0!000 0 0000_0-0 0-D.0'0-0-0 ~,D-D-DD ' ' 01!0 -D-1)
0 0-0-00 0_0*!070110 0*-,D;.o D..0 0 000 * 0_D0D 1b0 000D0- 0

f4t U 1 4 C I t 4''f I

Figure 4.11: ALA Tile

4.4 Matrix Multiplier in "Snap"

Tile Specification Now we finally have all the tools to put together the tile described by Figure 4.3.
The first thing we need to do is convert it to a format where dependencies flow from top-to-bottom and
left-to-right. For now, the reason for this is that the language implements it this way in Chapters 6 and 7
we will see more about why this is so. Once we have the figure in this format, the code can be read directly
from it. In the orientation the figure is drawn, each vertical column corresponds to a line of code. A list
of modules in the code (left-to-right) corresponds to stacking from bottom-to-top in the diagram. Lines
alternate between specifying modules and specifying connectivity of neighboring columns.

tile [selectCopy i i
matCons [
M{cross, wires
straight,
swire, selectCopy},
ol, 1=, {l, 2}, {2, 3s,
{wire, multiplier ,
straight,
{hcatMat [{cross, wire}], vGlue [straight], adder}}

The selectCopy module is taken as an argument to the tile constructor because it is initialized in a way
that will vary from bottom to top in the array -recall the subscript i that appeared in Figure 4.2 indicating
which element is to be selected from the vector coming in from the north.

Note that an orientation-faithful spatial mapping between the code and Figure ?? is established by rotating
the code 90 degrees counter-clockwise.

The resultant tile is pictured in Figure 4.11.

Array Construction Now, in order to construct the final array, we need to generate the n distinct
selectCopy modules, assemble them into columns, and then concatenate the columns horizontally.

matMul~dim-i:
Module [scs, htiles},
scs = Table[selectCopy[dim, i], fi dim}]; (* select/copies *
column = Table[tile[sc], {sc, scs}];
matCons[rep[column, dim]];

...
. ..

The rep command makes dim copies of its argument.

Chapter 5

Results: Simulated Hardware
Performance

The High Performance Computing Challenge is designed to measure up candidate HPC technologies' per-

formance in terms of time, area, cost, and power. One important benchmark is matrix multiplication, and

with this in mind I've chosen matrix multiplication as a benchmark task for ALA. Results suggest that the

massive parallelism of ALA makes for very high throughputs: a present design performs 42 tera-ops with a

1.1 m2 chip assembly running at 488 kW. Straight-forward improvements of this design point to a next gen-

eration 7.4 cm square of ALA chip assembly that performs the same 42 tera-ops at 20 kW. These estimates

are made possible by the fact that the modularity of ALA cells allows us to obtain transistor-level power

and time estimates without simulating the full system at transistor level - counting tokens is sufficient for

computing power, and accumulating cell update times is sufficient for computing speed and latency. Only

individual cells (roughly 30 transistors in design-in-progress at time of writing) need to be simulated using

a physics engine.

5.1 HPC Matrix Multiplication in ALA Compared

Matrix Multiplication: Basis for Comparison As promised, I will now go through a comparison

of a 1024 x 1024 matrix multiplication performed in ALA with one performed on a supercomputer. We

will compare the power consumption and throughput of Jaguar performing the Linpack benchmark for LU

decomposition (linear equation solving) on double-precision operands with an ALA circuit performing matrix

multiplication with 64-bit integer operands. There are two notes on this comparison. Firstly, comparing

throughput (FLOPS) of matrix multiply with that of LU decomposition is justified by a comparison of

asymptotics: LU decomposition and matrix multiplication have the same asymptotic complexity 0(n2.376),

based on the Coppersmith-Winograd Algorithm. Second, the operands used in the Linpack benchmark are

double precision floating point, whereas those for the ALA matrix multiplier are 64-bit integers. Because

data transport in and out of the circuit is one of the largest costs associated with numerical operations, the

best side-by-side comparison between integer and floating point operations in terms of power and throughput

is obtained by using numbers of equal size.

Simulation The measurements presented in the Table 5.1 and the remainder of this section were computed

with an efficient parallel circuit simulator written by Forrest Green and Peter Schmidt-Nielsen. Some details

about the implementation will be presented in the next section.

Throughput The matrix multiplication is implemented in ALA as a grid of similar tiles. Each tile pro-

cesses one vector through one vertical channel and performs a multiply and an add. Producing bits at 1.27

machine name description data type efficiency (Op/J)
Jaguar (top500) linpack experiment 2.5E8 (FLOP)

Juelich (green500) linpack experiment 7.7E8 (FLOP)

ALA present simulation 5E7 (Int Op)
ALA no wires estimate 2E8 (Int Op)
ALA 32 nm, optimized estimate 1.2E9 (Int Op)

(a) Energy Efficiency in Number of Ops per Joule

name/description process description data type area (pm2) linear (tim)

FPU [Kim et al., 2007] 32 nm - experiment 8.5E4 2.92E2

ALA MatMul Tile 90 nm present simulation 1.16E6 1.08E3

ALA MatMul Tile 90 nm packed estimate 3.15E5 5.61E2

ALA MatMul Tile 90 nm packed, no wires estimate 8.18E4 2.86E2

ALA MatMul Tile 32 nm packed, no wires estimate 1.03E4 1.01E2

ALA MatMul Tile 32 nm packed, no wires, optimized estimate 5.17E3 7.19E1

ALA 1024 x 1024 90 nm present simulation 1.22E12 1.11E6

ALA 1024 x 1024 32 nm packed, no wires, optimized estimate 5.46E9 7.39E4

(b) Area

Description Throughput Equilibrium Latency
ALA MatMul Channel 1.27 Gbps 2.6 ps

ALA 1024 x 1024 MatMul 1.3 Tbps .21 ms

(c) Throughput and Latency

name description process revision data type area (pum) linear (pm) update energy (pJ)

ALA Cell ' 90 nm present simulation 1.21E2 1.10E1 0.17

ALA Cell 32 nm process switch estimate 1.53E1 3.91E0 0.057

ALA Cell 32 nm optimized estimate 7.7E0 2.77E0 0.028

(d) ALA Cell Information

Table 5.1: Numbers for Comparison

Ghz and performing 2 Ops every 64 hardware cycles implies performing 2.1 x 106 Ops at a rate of 1.98 x 107
Hz, i.e. 42 tera-ops per second! (4.16 x 1013OPS). Comparing this with numbers from Jaguar, with 224,162
cores (about 37,360 machines, 6-core, [some cores are CELL processors right? check this]) performing 1.76
Petaflops sustained (1.76 x 1015), this is 47 Gigaflops per machine, which would make throughput of the
ALA chip assembly equivalent to that of 885 machines. The data rate out is then 1.3 Tbps - 1024 channels
each producing bits at 1.27 Gbps.

Power and Energy Consumption Let us begin with power. The number for "ALA current" presented
in Table 5.1a was computed as follows. Updating a single cell consumes 0.17 pJ of energy averaging over all
cell types. The tile from which the matrix multiply is generated occupies a rectangle of size 125 x 77, of which

(only) 2700, or 28% of the rectangle's area is occupied. This is an artifact of the way that the circuit layout is
done at present (more in Chapter 7), and leaves much room for improvement using throughput-maintaining
packing algorithms, which I and my collaborators have not seriously explored as of the time of writing. The
power consumed by this tile corresponds to 1078 cell firings per unit of time. A tiling 1024 x 1024 of these
therefore fires 1.13 x 109 cells per unit of time, or 1.92 x 10-4 J per unit time. A hardware cell update does
2 units of time per cycle when the circuit being executed is buffered for maximum throughput, and operates
at the minimum frequency taken over all cell types, which is 1.27 Ghz. Therefore the 1024 x 1024 array
operates at 488 kW. Note that the equation of 2 units of time with one hardware-cell cycle is derived from
a hardware dependency graph similar but not identical to that presented in Section 6.2.1. It is valid in the
case of max-throughput circuits- details are presented in Green [2010].

Now let us consider updated power and speed metrics for a future CMOS ALA design based on straightfor-
ward improvements of the existing design. First of all we know that it is possible to replace buffering wire
cells with "physical" wire cells which do not buffer and connect points neighboring cells physically rather
than logically. These physical wires dissipate very little power. As the system scales, there is some maximum
number of gates n that can be travelled before refresh is necessary. That is, for every desired "unbuffered"
physical connection that exceeds n grid units, one or more extra logical buffers must be inserted to maintain
proper operation. If this constant n equals, say, 100, then the power consumed by wire gates in a given circuit
gets much smaller. In the present example, wires account for 70% of cells in the circuit - so the "no wires"
version of the cell would consume marginally above 30% of the present power estimate. Next we assume
that roughly a factor of two can be gained from expert optimization. Lastly, by migrating from 90 to 32 nm
CMOS process, we presume that a roughly linear factor of three is gained. Although leakage can account
for a larger percent of power dissipation in a finer process, the fact that the circuit at hand is optimized
for throughput implies that the activity factor will remain very high and thus minimize losses from leakage.
Taking these improvements into account, the new 4.16 tera-op, 1024 x 1024 matrix multiplier consumes
20.3 kW. In this configuration we get 1.2 billion ops per Joule. Comparing this with Jaguar operating on
double-precision floats- Jaguar gets a "mere" 250 million floating point ops per Joule, giving the ALA chip
a factor of 4.8 better power efficiency. Comparing to the Green500 leader, ALA does a factor of 1.5 better.

Area So how much die area does a such a chip assembly require - that does the work of 885 multi-core
servers at 1/5 of the energy cost (plus cooling)? The power-hungry current version uses 1.12 m 2 of die. With
all optimizations taken into account, the assembly instead occupies a 7.4 cm square. Recall that it consumes
20.3 kW of power, and delivers 42 tera-ops. Table 5.1b shows estimates of area and linear dimension of the
chip assemblies for performing 1024 x 1024 integer (64-bit) matrix multiply.

Latency Equilibrium latency is for a 64-bit integer n x n matrix multiplication is 0.21 ms for the present
hardware design. This is the time required to read in the data, perform the operation, and read out the
product. Inputs can then be streamed in at 1.27 Ghz, so that the time increment on a given channel to
read inputs is 2.6 pis - at 64 x 1024 bits per channel per operand. As of writing I have not simulated a
64-bit 1024 x 1024 matrix multiplication, but the data for smaller multiplications indicates that latencies
for matrix multiplication scale as O(n). Recall that we measure two kinds of latency: the length of the
initial phase, when there are irregularities in the rate at which bits are produced, and the time it takes
in equlibrium between when bits for an operand (in this case a matrix) start being consumed on the first

input channel, until when the last corresponding output bit is produced on the last channel. From the tiling

geometry and the max-throughput property, we expect there to be an exact formula for equilibrium matrix

operation latency. The data indicates confirms this - equilibrium latency is for a 64-bit integer n x n matrix

multiplication is 152 + 480 n units of time, which equates to 0.21 ms for current hardware.

Cost Based on the following calculation, I conclude that the bare die hardware for the 42 tera-op matrix

multiplier could be produced for about $5500 per unit in bulk. A survey of die sizes and costs of Intel chips

can be used as to estimate cost per area of producing CMOS chips in 32 nm process. The Intel Core i3, i5,
and i7 are common desktop processors on the market at the time of writing. Dual core releases each have

an 81mm 2 CPU in 32 nm process and 114 mm 2 of graphics and integrated memory controller hardware in

45 nm process. Depending on frequency and cache configuration, these sell in bulk for between $100 and

$300 per unit 2. Because processors are graded and priced upon testing, it is conceivable that the cheapest

processors could be sold at less than the average cost to produce, so let's take the average price, $200.

This takes into account the actual yield of the manufacturing process. Now accounting for the fact that (1)
packaging and graphics hardware are likely to account for at least half of the cost, and (2) chips are not sold

at cost, it is fairly conservative to say that the 32 nm die actually costs at most $1 per mm 2 . At this cost, the

42 tera-op, 7.4 x 7.4 cm ALA chip assembly costs about $5500. There are, of course, costs associated with

assembling bite-sized dies into bigger dies and packaging the bigger dies - but short of accounting for these,
this figure does give a well-grounded ballpark estimate for the cost of materials necessary to manufacture

the bare hardware being proposed here.

Comments In this section we have seen that fast, high-throughput matrix multiplication can be performed

in hardware using ALA. Further, comparisons to today's consumer Intel chips indicate that the cost of this

hardware is low considering the sheer quantity of computation it performs. The power density is high as I've

presented it here, but an important note is imposing a speed constraint on any cell in the circuit adjusts the

speed of the entire circuit. That is, if the application calls for consuming less power, or heat dissipation is

difficult - limiting the rate at which data is flowed into the system can be used to adjust power consumption

arbitrarily over many orders of magnitude. In the low-leakage limit, the energy consumed depends only

upon the computation, not on how fast it is performed. Hence if there is any upper limit on power or heat

dissipation imposed by the hardware or, say, power available, the computation can be performed more slowly

on the same piece of hardware.

It is worth to note that it is surprising for an ALA chip to be at all competitive with a commodity AMD/Intel

chip or supercomputer composed of them. It is a design composed of blocks of 30 transistors, which we

compare with highly optimized designs of order 109 transistors, and come out a factor of 4 low on power

consumption (Table 5.1a).

5.2 Simulating ALA

In order to benchmark ALA, we need to be able to burst update circuits (see Section 3.3.1), i.e. successively

perform updates all-at-once updates of gates that are ready to fire. We also need to be able to count how

many gates fire in a given interval, and accumulate data on the firing times of specific gates (inputs and

outputs). Forrest Green, Peter Schmidt-Nielsen and I developed a software toolchain that performs these

functions. The simulator back end that performs these functions, librala, is accessed through a front end

written in Mathematica which orchestrats circuit assembly and execution in the back end.

The low-level representation for ALA circuits uses a set of bit layers to represent gate types, input directions,
and token states in a rectangular grid of dimension according to the width and height of the circuit in ALA

gates. This large rectangle is broken up into a grid of smaller rectangles called patches which have a width

and height equal to 64. This way each component bit plane of a patch is represented as 64 successive words

in memory. Then, using processor instructions for bit-wise boolean operations on words (such as bit-xor

2 http://ark.intel.com/

Bitsliced Multicore with Columns

Figure 5.1: Update scheme used in librala. Credit: Peter Schmidt-Nielsen

between two input words), the simulator scans through each patch sequentially and updates the state of cells
in it that are ready to fire. In order to prevent multiple propagations of a particular token in a single pass
of scanning, two copies of the entire circuit are kept in memory, and updates are from one are written to the
other, alternating back and forth. These update-scans can be parallelized by starting multiple threads at
different points in the circuit. Since the logic of asynchronous updates enforces correctness, this procedure
is guaranteed to produce a correct result as long as multiple threads don't try to update the same cells at
the same time. On 8 cores, librala is able to update 1.3 Billion cells per second. Figure

5.3 Benchmarking ALA

In this section we'll see what the estimates of the Section 5.1 are based upon as well as much more detailed
information about the execution of the ALA matrix multiplier circuit. In this section circuit metrics are de-
fined in terms of cell updates and counting units of time in burst updates. It possible to derive transistor-level
power estimates without simulating the full system at transistor level because assemblies of cells concatenate
discretely - one cell updating in sequence with another cell takes twice the time and twice the power. Count-
ing tokens is sufficient for computing power, and accumulating cell update times is sufficient for computing
speed and latency. Only individual cells (roughly 30 transistors in design-in-progress at time of writing)
need to be simulated using a physics engine in order to obtain atomic constants for individual cell types.

5.3.1 Definition of Metrics

In the case of matrix multiply, we have a multiple-in multiple-out circuit, so the circuit metrics selected
reflect this.

Initial Phase Length

Initial phase length is computed by executing the circuit sufficiently long that equilibrium max-throughput
state is achieved. Analytically this may be related to the maximum cycle length (more in Chapter 6) but
we don't present any formal/rigorous results - data is experimental. There are two ways of measuring the
initial phase length - one is to index it by bits - how many bits emerge before all subsequent bits a produced
every second unit of time - and another is to index it by units of time. Because the ceasing of irregularities

11 .= -M - '' SM " ------- - -.-- .. 11 - I - I -- - - - -1 1 11.11 1- t

label description
ch channels
bpW bits per word
iniPh initial phase length
eChT channel throughput
eT total throughput
iniBL initial bit latency
iniWL initial word latency
iniOpL initial op latency
eChL equil channel latency
eBL equil bit latency
eWL equil word latency
eOpL equil op latency
enrB energy per bit
enrW energy per word
enrOp energy per operation
eP power in equlibrium

Table 5.2: Data Labels

in the consumption of bits at the inputs and such irregularities in the production of bits at the outputs does
not generally coincide, we take the maximum of the two. It is conceivable that one or the other might be
more important in some application, but for the purposes of this document we declare the maximum to be
a useful figure for profiling the behavior of the circuits.

Explication of computation of metrics, listed in Table 5.2.

Latencies

There are a variety of latencies that can be measured - I'll run through the definition of the ones that I
chose.

First let us consider latencies that apply to the initial phase of execution. One natural first question to ask
is how many cycles pass between the time when the first bit is consumed on any input channel to when a
significant output bit is produced on any output channel (iniBL). Next, since the production of bits can be
quite irregular in the initial phase, one might ask the question of when the first word operation is complete
- since in the case of operations on numbers we usually have a word length with which we are concerned
(iniWL). In the case of a matrix multiplication, completion of the first operation might be defined by the
last bit of the first matrix multiplication completed to be produced on any channel (iniOpL).

In the equilibrium phase of execution, we can ask similar questions - knowing the time index as well as the
bit number corresponding to bits in and bits out, what is the time between when the earliest k-th bit goes in
and when the latest k-th bit comes out (eBL)? What about the time between when the earliest k-th word has
its first bit enter until the time when it has its last bit emerge (eWL)? Or the same question for the entire
matrix - the time from first-bit-consumed until last-bit-emerges (eOpL)? Now, recall the fact that a matrix
multiplier is a multiple-in-multiple-out circuit. We would like to characterize the relationship between the
channels. One might expect the relationship to be very regular since the algorithm implements a systolic
array - this is indeed the case, and the most pertinent question to ask is, in equilibrium, what is the latency
between neighboring channels - that is, the time between when the k-th bit emerges on a channel and when
the k-th bit emerges on neighboring channels (eChL).

Energy

We define the energy required to perform an operation as the total number of cells that fire between the
initial state and when the final bit of the result emerges from the last channel.

Power

The power consumed by a circuit is the average number of gates that fire per cycle in equilibrium.

5.3.2 Data on ALA Matrix Multiplier

Data presented in Table 5.3.

bpw dim cbpo iniPh iniPhB' iniBL iniWL iniOpL eBL eWL eOpL eChL enrOp eP

16 2 32 536 246 300 330 362 358 388 420 43 96286 1418

16 4 64 796 278 497 569 665 666 696 792 185 734181 5604

16 8 128 1412 342 985 1057 1521 1282 1312 1536 469 5242624 22328

16 16 256 2644 592 1961 2033 3009 2514 2544 3024 1037 36193850 88525

16 32 512 5108 1104 3913 3985 5985 4978 5008 6000 2173 212958229 278293

32 2 64 895 432 451 513 577 528 590 654 30 310714 2376

32 4 128 1212 496 713 809 1001 970 1032 1224 210 2436715 9372

32 8 256 2096 624 1285 1437 2317 1854 1916 2364 570 17603578 37571

32 16 512 3864 1136 2541 2693 4597 3622 3684 4644 1290 117202637 136125

64 2 128 1634 816 746 872 1000 858 984 1112 1 1118608 4332

64 4 256 2140 944 1200 1326 1710 1562 1688 2072 251 8862036 17189

64 8 512 3436 1200 2108 2234 3881 2970 3096 3992 751 66604974 68640

64 16 1024 6252 2550 3924 4050 7721 5786 5912 7832 1751 413765260 217395

Table 5.3: Matrix Multiplier Data

Chapter 6

Graph Formalism and Algorithms for
ALA'

In previous sections, the optimization of throughput was presented without comment - it was stated at the
end of chapter 3 that throughput could be optimized so that bits on output channels are produced every
second unit of time, and the circuits profiled in Chapter 5 were indeed optimized as such. In that chapter a
number of observables were tabulated, but these have not yet been defined at a level of formalism that one
would know precisely how to measure them from the content of this document [bad sentence]. In this chapter
we build up a formalism within which we can both rigorously define the observables as well as understand
how to optimize an important one of these, the throughput of a circuit, when sufficient conditions are fulfilled.

In the first section we will go over a formal definition of computation, then in the following section realization.
In Section 6.3 we will see formal definitions of latency, throughput, energy, and power.

6.1 Formalism to Describe Computation 2*

In order to be able to formulate rigorous descriptions of circuit behavior as well as algorithms for simulation
and optimization, we need to formally describe an ALA circuit. This includes what happens when cells fire,
as well as what a computation is.

6.1.1 Net, State, Update

We begin with a directed graph N = (V, E). We call the nodes v E V gates/transitions/cells. With every v
we associate a boolean function

f, : {0, 1}ji"(") -- + {0,1 }1 "ut")

that, given a full assignment on its incoming edges defines a new assignment on its outgoing edges. Edges
function as 1-bit memory cells that can hold one value {0, 1} or be empty, which we denote by x. The state
of an ALA circuit can thus be described by

S E 0, 1, I}E.

1 In this chapter Sections 6.1 through 6.5 were co-authored by Bernhard Haeupler with MIT CSAIL.
2 coauthored by Bernhard Haeupler

During a computation the state of an ALA circuit is transformed by sequences of updates. Gates that have
a value on all inputs and all outputs empty can update by deleting their inputs (assigning them to x), and
assigning their outputs the values f,(i) Gates that fulfill

Sin(v) { (0, 1}in(v) , Sout(v) = {X}out(v) (6.1)

are called ready, and we let R(S) = {e E E I e ready}. We define an update (or firing)

S -"+4 S'

S'Out(V) = fv(Sin(v)) , i {x}in(v), (6.2)

F (v) T(v)'

where F(v) - {(vi, v2) e E| vi = v or v2 = v} is the neighborhood function of a node. An example of an
update is shown in figure 3.1.

An update -*, with R C R(S), can update more than one cell, and when we update all of R(S) we write

S 0 S' (a burst update).

6.1.2 Computation

An input gate is a gate with no incoming edges with which we associate a sequence {0, 1}* and an update

S -+ S' , Sout(v) = (X}out(V) , SlltV {}out(v)

where y is the next value in the sequence. We define an output gate as a gate with one incoming and no
outgoing edges that records a sequence.

As such, we can view an ALA circuit as a function which transforms a set of input sequences into a set of
output sequences:

CA ({0, 1 }*)input gates _ ({0, 1}*)output gates

A computation repeatedly performs updates if possible.

Theorem 1 (Determinism). Every computation leads to the same output, i.e., the computation is determin-
istic.

Figure 3.2 shows an example of a simple computation - a one-bit addition. In the figure we move from
one state to the next by performing burst updates, i.e. by updating all gates are ready to fire with valid
inputs and empty outputs. This semblance of synchronous updates is not to be taken too literally - in the
abstraction of realization (see Section 6.2) each gate operates independently and asynchronously.

Now that we have an idea of what is meant by a computation in an ALA circuit, the question is, if this is
really asynchronous, how can we characterize it? If we built a giant sea of asynchronous processors, could
we characterize its behavior? Could we predict it?

6.2 Realization and Simulation 3*

We begin by exploring how evaluation might occur in an ideal hardware circuit where each gate updates as
soon as it is ready, and the operation of computing and passing tokens takes a total of precisely one unit of
time. A complete characterization would assign each firing of a gate to some global time, so that we could
in general say when the n-th gate fires for the k-th time.

3coauthored by Bernhard Haeupler

A B C D

B C
Oo

S + +
O*Oo4 D

A D

I S A B C D

2 Ao
3 S1 Bo
4 C

5 Do
6 A 1

7 S 2
B1i

Figure 6.1: Low-throughput Example

A B C D

B D
O+D4

S + +
0*00

A C

I S A B C D
1 so __ __ _ _

2 Ao
3 S1 BO CO
4 A1 Do
5 S2 B1 C1
6 A 2 I I Di

7 SI B 2 02

Figure 6.2: High-throughput Example

6.2.1 Dependency Graph

In order to construct such a characterization, we introduce a directed, infinite dependency graph PN
(Vp, Ep) to characterize the data token dependencies associated with each firing of each gate. Beginning
with an ALA circuit N = (V, E) with initial state So, we make a table of nodes in which columns correspond
to nodes v E V, and rows corresponding to firings. That is, for each node vo C V we have an infinite
column of nodes {v, v ,...} C V, in the infinite dependency graph representing each time vo fires in some
realization/computation. Now we assign edges in E, according to the structure of N. An edge (v, o1) c Vp
corresponds to the statements (i) (vi, vo) E E the edge set of the net N (ii) vi must fire a k-th time before
og can fire an l-th time.

Formally,

Definition 1. For an ALA circuit N = (V, E) with initial state So we define
PN = (VP, Ep) by setting Vp = Nv = IV,. and

1 2 n n .. }an

e = (vi,vj)

e' = (vy, vi)

e = (vj, v)

e' = (vj,vi)

cE, t' =t,

EE, t'=t, S - {T}

the directed dependency graph

cE, t' -t+1, S =0T}

ECE, t'=t+1, S,=0

6.2.2 Realization

There are two ways we'll treat realization - one is in the general setting where gate update times may vary
- by type, over time, randomly, etc., and the other is the special case where all gates take exactly one unit

.. I :: :: ::..::.- : :..- - - 11.1 _- 1

(vf, vt) E Ep

o+o

o 0

O*O+O+D

Figure 6.3: Throughput and Latency Example

of time to fire. By restricting the general case to the special case, it follows that performing burst updates

properly reflects the discrete times at which ideal hardware updates occur. This establishes that we know
how to simulate in a way that faithfully reflects "real" execution - an important link in the ALA circuit

design tool chain.

Using the dependency graph V,, we can construct "realizations" by successively removing (analog to "firing")
nodes with no incoming edges. We can assign a global time of evaluation to nodes by the following procedure.

We begin by assigning t(vo) = 0 for each node vi which is ready in state S'. Now, whenever we remove a

node vr (which always has only outgoing edges), we consider each node vd which has an incoming edge from

vr. We let t(vd) = max(t(vd), t(v,) + At), where At = 1 in the case at hand. When the node vd is removed

by this procedure, the value t(vd) corresponds to the longest path (or in general: path of maximum weight)
to vd from any node vi which is ready in So. But this is also precisely the evaluation time in the parallel

asynchronous model, if we assume that we can begin evaluation of all ready nodes simultaneously at t = 0.
Even without this assumption, as long as we can characterize the time when asynchronous evaluation begins

we can add weighted edges to V to capture this behavior. This result is stated more formally in Appendix
A.

6.3 Metrics 4*

We are interested in characterizing computations by their throughput, latency, and energy consumption.

Roughly speaking, that is, how fast outputs are produced, how much time it takes between when a given
input goes in and when the output corresponding to that input comes out, and how many updates are

performed to produce a bit of output. Note that taken strictly the definitions given below apply only to

circuits without copy and delete gates. Modified versions which accommodate token creation/destruction
are conceptually very similar, but require more detail.

Definition (Throughput). The throughput T(v) of a vertex in an ALA circuit N with initial state So is
defined

T(v) = lim k 1
k-+oot(Vk) t(V 1)

That is to say, the throughput of a gate is the asymptotic number of firings per unit time, which is must

lie in the interval [0,1/2]. For example, in a sequence of wire gates fed by a stream of tokens from an input

gate, each gate fires once for every two units of time - making the average firings per unit time equal to 1/2.

Definition (Latency). We can define path latency (of a path) as the asymptotic average time a token
spends traversing the path. A useful working definition for gate min latency between an input x and an
output y is the minimum path latency taken over all x - y paths.

4 co-authored by Bernhard Haeupler

..

Multiple path latencies between a single set of endpoints (x, y) indicate (by relative offset) which emerging
bits at y are logically dependent upon bits entering x. If any (x, y) path intersects a feedback loop, then
there is an infinite sequence of emerging tokens that are logically dependent upon any given entering bit.
Observe that for systems with maximal throughput, the gate min latency is equal to the path length.

In Fig 6.3, the lower set of points represents the firing times of the gate at the lower left-hand corner of the
square in the configuration, and the upper set of points is the firing times of the gate at the lower right-hand
corner. The slope of the lines is inverse throughput T-1, and the vertical space between the lines is the
latency between the said gates.

Definition (Energy). Each gate in a circuit fires once for each output token produced. Therefore we define
circuit energy as

E = |V|.

If a circuit has multiple output gates {outs}, we say that energy per bit B equals

E

B {outs}

6.4 Calculation of Throughput5

We now observe that throughput and latency are defined asymptotically, and therefore direct numerical eval-
uation would take infinitely long. Therefore we wish to develop a framework for direct and finite computation
of these quantities. We do this by projecting the infinite DAG into a finite cyclic dependency graph. We
can then formulate throughput as a property of this finite graph which lends itself to efficient computation.

The finite dependency graph N' is generated by projecting the nodes of the infinite graph Np back into
the nodes N. Those edges which in Np connect nodes of different firing indices are called 1 - edges, and
those that connect node within a single time index are 0 - edges. See Figure 6.4 which illustrates the finite
dependency graphs for the examples in Figures 6.1and 6.2.

Now, for any cycle C in N', we can define the value of the cycle val(C) as the quotient

1-edges
cycle length

Observe that for any directed cycle with val(C) = v, traversing the cycle in reverse order gives val(-C) =
1 - V.

We claim that the throughput T(N) is given by

T(N)= minval(C).
CEN'

Note that the maximum throughput of a net is T = 1/2. This follows from the facts that any cycle with
val(C) = v > 1/2, we have val(-C) = 1 - v < 1/2 giving us T(N) < 1/2. Maximum throughput is achieved
when every cycle has value 1/2.

Observe that N' can be easily generated from N by considering all edges with state x to be 0-edges, and all
edges with tokens to be 1-edges, and inserting edges in the opposite direction of the opposite type - 1-edges
opposing 0-edges and 0-edges opposing 1-edges. This is illustrated in the figures.

5 co-authored by Bernhard Haeupler

B C B D

0O O=D

O=03D S030=0
A D A C

Figure 6.4: Finite Dependency Graphs

The dependency DAG is a helpful tool to derive theoretical bounds on the computation time and behavior.

In the following we want to develop algorithms that determine and optimize the throughput of a network.

For algorithms the infinite size becomes a problem. Since the dependency DAG has a very regular structure.

Only subsequent levels are interconnected and the connections are the same on every level. We create an

infinite dependency DAG that exactly captures this structure of the dependency DAG but has size 0(n).

Essentially we map each vertex v' back to a vertex v. We distinguish two types of edges, those who go from

vertices vt to a vertex wt and those which go "forward in time" e.g. to wt+1. We call these edges 0-edges

and 1-edges respectively. The following theorem shows that at least for the matter of paths there is a nice

mapping between paths in the infinite and the finite DAG.

Remark:
The finite dependency graph can be easily obtained directly from the original network N. For this take each

edges e of N and reverse them iff S,0 = {T}. These are the 0-edges. The 1-edges are exactly the reverse of

all 0-edges.

Definition 2. For every i c N and every directed path P' = V1,V2,. .. ,V in the finite dependency graph

P we define a directed path P = vi ,v,...,vik in PN by setting i1 = i and ij+1= i + k if (v, Vj±i) is

a k-edge in PN. Note that (as long as we don't have parallel edges) this mapping gives indeed a path in PN

and is furthermore bijective. We define the value of path P as length For a path P' this translates into

a value of the sum of the time values of the edges in P' divided by the length of the path.

Let C(v) be the set of cycles through v in Pk and C' be the set of all node disjoint cycles in PK. Note that

C' is finite while C(v) is not.

Theorem 3. (If N is connected then,)

T(v) = inf val(C) = min val(C).
cGc(v) cEc'

Proof.
From the convergence in the definition of T we get that

T(v) = lim
isoo max len(P)

P path to vi in PN

= lim inf val(P).
P path to v in PN

This path consists according to Corollary 7 of a prefix of at most n updates that do not involve v. With

i -* oo the length of this prefix does not change the asymptotics and we can instead assume a path from

A1 to Ai in PN. Each such path corresponds to a cycle in PK containing v and the value of these cycles is

preserved. This proofs the first equation. For the second equation we start by showing that that if a non

node disjoint cycle C of value p exists than there is a node disjoint cycle C' of value at most p. For this take

such a cycle C and decompose it into a collection C1 , C2,... of cycles from C' with length li, 12,... and value

.We have val(C) = >k > mink ' = mink val(k). This proofs inf val(C) > min val(C). To
po equlitk wk g ak CEC(v) ceC'
proof equality we give a series of cycles Ct c C(v) whose values converge against the value of the minimum

........---- ---

value cycle C E C'. Since N is connected there is a path P from v to a node in C. The cycle Ct we
choose consists of P, t copies of C and finally P reverse. These cycles are in C(v) and their value for
increasing t is dominated by the length and value of the t C-loops. This gives lim val(Ct) = val(C) and

t->00

thus inf val(C) < min val(C). l
CEC(v) cEC'

The following dynamic program efficiently computes the quantity T(v) given Pj with integral length delays
6. Let E' be the edge set of PA:

Initialization

Ve = (v, w) e E' : f(v, w, (w)) = 0

Ve = (v, w) E E' :f(w, v, 6(w)) = 1

Recursion

f(w, v, l) min f (w, z, 1 - 6(v)) + k
(z,v) is a k-edge in E'

Output

minvj f ItV"')

Running time

O(nm E> 6(v)) since for every possible lengths from 1 to E 6(v) from each of the n nodes every of the m
edge gets used twice.

The problem of calculating the minimum value cycle in a directed graph with arbitrary length and k-
edges with arbitrary k is known as the minimum cost ratio cycle problem (MCRP). It has been intensely
studied and several efficient algorithms are known. The best asymptotic running time is O(mn log n) (or
O(mn + n2 log n) using Fibonacci-Heaps). The best theoretical and practical algorithm due to [Young,
Tarjan, and Orlin, 1991], which in practice runs in nearly linear time. The simplest algorithm which is
also very fast in practice is due to [Howard, 19601. For experimental evaluations and implementations see:
[Dasdan, 2004], [Dasdan et al., 19991.

Perturbation of Throughput

Corollary 4. Let T(v) updates per round be the throughput of a gate v in the 3-update model. In the timed
model the throughput of v is at least T(v)/t if every gate is guaranteed to update within t time after being
ready. Earlier updates can only increase the throughput.

o+D+0+0

+0+0 L*D

Figure 6.5: 12-gate adder with throughput-limiting cycle highlighted.

6.5 Optimization of Throughput: Algorithmic 6*

We want to compute an optimal buffer strategy for a given ALA circuit. This means we want to assign every
edge a length (i.e. number of buffers) that optimizes throughput. For this we give every edge a variable
length 1e > 1 and find a feasible point with respect to the constraint that no cycle in the network with
new length has a value smaller than the desired throughput A. This is equivalent to looking for negative
length cycles when one transforms an k-edge with length 1 to a length k - Al edge. If A is not known one
can do a binary search on it until an optimal feasible point is found. Since the lengths in the network are
linear functions in the le variables these are linear constraints. Even so, the number of cycles and hence the
number of constraints can be exponential and a feasible point (if one exists) can be found (up to an E-slack)
in polynomial time (e.g by using the ellipsoid algorithm). As a separation oracle for the ellipsoid algorithm,
Bellman-Ford (or the faster algorithm by Tarjan) can be used - finding a negative cycle if one exists. By
solving the linear program with the same feasible set and the objective min Ee 1 we can find a solution that
achieves optimal throughput, and in addition minimizes the number of buffers needed (caveat: this is not
completely true since buffering solutions can be fractional).

6.6 Optimization of Throughput: Examples By Hand

6.6.1 Adder

The adder which was presented in chapter 4 consumes power P = 12, and has throughput T = 3/8. The
cycle that limits the throughput of this adder is highlighted in Figure .

With a slightly different adder design, this figure shows a circuit before and after performing a 4-bit addition
at maximum throughput.

By using 14 gates we can achieve maximal throughput T = 1/2, shown in Figure 6.6. Recall that this
corresponds to the property that any connected cycle of nodes in the finite priority graph is balanced
between 0- and 1-edges (not to be confused with edges occupied by 0- and 1- tokens).

6.6.2 Multiplier

In this section I present one way to construct a maximum-throughput multiplier. Two primary changes
are made from the design presented in Figure , the first involving the serial/parallel stage, and the second
involving the add stage.

In order to optimize the serial/parallel stage, the first step is related to the contrast shown between Figures
6.1 and 6.2. In this examples it is made apparent that in cases where shortest geometric paths are taken
between fan-out and fan-in points, and there are an equal number of tokens in each branch, cycles are

6coauthored by Bernhard Haeupler

.....

+oao+oto~ooao

0000000040400

+ o

o+o~o~o~o~o~o~o~o~oo+

Figure 6.6: 4-bit addition, before and after computation, showing max-throughput

"automatically" buffered correctly. This is a sufficient condition, but not a necessary one for optimally
buffering cycles. The first step that was taken to optimize the serial/parallel conversion module/stage in the
multiplier was to conform to this principle and layout the primary stage axis diagonally instead of vertically.
Since there are tokens distributed along the control line, compensating buffers must be introduced. Because
of the additional geometric constraint that the outputs of the delete gates must be unobstructed to the east,
these compensating buffers must be made "too long", and a counter-compensating buffer introduced on the
opposite branch of the cycle. These are highlighted in Figure 6.7.

Now, the next buffering problem involves balancing cycles introduced in the addition stage. Because each
adder has two inputs, a cycle is introduced by each, which enters through one input and returns out the
other. By introducing a tree structure, we reduce the number of buffering problems to be solved from 0(n)
to O(log(n)). For conciseness complete analysis is given for powers of two, although the strategy presented
here is valid for any n. In this case a geometric placement strategy allows a closed form solution for placing
adders when moving to a successive power of two.

A final change made to the multiplier which we use in the final version of the matrix multiply is to use
sequence generators as in Figure 4.8a. These start saving area with n = 16, so they are present in Figure
6.8, but not in 6.7.

6.6.3 Matrix Multiplier

The pattern is probably clear by now -the circuit presented in Chapter 4 was suboptimal -and the repairs
presented in the previous two sections aren't enough to achieve maximal throughput in the matrix multiplier.
Fortunately there is only one cycle that needs to be balanced with the insertiio of a buffer. Figure ?? shows
where this cycle is in the functional block diagram, and highlights where the adjustment is to be made.
Figure 6.8 highlights where the buffer was inserted.

........................... :::::::::::: I

040 040

0 0 0 0

0 0 0 0

0. o+0 040 040

DD))D+ON*04040 D*D)D
0 04.0 040+0+4+00 4D+4+4D 0 04+D4<>D

0*000Do*0.#o+0o*c4O 040 0 0O*+.#D o 0.y0 D
4 - * + ++ + + -- +o +

0 o+0o+o oo 0+400 o0+D+.o+o00 0+0 040

0004<>001>01+0 0+0 0mO040N*&0 +DD *D*04+.o+o+4+ D 40.+o ++ ++0 o+ .
04.0 0 oo4o>o 0o 0.+040+0 0+(4o-oo o4D.<o>4o

4, 0+0.#+ +o+ .+o

+ + o+ + . + .+ 4o,+o

0.0 04040 ooo

Figure 6.7: ALA High-Throughput Multiplication

MIL

Figure 6.8: Pipelined 2 x 2 matrix multiply in ALA

Chapter 7

A Guide to "Snap": Hierarchical
Construction with Performance
Guarantees

In Chapter 6 we saw two ways of optimizing throughput - one was a global optimization algorithm, and

one was "by-hand," seeking out unbalanced cycles and creatively constructing one-off solutions. There were

two reasons to solve by-hand even with knowledge of a global algorithm. One is that the global algorithm

didn't know how to embed in the plane, and the other is that the global algorithm provided no assistance in

generating parametric designs. Through hand-analysis it is possible to consider what happens when some

parameter is incremented - whether the increment preserves optimality of all cycles.

In this section we'll look at a method for constructive optimization. This is a constructive procedure that

generates optimal circuits so long as the input specification satisfies certain constraints. A large number

of powerful and useful algorithms can be formulated this way, while many others cannot. There are two

important features of this procedure, which will be referred to as DA G-flow construction. The first is that it

is a hierarchical procedure - the procedure is iterated, beginning with small modules and iteratively making

larger modules out of modules. The second is that the algorithm is a forward construction procedure that

never requires backtracking to lower levels in the hierarchy. Certain limited information is preserved after

each module construction, and the rest is "black-boxed" - no longer needed to carry out construction at

higher levels.

7.1 Hierarchy and the Abstraction of Modules

Specifying programs hierarchically is a good top-down way for programmers to mentally manage the task of

designing very complex programs. In ALA one side effect is that it provides a template for building circuit

optimality from the bottom up.

Our throughput algorithms were previously adapted to operate on cell-level circuit descriptions and compute

global properties. Since the complexity of the algorithm grows as O(n 2), it is not practicable to apply this

method as circuits get large. One way of managing this is to carefully assemble circuits that use regularity

in a parametric way, so as to use small global computations to provide guarantees that are invariant under

parametric scaling (optimization by-hand). This works for something like an integer multiplier that scales

in a very regular way. Another much more flexible and generally applicable way to manage the complexity

of performance characterization as circuits scale is to abstract functional modules. In this way a knowledge

of internal details of component modules is not necessary in order to characterize a circuit assembled from

many modules. Only a small amount of information (linearly proportional to the number of inputs and

Figure 7.1: Merging Complete Graphs with Glue

outputs of the module) needs to be assembled in order to compute our latency and throughput metrics for

these aggregate circuits.

One advantage of abstracting modules is that performance guarantees can be maintained without complexity

blowing up. Another equally significant win is the ability to abstract. On one hand we want to expose

the programmer to the costs of transporting data which are physically unavoidable. On the other hand,
we want the programmer to be able to abstract function away from geometry, since the starting point

of writing a program is a concept of what the program should do, and not how it should occupy space.

A particular procedural abstraction we call DAG-fiow allows the programmer a natural abstraction while

tacitly preconditioning geometry and building in the connection between functional proximity and geometric

proximity that is necessary to respect physical scaling.

Circuits must be assembled to minimize the complexity of buffering for optimal throughput. Given an

unordered rat's-nest of modules and connections, a variety of heuristics could be applied in order to achieve

optimal throughput. We observe, however, that programmers are unlikely to think in unordered rat's-nests

- we expect it to be much more natural to assemble modules from submodules, and place use these larger

modules in combination with other modules to accomplish intermediate and global goals.

7.2 The Induction Step: Making a Module out of Modules and

Preserving Performance

We saw in Chapter 6 that the property of a cycle that can limit throughput is "unbalanced" cycles in the

finite priority graph. In order to do incremental connection/ merging of circuit "modules," what we need to

show is that there is a way of guaranteeing that any new cycles that are formed by the merging are able to

be "balanced" by construction. Now it will suffice to show that any two modules can be connected up - all

larger mergings can be constructed from these single steps.

Let M1 and M2 be two max-throughput modules that we'd like to connect together to form a new module that

also has max-throughput. The modules are specified with inputs and outputs, and the merging procedure

is defined to connect some outputs of one module - say, Mi - with inputs of another module - now M 2 .

This way, all of the connections between modules go one way. Critically, it cannot be the case that some

connections also connect the outputs of M 2 with the inputs of M1 .

For each module we have potential values associated with the nodes, which are constructed at the lowest

level by computing the shortest path metric, and are then updated at each aggregation step. Now, within

a single module it is generally the case that there is some path between any input or output port pi and any

other one P2. Let's assume this is the case - if not, a module can be considered as more than one module

- so that this assumption eventually holds. Using the potential values #(pi) and #(p2) we can deduce the

cost/weight of the path between p1 and P2. Now suppose that pi and P2 are outputs of Mi and qi and q2
are inputs of M 2 and we want to connect pi with qi and P2 with q2. This connection generates a node cycle

in the graph (pi, P2, q2, q1), which can also be considered as an edge cycle (p, X2 , -q, -zi) , labeled as in

Figure 7.1. The problem of buffering is thus formulate as choosing weights of xi and x2 that both balance

the cycle - i.e. have the property that p + X2 - q - x1 = 0 - and can be geometrically embedded in ALA.

The critical observation to make about this formula is that, since p and q have the same direction, if you

increase the length of p the sum becomes more positive, and if you increase the length of q the sum becomes

more negative - that is - whatever the initial state of the geometric embedding is, it can be perturbed so as

to balance the cycle. If the sign of both were the same, this wouldn't be the case - we might have a negative

sum and no knob to turn to balance it - since "shortening" edges is not always possible.

1see, for example [Ahuja et al., 19931for more on shortest path / potential values

Figure 7.1: Merging Complete Graphs with Glue

Now that we've seen how to balance the cycle created by a pair of edges that join two modules - now what
happens when we bring a third (or a k-th) edge into the picture? Now that M 1 and M 2 are joined, weighting
for the edge from p3 to q3 is imposed by the prior connections made. If, however this weight corresponds
to a path which is shorter than the geometry allows (is geometrically infeasible), then we need to buffer the

other edges (the first k - 1) in order to achieve the zero sum necessary. Let x 3 be the shortest path which is

geometrically feasible. In the weighting equation, buffering other edges corresponds to introducing a factor
A as follows

p + x3 - q - x > 0,
p + x 3 - q - (x + A) = 0, (7.1)

and if it is necessary to extend x3 in order to buffer the other edges x , another factor -y can be added to all
since Eq. 7.1 implies that

p + (x 3 + y) - q - (x + A +y) = 0. (7.2)

The trick that makes utilizing this fact particularly easy in ALA is that introducing a factor -y to all prior
edges (pi, qi) can be accomplished by translating the module M2 in the plane and extending the edges with
shortest paths along the grid. Adding A is slightly less trivial, but can be accomplished with a variety of
constructive heuristics.

7.3 DAG-flow: The Anatomy of a Sufficient Framework

In this section I go through the most important mechanisms necessary for implementing the promised
hierarchical low-complexity forward construction procedure with performance guarantees.

7.3.1 Input Syntax and Assembly Procedure

In section 4.4 it was mentioned that connections between modules in Snap circuits are constrained to be
top-to-bottom and left-to-right. The reason for this constraint is that it allows for a constructive pro-
cedure whereby any circuit constructed from max/high-throughput submodules is guaranteed to also be
high-throughput, based on the result from Section 7.2. Using the primitives discussed in 4.4, I define a

syntax for specifying a circuit or module as a series of connected stages in which data flows from left to right
and top to bottom.

newmodule = modCons[{{A,B,.. .},glue[{n1,n2},{n3,n4},...] ,C,D,...}]

In DAG-flow we specify a circuit construction procedure that alternates between vertical and horizontal
concatenations. We begin by stipulating that individual modules have their inputs on the left and outputs
on the right - arbitrarily choosing an axis. We introduce two primitive operations - (i) producing module
columns by vertical concatenation of modules that operate in parallel, and (ii) horizontal concatenation of
sequences of columns that are connected unidirectionally. Without loss of generality, we assert that these
connections be directed from left to right, and specify them as permutations that map outputs of one column
to inputs of the next. These are not strictly permutations since we allow fanout of single outputs to multiple
inputs.

Once we have a specification of such a circuit, we begin the layout process with a pass of assembling columns
in which we equalize width. Then, beginning by fixing the left-most column at the x=0, we add columns
one-by-one, connecting them with smart glue, which takes as input potential values associated with the
outputs and inputs in question, and buffering properly. This procedure could also be performed in parallel
in a logarithmic number of sequential steps - pairing and gluing neighboring columns preserves the ability
to optimally buffer connections between the larger modules thus assembled. In order to augment the class
of circuits that can be defined using DAG-flow, we also introduce a rotation operator, which allows us to
assemble sequences of columns, then rotation them and assemble columns with these as modules.

7.3.2 Construction Primitives and Module Objects: Inheritance and Derivation
of Attributes

Concatenation In section 4.4 we saw that the horizontal and vertical concatenation operators, hcat

and vcat, were critical for enabling the specification of basic spatial relationship between modules. When

implemented in the language Snap, the operators operate on module objects - that is, named data structures

that can be queried for various attributes. In this case important attributes are width, height, and the location

of inputs and outputs. The product of a concatenation of modules is a new module, and this module's

attributes must be derived from those of its component modules. The contents of such a mat module is a

list of component modules and their offsets relative to the origin of the new module. For example, if I hcat

together two modules Mi and M2 each of width = 5, the new module M3 has an attribute mat [M3] with

value {M1 , {0, 0}, M2 , {5, 0}} and width[M3] - 10. For horizontal inputs from the west and outputs to the east,
the rule is that for hcat the inputs of the left-most module (M 1 in the example) become the inputs of M 3 ,
and the outputs of the right-most module become the outputs of the new module. The vertical input and

output attributes of M3 are concatenated from those of Mi and M 2 . Analogous rules apply for vcat. If

implementing a node-potential scheme based on the theory in Section 7.2, the concatenation operators also

accumulate node potential values. New node potential values must only be assigned to nodes that are inputs

or outputs of the new module. If we assume that concatenation is applied to a pair (the general case can

be derived by repeated application of pair-concatenation), and assume that throughput has been optimized,
the potential an output node r of M/3 can be computed as follows: select any output p of the left module

M1 along with its corresponding input of M 2 . The potential of r is the potential of p plus the weight of the

one-unit path from p (which equals 1/2 when throughput is maximal), plus the potential difference between

r and q.

Rotation The rotation operator can be used to derive vertical operations from horizontal ones. It derives

attributes in a straightforward way similar to what's described for hcat and vcat. Because of the constraints

on direction of dataflow only two rotation operators are necessary - a rotation rotateW that operates on

modules with inputs to the west and rotates 90 degrees clockwise, and a rotation rotateN that operates

on modules with inputs to the north and rotates 90 degree counterclockwise. One example of a derived

attribute for rotateW would be that vertical inputs of the new module are the horizontal inputs of the old

module. One slight non-triviality is that, to enforce module specification with the origin at the lower left

(or wherever one chooses), translation must be performed after rotation. In the next section we'll see that

rotation is useful for adapting a west-east glue generating routine to generate north-south glue.

Smart Glue Glue modules are treated by the concatenation operators just as any other module. However,
in the construction procedure, smart glue generation has a chance to peek ahead in time to prepare the glue

to buffer optimally. Stages are constructed first so that glue modules always receive as input a left module

and a right module. Some algorithm is applied to generate an optimally buffered glue module which is

geometrically compatible with the left and right modules, and this module is then horizontally concatenated

with its neighboring modules.

At the time of writing, the glue algorithm in use is not "smart" - it has the capability of joining inputs and

outputs along shortest paths and any additional adjustment necessary has thus far been done "by-hand" as

demonstrated in 6.6. The procedure I propose is to begin with a solution that satisfies geometric embedding,
and then perturb it within the embedding until the cycle is balanced. The nature of some of the heuristics to

fully implement this procedure - hence making the glue "smart enough" - are suggested in section 7.2, but

none of these have yet been worked out in full detail. The only thing that makes creating optimal buffering

at all tricky is the fact that "bumps" inserted into wires to buffer them may collide with existing structures

- which requires modifying either the existing structure, or not getting the buffering you want in the new

buffer. When you can't have the buffering that you compute by Equation 7.1 it is usually necessary to

overshoot, as in Equation 7.2, and modifying counter-balancing segments to compensate. This was the case

in with the multiplier example in Section 6.6.2. In that example though we weren't afforded the luxury of

aligning the inputs and outputs vertically so as to allow the application of generic strategies that apply to

this situation.

Chapter 8

Conclusion

I have taken you on a tour of what happens at the limit of parallelism - this is one scheme where logic

and interconnect are blended together in a small space for high-density, high-throughput computation,
illustrating the benefits of aligning physics and computation. These benefits are a coherent sum of tried

and true strategies: use parallelism, avoid unnecessary data transport, and customize your hardware to your

application. The HPC-On-A-Chip application approaches customization as quick customization: the process

of building ALA in hardware is a generic process - assembling tiles in a grid - but it's custom because

the program maps one-to-one onto hardware and hence optimizes in hardware the particular program it

represents. The other context for the performance figures represented here is reconfigurable hardware -
RALA. Bringing this into the realm of practicality will require more development and inventiveness, but it

ultimately promises most of the benefits of HPC-On-A-Chip without the need to physically assemble a new

chip for each new program.

Recall that the biggest problems with HPC today are power-consumption, ease of design and ease of pro-

gramming. It's not enough to be competitive on power - and we saw that ALA holds promise as a substrate

for an intuitive and scalable language where programming is done more as spatial assembly of blocks than as

specifying sequences of steps - it is visual data-flow language like Simulink, but instead of large functional

blocks and continuous time, ALA constructs universal logic beginning with single-bit operations placed in

discrete spatial locations, and operates asynchronously. The language automatically optimizes throughput

using results from graph theory. Making the program bigger means changing a parameter and building a

bigger or a smaller piece of hardware, and not performing a global redesign.

In this thesis I focused on high-throughput applications for doing large quantities of highly-pipelined oper-
ations. This takes advantage of asynchrony as an enabling feature for extensibility, but there's a family of
advantages that apply in other parts of the programming parameter space. In particular, in programs with

a low-level, spatially and temporally irregular activity pattern, the asynchronous property of ALA can be

beneficial because parts of the grid that aren't performing computation don't consume power. So a compu-

tation can be a sparse network of varying tasks, and each task is optimized for speed and power efficiency at

some different location on the grid. One application for this type of computation would be to process sparse
audio-video data where computation only happens when data comes in, and the procedure performed on the

data may be data dependent, so that different parts of the chip are activated by different data.

These preliminary results warrant further exploration of ALA as a paradigm for hardware and software. In

order to try out more sophisticated numerical computations, such as matrix decomposition, a next step is to

implement some LAPACK-like routines. In parallel, there are a number of important questions to address.

For example, I posited that circuits can be packed very tightly, but have not yet explored packing algorithms.

Also, the automatic throughput maximization prohibits feedback loops, but there are cases where feedback

loops can be optimally pipelined. One example is the serial adder - the circuit contains a 1-bit feedback

loop that processes the carry bit. Also, the selectCopy circuit presented in Chapter 4 contains a feedback

loop and is maximally pipelined. A worthy topic of further investigation is whether logic transformations
that perform this pipelining algorithmically can be identified and generalized. Another important topic for

further exploration is fault tolerance - majority voting has been shown to be sufficient for correcting logic

errors, but currently we don't have a mechanism for recovering a circuit when a gate fails to produce a token.

There are a variety of strategies out there, and these should be inspected for applicability to ALA.

I have shown that scalability and performance can be achieved in the ALA model. I attribute the success of

the aligned strategies of parallelization, minimization of data transport, and customization to their collective

similarity to physics. For completeness it deserves to be mentioned that there is one very important property

of physics that we haven't yet brought into ALA - and that is reversibility. The effortless way in which nature

computes using chemical and thermodynamic processes - contrasted with our many-kilowatts - suggests
that we're still doing something very differently. In quantum mechanics, processes are reversible and no

information is lost. The gates presented in Section 3.1 perform irreversible logic - the inputs that went into a

computation cannot be recovered through knowledge of the outputs, and this implies dissipation of heat (see

Feynman, 2000). Embodying reversible operations in an ALA-like hardware architecture has the potential to

harness all of the other benefits of aligning physics and computation and in addition cut power consumption

by orders of magnitude. At present, however, it isn't clear how to engineer it - that will require some very
deep invention.

Appendix A

Formal Results

A.1 Stability under asynchronous updates

Update Sequences

Theorem 5. The possible update sequences for the ALA circuit (N, SO) are exactly the topological orderings

for PN where vi means that the gate vi gets updated the t-th time.

Proof. An edge e (vi, vj) starts with |S'l tokens and every update of vi increases the number of tokens

on e by one while every update on vj consumes one token from e. Thus the number of tokens on an edge

e (vi, vj) if vi has updated t times and v3 has updated t' times is exactly ISI + t - t'. At any given

point a transition v can update iff all its input gates are filled with one token and all its outputs are empty.

Therefore vt can happen iff any input gate w has already updated exactly tj - t -IS | times and every

output gate u has updated exactly t = t - 1 + ISw)|. The dependency graph PN contains by definition

for every v exactly the edges (wt,, Vt) and (Vt, wti+1) for an input gate and the edges (ut., Vt) and (Vt, ut+1)

for an output gate. This guarantees that vt occurs in every topological order between the ti-th and the

(ti + 1)-th update of any input gate and the to-th and (t, + 1)-th update of any output gate. This proves

the claim. Finally note that for every gate v in N vt occurs before vt+1 in any topological ordering of PN

since for every t there are edges (vt, ut'), (ut', vt+1) where u is a neighbor of v in N. E

Corollary 6. An ALA circuit N is deadlock free iff PN is acyclic.

Since we are only interested in deadlock free ALA circuits we will from here on call the directed dependency

graph also dependency DAG.

Corollary 7. If the ALA circuit N is connected then every gate no gate updates more than n times more

than any other gate. Thus every gate has the same throughput, i.e. T(v) = T(v') for any v, v' in N.

Proof. Since N is connected there is a path of length at most n from v to v' in N. This leads to a directed

path from vt to a V't with t' < t + n. Since this is true for any ordered pair v, v' this proofs that between

any gates in N the number of updates can differ at most by n. With time to infinity the throughput of any

two nodes is thus the same. EZ

Realization

With these tools we can now prove a very general theorem about the behavior of an ALA circuit in a model

that measures time and does not rely on #-updates. For this we assign each vt update of a gate v a time

delay 6(vt) and assume the following general update model. If a gate v is ready to fire the t-th time because

all its inputs are full and all outputs clear it updates with a delay of S(vt).

Theorem 8. The time when a gate v updates the t-th time in the above model is exactly the length of the

longest directed path to vt in the dependency DAG PN where the length of a path is the sum of the delays 6
of the nodes on the path.

Proof. We prove this by induction on the order in which updates occur. The first update v gets updated

at time 6(vl) since v is ready and does not have to wait for any other updates to happen. For the induction

step we look at the time of an update vt which happens 6(vt) after the occurrence of the last neighborhood

update v had to wait for clears an output of provides an input. Let's call this update ut' and assume it

happens at time x. By induction hypotheses there is a directed path to ut' of length x. This path can

be extended to give a path to vt of length x + 6(v') which is exactly the time vt happens. It remains to

show that there is no longer path to v. Such a path would consist of a path to a transition 't" in the

neighborhood of v of length x' and than an edge to v'. Since this path is supposed to be longer we have

x' > x and again by the induction hypothesis this means that the transition n't occurred after ut'. This

contradicts the choice of u El

Note that this is setting is quite general. It allows to model different update timings for different gates or

gate types or the introduction of stochastic or perturbed update delays. The #-update model is also captured

as the special case of all delays 6 being 1.

Appendix B

Benchmarking Code

This code is written in Mathematica. Commands that refer to "webs" access a back end written in C/C++
that simulates ALA circuits.

dataList = {bpw, dim, dim, cbpo,iniPh, iniPhB,nU, iniBL, iniWL, iniOpL, eBL, eWL,

eOpL, eChL, enrOp, eP};

dataElementNames = ToString /@ dataList;
gatherMatMulData[dim_, logBpw_,itr_:10,fnSuppl_:""] =

Module[{leftIn, topIn, mx, mxLeftInCrs, mxTopInCrs, mxVOutCrs, iniPhOuts,

iniPhInis, iniPhIn2s, fullIniPhData, cbpo, lastFirstOutputTime,

lastFirstWordOutputTime, lastLastOutputTime., firstOutputTime,

firstFirstWordOutputTime, firstFirstChOpOutput, iniOpL, iniBChL,

iniWChL, iniOpChL, upperLatIndB, lowerLatInd1, lowerLatInd2,

eOpL, eChL, bpw, firstInputTime, iniBL, iniWL, lowerLatInd,

eBL, eWL, dati, ePWhole, eP, lambda, nU,

strMat, dat, outFireTimesIni, in1FireTimesIni, in2FireTimesIni,

iniPhB, iniPh, inlFireTimesEq, in2FireTimesEq, outFireTimesEq,

data, writeMatMulData, out, mt, oSeq, repIn, vRepIn, iMatCCV,

vZero, iMatCCHV, lastOutInd, lastOutCr,

enrOp, enrInL, enrInT, ePLeft, ePTop, 11, 111, eChLL

(*initialization/parameters*)

lambda = 1/2;

bpw = 2^logBpw;

cbpo = dim bpw;(*channel bits per operation*)

nU = dim bpw itr;

(*COMPUTE INITIAL PHASE LENGTH*)

(*construct mat and compute coordinates*)

{strMat, leftIn, topIn, mx} =
strMatMulHT[dim, logBpw, True];

mxLeftInCrs =
innerMatWebCrs[strMat, mx, inputs, #] & /0 Range[Length[inputs[mx]]];

mxTopInCrs =

innerMatWebCrs[strMat, mx, vInputs, #] & /@ odds[Range[Length[vInputs[mx]]]];

mxVOutCrs =

innerMatWebCrs[strMat, mx, vOutputs, #] & /0 evens[Range[Length[vOutputs[mx]]]];

(*output times*)

outFireTimesIni =

Do [resetMatWeb [strMat];

dat = execMatCoor[strMat, oCr, nU];

AppendTo[outFireTimesIni, odds[dat]], {oCr, mxVOutCrs}];

iniPhOuts = pickEquilibriumBegin /0 outFireTimesIni;

(*left input times*)

in1FireTimesIni = {};
Do[resetMatWeb[strMat];

dat = execMatCoor[strMat, iCr, nU];
AppendTo[in1FireTimesIni, odds[dat]], {iCr, mxLeftInCrs}];

iniPhInis = pickEquilibriumBegin /0 in1FireTimesIni;

(*top input times*)

in2FireTimesIni = {};
Do[resetMatWeb[strMat];

dat = execMatCoor[strMat, iCr, nU];
AppendTo[in2FireTimesIni, odds[dat]], {iCr, mxTopInCrs}];

iniPhIn2s = pickEquilibriumBegin /0 in2FireTimesIni;

fullIniPhData = {Thread[{mxLeftInCrs, iniPhInis}],

Thread[{mxTopInCrs, iniPhIn2s}],

Thread[{mxVOutCrs, iniPhjuts}]};

iniPh = Max[#[[2]] & /0 Join[iniPhInis, iniPhIn2s, iniPhOuts]];

iniPhB = Max[First /0 Join[iniPhInis, iniPhIn2s, iniPhOuts]];

(*COMPUTE LATENCIES*)

(*INITIAL PHASE*)

firstInputTime =
Min[First /0 in1FireTimesIni, First /0 in2FireTimesIni];

lastFirstOutputTime = Max[First /0 outFireTimesIni];
(*this is time of last channel to fire first bit \ *)

(*minus time of first firing of first input*)

iniBL = lastFirstOutputTime -
firstInputTime;

lastFirstWordOutputTime = Max[#[[bpw]] & /0 outFireTimesIni];

iniWL = lastFirstWordOutputTime - firstInputTime;

lastLastOutputTime = Max[#[[cbpo]] & /0 outFireTimesIni];

iniOpL = lastLastOutputTime - firstInputTime;

firstOutputTime = Min[First /0 outFireTimesIni];
iniBChL = lastFirstOutputTime - firstOutputTime;

firstFirstWordOutputTime = Min[#[[bpw]] & /0 outFireTimesIni];

iniWChL = lastFirstWordOutputTime - firstFirstWordOutputTime;

firstFirstChOpOutput = Min[#[[cbpo]] & /0 outFireTimesIni];

iniOpChL = lastLastOutputTime - firstFirstChOpOutput;

(*EQUILIBRIUM PHASE*)

(*drop firings from initial phase to get firings in equilibrium phase*)

{inlFireTimesEq, in2FireTimesEq, outFireTimesEq} =

Map[(Drop[#, iniPhB - 1]) &, {inlFireTimesIni, in2FireTimesIni,

outFireTimesInil, {2}];

upperLatIndB = Max[computeLatInd /0 outFireTimesEq];
lowerLatIndi = Min[computeLatInd /0 inlFireTimesEq];
lowerLatInd2 = Min[computeLatInd /0 in2FireTimesEq];
lowerLatInd = Min[lowerLatInd1, lowerLatInd2];
eBL = upperLatIndB - lowerLatInd;

eWL = eBL + 2*(bpw - 1);

eOpL = eBL + 2*(cbpo - 1);

eChL = Max[computeLatInd /0 outFireTimesEq] - Min[computeLatInd /0 outFireTimesEq];

(*COMPUTE ENERGY*)

(*compute by giving one set of inputs and BurstUpdateUntilDone.*)

mt = mx;
vZero = rotateWMod[eWire0];
oSeq = Append[rep[O, bpw - 1], 1];

repIn = hcatMat[{dataWireMod[oSeq], copyWord[dim, logBpw]}];

vRepIn = rotateWMat[repIn];
{topIn, iMatCCV} =
matConsStageVAlign[Riffle[rep[vRepIn, dim], rep[vZero, dim]], mt,

True];
{leftIn, iMatCCHV} =

matConsStageAlign[rep[repIn, Length[inputs[mt]]], iMatCCV, True];

(* then need to subtract off the power of the input mats *)

derCellCount;

(* which output to monitor for completion of single execution *)

lastOutInd = Position[outFireTimesIni, lastLastOutputTime][[1, 1]];

lastOutCr = innerMatWebCrs[iMatCCHV, mt, vOutputs, 2 lastOutInd];

(* factor of two is from "evens" in def of mxVOutCrs *)

dat1 = execMatCoor[iMatCCHV, lastOutCr, cbpo];

enrOp = GetCellUpdateCounter[];
derCellCount;
execMat[leftIn, cbpo];
(* use first output as stopping condition because I know all channels are identical *)
enrInL = GetCellUpdateCounter[];
derCellCount;
execMatCoor[topIn, First[webVOutputs[topIn]], cbpo];

(*execMat[topIn, cbpo]; *)

enrInT = GetCellUpdateCounter[];
enrOp = enrp - enrInL - enrInT;

(*COMPUTE POWER*)

(*this computation relies on averaging over a sufficient number of output bits*)

resetMatWeb[strMat];

BurstUpdateWeb[web[strMat], iniPh]; resetMatWeb[leftIn];

BurstUpdateWeb[web[leftIn], iniPh]; resetMatWeb[topIn];

BurstUpdateWeb[web[topIn],iniPh]; derCellCount;

BurstUpdateWeb[web[strMat], 2 bpw];

ePWhole = GetCellUpdateCounter[]; derCellCount;

BurstUpdateWeb[web[leftIn], 2 bpw];

ePLeft = GetCellUpdateCounter[]; derCellCount;

BurstUpdateWeb[web[topIn], 2 bpw];

ePTop = GetCellUpdateCounter[];
eP = (ePWhole - ePLeft - ePTop)/(2*bpw) // N;

(*the only reason two firings isn't sufficient is copy/delete cycles*)

out = {bpw, dim, dim, cbpo, iniPh, iniPhB, nU, iniBL, iniWL, iniOpL, eBL, eWL, eOpL,
eChL, enrOp, eP};

data = Thread[{dataElementNames, out}];
writeMatMulData :=

Export[dataFileName["matMul", bpw, dim, dim,fnSuppl] ,data];

Print[writeMatMulData];

data

Appendix C

Example Layout Code

C.1 Periodic Sequence generation

onesGates = {
{{O,0},wire,{{N,1}}},

{{O,1},wire,{{S,x}}}

};

dublGates = {
{{O,0},copy,{{W,x},{N,x}}},
{{O,1},wire,{{N,x}}},

{{0,2},not,{{S,O}}},

{{1,0},and,{{W,x},{N,x}}},

{{1,1},wire,{{N,0}}},

{{1,2},not ,{{S,x}}}

};

dublOnesGates = {
{{0,0},copy,{{W,x},{N,x}}},
{{0,1},wire,{{E,x}}},

{{1,0},wire,{{W,x}}},
{{1,1},wire,{{S,0}}},
{{2,0},xor,{{W,x},{N,x}}},
{{2,1},wire,{{W,x}}},

{{3,0},and,{{W,x},{N,x}}},

{{3,1},wire,{{W,x}}}

};

apOsc[n_] :=
Module[{bd (*binary digits*),mls (*module list*)},

bd = IntegerDigits[n,2]; (* binary representation of n

bd = Drop[bd,1]; (* first significant bit is implicit *)

mls = bd /. {1->Sequence[dubl,dublOnes],O-> dubl};

(* generate module list from binary representation *)

mls = Prepend[mls,ones]; (* source of ones is one-bit base case

hcatMat[mls] (* generate mat module *)

evenCopies[logN_,m_] .=

hcatMat[aposc[m],Sequence(OC6rep[straightDubllogN]I];

Bibliography

The Green Grid, 2010. URL http: //www. thegreengrid. org.

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms and Applications. Prentice
Hall, New Jersey, 1993.

Edwin Roger Banks. Cellular Automata. PhD thesis, Massachusetts Institute of Technology, 1970. URL
http://hdl.handle.net/1721.1/5853.

K. Chen. Circuit Design for Logic Automata. Master's thesis, Massachusetts Institute of Technology, 2008.

Kailiang Chen, Forrest Green, and Neil Gershenfeld. Asynchronous logic automata asic design. to be
submitted, 2010.

Wu chun Feng and Kirk W. Cameron. Green500. URL http: //www. green500. org.

John Conway. The game of life. Scientific American, 1970.

International Business Machines Corporation. Ibm highlights, February 2007. URL http: //www- 03. ibm.
com/ibm/history/document s/pdf/2000-2006 . pdf.

David Dalrymple. Asynchronous Logic Automata. Master's thesis, Massachusetts Institute of Technology,
2008.

Ali Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean algorithms. A CM Trans. Des.
Autom. Electron. Syst., 9(4):385-418, 2004. ISSN 1084-4309. doi: http://doi.acm.org/10.1145/1027084.
1027085.

Ali Dasdan, Sandy S. Irani, and Rajesh K. Gupta. Efficient algorithms for optimum cycle mean and optimum
cost to time ratio problems. In DAC '99: Proceedings of the 36th annual ACM/IEEE Design Automation
Conference, pages 37-42, New York, NY, USA, 1999. ACM. ISBN 1-58133-109-7. doi: http://doi.acm.
org/10.1145/309847.309862.

Jack B. Dennis. Modular, asynchronous control structures for a high performance processor. A CM Conference
Record: Concurrent Systems and Parallel Computation, 1970.

Jack B. Dennis. A preliminary architecture for a basic data-flow processor. Project MA C Report, 1980a.

Jack B. Dennis. Data flow supercomputers. IEEE Computer, 1980b.

GJ Olsder JP Quadrat F Baccelli, G Cohen. Synchronization and Linearity: An Algebra for Discrete Event
Systems. Wiley, 1992.

Richard P. Feynman. Feynman Lectures On Computation. Westview Press, 2000.

Neil Gershenfeld, David Dalrymple, Kailiang Chen, Ara Knaian Forrest Green, Erik D. Demaine, Scott

Greenwald, and Peter Schmidt-Nielsen. Reconfigurable asynchronous logic automata (rala). ACM

POPL'10, 2010.

F. Green, K. Chen, A. Knaian, and N. Gershenfeld. Asynchronous Logic Automata ASIC Design.

manuscript, 2010.

Forrest Green. ALA ASIC: A Standard Cell Library for Asynchronous Logic Automata. Master's thesis,
Massachusetts Institute of Technology, 2010.

Simon Haykin, John Litva, Terence J. Shepherd, T.V. Ho, J.G. McWhirter, A. Nehorai, U. Nickel, B. Otter-

sten, B.D. Steinberg, P. Stoica, M. Viberg, and Z. Zhu (Contributor). Radar Array Processing. Springer
Verlag, 1992.

R. A. Howard. Dynamic Programming and Markov Processes. The M.I.T. Press, Cambridge, Mass., 1960.

Advanced Micro Devices Incorporated. Amd history, 2010. URL http://www.amd.com/us/aboutamd/
corporate-information/Pages/timeline.aspx.

Martha Mercaldi Kim, Mojtaba Mehrara, Mark Oskin, and Todd Austin. Architectural implications of

brick and mortar silicon manufacturing. SIGARCH Comput. Archit. News, 35(2):244-253, 2007. ISSN

0163-5964. doi: http://doi.acm.org/10.1145/1273440.1250693.

D.E. Knuth. The Art of Computer Programming, v.3 Seminumerical Algorithms. Addison-Wesley, 3rd

edition, 1998.

Rajit Manohar. Reconfigurable asynchronous logic. Integrated Circuits Conference, 2006.

N Margolus. An embedded dram architecture for large-scale spatial-lattice computations. In Proceedings of

the 27th International Symposium on Computer Architecture, New York, NY, USA, 2000. ACM.

A.J. Martin, A. Lines, B. Manohar, M Nystroem, and P Penzes. The design of an asynchronous mips r3000

microprocessor. Advanced Research in VLSI, 1997.

Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. Top500, June 2010. URL http: //www.

top5OO. org.

Claudio Moraga. On a case of symbiosis between systolic arrays. Integr. VLSI J., 2(3):243-253, 1984. ISSN

0167-9260. doi: http://dx.doi.org/10.1016/0167-9260(84)90044-0.

David Patterson. The trouble with multicore. IEEE Spectrum, July 2010.

C.A. Petri. Nets, time, and space. Theoretical Computer Science, 153:3-48, 1996.

NVIDIA Corporation, 2010. URL http://www.nvidia.com/page/corporate-timeline.html.

Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

Neal E. Young, Robert E. Tarjan, and James B. Orlin. Faster parametric shortest path and minimum balance

algorithms, 1991.

