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A model treating the competition, under thermodynamic control, between self-assembly and nonlinear random
polymerization is presented. The fundamental quantities on which the treatment is based are the effective
molarity (EM) of the assembly and the equilibrium constant for the intermolecular model reaction between
monofunctional reactant&fr). Knowledge of these quantities allows the evaluation of the distribution curve
of the self-assembling complex. In order for effective self-assembly to take place, the pegdEr must

be no lower than a limit value easily computable on the basis of simple structural parameters such as the
number of molecules in the assemhN)(the number of bonds joining therB), and the number of interaction
sites in the monomers. This limit decreases on decreadsiagd on increasin®, and the most obvious way
to realize this condition is by increasing the degree of cyclicity of the asserBbity il + 1). The yield of
an assembly with a high degree of cyclicity is very sensitive also to modest changgsBM about its
limit value. Depending on the value of the monomers concentration, the assembly could undergo either sharp
disassemblydenaturation or conversion into gel.

Introduction self-assembly of a two-dimensional structure requires bifunc-

tional monomers that react to yield a specific cyclic oligomer

Self-a_ssemb_ly consists of the spontaneous generation of 8in competition with linear polymerization; treatment of this case
well-defined, discrete supramolecular architecture from a given has been previously reported and experimentally teSTE:

f componen nder thermodynami ilibratioh. . ; .
set of components under thermodynamic_equilibratioh case regarding the self-assembly of a three-dimensional structure

variety of molecular architectures have been obtained in this . lex b ¢ loast f th tant .
way, spanning from exotic structures such as ladders, helicates!S MOré complex because at least oné ot the reactants carries

and grids to two-dimensional or three-dimensional structures MO'€ than two reactive groups and thus the self-assembling
that closely resemble well-known geometric shapes, including a_rchlte(_:ture is formed in competition yv|th nonlinear o_hgomers
triangles, squares, hexagons, cubes, triangular prisms, octahedréj,_'s,playmg an enormous number of different topcl)logles..CIals—
cuboctahedra, etc. Such materials are interesting as artificial,Sification of the various species that could form in solution is
molecular-scale containers or receptors, in which novel synthetic @ hopeless task; however, as will be illustrated in the following,
chemistry, electrochemistry, photoluminescent chemistry, such a level of detail is not needed to extract the necessary
supramolecular chemistry, or catalytic chemistry, inter alia, can information.
be carried out. In the vast majority of the cases self-assembly of a three-
Despite the plethora of self-assembling systems that can bedimensional architecture requires two monomeric building
found in the literature, the physicochemical basis of self- blocks. Let us indicate the two building blocks ag having|
assembly is, however, largely unexplored. As a contribution to binding sites—A, and M, havingm binding sites—B. The two
fill this gap, here is presented a model of general applicability functional groups-A and—B are each capable of reacting with
that addresses a number of issues that are crucial to thethe other only in a reversible addition reaction. Whenahd
understanding of self-assembly, inter alia: What are the factors, are mixed and the equilibrium is attained, the monomeric
governing self-assembly and how can they be put on a ynjts can be considered as partitioned in two fractions in
quantitative scale? What. is the range qf reactant concentraﬂonsequi"brium between them, one constituted by an infinite number
in which a self-assembling structure is stable? What are the ¢ oligomers having one or more loops in their structure and

criteria to judge if a given assembly is more or less favored j, .y, ding the assembly S, and the other constituted by an infinite
than another? It is apparent that the answers to these and Otheﬁumber of more or less branched oligomers devoid of loops

low the delberate formation of desied archiec.res but aiso SCI-2Ssembly takes place wihen the monomers have a igi
structure predisposédh such a way that formation of the self-

to extract information from a system under study in a consistent : . :
assembling complex is strongly favored over other cyclic or

and significant way. polycyclic species. The latter are disfavored by one or more of
the following: (i) the presence of unreacted end groups, (ii)
strained loops involving a high enthalpy content, and (iii) large
Self-assembly of a discrete supramolecular structure alwaysloops involving a high entropy loss. It is assumed therefore that
occurs in competition with the process of polymerization. The S is the only significant species of the first fraction. This
assumption, substantiated later in this paper, is further justified
TE-mail: ercolani@uniromaz2.it. by the fact that the most important theory of nonlinear
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Model for Self-Assembly in Solution

Figure 1. Self-assembly of a cube by two predisposed building blocks.

In the example showp =4, m= 2,| = 3.

polymerization, due to the contributions of Flory and Stock-
mayer, completely neglects the formation of looped structures.
The acyclic oligomers of the second fraction have the general

formula LLMs. They can be subdivided in families of oligomers,
Ri, wherei, the degree of polymerization, is given by r +
s, so that R represents the monomergénd M, R, the dimers,

and so on. Schematically the equilibra to consider for the process

of self-assembly are shown in Scheme 1.
The molecular formula of the assembly S igMp, where

p is a coefficient needed to account for the stoichiometry of L
and M within S. A cartoon showing the self-assembly of a cube

is reported, by way of illustration, in Figure 1.

The mass balance equation in terms of the total number of

monomer units is then given by

00

[Lao + MyJo = (pl + pm)[S] +

i[R] @)

where the subscript 0 has the meaning of initial concentration.
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SCHEME 1

pmLy + pIM;y —= S

~————

Now consider the infinite McLaurin expansion shown in eq

[

X N
- X)2= Ile

It is evident by substituting eq 5 into eq 3, that eq 6 holds.

(5)

| i
[R]= ( Tmm) KL

inter

(6)

Because [} = [L1] + [M4], from eq 6, considering the molar
fraction of Ly and My, eqs 7 and 8 are obtained

L = — ()

inter

[M 1] - ménter

(8)

The assembly S is in general a polycyclic molecule whose

It is obvious that the maximum concentration of S is obtained degree of cyclicity is given by the minimum number of bonds

when the initial concentration of functional group# and —B
is equal, i.e., when the molar fraction of the monomesgsathd
My, is equal tar/(l + m) andl/(l + m), respectively; therefore,

that must be broken to transform S into an acyclic molecule.
To join pmL; andpl M; moleculesN — 1 intermolecular bonds
are required. Because the assembly of S requires in Btal

only this case will be treated here. The total number of bound bonds, the number of intramolecular bonds, coinciding with the

and unbound monomeric units in the acyclic fraction then
will be mi[Ri)/(I + m). Because each jLunit carries|
functional groups—A, the total number of functional groups
—A (and —B) in the acyclic fraction isimZi[RJ/(I + m).
Assuming that all the intermolecular reactions betwe#nand
—B groups in the acyclic fraction occur with the same
probability, measured by the equilibrium constdii.r, the
overall equilibrium of end groups in the acyclic fraction is
expressed by eq 2, whexas the fraction of reacted functional
groups in the polymer.

Kinter
A +  B- = ~AB-—
ImSi[R] ImSi[R] lml iRl (2)
1= 1= =
T O TR Y i
From the equilibrium in eq 2, eq 3 is obtained.
o (I+m 1 X
i 3

Im Kinter (1 - X)2

degree of cyclicity, i8 — N + 1. The self-assembly equilibrium
constants is thus given by

B—N+1
|_| K(intra)i
1=

whereo; is a statistical factor that accounts for the number of
equivalent binding sites of the reactants. Considering that for
L; and M, these ard and m, respectively, and taking into
account the corresponding stoichiometric coefficients, it results
thator = [P™P.6 The equilibrium constantinay refer to the
intramolecular processes (cyclizations) required for the assembly
of S. The cyclization tendency is usually expressed in terms of
effective molarity (EM) defined a&inya/Kinter.”8 Introducing

the expressions far, and EM into eq 9, eq 10 is obtained

— N—1
KS - O'rKinter

9)

B—N+1

K= IPP'KE EM,

inter

(10)

Note that the EMvalues are path dependent, but not their
product. An example will suffice: consider the two pathways

Substituting eq 3 into eq 1, and considering that the number a and b in Scheme 2 for the self-assembly of a generic bicyclic

of molecules in the assembliy, is equal topl + pm, and the

number of bonds joining thenB, is equal toplm, eq 4 is
obtained

N 1 X

[Llo+Mo=N[S]+ =

1]0 1]0 B Kinter (1 - X)2

(4)

product. Because the EM is strongly dependent on the ring size
and on the possible strain of the ring being formed, it is apparent
that the two pathways are characterized by different #\les;
nevertheless the product of the EM each of the two pathways
obviously must be the same in that the two pathways lead to
the same molecule.
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To avoid considering a specific path, it is convenient to define
the EM of the complex S as the geometrical mean of the EM
values for an arbitrary pathso that eq 10 becomes

Kg = IPmPK2  EMB N (11)
From the definition ofKs in terms of the concentrations of

the species involved, and considering egs 7, 8, and 11, one
obtains

[S] = KinerEM® X" (12)
that substituted in eq 4 affords
Lo+ Milo=
1 B-N+1pB-N+1 N , N X
—= [NK; EMENLN 4 = (13)
Kinter Kmter B (1 - X)2

Although eq 13 cannot be solved analytically, knowing the
initial concentrations of the reactant&ne, and EM, it is
possible to obtain a numerical solution foby the Newton-
Raphson metho#. In turn, knowledge ok allows the concen-
trations of the self-assembling complex and of the various
families of oligomers to be found by eqs 12 and 6, respectively.

At this point, however, it is important to remark that the
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Figure 2. Plots of the yield of the self-assembling cube sketched in
Figure 1 againsKined[L1]o + [M 1]0). The three curves from the bottom
up, refer toKineEM = 3, 10, and 500, respectively. The curves are
defined in the pre-gel area (8 x < 0.707).

KineEM. For example, in Figure 2 are shown plots regarding
the self-assembly of the cube in FigureNL<£ 20 andB = 24)
for values ofKineEM = 3, 10, and 500, respectively.The
plots are defined up to the gel-point occurring, according to eq
14, atx. = 0.707.

From eq 14 it appears that the driving force for the formation
of S is given by the termKjneEM)B"N*1 that is strongly

preceding equations are valid as long as all the species aregependent on the degree of cyclicity of S. In the example shown

present in solution. It is well-known that nonlinear polymeri-
zation, in contrast with linear polymerization, at a sufficiently
advanced extent of reaction in the polymer fraction, produces
indefinitely large polymer structures limited in size only by the
macroscopic amount of material in the reaction mixtufinis
occurrence is signaled by a sharp transition of the solution from
a liquid to an elastic gel (gel-point). The FlorBtockmayer
theory of gelation predicts that under the conditions of the
present study (equal reactivity of like functional groups, absence
of intramolecular reaction in the polymer, equal amounts of
functional groups-A and —B) the gel-point occurs at a critical

value ofx given by

1

(14)

V(= 1)m-1)

Because the equations here obtained are valid under pre-ge
conditions, eq 14 sets an upper limit for the value.olin fact,
this is not a limitation of the model because beyond the gel-
point, self-assembly could not effectively compete with gel
formation.

The percent weighted fraction (the yield) of the assembly,
given by 100N[S]/([L1]o + [M1]o), is expressed, taking into
account eqgs 12 and 13, by

1
BKE];;H:LEMBfNJrl(l _ X)szfl

S%=1m%1+ (15)

Equations 13 and 15 can be used to build distribution curves
of S% vsKined[L 1]o + [M1]0), that depend only on the product

in Figure 2 the degree of cyclicity is rather high, namely 5, and
this makes the yield of S highly sensitive to the variation of
KineEM. It is apparent that an increasekfiEM is beneficial
not only to the yield of the assembly but also to the concentration
range over which self-assembly takes place. The valug.@f
by itself affects the value of the monomers concentration at
which a given yield of S is obtained; higher valueskfier
make the phenomenon observable at higher dilution.
Examination of eq 15 shows that S% tends to zero at very
high dilution where only the monomers are present in solution
(x — 0); on increasing, S% increases up to a maximum and
then decreases because of the competition with polymerization.
The maximum of eq 15 occurs at a valuexofiven by

N-1

Xsmax = N T 1 (16)

Now we are in the position to know the minimum value of
the driving force KinetdEM, required for virtually complete self-
assembly (S% 99.01). According to eq 15, this condition is
satisfied when

By comparing eq 14 and eq 16, two cases can occur: (i)
Xsmax < Xg; (i) Xsmax > Xe.

Case i. In this case the maximum of S% occurs under pre-
gel conditions; therefore the minimum value of the driving force

K ..EM > %
B(1 — x)*x

inter

] 1/(B—N+1) (17)
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for complete self-assembly is obtained by substitution of eq 16
into eq 17, to give

K (18)

inter

)l/(B N-+1)

EM > (10(&12

B

where

B (N+ 1)N+1
ANA(N — 1)V

Because is confined in the very narrow range 1.69a <
€%/4 (= 1.85) for 2< N < o, the condition in eq 18 can be
translated in the useful form

( Nz) 1/(B—N+1)

KinelEM = 185E

inter (19)
Equation 19 holds also for the case of two-dimensional self-
assembly accompanied by linear polymerization, in which

gelation does not occur. Indeed, in this chse m = 2 and
N = B, and thus eq 19 reduces to eq 20, showing that the neede
driving force directly depends on the number of bonds that hold
together the monomer units in the cyclic assembly.
KineEM = 1858 (20)

This result had been previously obtained by a model limited
to the treatment of self-assembly macrocyclizati&hshich
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(figure 3. Plot of (KineEM)min for N = 2 vsB. The plot can be referred

o the pairing of two strands havirgjinteraction sites. The first three
points were calculated by eq 18 and the remainder by eq 21.

Both eqs 19 and 21 put also in quantitative form the
assumption, made at the beginning, that the monomers have a
rigid structure predisposed to form a given assembly in
preference to other hypothetical cyclic or polycyclic species.

This assumption holds when the EM of the assembly satisfies

actually turns out to be a specific case of the present generalgjiher eq 19 or eq 21 whereas the EMs of all other hypothetical

model.
Case ii. In this case the maximum value of S% is attained in

assemblies are significantly below the limits established by these
equations. In general, it is difficult to compare the stabilities of

correspondence of the gel-point; therefore the minimum value g5semblies made from the same building blocks but differing

of the driving force for complete self-assembly is obtained by
substitution of eq 14 into eq 17, to give

100 bVt

KinterEM z B (b - 1)2

(21)

] 1/(B—N+1)

whereb = 1/x..
Both eqs 19 and 21 are important relations that allow a
prediction of the feasibility of self-assembly on the basis of

in the molecular formula. In this respect eqs 19 and 21 can
provide a useful insight in that only the complex satisfying the

appropriate equation can exclusively form. There could be the
case in which more than one assembly satisfies either eq 19 or
eq 21. In general, lower order assemblies are stable to lower
monomer concentrations, so that there could be distinct con-
centration ranges in which each assembly exclusively forms,
as well as a concentration range in which the assemblies are
both present in significant amounts. Examples of the latter case

simple structural parameters such as the number of moleculeshave been reported in the literature, especially as far as “triangle-
in the assembly, the number of bonds joining them, and the square” equilibria are concernéd3

number of interaction sites in the monomers. For example,
consider the cube in Figure 1, for whigh = 0.707 andXsmax
= 0.905. BecausBsmax™> X, the condition in eq 21 holds, and
a value ofKjwEM > 8.1 is calculated. A close inspection of
Figure 2 indeed confirms that only the curves relative to
KineEM = 10 and 500 show complete self-assembly.

Both egs 19 and 21 point out thidie required driing force

The self-assembly process requiring the lowest driving force
is that involving a large number of bonds with respect to the
number of molecules involved, a typical example is the pairing
of two complementary strands having a large number of
interaction sites along the chain. In Figure 3 is plotted the
minimum value ofKj«/EM for N = 2 vsB. It appears that on
increasingB, there is initially a sharp drop of the required driving

for self-assembly decreases on decreasing the number offorce for complete self-assembly followed by a leveling off.
molecules of the assembly and on increasing the number ofindependently from the number of molecules constituting the

bonds joining themAlthough analogous conclusions have been
intuited by other author®,12it is the first time that quantitative

assembly, on increasirg}, eq 21 tends to the limKi e EM >
1. This is an interesting result because it indicates that no matter

relationships are obtained on the basis of a rigorous model. It how large the number of bonds holding together the pieces of

should be clear that the ternKife/EM)BN*1 is simply the
equilibrium constant between the family of acyclic oligomers
of molecular formula k.M, and the assembly S. In free energy
terms, KinerEM)B"NL = exp(—AG° /RT) where—AG? is the

an assembly, there is a threshold value of the driving force that
if not exceeded makes self-assembly impossible.

Another interesting aspect regards the sensitivity with which
the yield of an assembly changes on changing its degree of

difference between the standard free energy in solution of S cyclicity. Indeed, because a high degree of cyclicity of S

and LymMpi. Thus egs 19 and 21 simply express the conditions
about the stability of S so that it can win the competition with
all the acyclic oligomers.

involves its yield being highly sensitive to the variation of
KinelEM, for an assembly with a great number of interaction
sites the limit established by eq 21 becomes the boundary
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100

crucial to have methods that allow an estimate of bt

and EM. In fact Kiner is easily available either by studying the
equilibrium between monofunctional reactants or on the basis
of literature data, whereas an estimate of the EM is more
difficult. The EM has both an enthalpic and an entropic
component. The factors that possibly affect the enthalpic
component are the strain energy of the ring structure (that
decreases the EM), intra-annular stabilizing interactions, and
template effects (both increasing the EM). All of these effects
can be absent, in this case the EM solely depends on entropy.
Essentially, the following factors affect the entropic compo-
nent: (i) The intrinsic entropic advantage of an intramolecular
reaction with respect to the intermolecular counterpart due to
the significant losses of translational plus rotational entropy that
occur in the latter. According to Page and Jencks, entropy
changes from-35 to —50 eu (1 eu= 4.184 J K1 mol?) are

to be expected for many bimolecular reactions in solution at
25 °C. This corresponds to a maximum entropic advantage of
about 16 mol L1 for a comparable intramolecular reacti@.

(i) The loss of entropy due to the restriction of torsional motion
in the cyclic structure. (iii) The number of symmetry, of the
formed ring, corresponding to the number of equivalent bonds
that can be broken in the reverse reaction, which decreases the
entropy byR In ¢.8 In a previous paper we have suggested a
method, based on molecular modeling techniques, to obtain a
lower limit for the EM of a fairly rigid two-dimensional

80
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40

20 A

0.85

0 T T = — '|: ot
1e-7 1e-5 1e-3 1e-1 1e+1

Kinter([LiJo*IMyJo)

Figure 4. Plots of the yield of a duplex formed by pairing of two
strands with 20 binding sites again§ked[L 1]o + [M1]o) for KineEM
= 0.85 and 1.5.

1e+3

between an all-or-nothing process. To illustrate this point, in

Figure 4 are reported two distribution curves referring to the
self-assembly of two strands with 20 interaction sites per
monomer to form a duplex. From eq 21 it results that complete

assembly®? Other empirical methods have been suggested in
the case of strainless rin§&¢ Considering that in the case of
polycyclic assemblies, the EM is the geometrical meaB of

self-assembly requirdsiw/EM > 1.3. The two curves referto N + 1 effective molarities, these methods could be generalized
Kine'EM = 0.85 and 1.5. It is evident that a modest change of to obtain a rough estimate of the EM value of a three-
the value ofKi[/EM about the boundary can cause a dramatic dimensional complex. In many cases this is sufficient to establish
effect on the formation of the assembly. Depending on the value if the appropriate equation, eq 19 or eq 21, is satisfied and,
of the monomers concentration, the assembly could undergotherefore, if self-assembly can be complete.

either sharp disassemblgi¢naturatior) or conversion into gel. It is useful to recall that maximization of the EM requires a
Variations ofKine/EM can be caused by variations of temper-  careful design of the monomeric building blocks. Ideal building
ature, ionic strength, solvent composition, etc. that act on the pjgcks are rigid (no built-in rotors) and have a structural
value ofKiner, Decause the EM is known to be rather insensitive predisposition to assemble in a unique supramolecular structure
to medium variations as well as, in the absence of strain, to without any strain. The presence of templates and/or intraannular

temperaturé®® stabilizing interactions can greatly enhance the EM. Moreover,
. in the course of the formation of a polycyclic structure, the ring
Conclusion closure of a successive ring can be favored by the formation of

A general model for self-assembly in solution has been Lh:spgi%end'g\g/iggﬁi'e-ghi's etl;]fgcgelﬂ\_/;)é\gggmgfsg}/eD%gZ%edragf\nty,
presented in which the process occurs in competition with "> = y
artificial supramolecular structuré$.In the example of two

nonlinear random polymerization. The model is based on two strands that self-assemble to form a duplex, positive cooperat-
assumptions: (i) the monomers have a rigid structure predis-: piex, p P

posed to form a given assembly in preference to other !vity qud manifest itself.by. an 'increase of the EM on
hypothetical cyclic or polycyclic species; (ii) all the intermo- |ncrea3|.ng th? number of binding .S'tes along the strand.s.
lecular reactions between the binding sites occur with the same  The ideal intermolecular reaction, also expressed in the
probability irrespective of the oligomer to which they are Structure of the building blocks, involves the formation of
attached and the position they occupy within a given oligomer. Nonrotatable bonds. This can be realized by reactions involving
The fundamental quantities on which the treatment is based are€ither multipoint binding (for example, multiple hydrogen
the effective molarity (EM) of the assembly and the equilibrium bonding), or steric hindrance to rotation of the newly formed
constant for the intermolecular model reaction between mono- Ponds, or the formation of multiple bonds (for example, reactions
functional reactantsK.e). The condition for complete self- 0N transition metals involving back-donation, formation of
assembly is expressed either by eq 19 or eq 21, both Statingimines, etc.). The ideal intermolecular reaction, of course, is
that the productieEM must be no lower than an easily —also highly esoergonic to maximize the value K. The
computable limit that depends on the number of molecules degree of cyclicity of the supramolecular structure, although it
Constituting the assembwa, the number of bondsBo ho|d|ng does not affect the EM in the absence of cooperativity, should
them together, and the number of interaction sites in the b€ as high as possible so as to minimize the required driving
monomers This limit decreases on decreasimg and on force.

increasingB, and the most obvious way to realize this condition One may wonder if self-assembly can be driven solely by
is by increasing the degree of cyclicity of the assembly. It is entropy. The driving force for self-assembly is given by the
evident that to exploit the power of the above equations, it is productKieEM, and although the EM can be purely entropic,
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Kinter referring to the association of the group# and —B can
hardly be entropically favored unless a large number of solven

molecules are released upon association. However, if the

following conditions are satisfied, (i) the EM is purely entropic,
(i) Kinter = 1 M™%, and (iii) the producKieEM satisfies either
eq 19 and 21, then self-assembly is driven by entropy only.
In conclusion, knowledge of EM an&iner allows the
evaluation of the distribution curve of the assembly, and
conversely, from the distribution curve, these fundamental
physicochemical parameters can be obtaii®dtlis desirable

that besides structural data aimed at characterizing self-

J. Phys. Chem. B, Vol. 107, No. 21, 2008057

R. F.T., Ed.; Blackie Academic and Professional: London, 1998. (d) Stepto,

tRF.T; Taylor, D. J. R. IrfCyclic Polymers2nd ed.; Semlyen, J. A., Ed.;

Kluwer: Dordrecht, The Netherlands, 2000; Chapter 15.

(6) The statistical factor of a molecule is equivalent to its external
symmetry numberg, defined as the number of indistinguishable but
nonidentical positions into which the molecule can be turned by rigid
rotation. It affects the entropy of the molecule by a factd® In o (Eliel,

E. L.; Wilen; S. H.Stereochemistry of Organic Compountiéiley: New
York, 1994; pp 96 and 601). Thus for a generic equilibriaf + bB =

cC, if oa, o8, andoc are the symmetry numbers of A, B, and C, respectively,
the effect of their symmetry on the equilibrium constant is given by the
factor oa208”/0cC. The effect of the number of symmetry of S on the self-
assembly equilibrium, corresponding to the number of equivalent bonds
that can be broken in the reverse reaction, is not explicitly considered,

assembling architectures, more data about their robustness irpecause this effect is incorporated in the valueX @fray.

solution, as quantitatively expressed by EM aGge,, will be
available in the future.
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