
A Model for Self-Assembly in Solution1

Gianfranco Ercolani†

Dipartimento di Scienze e Tecnologie Chimiche, UniVersità di Roma Tor Vergata,
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A model treating the competition, under thermodynamic control, between self-assembly and nonlinear random
polymerization is presented. The fundamental quantities on which the treatment is based are the effective
molarity (EM) of the assembly and the equilibrium constant for the intermolecular model reaction between
monofunctional reactants (Kinter). Knowledge of these quantities allows the evaluation of the distribution curve
of the self-assembling complex. In order for effective self-assembly to take place, the productKinterEM must
be no lower than a limit value easily computable on the basis of simple structural parameters such as the
number of molecules in the assembly (N), the number of bonds joining them (B), and the number of interaction
sites in the monomers. This limit decreases on decreasingN and on increasingB, and the most obvious way
to realize this condition is by increasing the degree of cyclicity of the assembly (B - N + 1). The yield of
an assembly with a high degree of cyclicity is very sensitive also to modest changes ofKinterEM about its
limit value. Depending on the value of the monomers concentration, the assembly could undergo either sharp
disassembly (denaturation) or conversion into gel.

Introduction

Self-assembly consists of the spontaneous generation of a
well-defined, discrete supramolecular architecture from a given
set of components under thermodynamic equilibration.2 A
variety of molecular architectures have been obtained in this
way, spanning from exotic structures such as ladders, helicates,
and grids to two-dimensional or three-dimensional structures
that closely resemble well-known geometric shapes, including
triangles, squares, hexagons, cubes, triangular prisms, octahedra,
cuboctahedra, etc. Such materials are interesting as artificial,
molecular-scale containers or receptors, in which novel synthetic
chemistry, electrochemistry, photoluminescent chemistry,
supramolecular chemistry, or catalytic chemistry, inter alia, can
be carried out.

Despite the plethora of self-assembling systems that can be
found in the literature, the physicochemical basis of self-
assembly is, however, largely unexplored. As a contribution to
fill this gap, here is presented a model of general applicability
that addresses a number of issues that are crucial to the
understanding of self-assembly, inter alia: What are the factors
governing self-assembly and how can they be put on a
quantitative scale? What is the range of reactant concentrations
in which a self-assembling structure is stable? What are the
criteria to judge if a given assembly is more or less favored
than another? It is apparent that the answers to these and other
related questions are of fundamental importance not only to
allow the deliberate formation of desired architectures but also
to extract information from a system under study in a consistent
and significant way.

Theoretical Basis

Self-assembly of a discrete supramolecular structure always
occurs in competition with the process of polymerization. The

self-assembly of a two-dimensional structure requires bifunc-
tional monomers that react to yield a specific cyclic oligomer
in competition with linear polymerization; treatment of this case
has been previously reported and experimentally tested.3 The
case regarding the self-assembly of a three-dimensional structure
is more complex because at least one of the reactants carries
more than two reactive groups and thus the self-assembling
architecture is formed in competition with nonlinear oligomers
displaying an enormous number of different topologies. Clas-
sification of the various species that could form in solution is
a hopeless task; however, as will be illustrated in the following,
such a level of detail is not needed to extract the necessary
information.

In the vast majority of the cases self-assembly of a three-
dimensional architecture requires two monomeric building
blocks. Let us indicate the two building blocks as L1, havingl
binding sites-A, and M1, havingmbinding sites-B. The two
functional groups-A and-B are each capable of reacting with
the other only in a reversible addition reaction. When L1 and
M1 are mixed and the equilibrium is attained, the monomeric
units can be considered as partitioned in two fractions in
equilibrium between them, one constituted by an infinite number
of oligomers having one or more loops in their structure and
including the assembly S, and the other constituted by an infinite
number of more or less branched oligomers devoid of loops.
Self-assembly takes place when the monomers have a rigid
structure predisposed4 in such a way that formation of the self-
assembling complex is strongly favored over other cyclic or
polycyclic species. The latter are disfavored by one or more of
the following: (i) the presence of unreacted end groups, (ii)
strained loops involving a high enthalpy content, and (iii) large
loops involving a high entropy loss. It is assumed therefore that
S is the only significant species of the first fraction. This
assumption, substantiated later in this paper, is further justified
by the fact that the most important theory of nonlinear† E-mail: ercolani@uniroma2.it.
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polymerization, due to the contributions of Flory and Stock-
mayer, completely neglects the formation of looped structures.5

The acyclic oligomers of the second fraction have the general
formula LrMs. They can be subdivided in families of oligomers,
Ri, wherei, the degree of polymerization, is given byi ) r +
s, so that R1 represents the monomers L1 and M1, R2 the dimers,
and so on. Schematically the equilibra to consider for the process
of self-assembly are shown in Scheme 1.

The molecular formula of the assembly S is LpmMpl, where
p is a coefficient needed to account for the stoichiometry of L
and M within S. A cartoon showing the self-assembly of a cube
is reported, by way of illustration, in Figure 1.

The mass balance equation in terms of the total number of
monomer units is then given by

where the subscript 0 has the meaning of initial concentration.
It is obvious that the maximum concentration of S is obtained

when the initial concentration of functional groups-A and-B
is equal, i.e., when the molar fraction of the monomers, L1 and
M1, is equal tom/(l + m) andl/(l + m), respectively; therefore,
only this case will be treated here. The total number of bound
and unbound monomeric units L1 in the acyclic fraction then
will be mΣii[Ri]/(l + m). Because each L1 unit carries l
functional groups-A, the total number of functional groups
-A (and -B) in the acyclic fraction islmΣii[Ri]/(l + m).
Assuming that all the intermolecular reactions between-A and
-B groups in the acyclic fraction occur with the same
probability, measured by the equilibrium constantKinter, the
overall equilibrium of end groups in the acyclic fraction is
expressed by eq 2, wherex is the fraction of reacted functional
groups in the polymer.

From the equilibrium in eq 2, eq 3 is obtained.

Substituting eq 3 into eq 1, and considering that the number
of molecules in the assembly,N, is equal topl + pm, and the
number of bonds joining them,B, is equal toplm, eq 4 is
obtained

Now consider the infinite McLaurin expansion shown in eq
5

It is evident by substituting eq 5 into eq 3, that eq 6 holds.

Because [R1] ) [L1] + [M1], from eq 6, considering the molar
fraction of L1 and M1, eqs 7 and 8 are obtained

The assembly S is in general a polycyclic molecule whose
degree of cyclicity is given by the minimum number of bonds
that must be broken to transform S into an acyclic molecule.
To join pmL1 andpl M1 molecules,N - 1 intermolecular bonds
are required. Because the assembly of S requires in totalB
bonds, the number of intramolecular bonds, coinciding with the
degree of cyclicity, isB - N + 1. The self-assembly equilibrium
constantKS is thus given by

whereσr is a statistical factor that accounts for the number of
equivalent binding sites of the reactants. Considering that for
L1 and M1 these arel and m, respectively, and taking into
account the corresponding stoichiometric coefficients, it results
thatσr ) lpmmpl.6 The equilibrium constantsK(intra)i refer to the
intramolecular processes (cyclizations) required for the assembly
of S. The cyclization tendency is usually expressed in terms of
effective molarity (EM) defined asKintra/Kinter.7,8 Introducing
the expressions forσr and EM into eq 9, eq 10 is obtained

Note that the EMi values are path dependent, but not their
product. An example will suffice: consider the two pathways
a and b in Scheme 2 for the self-assembly of a generic bicyclic
product. Because the EM is strongly dependent on the ring size
and on the possible strain of the ring being formed, it is apparent
that the two pathways are characterized by different EMi values;
nevertheless the product of the EMi of each of the two pathways
obviously must be the same in that the two pathways lead to
the same molecule.

Figure 1. Self-assembly of a cube by two predisposed building blocks.
In the example shownp ) 4, m ) 2, l ) 3.
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To avoid considering a specific path, it is convenient to define
the EM of the complex S as the geometrical mean of the EMi

values for an arbitrary path,9 so that eq 10 becomes

From the definition ofKS in terms of the concentrations of
the species involved, and considering eqs 7, 8, and 11, one
obtains

that substituted in eq 4 affords

Although eq 13 cannot be solved analytically, knowing the
initial concentrations of the reactants,Kinter, and EM, it is
possible to obtain a numerical solution forx by the Newton-
Raphson method.10 In turn, knowledge ofx allows the concen-
trations of the self-assembling complex and of the various
families of oligomers to be found by eqs 12 and 6, respectively.

At this point, however, it is important to remark that the
preceding equations are valid as long as all the species are
present in solution. It is well-known that nonlinear polymeri-
zation, in contrast with linear polymerization, at a sufficiently
advanced extent of reaction in the polymer fraction, produces
indefinitely large polymer structures limited in size only by the
macroscopic amount of material in the reaction mixture.5 This
occurrence is signaled by a sharp transition of the solution from
a liquid to an elastic gel (gel-point). The Flory-Stockmayer
theory of gelation predicts that under the conditions of the
present study (equal reactivity of like functional groups, absence
of intramolecular reaction in the polymer, equal amounts of
functional groups-A and-B) the gel-point occurs at a critical
value ofx given by5

Because the equations here obtained are valid under pre-gel
conditions, eq 14 sets an upper limit for the value ofx. In fact,
this is not a limitation of the model because beyond the gel-
point, self-assembly could not effectively compete with gel
formation.

The percent weighted fraction (the yield) of the assembly,
given by 100N[S]/([L1]0 + [M1]0), is expressed, taking into
account eqs 12 and 13, by

Equations 13 and 15 can be used to build distribution curves
of S% vsKinter([L1]0 + [M1]0), that depend only on the product

KinterEM. For example, in Figure 2 are shown plots regarding
the self-assembly of the cube in Figure 1 (N ) 20 andB ) 24)
for values ofKinterEM ) 3, 10, and 500, respectively.11 The
plots are defined up to the gel-point occurring, according to eq
14, atxc ) 0.707.

From eq 14 it appears that the driving force for the formation
of S is given by the term (KinterEM)B-N+1 that is strongly
dependent on the degree of cyclicity of S. In the example shown
in Figure 2 the degree of cyclicity is rather high, namely 5, and
this makes the yield of S highly sensitive to the variation of
KinterEM. It is apparent that an increase ofKinterEM is beneficial
not only to the yield of the assembly but also to the concentration
range over which self-assembly takes place. The value ofKinter

by itself affects the value of the monomers concentration at
which a given yield of S is obtained; higher values ofKinter

make the phenomenon observable at higher dilution.
Examination of eq 15 shows that S% tends to zero at very

high dilution where only the monomers are present in solution
(x f 0); on increasingx, S% increases up to a maximum and
then decreases because of the competition with polymerization.
The maximum of eq 15 occurs at a value ofx given by

Now we are in the position to know the minimum value of
the driving force,KinterEM, required for virtually complete self-
assembly (S%g 99.01). According to eq 15, this condition is
satisfied when

By comparing eq 14 and eq 16, two cases can occur: (i)
xSmax e xc; (ii) xSmax > xc.

Case i. In this case the maximum of S% occurs under pre-
gel conditions; therefore the minimum value of the driving force
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Figure 2. Plots of the yield of the self-assembling cube sketched in
Figure 1 againstKinter([L1]0 + [M1]0). The three curves from the bottom
up, refer toKinterEM ) 3, 10, and 500, respectively. The curves are
defined in the pre-gel area (0< x < 0.707).
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for complete self-assembly is obtained by substitution of eq 16
into eq 17, to give

where

Becausea is confined in the very narrow range 1.69e a <
e2/4 ( ) 1.85) for 2e N < ∞, the condition in eq 18 can be
translated in the useful form

Equation 19 holds also for the case of two-dimensional self-
assembly accompanied by linear polymerization, in which
gelation does not occur. Indeed, in this casel ) m ) 2 and
N ) B, and thus eq 19 reduces to eq 20, showing that the needed
driving force directly depends on the number of bonds that hold
together the monomer units in the cyclic assembly.

This result had been previously obtained by a model limited
to the treatment of self-assembly macrocyclizations,3a which
actually turns out to be a specific case of the present general
model.

Case ii. In this case the maximum value of S% is attained in
correspondence of the gel-point; therefore the minimum value
of the driving force for complete self-assembly is obtained by
substitution of eq 14 into eq 17, to give

whereb ) 1/xc.
Both eqs 19 and 21 are important relations that allow a

prediction of the feasibility of self-assembly on the basis of
simple structural parameters such as the number of molecules
in the assembly, the number of bonds joining them, and the
number of interaction sites in the monomers. For example,
consider the cube in Figure 1, for whichxc ) 0.707 andxSmax

) 0.905. BecausexSmax> xc, the condition in eq 21 holds, and
a value ofKinterEM > 8.1 is calculated. A close inspection of
Figure 2 indeed confirms that only the curves relative to
KinterEM ) 10 and 500 show complete self-assembly.

Both eqs 19 and 21 point out thatthe required driVing force
for self-assembly decreases on decreasing the number of
molecules of the assembly and on increasing the number of
bonds joining them. Although analogous conclusions have been
intuited by other authors,2b,12it is the first time that quantitative
relationships are obtained on the basis of a rigorous model. It
should be clear that the term (KinterEM)B-N+1 is simply the
equilibrium constant between the family of acyclic oligomers
of molecular formula LpmMpl and the assembly S. In free energy
terms, (KinterEM)B-N+1 ) exp(-∆G° /RT) where-∆G° is the
difference between the standard free energy in solution of S
and LpmMpl. Thus eqs 19 and 21 simply express the conditions
about the stability of S so that it can win the competition with
all the acyclic oligomers.

Both eqs 19 and 21 put also in quantitative form the
assumption, made at the beginning, that the monomers have a
rigid structure predisposed to form a given assembly in
preference to other hypothetical cyclic or polycyclic species.
This assumption holds when the EM of the assembly satisfies
either eq 19 or eq 21 whereas the EMs of all other hypothetical
assemblies are significantly below the limits established by these
equations. In general, it is difficult to compare the stabilities of
assemblies made from the same building blocks but differing
in the molecular formula. In this respect eqs 19 and 21 can
provide a useful insight in that only the complex satisfying the
appropriate equation can exclusively form. There could be the
case in which more than one assembly satisfies either eq 19 or
eq 21. In general, lower order assemblies are stable to lower
monomer concentrations, so that there could be distinct con-
centration ranges in which each assembly exclusively forms,
as well as a concentration range in which the assemblies are
both present in significant amounts. Examples of the latter case
have been reported in the literature, especially as far as “triangle-
square” equilibria are concerned.2j,13

The self-assembly process requiring the lowest driving force
is that involving a large number of bonds with respect to the
number of molecules involved, a typical example is the pairing
of two complementary strands having a large number of
interaction sites along the chain. In Figure 3 is plotted the
minimum value ofKinterEM for N ) 2 vsB. It appears that on
increasingB, there is initially a sharp drop of the required driving
force for complete self-assembly followed by a leveling off.
Independently from the number of molecules constituting the
assembly, on increasingB, eq 21 tends to the limitKinterEM >
1. This is an interesting result because it indicates that no matter
how large the number of bonds holding together the pieces of
an assembly, there is a threshold value of the driving force that
if not exceeded makes self-assembly impossible.

Another interesting aspect regards the sensitivity with which
the yield of an assembly changes on changing its degree of
cyclicity. Indeed, because a high degree of cyclicity of S
involves its yield being highly sensitive to the variation of
KinterEM, for an assembly with a great number of interaction
sites the limit established by eq 21 becomes the boundary

Figure 3. Plot of (KinterEM)min for N ) 2 vsB. The plot can be referred
to the pairing of two strands havingB interaction sites. The first three
points were calculated by eq 18 and the remainder by eq 21.
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between an all-or-nothing process. To illustrate this point, in
Figure 4 are reported two distribution curves referring to the
self-assembly of two strands with 20 interaction sites per
monomer to form a duplex. From eq 21 it results that complete
self-assembly requiresKinterEM > 1.3. The two curves refer to
KinterEM ) 0.85 and 1.5. It is evident that a modest change of
the value ofKinterEM about the boundary can cause a dramatic
effect on the formation of the assembly. Depending on the value
of the monomers concentration, the assembly could undergo
either sharp disassembly (denaturation) or conversion into gel.
Variations ofKinterEM can be caused by variations of temper-
ature, ionic strength, solvent composition, etc. that act on the
value ofKinter, because the EM is known to be rather insensitive
to medium variations as well as, in the absence of strain, to
temperature.3b,8

Conclusion

A general model for self-assembly in solution has been
presented in which the process occurs in competition with
nonlinear random polymerization. The model is based on two
assumptions: (i) the monomers have a rigid structure predis-
posed to form a given assembly in preference to other
hypothetical cyclic or polycyclic species; (ii) all the intermo-
lecular reactions between the binding sites occur with the same
probability irrespective of the oligomer to which they are
attached and the position they occupy within a given oligomer.
The fundamental quantities on which the treatment is based are
the effective molarity (EM) of the assembly and the equilibrium
constant for the intermolecular model reaction between mono-
functional reactants (Kinter). The condition for complete self-
assembly is expressed either by eq 19 or eq 21, both stating
that the productKinterEM must be no lower than an easily
computable limit that depends on the number of molecules
constituting the assembly (N), the number of bonds (B) holding
them together, and the number of interaction sites in the
monomers. This limit decreases on decreasingN and on
increasingB, and the most obvious way to realize this condition
is by increasing the degree of cyclicity of the assembly. It is
evident that to exploit the power of the above equations, it is

crucial to have methods that allow an estimate of bothKinter

and EM. In fact,Kinter is easily available either by studying the
equilibrium between monofunctional reactants or on the basis
of literature data, whereas an estimate of the EM is more
difficult. The EM has both an enthalpic and an entropic
component. The factors that possibly affect the enthalpic
component are the strain energy of the ring structure (that
decreases the EM), intra-annular stabilizing interactions, and
template effects (both increasing the EM). All of these effects
can be absent, in this case the EM solely depends on entropy.
Essentially, the following factors affect the entropic compo-
nent: (i) The intrinsic entropic advantage of an intramolecular
reaction with respect to the intermolecular counterpart due to
the significant losses of translational plus rotational entropy that
occur in the latter. According to Page and Jencks, entropy
changes from-35 to -50 eu (1 eu) 4.184 J K-1 mol-1) are
to be expected for many bimolecular reactions in solution at
25 °C. This corresponds to a maximum entropic advantage of
about 108 mol L-1 for a comparable intramolecular reaction.8a,b

(ii) The loss of entropy due to the restriction of torsional motion
in the cyclic structure. (iii) The number of symmetry,σ, of the
formed ring, corresponding to the number of equivalent bonds
that can be broken in the reverse reaction, which decreases the
entropy byR ln σ.6 In a previous paper we have suggested a
method, based on molecular modeling techniques, to obtain a
lower limit for the EM of a fairly rigid two-dimensional
assembly.3b Other empirical methods have been suggested in
the case of strainless rings.8d,e Considering that in the case of
polycyclic assemblies, the EM is the geometrical mean ofB -
N + 1 effective molarities, these methods could be generalized
to obtain a rough estimate of the EM value of a three-
dimensional complex. In many cases this is sufficient to establish
if the appropriate equation, eq 19 or eq 21, is satisfied and,
therefore, if self-assembly can be complete.

It is useful to recall that maximization of the EM requires a
careful design of the monomeric building blocks. Ideal building
blocks are rigid (no built-in rotors) and have a structural
predisposition to assemble in a unique supramolecular structure
without any strain. The presence of templates and/or intraannular
stabilizing interactions can greatly enhance the EM. Moreover,
in the course of the formation of a polycyclic structure, the ring
closure of a successive ring can be favored by the formation of
the preceding rings. This effect, involving positive cooperativity,
has been evidenced in the self-assembly of DNA,2d and of
artificial supramolecular structures.14 In the example of two
strands that self-assemble to form a duplex, positive cooperat-
ivity would manifest itself by an increase of the EM on
increasing the number of binding sites along the strands.

The ideal intermolecular reaction, also expressed in the
structure of the building blocks, involves the formation of
nonrotatable bonds. This can be realized by reactions involving
either multipoint binding (for example, multiple hydrogen
bonding), or steric hindrance to rotation of the newly formed
bonds, or the formation of multiple bonds (for example, reactions
on transition metals involving back-donation, formation of
imines, etc.). The ideal intermolecular reaction, of course, is
also highly esoergonic to maximize the value ofKinter. The
degree of cyclicity of the supramolecular structure, although it
does not affect the EM in the absence of cooperativity, should
be as high as possible so as to minimize the required driving
force.

One may wonder if self-assembly can be driven solely by
entropy. The driving force for self-assembly is given by the
productKinterEM, and although the EM can be purely entropic,

Figure 4. Plots of the yield of a duplex formed by pairing of two
strands with 20 binding sites againstKinter([L1]0 + [M1]0) for KinterEM
) 0.85 and 1.5.
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Kinter referring to the association of the groups-A and-B can
hardly be entropically favored unless a large number of solvent
molecules are released upon association. However, if the
following conditions are satisfied, (i) the EM is purely entropic,
(ii) Kinter e 1 M-1, and (iii) the productKinterEM satisfies either
eq 19 and 21, then self-assembly is driven by entropy only.

In conclusion, knowledge of EM andKinter allows the
evaluation of the distribution curve of the assembly, and
conversely, from the distribution curve, these fundamental
physicochemical parameters can be obtained.3b It is desirable
that besides structural data aimed at characterizing self-
assembling architectures, more data about their robustness in
solution, as quantitatively expressed by EM andKinter, will be
available in the future.
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