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Abstract

This thesis lays the foundation for an integrated machine learning framework for the
evolutionary analysis, search and design of proteins, based on a hierarchical decompo-
sition of proteins into a set of functional motif embeddings. We introduce, CoMET
- Convolutional Motif Embeddings Tool, a machine learning framework that allows
the automated extraction of nonlinear motif representations from large sets of protein
sequences. At the core of CoMET, lies a Deep Convolutional Neural Network, trained
to learn a basis set of motif embeddings by minimizing any desired objective function.

CoMET is successfully trained to extract all known motifs across Transcription
Factors and CRISPR Associated proteins, without requiring any prior knowledge
about the nature of the motifs or their distribution. We demonstrate that motif em-
beddings can model efficiently inter- and intra- family relationships. Furthermore, we
provide novel protein meta-family clusters, formed by taking into account a hierar-
chical conserved motif phylogeny for each protein instead of a single ultra-conserved
region.

Lastly, we investigate the generative ability of CoMET and develop computa-
tional methods that allow the directed evolution of proteins towards altered or novel
functions. We trained a highly accurate predictive model on the DNA recognition
code of the Type II restriction enzymes. Based on the promising prediction results,
we used the trained models to generate de novo restriction enzymes and paved the
way towards the computational design of a restriction enzyme that will cut a given
arbitrary DNA sequence with high precision.
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Chapter 1

Introduction

Biological engineering is not necessarily understanding systems but

rather, I want to be able to design and build biological systems to

perform particular applications.

-Drew Endy, 2005

Technological advances in the past decade have allowed us to take a close look at

the proteomesi of living organisms. As a result, more than 120, 000 protein structures

have been solved and are readily available (source: www. rcsb. org) to the public, a

number that grows exponentially. Looking through the protein structures, one comes

across a vast diversity of molecular machinery, involving intricate mechanisms that

perform key cell functions, such as genome replication, energy production or immunity

(Fig. 1-1). Today, a large part of scientists working in the field of synthetic biology,

are trying to formulate rules and principles behind the construction of such proteins,

a methodology known as rational protein design, which resembles the process behind

the making of a complex mechanical or electronic device.

Biological cells, though, do not have a degree in engineering. Cells are able to

adapt to changes in their environment, such as introduction of new chemicals or

attacks from new viruses, through a sophisticated encoding and an evolutionary search

algorithm. The efficiency of this method lies in the ability to generate millions of

different alternatives, immediately put to test in distinct copies of the organism,

1A proteome is the set of proteins expressed by a genome, cell, tissue, or organism at a certain
time.
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a process known as natural selection. By looking at the proteomes of the current

living organisms, we are essentially taking snapshots of the successful results in this

evolutionary process of continuous adaptation to the environment. Could we leverage

the available information to design new proteins, without the need for millions of years

of Darwinian evolution?
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Figure 1-1: Atlas of protein structures involved in key biological processes. Source

ProteinDataBank. Image credit: David Goodsell.

To faithfully answer this question, we have to take into account that design was

not a big component in this evolutionary process. Thus, by employing engineering

methodologies, we can do much better than random combinatorics of single amino

acids. In fact, by looking carefully at the sequences and structures of proteins across

species, we can find patterns of similar amino acid composition that have distinct

functions within the larger protein structure. These patterns, or motifs, are a mix-

ture of secondary and tertiary structure elements, that are combined together to form

the final protein with complex functionality. We can further parallelize this struc-

tural and functional modularity with similar concepts from electromechanical system
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engineering (see Figure 1-2).
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Figure 1-2: (left): Hierarchical decomposition of protein spCas9. Initial structure

downloaded from RCSB (4UN3) and visualized with PyMOL. (right): The various
levels of hierarchy in the design of a modular machine, by Will Langford, MIT Center

for Bits and Atoms.

Thus, from an engineering perspective, we pose ourselves the following questions:

" Is biology building its arsenal of proteins using a hierarchical set of building

blocks - motifs - on top of the primary amino acid code?

" If so, could we leverage the available information about the sequence. structure

and function of pioteins found in nature at this moment, in order to learn those

motifs?

" Lastly, given the basis set of motifs at a particular level of representation, how

can we use them to engineer proteins with altered or novel functions?

This thesis lays the foundation of an integrated machine learning framework for

the evolutionary analysis, search and design of proteins, based on a hierarchical de-
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composition of proteins into a set of functional motif embeddings, utilizing the latest

advances of Deep Convolutional Networks (DCN). Current work focuses on the motif

embeddings representation per se, paving the path towards homology based search

and ultimately generative modeling for design.

We introduce, CoMET - Convolutional Motif Embeddings Tool, a machine

learning tool that allows the automated extraction of nonlinear motif representations

from large sets of protein sequences. At the core of CoMET, lies a Deep Convolutional

Encoder, that is trained to learn a basis set of motif embeddings by minimizing a set

of objective function. The learned protein embeddings can be visualized as one-

dimension sequence logos, or as points in a multi-dimensional embedding space.

We show that using the embeddings you can search for evolutionary distant homol-

ogous sequences and we define two metrics to compare the search results with current

linear sequence motif based methods. CoMET departs from the motif extraction

status quo, namely multiple sequence alignment algorithms, which require fine hand

tuning of motif search parameters, and performs a search automatically tuned to pro-

duce results satisfying a given optimization criterion, such as maximum functional

or structural similarity. We subsequently use CoMET to reconstruct phylogenetic

trees of protein families. Lastly, we investigate the generative ability of CoMET and

develop computational methods that allow the directed evolution of proteins towards

altered or novel functions.

1.1 Motivation

Proteins perform the vast majority of functions responsible for our health and well-

being. Thus, designing unique proteins or engineering existing ones is paramount for

the implementation of safe and successful therapeutics. To conclude the introduction,

we present to the reader two of our strongest motivational drivers behind this work,

namely gene therapy and drug discovery.
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Drug Design Drugs are, in majority, organic small molecules purposed to activate

or inhibit a specific function of a multifunctional protein or disrupt proteinprotein

interactions, resulting in the treatment of a disease [1]. Despite the paramount ad-

vances in many of the scientific, technological and managerial factors that should tend

to raise the efficiency of commercial drug research and development, the number of

new drugs approved per billion US dollars spent on R&D is steadily falling [2]. In the

heart of this declining curve, is our inability to understand the complex mechanisms

involved in the process of biomolecular recognition between a protein and its epitope.

Biomolecular recognition drives fundamental biological functions in any living

organism, including gene regulation and sensing environmental stimuli [3]. It involves

the interaction of a protein, usually a receptor or enzyme, with molecules present in

living organisms, ranging from parts of macromolecules such as pieces of DNA to small

molecules such as neurotransmitters and odorants. Efficient biomolecular recognition

requires exquisite control of affinity and specificity [4].

In the lack of that control, conventional drug discovery is performed by screening

the target proteins through large molecular assays (typically in the order of a million

molecules) to identify molecules that or activate their function. These screenings are

usually informed by structure based strategies [5] and in some times by preceded by

computational screening [6].

Unfortunately, through the above process, while it is possible to find molecules

that work, there is no information gained about their mechanism of action. Thus,

every new target requires the same amount of time and effort spent to screen through

the entire molecular library, as if we were to discover a drug for the very first time. On

the other hand, computational protein design when coupled with machine learning

algorithms results in a net gain of information from each drug discovery, which in

turn makes the discovery of the next one faster and easier.

Gene Therapy Next Generation Sequencing (NGS) technologies are providing a

constant influx of genomic data while computational biologists are catching up in-

venting new algorithms with the capacity to extract meaningful information out of

19



the big data. This fast-paced progress has led to astounding discoveries, a large class

of which is the causal connection of single-point mutations in our genetic code to par-

ticular illnesses, including obesity [7], sickle-cell anaemia [8] and assorted neurological

conditions. Thus, gene therapeutics, i.e. precisely editing specific bits of the human

genome will catalyze the next generation of medical applications.

Figure 1-3: EcoRI protein in complex with the target DNA sequence. Structure

downloaded from RCSB (lERI) and visualized with PyMOL. The protein is colored

by secondary structure and the DNA by the four base code.

Yet, current genome editing tools show significant off-target activity (ZFNs, TAL-

ENs, CRISPR) leading to spurious cuts at sites different than the one targeted [9, 10].

These complications render it possible for a gene therapy to cause unwanted gene mu-

tations that will lead to possibly cancerous malfunction or death of the cell. While

there have been many attempts to increase the specificity [11] and sequence space [12]

of current tools, those usually increase significantly the complexity of experimental

protocols without reaching sufficiently low frequency of off-target cleavage.

On the other hand, nature-engineered DNA cutting enzymes called endonucleases

found in bacteria and archea, have very high sequence specificity with minimal off-

target cleavage, which renders them the ideal gene editing tools. Endonucleases, also

known as restriction enzymes, have two active sites: a recognition site which binds

20



to specific DNA sequences and a cleavage site, which cuts the double stranded DNA

(Figure 1-3). Nevertheless, endonucleases have a significant shortcoming, i.e. we are

currently limited to those found in nature with no general means for altering their

recognition sites in order cut an arbitrary DNA sequence of interest.

By developing computational methods for the programmable design of the active

sites of endonucleases, we are providing to the field of gene therapeutics a novel gamut

of gene editing tools with enhanced specificity, that can eventually lead to safer in

vivo applications.
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Chapter 2

Functional decomposition of

proteins into hierarchical motif

embeddings

Functional annotation, taxonomy and search of proteins, today, is fundamentally

based on the discovery of short sequence patterns or motifs. Yet, as the number

of available protein sequences increases exponentially, existing motif discovery tools

and practices, based on manual identification or probabilistic sampling, are reaching

their limits in required time and effort. In addition, due to the extreme segrega-

tion of proteins into thousands of highly specific families [13], there is a plethora

of uncharacterized proteins with unknown functions. To overcome these limitations,

we introduce motif embeddings, a compact real-valued vector produced from a hier-

archical decomposition of protein sequences into motifs. To learn the embeddings,

we employed state-of-the-art deep learning techniques and implemented (CoMET)

(Convolutional Motif Embeddings Tool), an automated program for the extraction

of protein motif embeddings from arbitrarily large protein sequence datasets.

At the core of CoMET is a Deep Convolutional Network Encoder, which upon

training learns a hierarchical motif representation from a set of input protein se-

quences. Here, we introduce the nuts and bolts of CoMET and evaluate the perfor-

mance of motif embeddings in a series of real biological applications. Firstly, we show

23



that CoMET extracts all known motifs across major protein super-families, when

trained on large protein datasets without requiring any prior knowledge about the

nature of the motifs or their distribution. Concurrently, we apply unsupervised learn-

ing techniques to identify a minimal number of functional clusters that can explain

the sequence variance within a super-family, and compare the results with the exist-

ing family categorization. Lastly, we employ CoMET on C2H2 Zinc Finger proteins,

in the quest to find a minimal hierarchical motif decomposition, that will serve as

building blocks for rational protein design.

2.1 Background and Related Work

Nowadays, large protein datasets become available to the scientific community in

a daily basis through Next Generation Sequencing (NGS) driven bio-technologies.

Uniprot1 (http: //www. uniprot. org/), the largest online, publicly-available protein

database, houses more than 555,000 protein sequences with experimental evidence

(e.g. through RNA-Seq [14]) and more than 63 million translated from coding regions

of sequenced genomes ((Fig. 2-1). Discovery of representative motifs is an essential

step in the structural analysis [15], functional annotation [16] and taxonomy [17] of

those protein sequences.

Publicly available motif databases, including Pfam [13], eukaryotic linear motif

database - ELM [18], Prosite [19] and ScanSite [20] contain a comprehensive list of

sequence motifs and domains in the form of regular expressions or profile HMMs. The

largest of them, Pfam, comprises of more than 16000 (as of version 30.0), manually

curated entries of well-documented protein motifs.

Largely, the motifs are discovered by manually identifying protein regions and

residues that form known functional groups, such as enzyme catalytic sites or metal

ion binding amino acids. The databases collect the motifs from studies in certain

protein families (i.e. transcription factors, enzymes) by means of a multiple sequence

alignment of select proteins, and subsequently enrich them by searching for occur-

'Data as of release 2016_07.
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Swissprot U TrEMBLE

450,000 52,500,000

300,000 35,000,000

150,000 17,500,000

0 -0-min 0
1986 1992 1998 2004 2010 2016

Figure 2-1: Number of experimentally validated [Swissprot] and translated from ge-

nomic data [TreMBLE] protein sequences increased exponentially after the coming of

NGS bio-technologies in the past decade.

rences of those patterns in protein sequence databases.

Obviously, these resources cannot be utilized for the discovery of an unannotated

sequence motif that is suspected to be a common feature in a given protein set. In

other words, running a motif discovery methodology fueled from current knowledge,

renders it impossible to discover protein motifs that correspond to novel, unknown

functions or structures. Furthermore, manual identification of important protein sites

and residues is quite challenging when the structure has not been solved, which is

the case for more than 80% of experimentally validated protein sequences. Lastly,

the motifs in the databases are largely overlapping, as they are maintained with the

purpose of an exhaustive segregation of proteins to families of identical sequences.

The latter inhibits the use of those motifs as building blocks for modular protein

design.

A semi-automated approach in de-novo motif discovery, originating from the early

days of computational biology, is the use of stochastic search (Gibbs sampling) [21]

or probabilistic models [22]. Two of the most prominent, publicly-available protein 2

2The tools are used also for nucleotide sequences but this escapes the scope of this thesis. More-

over, there exists an interesting integration of multiple DNA motif discovery tools into a single
automated interface: http: //f raenkel. mit. edu/webmotifs. html.

25
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PRATT version 2.1

PRATT is a tool to discover patterns conserved in a set of protein sequences.

This tool can also be run from the EB zev9 with very stmaar modahtles.

STEP 1 - Enter a set of PROTEIN sequences or an alignment

Your input is Oa set of sequences an alignment

STEP 2 - Modify default parameters (optional)

Pattern parameters a

The pattern must match at least 1c

Max pattern length 5C

Max number of different pattern symbols 5C
Max length of wildcards (x)

Max number of flexible wildcards (x) 2

Max flexibility of wildcards (x) 2

Max product of wildcard (x) flexibility 10

Maximum number of pattern symbols used in the initial search 20

Pattern scoring method Lo

Figure 2-2: A contemporary motif extraction tool, which is semi-automated as it

requires user input for various motif parameters.

motif extraction tools using these methods are MEME (http: //meme-suite. org/

tools/meme and PRATT (http://web.expasy. org/pratt/.

These tools, while not requiring any prior knowledge about the proteins to extract

sequence motifs, they come with a set of inherent limitations. Notably, you have to

know a priori the statistics of the motifs, such as the length and the size (see Figure

2-2). Also, algorithmic complexity results into intractable run-times and stochastic

sampling produces poor results for large size datasets (e.g. the MEME tool allows

inputs only up to 1000 sequences). Last but not least, large protein domains, such

as those contained in Pfam, can be defined quickly from alignments of evolutionarily

related sequences, but the identification of short sequence motifs, potentially shared

between proteins that appear evolutionarily unrelated, is much harder.

26
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To overcome the above limitations, we developed CoMET (Convolutional Motif

Embeddings Tool), a computational tool for the hierarchical decomposition of protein

sequences into a set of motifs. CoMET maps every protein into a binary vector

called motif embedding, which holds information about the presence of any non-linear

combination of a fixed set of protein motifs. At the heart of this work, lies an

adaptation of Deep Convolutional Neural Networks (DCNNs), which we train to learn

the underlying sequence patterns for each motif embedding. DCNs, have been proven

extremely successful in image, video and speech classification and recognition tasks

[23, 24], as well as in computational genomics [25].

Most importantly, the past few years novel methods have been developed [26, 27],

that allow us to understand the internal feature representations that the networks

learn, as well as, visualize them in the input space. Novel generative modeling tech-

niques allow the use of trained DCN to produce new, unseen data with desired proper-

ties specified as the network outputs [28, 29]. The latter, is the strongest motivational

driver for our choice of network architecture, as the ultimate use case of motif em-

beddings is rational protein design.

Lastly, there exists a variety of methods that embed proteins in distributed rep-

resentations, with the most notable ones being ProtVec [30] and PROTEMBED [31],

demonstrating successful completion of a series of family and structure classification

tasks. While we share similar aspirations for the applications of protein embeddings

with the authors of aforementioned articles, this work differentiates itself through

three major ways: a) introducing a hierarchical decomposition architecture to map

the protein sequences to embeddings; b) allowing the direct interpretation of the com-

ponents of an embedding vector into a set of protein sequence motifs (hence the name

motif embeddings); c) the Convolutional Network architecture allows diversity in the

information used as input (secondary structure, conservation etc.) by simply having

extra "channels" in a common convolutional layer.
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2.2 CoMET: Convolutional Motif Embedding Tool

In this section, we will describe the core architecture of CoMET, as well as the

network architectures we used to solve supervised and unsupervised learning tasks

using the motif embeddings. We will define a set of metrics to be used as training

objectives for training, as well as for the evaluation of learned motif embeddings.

Lastly, we will discuss the rationale behind searching and selecting for the optimal

hyper-parameters.

2.2.1 Core Architecture

The core architecture of CoMET is a Convolutional Network (ConvNet) with recti-

fication, followed by a Max-Pooling (gMP) stage and a set of Fully Connected (FC)

layers (Figure 2-3). The convolution stages have trainable motif detectors D and

rectification thresholds b, while the fully-connected network stages have trainable

weights W; the max-pooling stage has no trainable parameters. Each computational

stage is further explained in the following subsections.

Essentially, a CoMET model takes a single (protein) sequence S = (si, s2 , - , SL)

with alphabet3 A = {A, B, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, X, Y, W, Z},

and produces a real-valued vector (motif embedding) M(S) = (Mi, M 2 , .. . , mN),

where N is the number of filters used in the convolutional network. The motif embed-

ding M(S) for sequence S is computed by a feed-forward pass through the CoMET

encoder, starting with convolution and ending in a fully-connected neural network.

Symbolically,

M(S) = FCw (gMP(ConvNetM(S))) (2.1)

The specific architecture of a given CoMET (number of motif detectors; deep ver-

sus shallow ConvNet; deep versus shallow Fully-Connected network) will differ based

on the properties of the input dataset as well as the upstream network architecture

for each application (see subsection 2.2.2. Yet, the general form is the one described

3We allow single letter ambiguity codes (B, Z) as well as the letter X for total ambiguity.
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Figure 2-3: The core architecture of CoMET. It encodes a protein sequence of

arbitrary length to a fixed length real-valued vector we call motif embedding.

here and remains the same in all instances. Analogously, while the choice of a loss

function depends heavily on the particular training objective, the upstream gradients

are propagated through the CoMET core architecture in order to train the weights

and motifs thereof.

The rest of this section provides further details about the implementation of each

computational stage of the CoMET encoding architecture.

29

{
A
C
D
E

V
W
Y

00000000000000000101000100000000
00000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
01000000000000000000000000100000

i . 0 . 6. 00.6.6 6 . 6 6 6 6 6 6 66 66 666 6 . . .6.6.6 6 6 . -
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 100000000000000000000000000000000
000000000000000000000000000000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0

I



Input Encoding CoMET accepts as input a protein sequence of single-letter amino

acid codes, of arbitrary length. We begin by transforming the protein sequence to

a "1-of-20" encoding (or "one-hot" encoding). Specifically, a given protein sequence

S = (s1, s2, .- , SL) of length L is transformed into an L x 20 array, where each column

has zero values in all rows, apart from, typically, the row corresponding to the amino

acid at the specific position. For a given amino acid code si, its "one-hot" encoding

is:

1 if si is the j-th element of the alphabet A - B, Z, X

0.5 if si is B and j is the order of the element D or N

OH(sij) = 0.5 if si is Z and j is the order of the element E or Q (2.2)

1 if si=X

0 otherwise.

Convolutional Layers The characteristic feature of a CoMET architecture is that

it comprises a set of stacked 1 - D convolutional layers, where the input is convolved

with several tunable arrays called filters. Selection of the number of filters as well

as filter length, depends highly on the dataset and is discussed thoroughly on the

hyper-parameter optimization discussion below (Section 2.2.4). As noted in the work

of Alipanahi et al. [25], here in the context of protein sequences, a one-dimensional

convolution over the 20-channel input resembles a "motif scan" operation in a PWM-

or PSAM- based motif extraction model. In contrast with a PWM/PSM though,

the filters matrices of the convolutional layer have unconstrained norms and values.

The filters act upon the entire sequence (full convolution) and there is no dimen-

sionality reduction between each convolutional layer. All convolutional layers apply a

rectified linear unit (ReLU) [32] to the sum of the computed convolution values with

an activation threshold b. Thus, if the convolution of a filter in a specific position of

the sequence is less than the threshold, the resulting score for that position is set to

zero.

For an input protein sequence of length L, the output of the convolutional stage

is an L x N array, where N is the number of filters (all of the same length m) for
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a given CoMET model. The weights of the filters for each layer C are stored in an

N x m x 20 array Mc, where each element M, is the weight of filter k at position j

and amino acid 1. Similarly, the activation thresholds for the rectification are stored

in an 1-dimensional vector of length n. Putting everything together, the score for

each filter of layer C at position i of an one-hot encoded input sequence S is:

m 20

Yi,k = max (0, E E Si jlMk,j,l - bk), (2.3)
j=1 1=1

for i E (1, L).

Global Max-Pooling After all the convolutional layers, the output is a matrix Y of

dimensions L x N. To loose the dependence on the protein length, and map all protein

sequences into embeddings of a fixed dimensionality, we take the global maximum for

every filter across an input sequence. This operation is actually fundamental in the

construction of motif embeddings, as it dictates that each filter learns a single protein

sequence motif, which in turn allows the visual interpretation of motif embedding

components. Eventually, the output of the convolutional plus Max Pooling stage is a

one-dimensional vector X of length N, i.e. for a input protein sequence S:

X(S) = gMP(ConvNetm(S)) = (x 1 , X2,... x.). (2.4)

Fully Connected Network The last piece of the core CoMET architecture is a

fully-connected (FC) network of F layers. For all purposes discussed in this thesis, the

number of FC layers within the core architecture was either one or two. Each layer,

has a weight matrix W and an activation threshold vector b. The output dimension

of the FC network, which essentially corresponds to size the motif embedding M of

input sequence S, is equal to the number of filters N in the convolutional stage4. In

4We experimented also with a large number for the output dimension to enforce sparsity in the
embeddings (sparse coding) but the results did not look promising at the time of writing of this
manuscript.
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the case of a single FC layer, the motif embedding of a sequence S is computed as

N

M(S) = FCw (gMP(ConvNetM(S))) = f( WiX(S)i + b), (2.5)

where Wi is the i-th row of the weight matrix, b is the vector of activation thresholds

and f(o) is a non-linear function applied element-wise to its argument vector. De-

pending on the application of the motif embeddings, f is either a sigmoid or a ReLU,

and the rationale behind the choice is explained in each case.

2.2.2 Unsupervised and Supervised Learning Extensions

In this section, we describe two exemplary network architectures that take as input

motif embeddings, i.e. the output of the final layer of a CoMET model. The first one,

which we call CoDER, extracts motif embeddings from a set of protein sequences,

where no other information is available, in an unsupervised way. Essentially, the

complete CoDER architecture is a stacked convolutional auto-encoder [33], which

we create by inverting the core CoMET architecture and connecting it to the motif

embeddings layer. As you can see in Figure 2-4, the decoding "extension network",

is the mirror image of the encoding network.

The second architecture, which we call CoFAM, allows us to learn motif em-

beddings from protein sequences in a supervised learning setup, when, for example,

protein family information is available. Here we extended the core CoMET archi-

tecture with a set of fully-connected layers, leading to a final Softmax layer that

performs the family classification task (Figure 2-5). Practically, this architecture can

be used to associate the motif embeddings with any label information available for

the training dataset. The latter is fundamental in learning meaningful protein rep-

resentations that can be used to describe the differences and commonalities across a

set of protein sequences.
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Figure 2-4: The architecture of the CoDER network, an extension of the core

CoMET architecture to extact motif embeddings in an unsupervised way.

2.2.3 Training objectives and evaluation metrics

Depending on the network architecture and the training objective, we defined dif-

ferent metrics to be used as loss functions for the training phase. The optimization

algorithm used to minimize the loss function at each step of the training procedure

is in most cases Adam [34] with Nesterov Momentum [35], as it performed slightly

better than stochastic gradient descent (SGD) in the majority of the models during

hyper-parameter optimization. In many cases, we also use L2 weight regularization

and activity regularization techniques, which add the corresponding norms to the
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Figure 2-5: CoMET CoFAM.

training objective.

1L L

XLOSS= 14 H(pi,qi) E EZ pijlogqi,
i=1 i=1 j

where L is the length of the sequence and x cycles the 20 amino acids.

(2.6)

Worth mentioning is that in some cases, the categorical cross-entropy loss function

was producing very large gradients that exploded the weights of the network quickly.

In those cases, we found that using the mean squared error (MSE) results in smoother

34



learning and better performance overall. Illustratively,

L 20

MSE = LEZ (pi - ij) 2 , (2.7)
i=1 j=l

where L is again the length of the sequence.

For the family classification network (CoFAM), the objective is a n-class classifi-

cation, where each class corresponds to a protein family. As the output of the neural

network is a typical Softmax layer, here we use the well-characterized negative log-

likelihood (NLL) as the loss function. Practically, NLL is a categorical cross-entropy

of a multinomial Bernoulli distribution, where the true distribution is an one-hot

encoding of the classes. Thus, if qi the output of the i-th Softmax neuron,

N

NLL =- i log qi = -log qj, (2.8)

where j is the index of the correct class.

Apart from the loss functions, we also define a set of four performance metrics

used to evaluate both the generalization abilities of the neural network, as well as

the motif embeddings per se. These metrics, are used for the evaluation of CoMET

architectures during the hyper parameter optimization.

Sequence Reconstruction Score The first metric, which we call Sequence Recon-

struction Score (SRS), is implemented for the case of the auto-encoder architecture

(CoDER), and corresponds to the mean categorical accuracy, i.e.

1L
SRS = L I (arg max pij = arg max qij), (2.9)

i=1 I

where j cycles through the 20 amino acids. For a given sequence dataset, SRS is

calculated for each sequence and then averaged to obtain the SRS of the underlying

network architecture.
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Family Classification Score Similar to the SRS score, the Family Classification

Score (FCS) corresponds to the categorical accuracy for the n-class family classifi-

cation. If qi the output of the i-th Softmax neuron and n the index of the correct

class, then for a group of m sequences

m

FCS = Z (n = arg max qij), (2.10)
i=1

where j cycles from 1 to the total number of classes N.

Motif Information Score Given a trained CoMET network, we extract a set

of sequence motifs in the form of Position Weight Matrices (PWMs). The PWMs

are generated by aligning the regions across the input dataset that activate each

filter of the final convolutional layer (see Appendix A.2 for a detailed description of

the motif extraction method). The information content of the PWMs is used as a

performance metric, as the major driver behind the motif embedding representation

is the interpretability of the learned embeddings in the input sequence space. For

a set of M motifs of length L, extracted from a network with M filters in the final

convolutional layer, the Motif Information Score (MIS) is the average information

content per motif, or

MIS 1 log pi , (2.11)
M E Pjklgik

i=1 j=1 k=1

where Pijk is the probability weight of the k-th amino acid (out of 20) in the j-th

position of the i-th motif.

Homology Reconstruction Score Last but not least, an important property of

the learned motif embedding representation is to preserve faithfully the distances of

the input protein sequences within a known protein family. In other words, pro-

tein homologs should have neighboring embeddings and should produce a meaningful

phylogenetic tree with a hierarchical clustering algorithm. To evaluate the gener-

ated phylogenetic tree, we define the HomologyReconstructionScore (HRS), which
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is essentially a modified version of the copheneticcorrelationcoefficient, an well-

established measure of the faithfulness of hierarchical clustering algorithms. Then,

HRS K<j(SS(ij) - SS)(t(ij) - (2.12)
V[ ~<, (SS(i, j) - SS) 2][Ei< (t(i, j) - i)2]

where,

" SS(i, j) is a sequence similarity metric between input sequences i and j after

alignment,

" t(i, j) is the tree distance between the embeddings of sequences i and j. This

distance is the height of the node at which these two points are first joined

together.

" SS is the average of SS(i, j) and f is the average of t(i, j).

The sequence similarity metric we use for the above calculation is the following:

# Similar Residues between i and j
S '~j Length of sequence alignment '

where residue similarity is calculated by considering groups of similar amino acids

based on physicochemical properties (e.g. hydrophobicity, charge etc.).

Regularization We used weight decay (L2-regularization) for the weights of the

convolutional layers and activity regularization for the output of the last convolutional

layer. We also used the early stopping [36] regularization technique, as it is easy for

the convolutional stage of CoMET to overfit in the training set, especially when the

input sequences do not have sufficient sequence diversity.

2.2.4 Hyper-parameter optimization

Catalyst to the success of any neural network, especially in the case of deep archi-

tectures, is the optimal selection of calibration and architecture parameters such as

the number of filters in a convolutional layer or the learning rate of the optimizer.
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These parameters, usually called "hyper-parameters", require exquisite fine tuning

and pose an obstruction to the wide-spread use of deep learning. To optimize the

hyper-parameters of CoMET, we used state-of-the-art techniques [37] with signifi-

cant success in networks trained on text and images.

CoMET has two main sets of architecture-related hyper-parameters that required

optimization, namely

1. the number and length of motifs (filters)5

2. and the number of convolutional and fully connected layers.

Number and length of motifs. The size and number of motifs can vary signifi-

cantly based on the characteristics of the protein sequences. In Figure 2-6 you can

see the distribution of lengths for all documented protein motifs in the PROSITE

database. There is a peak around 15, but there are motifs more than 200 amino acids

long.

Motifs should be short enough so that the sequence reconstruction problem does

not become trivial. On the

Factors that influence the number and length of filters:

9 Biological interpretation of the motif. Usually if a motif implies structural

conservation it is in the order of 10-15 amino acids. For sequence conservation

in a particular domain, the motif length varies from 30 to even 100 amino acids

in length.

* Occurrences of a motif in the same sequence.

* Sequence diversity of the input dataset. If the sequences span across multiple

protein families then high number of motifs is performing better. Yet, there is

a trade of

* Hierarchy of the motifs (number of layers)

5The words motifs and filters will be used interchangeably in the rest of this thesis. See Section
2.2.1 for details.
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Figure 2-6: Distribution of size for protein motifs on PROSITE as of release 20.128.

In order to get an understanding of the effect of the length and number of motifs

in training CoMET models, we performed a uniform sampling of the hyper-paraineter

space for the dataset of Cas9 proteins.

Number of Convolutional and Fully Connected Layers. The number of con-

volutional layers strongly depends on the size of the input dataset as it dictates the

order of magnitude of the network parameters. Even with a single convolutional fol-

lowed by a fully connected layer, there is a motif hierarchy emerging from the non

linear combination of the first-layer motifs.

Increasing the number of fully connected layers gives the network the ability to

model complex motif relationships between the input proteins, which is very useful in

the case of full proteomes comprising of many families with overlapping set of motifs.
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2.3 Learning motif embeddings for hierarchical clus-

tering and family classification

After optimizing the hyper-parameters with simulated datasets, we applied CoMET

to hierarchically decompose protein sequence datasets in motif embeddings. To start

with, we investigated whether the motif embeddings could be used to recover known

functional or structural protein classification. At the same time, we explored a series

of hierarchical clustering techniques in order to recover the phylogenetic tree of a given

protein dataset. In both cases, we compared the results between supervised and

unsupervised learning approaches, which led to the conclusion that current family

classification schemes fail to capture the complexity of protein evolution around a

particular biological function.

To conduct the above experiments, we selected two protein super-families, namely

transcription factor proteins, as they have a large phylogenetic tree with many motifs

defining families and subfamilies and Cas9 proteins due to their biological importance

in gene therapy and highly modular structure.
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Figure 2-7: Comparison of the two network extensions of CoMET. The Convolu-

tional Autoencoder (left) is trained by unsupervised learning methods to perform

de-novo functional clustering of a protein dataset. For protein family classification,

as supervised learning architecture (softmax regression) is used on top of the core

CoMET Encoding layers.

Both architecture produce motif embeddings, that have similar properties but can
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be used to answer different questions regarding the input protein dataset.

2.3.1 Transcription Factors

The first super-family of proteins we applied CoMET on was transcription factors, a

large set of proteins responsible for the initiation and regulation of gene transcription.

An intriguing feature of transcription factors is their modular DNA-binding domains,

enable them to bind to specific sequences of DNA. Thus, we asked the the ques-

tion: are all transcription factors composed by a fixed set of motifs associated with

DNA-binding function? Our hypothesis was that the motif embeddings of transcrip-

tion factors will capture this modularity and provide insights for their evolutionary

composition and phylogeny.

We begun our analysis by training an unsupervised network (CoDER) on a set of

11036 transcription factors collected from Uniprot (see Appendix A. 1 for the detailed

query). The metric used as a training objective was the Sequence Reconstruction Score

(SRS). To assess the performance of the network, we randomly split the dataset into

training (80% of proteins) and validation (20% of proteins) sets.

The training curves for one of the best performing CoDER architectures on

the transcription factor dataset are shown in Figure 2-8. The architecture had two

convolutional layers followed by two fully-connected layers. The optimal number of

filters, and thus the length of the motif embeddings, was 400 with a filter length of

50.

The defining characteristic of all CoMET architectures, is that they automatically

learn motif detectors and consequently rules to combine them into motif embeddings.

Having a pool of trained CoMET models with a high sequence reconstruction score,

we set out to visualize the receptive fields of the convolutional network neurons, in

order to identify which parts of the input sequences triggered the highest neuron

activations, and thus were mostly reconstructed at the output. Intuitively, those

parts would correspond to the most conserved regions among the training dataset

sequences, and thus contain information about the protein families. In Figure 2-9,

we show the top eight extracted motifs from the convolutional layer of the trained
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Figure 2-8: Loss and accuracy curves for training and validation sets of one of the

best CoDER models on the transcription factor dataset. The number of epochs was

dictated by early stopping. The loss function is the Mean Squared Error (MSE) and

the accuracy metric is the Sequence reconstruction Score (SRS).

model. To the confirmation of our hypothesis, these motifs correspond to well-known

DNA transcription factor signature profiles, such as C2H2 zinc fingers, RING-zinc

fingers and homeobox domains.

To understand whether the learned motif embeddings offer a meaningful represen-

tation of the input protein sequences, we visualized the eibeddings in two-dimensions

using t-SNE [38]. t-SNE is a widely-used, stochastic dimensionality reduction algo-

rithm that tries to minimize the Kullback-Leibler divergence between the probability

distributions neighborhoods in the high dimensional and the low dimensional space.

As you can see in Figure 2-10, the algorithm resulted in the formation of several clus-

ters in the embeddings space. Coloring each data-point (protein) based on the protein

family annotation, it is easy to see that the motif embeddings clusters correspond to

evolutionary sequence conservation within protein families. Importantly, due to the

CoMET architecture, we can extract a set of distinct modular motifs or conserved

regions across the members of each cluster.

As a last step to our analysis of the transcription factor dataset, we further in-

vestigated the power of motif embeddings by examining whether they captured the
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Figure 2-9: Receptive fields of the CoDER architecture visualized as sequence logos.
Essentially, the motif embeddings can be viewed as non-linear combinations of the

extracted protein sequence motifs.
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t-SNE.

Visualization of the motif embeddings of transcription factors using

phylogeny of transcription factors. We started by calculating the distance between

the (high-dimensional) motif embeddings for all protein pairs to form a distance ma-

trix D. Subsequently, we used an agglomerative (hierarchical) clustering algorithm
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to compute a linkage matrix, which we visualized as a dendrogram (Figure 2-11. The

resulting dendrogram corresponds to a phylogenetic tree for the transcription factors,

successfully grouping together proteins of the same families, as well as maintaining

the evolutioniary distance between different, families.

> E MU.

Z il - I f : ' F? -a

ii

i '-Z OV

X k.

e~~

x "AA'aN' ~eiJ f.4"

Figue 211: qudrat ofthephyogentictre of rancritionfacorscreaed sin

hierarhicalclusteing o the mtif ebeddin reprsain.A paetfo h

figure th motif emedding catured thehomology Foebxdmiprtns

Conclusively,~~~~~~~~ in. thsscinw rie o E nD amtrasrpinfco
motis ad dmonsratd tat uingtheleared oti embddigs epreenttio, w

can faitfully rconstruc the nra- and nter- fmily reainhp mn h nu

44



protein sequences.

2.3.2 CRISPR Associated Endonucleases

Staphylococcus Pyogenes Cas9 (SpCas9) [39] was the first and still most widely used

CRISPR ASsociated (CAS) nuclease for gene editing. SpCas9 has complex structure

(Figure 2-12), which is comprised of more than 1300 amino acids, has been optimized

by random mutations and environmental selection to recognize a specific DNA se-

quence (directed by an RNA molecule) and subsequently cleave the double stranded

DNA within that sequence. Due to this structural complexity, sequence homology

methods have been used to identify variants with desired properties e.g. smaller pro-

tein size or higher binding affinity. The first result of the sequence homology search

using BLASTp was Cpfl, a Cas9 analog which maintains the RNA guided nuclease

activity but is much smaller in size that SpCas9. Yet, global sequence homology is

not sufficient to look for CAS proteins across thousands of years of evolution, as CAS

proteins are the result of recombination of several distinct submodules, each with a

specific function and evolutionary history.

On the contrary, training CoMET on CAS proteins, we can extract the conserved

motifs of those submodules and associate each CAS protein with a motif embedding,

i.e. a non-linear combination of the individual motifs. Subsequently, we can use the

trained network to extract the motif embeddings of all available protein sequences,

and see whether they match those of the already known CAS proteins. Furthermore,

we can extract the individual conserved motifs from the filters of the convolutional

layer, in order to identify the submodules of the known CAS proteins and start

synthesizing new variants by recombining the submodules in novel arrangements, not

found in nature.

To validate our working hypothesis, we applied CoMET on 9286 CAS protein

sequences (see Appendix A.1 for the Uniprot query), translated from the encoding

regions of thousands of bacterial genomes, available through the latest NGS experi-

ments. To start with, we first experimented with an unsupervised learning architec-

ture in order to identify functional clusters within the CAS protein family. In Figure

45



Figure 2-12: One of the solved SpCas9 CRISPR Associated protein structures (4UN3)

visualized with a surface model using PyMOL.

2-13, you can see the loss and accuracy for a uniformly split training and validation

set. Naturally, we expected to see the different Cas9 families in distinct clustered,

but with CoMET embeddings we were able to create a cluster hierarchy even within

a family.

Using the motif visualization technique on the receptive fields of the last convo-

lutional layer, we extracted eight major motifs (Figure 2-14). Searching the motifs

against known motifs databases (PROSITE and PFAM), we identified the HNH-

nuclease motif, as well as two RuvC motifs. Most of the sequence motifs correspond
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tion, we confirm our expectations as the major protein families (Cas9, Casi, Cas3)

are in separate clusters. This is non-trivial as this was the result of an unsupervised

learning method, with the objective of sequence reconstruction using a set of motifs,

without any cue for protein families. We can thus conclude that CoMET successfully

extracted the signatures in the protein sequence of each family with enough accuracy

to both differentiate between families and explain the homology within.
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and Casl families, which were also clustered correctly above, are placed in logical

positions in the costructed phylogenetic tree.
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Figure 2-16: Phylogenetic tree of CRISPR-Associated proteins created using hierar-

chical clustering on the motif embedding representations.
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2.4 Examining the phylogeny of C2H2 Zinc Fin-

gers

So far in this chapter, we showed that CoMET successfully decomposes transcription

factors and CAS protein super-families into motif embeddings, which can be used

to cluster the proteins into functional subfamilies, with consistent intra- and inter-

family relationships. In this section, we focus on extracting protein motifs from of

all the convolutional layers, as well as their interconnections. We demonstrate an

inherent property of deep convolutional CoMET models, namely the hierarchical

decomposition of protein sequences into a tree of motifs of different sizes.

The dataset we assembled for this section is a collection of 8000 C2H2 Zinc Fin-

ger proteins compiled from a Bacterial One-Hybrid (B1H) binding protein selection

experiment. We selected C2H2 Zinc Fingers for their distinct zinc coordinating struc-

tural motif of two cysteines and two histidines (see Figure 2-17 for the structure and

2-18b for the sequence), which provides a reference point for the top level of the motif

hierarchy.

We trained a CoDER architecture with three convolutional layers, and optimized

the size and of filters for each layer, as well as the padding of the convolution, with

respect to the sequence reconstruction score. Illustrated in Figure 2-18a is the hier-

archical motif decomposition of C2H2 Zinc Finger protein. Each layer in the tree

comprises of the motifs with the highest information content, extracted from the cor-

responding convolutional layer. Starting from the first (input) layer with motifs of

length five, the size of the conserved region that each neuron's receptive field corre-

sponds to increases in every layer. The arrows in the figure depict the connections of

the neurons between layers with the strongest weights.

Consequently, we can use the motifs' PWMs from each layer, to search for homol-

ogous proteins across protein sequence databases. As a first step, we wrote a script

that transforms the PWM collection of the highest information content motifs for

each layer into a file that we provide as input to MAST. MAST is a publicly available
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Figure 2-17: C2H2 Zinc Fingers were named after the zinc atom coordinating complex

formed by two cysteines and two histidines. This four residue structural motif leads

to the ultra conserved protein fold for this family of zinc fingers.

motif search tool, which given a formatted list of PWMs, has a set of tunable pa-

rameters to find proteins with single or multiple occurrences of one or more motifs in

their sequence. Each layer of the motif decomposition tree in figure 2-18 is annotated

by a keyword, which summarizes the consensus results of a MAST search with input

the motifs extracted from that layer.

In Table 2.1, we have summarized the results of the MAST searches we conducted

using the motifs from each layer. Analyzing the results in further detail, the search

with the motifs from the first layer returned a diverse set of more than 19000 pro-

teins, out of which the vast majority (> 90%) had metal binding properties. While

the specificity for zinc fingers was relatively low (45% of total number of results),

the sensitivity was very high, as the results contained 99.5% of all known zinc finger

protein sequences. The clear false positives in this search were a set of small pro-

teins forming a disulphide bond between cysteines three to five bases apart, which is

51



a)
C2H2 Zinc Fingers

4.0

C2H2-like Zinc Fingers U)
1.0

00

All Zinc Fingers,
Metal Binding proteins

b)

PROSITE C2H2 Zinc Finger Motif

L20/

5 10 15 20 25

4.0 4.0

3.0- 3.0-

K21 0 2.0

5 10 5 10 5 10

4 O--4.0 A 4.0 4,01 1
30 3,0- L 0 303.

0.0 .0.0 2.0-: 01- k-
5a

a 1 4 X4

Figure 2-18: (a) Hierarchical decomposition of a set of 8000 Zinc Finger proteins into

sets of motifs of different sizes. (b) The well characterized C2H2 Zinc finger signature

profile (source: PROSITE)

Table 2.1: Results of a MAST motif based protein search using the extracted motifs

from each layer of the convolutional part of CoMET

Layer Number of Results Precision Recall
motifs

First Layer 50 19625 45% 99.5%

Middle Layer 24 14506 68% 91%

Final Layer 10 8769 99.9% 87%

explained by looking at the two-cysteine motif of the first layer in Figure 2-18a.

The motifs extracted from the middle of the three-layer convolutional network,

had a relatively higher specificity than the first layer, but crucially, the majority of

false negatives were Zinc Finger proteins with fingers of type other than C2H2. Inter-

estingly, this corresponds to moving backwards in time in the phylogenetic tree of the

evolution of zinc fingers, since these motifs or conserved regions were part of multiple

protein families. This is a first demonstration of the superiority of the hierarchical

decomposition method (CoMET) against other motif extraction tools, since it al-

lows an evolutionary tunability in the breadth of the search for homologous proteins.
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Importantly, this tunability is based on decomposition of the conserved regions in

submodules, which may correspond to different functions (e.g. metal binding). Thus,

the researcher can now investigate the evolution of complex multi-domain proteins

by tracing the recombination events that assembled the individual submodules.

Finally, for the final convolutional layer, the majority of the motifs extracted from

the receptive fields of the neurons, were identical to the PROSITE C2H2 Zinc Fin-

ger signature profile (2-18b). This is not surprising, since we selected the particular

dataset for its characteristic signature, to have a point of reference for the decom-

position into small motifs. Hence, the search with the larger motifs had extremely

high specificity (99.9% of the proteins were C2H2 Zinc fingers) but the sensitivity

dropped down to 87% since there was a small amount of C2H2 Zinc Finger proteins

with indels in their most conserved regions.

Conclusively, taken together, the findings presented here accent the need to re-

visit the notion of protein homology. Current homology search methods, hinge on

global sequence identity and have maximally segregated proteins into more than

16000families. As a result, we have a significant number of protein sequences that

do not fall under any of these families and whose function has yet to be identified or

inferred. Moreover, the evolutionary events of recombination of small protein motifs

are washed out by the greedy motif extraction techniques which try to maximize the

size of the conserved region. Indicatively, 80% of large viral genomes have coding

regions expressing protein sequences yet to be characterized. In this Chapter we have

shown that using CoMET and the motif embedding representation of protein se-

quences, we can address the above limitations and provide novel protein meta-family

clusters, formed by taking into account a hierarchical conserved motif phylogeny for

each protein instead of a single, large conserved region.
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Chapter 3

Engineering the recognition code

of Type II restriction enzymes

In the previous section we introduced motif embeddings and examined their use in

family classification and annotation of protein sequences. Yet, the identification of

structural and functional motifs per se, is fundamental to protein engineering. Here,

we employ CoMET to assist a compelling protein engineering application, namely

the design of programmable restriction endonucleases.

Modern genome engineering tools still require sophisticated protein design in order

to limit their off-target activity, i.e spurious cuts at genomic sites similar to the

one targeted, and avoid unpredictable mutations, that might lead to cancer or cell

death. On the other hand, nature-engineered DNA cutters called Restriction Enzymes

(known also as restriction endonucleases or REases), display extraordinary sequence

specificity, with little or no off-target cleavage, which renders them ideal as DNA

cutting tools.

REases, though, have their own shortcoming, as we are currently limited to the

protein variants found in nature with no general means for altering their recognition

sites in order cut an arbitrary DNA sequence of interest. To counter this problem,

we employed custom made sequence analysis tools, in conjunction with the CoMET

framework and trained a highly accurate predictive model on the DNA recognition

code of the Type II restriction enzymes. Based on the promising prediction results,
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we used the trained models to generate de novo restriction enzymes and paved the

way towards the computational design of a restriction enzyme that will cut a given

arbitrary DNA sequence with high precision.

3.1 Background

In his 1965 seminal paper, Werner Arber established the theoretical framework of

the restriction-modification system, functioning as bacterial defense against invading

bacteriophage [40]. The first REases discovered while recognizing specific DNA se-

quences, they cut at variable distances away from their recognition sequence (Type

I) and, thus were of little use in DNA manipulation. Soon after, the discovery and

purification of REases that recognized and cut at specific sites (Type II REases)

allowed scientists to perform precise manipulations of DNA in vitro, such as the

cloning of exogenous genes and creation of efficient cloning vectors. Today, more

than 4, 000 REases are known, recognizing more than 300 distinct sequences (source:

rebase.neb. com).

Eventually, "cutting and pasting" DNA in vitro using restriction enzymes, initi-

ated the quest for safe and scalable DNA editing in vivo to correct mutations that

cause genetic diseases, a field which now goes by the name gene therapy. Yet, modern

gene editing through site-specific cleavage moved away from the simple but limited

in function restriction enzymes, towards newly discovered and engineered systems

such as: Zinc Finger Nucleases (ZFNs) and Transcription Activator-like Effector Nu-

cleases (TALENs), Meganucleases. Recently, breakthrough research on the CRISPR

system, the adaptive defense system of bacteria and archaea, revealed the potential

of the Cas9-crRNA complex as programmable RNA-guided DNA endonucleases and

strand-specific nicking endonucleases for in vivo gene editing. In Table 3.1, we have

compiled a list of the afore-mentioned gene editing tools along with their characteristic

properties.

Notably, while the sequence repertoire of restriction enzymes is fairly limited with

respect to the modern programmable gene editing systems, the sequence specificity
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Table 3.1: Properties of major gene editing systems characterized in recent literature.

System Protein size Target Site Available Specificityt
(kDa) Length (bp) sites

CRISPR-Cas9 159 23 421 __
Zinc-Finger 60* 18 - 36 > 418 +
Nucleases
TALENs 110 13-17 > 414 ++

Meganucleases 20 - 50 18 - 22 46 + _
Type II REases 20-100 6-18 103 + + ++

References: [41, 42, 43, 44, 45].

t Specificity was deduced by relative comparison between off-target rates within references.

* Data for a six finger nuclease.

restriction endonucleases remains unmatched. Thus, we set out to investigate whether

we can use motif embeddings, introduced in this thesis (see Chapter 2), to engineer

the sequence specificity of REases in a programmable fashion. Previously, Type IIS

restriction enzymes have been rationally engineered to have altered specificities and a

first attempt to learn their recognition code has been demonstrated [46]. On the other

hand, attempts to alter the sequence specificities of Type IIP REases have been largely

unsuccessful, presumably because the sequence specificity determinant is structurally

integrated with the active sites of Type IIP REases. In the following sections of

this chapter, we analyze the available information for all Type II REases and apply

CoMET to represent them in the motif embeddings space, extract conserved protein

motifs for each recognition site and ultimately propose a programmable way to alter

their specificities.

3.2 Analyzing the Type II restriction enzymes su-

perfamily

Traditionally, restriction enzymes are classified into four types based on subunit com-

position, cleavage position, sequence specificity and co-factor requirements. However,

their amino acid sequences are extremely diverse, even between restriction enzymes

of the same type, resulting in further categorization to several subtypes [47]. In Ta-
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Table 3.2: Different types* of restriction enzymes (endonucleases).

CLASSIFICATION OF RESTRICTION ENDONUCLEASES

Type I Type IIP
Cut DNA at random, far (-KB) from Cut within a symmetric (i.e. reverse
their recognition sequence. palindromic) recognition sequence.
Type II Type IIG

Cut DNA at defined positions, close to the Cut outside of their recognition sequence

recognition sequence. They are further which can be non contiguous. They have

classified to five subtypes, P, S, G, E and F. restriction and methylation subunits within
a single chain.

Type IE and Type IIF Type III
Interact with two copies of the recognition Require two separate recognition sites in
sequence and cut either only one of them opposite orientations. Also have restriction
(E) or both (F). and methylation subunits.
Type IIS Type IV
Cut at a fixed position outside an Cut modified (e.g. methylated DNA)
asymmetric recognition sequence.

Interestingly, Cas9-gRNA complexes from CBISPR systems can be classified
as Type V restriction enzymes.

ble 3.2, we have summarized the defining characteristics for each of the types and

subtypes of restriction enzymes. As discussed in the introduction, we focused our

attention to the Type IlIp and Type Is (hereafter called "Type II") categories of

restriction enzymes, mainly due to their well-defined DNA cutting positions (offering

both blunt ends and overhangs) and supreme sequence specificity.

3.2.1 Sequence phylogeny

Instead of forming a single protein family, Type II enzymes are a collection of un-

related proteins of many different evolutionary backgrounds, which is apparent from

their phylogenetic tree (Figure 3-1. Type II enzymes frequently differ so completely

in amino acid sequence from one another, even from every other known protein, that

they exemplify the class of rapidly evolving proteins, often indicative of involvement

in host-parasite interactions. The first step in our research strategy is the analysis

of the existing pool of endonucleases naturally found in bacteria, in order to identify

whether there is an evolutionary path for the specificity of the recognition sites, i.e.
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the domain of the enzyme which is responsible for the specific binding to a DNA

sequence.

Type Ip REases (e.g. EcoRI), the first discovered of type II, tend to be small,

globular proteins, in the 200-350 amino acid range. They cleave DNA within their

recognition sequence, and often leave four base overhangs in the 3' side of the DNA

molecule. Most type Ip REases recognize symmetric' DNA sequences, because they

bind to DNA as homo-dimers, but a few recognize asymmetric DNA sequences,

because they bind as hetero-dimers. Lastly, some enzymes recognize continuous

sequences (e.g., MunI : CAATTG) in which the two half-sites of the recognition

sequence are adjacent, while others recognize discontinuous sequences (e.g., BglI:

GCCNNNNNGGC) in which the half-sites are separated by up to 9 nucleotides.

The next most common Type II enzymes, classified as "Type IIS", are those that

cleave outside of their recognition sequence to one side. These enzymes are quite

larger than others, 400-650 amino acids in length, and they recognize sequences that

are continuous and asymmetric. They comprise two distinct domains, one for DNA

binding, the other for DNA cutting. While they bind to DNA as monomers, they

cleave DNA cooperatively, through dimerization of the cleavage domains of adjacent

enzyme molecules. Thus, some Type IIS enzymes are much more active on DNA

molecules that contain multiple recognition sites.

In 2009, Morgan et al. [46] identified a set of amino-acid positions within these

enzymes that determine position specific DNA base recognition at three positions

within their recognition sequences, by correlating between their aligned amino-acid

residues and aligned recognition sequences. These findings suggest that, with subse-

quent analysis, we can identify an endonuclease which was re-programmed through

evolutionary changes in the protein sequence to accommodate for single nucleotide

changes in the recognition site. In order to pinpoint the amino-acids involved in

the DNA recognition process, we further proceed with structural modeling of the

recognition site in a endonuclease-DNA molecule complex.

'Symmetric here means that the 5' -+ 3' DNA sequence on the forward strand is the same as the

5' -+ 3'. As a result, half of the recognition site has to be the reverse palindrome of the other, e.g.

GAATTC.
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Figure 3-1: Phylogenetic tree of Type 11 restriction endonucleases across different
bacteria species.

3.2.2 Structural inspection of the DNA binding interface

While there is a number of endonuclease structures are already available from the

Protein Data Bank (PDB, rcsb. org) , mostly the results of X-ray crystallography,

there is no consistency in the structure of the different domains. With the exception

of homo-dimers like EcoRI, it is generally hard to do homologous modeling of a novel

endonuclease based on an already solved structure.

3.2.3 Evolution of the DNA Recognition Code

Aligning the recognition site of the protein for endonucleases that recognize neigh-

boring sequences in the graph i.e. differing by a single nucleotide, we believe will

give rise to a group of conserved amino-acids and a few select variable which made
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Figure 3-2: Exemplary Type II restriction enzyme EcoRI. Residues in contact (hy-

drogen bonding) with the recognition sequence are highlighted in red.

possible the sequence differentiation (see Figure 3-4). Subsequently, we will augment

the graph with the retrieved information about the amino-acid composition in each

recognition site and use information theoretic and network analysis tools to generate

a set of amino-acid changes corresponding to a set of single nucleotide changes in the

recognition sequence.

Initial results of generated networks are encouraging and show that a number of

endonucleases recognize very similar sequences, differing by one or a small number of

nucleotide bases (Figure 3-5).
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Figure 3-3: Close-up on EcoRI recognition contacts. With yellow dotter lines you can

see the hydrogen bonding between EcoRI and the recognition sequence.

3.3 Inferring Type II REase DNA binding prefer-

ences from motif embeddings

We set out to solve the recognition code of Type II restriction enzymes, using motif

embeddings, a hierarchical decomposition of proteins into motif combinations (Chap-

ter 2). We compiled a large protein sequence dataset from publicly available online

databases (see Appendix A.1) and designed a discriminative neural network on top

of the core architecture of CoMET.

In total, 3595 distinct protein sequences were culled (based on recognition site

availability) from the compiled dataset, out of which we further selected 2876 to train

and held out the remaining 719 as an independent validation test set. To split the

dataset assuring independence, we first grouped the protein sequences by recognition

site, and subsequently selected at random 10% of the recognition sites for validation.

The final validation test set comprised of all the sequences of the restriction enzymes

that recognized the selected sites.

After an initial hyper-parameter optimization, we converged on an set of hyper-

parameters which gave consistently validation accuracy above 80% (Figure 3-7).
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Figure 3-4: For each recognition site, we have available a set of homologs, out of
which we generate the sequence logo (on the right side). If a structural model is
available for any of the homologs of a particular recognition site, then we can extract
the contact residues and annotate them both in the structure and the sequence logo
(residues with red color).

The first observation we make, is that the discrimination accuracy differs for each

position of the recognition site (Figure 3-8). This can be explained by looking at

the distribution of each nucleotide (A,C,G,T) at a specific position in the recognition

site within the training and validation sets. Indeed, for the worst performing base

at position three, the validation set had many more sequences with a "T" at that

position than the training set.

Subsequently, we visualized the experimentally determined and predicted recog-

nition sites for a diverse set of restriction enzymes present only in the validation set,

using the sequence logos of the respective PWMs. As you can see in Figure 3-9, the

predictions are very close to the correct sequence.
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Figure 3-5: Connectivity plot for Type II restriction enzymes. Given a recognition

site sequence, its degree is the number of single point mutated sequences that are still

a Type II recognition site. We observe a high degree of connectivity, associated with

the large diversity of restriction enzymes.

3.4 Learning to design Type II restriction enzymes

with novel specificities

As a first step to gain intuition for the design of Type 11 restriction enzymes we visual-

ized the receptive fields of the convolutional layers of the core CoMET architecture.

By tracing the connections of the activated filters for a given input protein sequence

all the way to the output, we start to associate nucleotides from the recognition site

with motifs in the amino acids space. Thus, CoBind provides a set of known amino

acid - nucleotide interactions which can be used as template for the engineering of re-

striction enzymes with novel specificities by altering the amino acids at the identified

positions to those correlated with recognition of a desired new base.

Subsequently, we set out to perform a fully automated redesign of a template

restriction enzyme to a target one with a different recognition sequence. Central to

our method, is the ability to back-propagate the output through gradient ascent to

essentially alter the input sequence towards one that would produce the given output.
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Figure 3-6: CoBind: An Deep Convolutional Neural Network architecture for the

prediction of the DNA binding protein specificities based on hierarchical motif em-

beddings (see Chapter 2.

The developed system works by allowing the continuous evolution of a template
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Figure 3-8: Training and test dataset performance split by

sequence. The variation in accuracy score can be explained

training set recognition sites.

base of the recognition
by the statistics of the

protein into a target protein, by a sequence of mutations in the linear amino acid

sequence space. The result of the above method is shown in Figure 3-10.
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Figure 3-10: First result of generative modelling using a trained CoBind network to

walk the recognition site of MunI from CAATTG to GAATTC. The residues edited

are colored red. It is promising that the edited residues initiate hydrogen bonds with

the recognition site, as well as assure proper dimerization (middle).
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Chapter 4

Future Work

In this thesis, we displayed the power of "Deep Learning" on hierarchical motif ex-

traction from large protein datasets. Depending on the objective function used during

training, different sets of motifs were produced, each elucidating parts of the proteins

that are of importance for the particular objective. Moreover, we demonstrated in

Chapter 3, that it is possible to directly engineer a protein sequence towards a specific

function, by reversing the extended CoMET architecture to perform gradient ascent

on the input. While the first results look promising, we plan to further explore this

technique to engineer proteins of different families.

To be confident that the engineered proteins are structurally sane and increase

their probability to fold without problems, we are developing a integrated protein de-

sign framework combining CoMET with the well-known protein modelling software

Rosetta. The framework allows for the simultaneous sampling of the sequence and

structural space of amino acid mutations, which, in most protein enginering tasks, is

extremely high for experimental screening strategies that require protein synthesis. If,

for example, 10 residues within a DNA binding protein recognition site are identified

as potential contacts with DNA molecule, the number of protein variants that can be

generated by mutating the residues to all amino acids is 2010.

Of course, the crucial step that follows the computational search, is the exper-

imental validation of the engineered proteins. Throughout the work of this thesis,

we took advantage of the latest advances in Next Generation sequencing to com-
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Figure 4-1: Searching for protein variants with a desired DNA binding speci-
ficity through structural modelling (Rosetta) and convolutional neural networks
(CoMET).

pile large protein sequence datasets and, in Chapter 2, implemented state of the art

machine learning algorithms to process them, which eventually led to the design of

restriction enzyme protein variants with desired properties. Consequently, to catch

up with the large pools of computationally generated protein variants, a new class

of high-throughput, fast-turnaround molecular screening experiments has to be de-

signed. Our approach (see Figure 4-2), is to synthesize a library of novel endonuclease

genes with their recognition site engineered to favorably interact with a particular

DNA sequence, taking into account the previously identified changes. Then, a high-

throughput molecular screening experiment (negative or positive selection) will be

carried out to characterize the designer proteins cleavage ability and off-target ac-

tivity. Finally, the results will be used to evaluate the algorithms performance both

qualitatively and quantitatively, by using the experimental sequence-specific binding
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affinities to inform the energy-based structural modeling part of our framework.

Next Generation Screening
Next Generation Synthesis + Next Generation Sequencing + Deep Learning

FVSNSSIKPDGGIVEVKDDYGEVVRVVLVAEAKHQGKDIlNI RNGLLVG
ILQMK QD K

F G T Library of variants F

Deep Learning with
High-throughput selection through NGSeq Generative Modelling

G0ne11iv modelhg Musd Wn a di-crimnv CNN With Weighb p rlfmind by COWE

Figure 4-2: Next Generation Screening: Advances in sequencing (NGS) and data
analytics (deep learning) lead to the need for a new class of high-throughput, fast-

turnaround molecular screening experinents.
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Appendix A

Methods

A.1 Data Acquisition and Pre-Processing

Protein sequence datasets were collected from Uniprot201607(http: //www. uniprot.

org/uniprot/) by searching the database with custom queries. After download, most

datasets were subsequently curated, as the search results contained various spurious

entries (e.g. uncharacterized proteins, protein fragments etc.). The datasets used and

cited in this thesis were the following:

Zinc Finger Proteins
A list of all experimentally validated proteins which have a Zinc Finger domain.

Query: zinc finger length: [50 TO *] AND reviewed:yes

Results: [ 13887

Homeobox Proteins

A list of all experimentally validated proteins that have a Homeobox domain.

Query: homeobox length: [50 TO *] AND reviewed:yes

Results: 1786

Cas9 Proteins
A list of protein homologs of Cas9.

Query: cas9 length: [50 TO *]

Results: 9286

Complementary to the above where the following datasets collected from recent

experimental literature and other sources.
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Type II Restriction Enzymes
A list of all Type II Restriction Enzymes and homologs.

. go: "Type II site-specif ic deoxyribonuclease activity [0009036]"
Query: length: [50 TO *]

Results: 4028

DNA Binding Proteins
Polymerases, TFs, endonucleases and more.

Query: annotation: (type:dnabind) length: [50 TO *] AND reviewed:yes

Results: 10247

E.Coli Proteome

length: [50 TO *] AND organism:"Escherichia coli (strain K12)
Query: [83333]" AND proteome:up000000625

Results: 4227

Human Proteome

length: [50 TO *] AND organism: "Homo sapiens (Human) [9606] " AND
Query: proteome:up000005640

Results: 65894

Type Ip Restriction Enzymes with Recognition Sites
Downloaded REBASE from http: //rebase . neb. com and selected typelIp

Results: 18664

A.2 Motif Extraction and Visualization

To visualize the motifs from the trained DCN models, we adapted the methods of

[25] to the case of protein sequences. We first generate a Position Frequency Matrix

(PFM) derived from each filter's activations in the convolutional layers. In particular,

we score all the input protein sequences using the convolutional, rectification and max-

pooling stages of CoMET, and subsequently align the parts of the sequences with a

score that passed the activation threshold (> 0) for each filter. After the alignment,

we generate the PFM and the sequence logo using the Weblogo3.5 python package.
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