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Abstract. Self-assembly creates structures through a statistical exploration of many
possibilities. In some cases, these explorations give rise to a fewhighly designablestructures
that can be formed in exceptionally many ways. Using such structures for self-assembly tasks
is a general approach to improving their reliability. This design principle can be applied to a
variety of situations, including molecular devices and coordinated behaviours from
collections of autonomous robots.

1. Introduction

Manufacturing often builds objects from their components
by directly placing them in the necessary arrangements.
Common examples include buildings, cars and electronic
circuits. This technique requires knowledge of the precise
structure needed to serve a desired function, the ability to
create the components with the necessary tolerances and the
ability to place each component in its proper location in the
final structure.

When these requirements are not met,self-assembly
offers another approach to building structures from
components. This method involves a statistical exploration
of many possible structures before settling into the final one.
The particular structure produced from given components is
determined by biases in the exploration, given by component
interactions. These biases arise when the strength of
interaction between components depends on their relative
locations in the structure. These interactions can reflect
constraints on the desirability of a component being near its
neighbours in the final structure. For each possible structure,
the interactions combine to give a measure of the extent to
which the constraints are violated, which can be viewed as a
cost orenergyfor that structure. Through the biased statistical
exploration of structures, each set of components tends to
assemble into that structure with the minimum energy for
that set. In these terms, self-assembly can be viewed as a
process using alocal specification, in terms of components
and their interactions, to produce a resultingglobal structure.
The local specification is, in effect, a set of instructions that
implicitly describes the resulting structure.

Self-assembly can be very precise in spite of the
inherently statistical nature of the process. Examples
include chemical reactions driven by diffusive mixing of the
reactants, such as the creation of polymers [1,2], proteins [3]
and molecular assemblies [4], patterned mesoscale objects [5,
6] and structures consisting of tiny robots [7–10]. This
technique can also automatically reconfigure structures when

their environments or task requirements change, or when a
few components break.

While self-assembly can create a wide range of
structures, it has some basic difficulties. First, the precise
set of components and interactions that will construct a given
global structure can be difficult to determine, especially if the
components themselves have manufacturing defects or the
environment surrounding the components is noisy. Second,
the statistical exploration of different possibilities provides
the power of self-assembly, but can also make it difficult
to settle on a single final structure, or to resist continual
environmental noise once assembled. Third, the assembly
process can become stuck in local minima, thereby requiring
a long time to identify the final structure.

To help overcome these difficulties, this paper describes
some characteristics of the statistical distributions of self-
assembled structures. These characteristics in turn suggest a
general principle for designing self-assembly processes that
minimizes these problems. This principle relies on the fact
that many choices for the components and their interactions
can produce the same end result. While such choices are
often determined by ease of component construction, they
also provide an opportunity to improve the performance of
the self-assembly process.

2. Examples of self-assembly

Self-assembly is useful for a wide range of applications.
Some of these are described in this section, giving a concrete
basis for the discussion of aggregate statistical properties in
section 3. These examples are also used to suggest a number
of extensions to self-assembly beyond the construction of
specific structures.

For protein assembly, the components are amino acids
arranged in a specific sequence. The global structures are
the folded three-dimensional shapes of the proteins. The
interactions between amino acids depend on their relative
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locations in the folded structure. In simple terms, the
interactions can be expressed as constraints on the relative
affinities of polar and nonpolar amino acids [3, 11]. These
interactions are determined by the chemical properties of
the components, so the relevant degrees of freedom for the
local specification are the choices of the amino acids in the
sequence. Engineering applications need not be restricted to
naturally occuring amino acids, giving the possibility of using
additional components, with different interactions. Various
folding polymers offer an even larger range of possibilities
for engineered structures [1,2].

This example suggests a general manufacturing strategy:
lay out the components connected in a simple structure, such
as a chain or, more generally, a planar graph, and then
allow it to fold into the final shape. Because the initial
connected structure is much easier to create directly than
a complex three-dimensional structure, this technique is a
useful combination of directed manufacturing of a relatively
simple structure followed by self-assembly of the final,
more complex, structure. Alternatively, a nominal initial
configuration could be directly constructed while subsequent
adjustments to the actual environment or failed components
takes place through self-assembly [12].

A wider range of interactions is possible with
manufactured particles of various sizes. At a molecular scale,
suitable interactions can produce self-assembled structures
with new properties [13]. At somewhat larger scales,
attaching DNA to small particles allows the use of the
selective binding interactions of DNA to create specific
structures in response to environmental changes, which can
act as sensors [14]. For larger particles, individual shapes
and surface properties determine the interactions and hence
the resulting structures [5].

The widest range of component interactions arises when
the components are complex enough to have computational
capabilities, e.g., programmable robots [9, 10, 15–19]. The
interactions between robots are determined both by their
physical properties (e.g., their weight) and the choices made
in their programs (e.g., whether to hold on to a particular
neighbour). The component robots assemble into various
overall shapes, or global structures. By disconnecting from
their neighbours, collections of robots can explore a wider
range of topological possibilities than the fixed sequence of
amino acids in the protein example.

Collections of robots offer an interesting contrast
between self-assembly and direct construction. For instance,
each robot could, in principle, be instructed precisely where
to go through a predetermined programme. While suitable
for relatively small groups of robots and a well-understood
environment, this programming task becomes increasingly
difficult with larger numbers of robots acting in poorly
defined or unpredictably changing environments [20]. An
alternate and more robust approach is for the programs
to specify only simple local interactions that together
produce the final desired structure through an exploration
of possibilities, i.e., through self-assembly.

As these examples show, the suitability of a global
structure need not just depend on its particular physical shape.
Instead, its functional properties may be more important for
some applications. For example, a task may require exerting

particular forces, e.g., to support or move other objects, rather
than a specific shape. Thus, self-assembly can be viewed
as a technique for finding combinations of components
that satisfy some global constraints on behaviour. That
is, self-assembly can solve a combinatorial optimization or
a constraint satisfaction problem [21] where the resulting
structure should satisfy as many of the constraints as possible.
In the case of modular robots, techniques such as simulated
annealing [22] and genetic algorithms [23] have been applied
to identify suitable structures [15,18]. Finally, the statistical
exploration of self-assembly is also useful in organizing
purely software systems [24].

As a final observation on the application of self-
assembly, complex artifacts often consist of a series of levels,
where the components used at one level of the structure
are in turn formed from a smaller set of components [25].
In such cases, some levels could be assembled through
direct construction while self-assembly is used to create
others. Such situations give further opportunities to design
the components and levels to exploit statistical properties of
self-assembly described in section 3.

3. Statistical properties of self-assembly

Self-assembly can form precise structures beyond the current
capability of direct manufacturing. Choosing appropriate
components and interactions to take advantage of this
capability can be difficult. The most straightforward
technique for designing self-assembly is to examine, with
a computer simulation, the neighbours of each component in
the desired global structure, and then choose the interactions
between components to encourage those neighbours to be
close together.

Unfortunately, such a design may inadvertently make
some other structure even more stable or introduce numerous
local minima in the energies leading to a slow assembly
process. Furthermore, the limited range of interactions and
component types in some cases, such as for proteins, may
not be able to produce the desired interactions among all
the components. Even worse, the limited knowledge of the
precise global structure desired, environmental noise and
component defects may make it impossible to determine the
best set of interactions in the first place.

Instead, the statistical nature of self-assembly gives rise
to a variety of statistical regularities when the number of
components is large. In many cases, these regularities can be
exploited to design a robust self-assembly process. Examples
of such properties are described in the remainder of this
section.

3.1. Designability: resisting component defects

One difficulty with designing self-assembly processes is the
indirect, oremergent, connection between the interactions
and the properties of the resulting global structures. While
this difficulty connecting local behaviours with global results
arises in many different contexts, a particular consequence
for self-assembly is the possibility of errors due to defective
components or environmental noise. To help address this
problem, it would be useful to arrange the self-assembly so
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Figure 1. Schematic distribution of designability, i.e., the number
of different component configurations producing a given global
structure. Each point on the curve indicates the number of global
structures with a given designability. The long tail of the
distribution indicates a few global structures are highly designable,
i.e., far more designable than typical cases.

the desired structures can be formed in many ways, increasing
the likelihood that they will be correctly constructed even
with some unexpected changes in the components or their
interactions. That is, the resulting global structure should
not be too sensitive to errors that may occur in the local
specification.

This notion is formalized by thedesignabilityof global
structures. Specifically, ifG is a global structure andL
is a collection of components, or the local specification,
then the interactions among the components based on their
placement in the global structure can be viewed as defining
an energyE(G,L). Small values for the energy correspond
to global structures that satisfy many of the constraints. The
best global structure for a given set of componentsL is the
one that minimizes this energy. With a sufficient statistical
exploration of the possible global structures the minimum
energy structure will be the one eventually assembled from
L. Notationally, letL → G denote the global structureG
is the assembled result fromL. That is, among all possible
global structures,G has the minimum energy forL.

In this context, we can ask how many different
component sets assemble to the same global structureG. We
refer to this count as the designability of the structure, i.e.,

d(G) = |{L|L→ G}| (1)

where| . . . | denotes the size of a set and{L|L→ G} is the
set of all component collections that assemble toG.

A given assembly process can then be characterized by
a distribution of designability, i.e., the number of global
structures with various designability values. This distribution
is given by values of|{G|d(G) = x}| over a range of choices
for x.

A schematic example of such a distribution is shown
in figure 1. Significantly, the distribution of designability
illustrated here is extremely skewed: a few structures are
much more designable than most others. These highly
designable structures can be formed in relatively many ways
in response to interactions among the component parts. Thus
such structures are relatively more tolerant of errors in the
choice of components than is typically the case, producing
one form of robustness for self-assembly [26].

Designability can be contrasted with measures of the
entropy of a global structureG. For instance, among
all component collectionsL that produceG, we can

determine the fractions that have various properties, and their
correlations. These properties could include choices relevant
for the design, e.g., the choice of amino acid at a particular
position for a protein or the choice of programmed command
action for a particular robot. The extent to which most
of the components in a collectionL producingG have the
same value for a particular property indicates the importance
of that property for the overall design. Identifying the
important properties for a given global structure is useful for
improving the assembly process. Moreover, if the important
choices tend to be independent, identifying an appropriate
self-assembly process is simplified since each such choice
can be considered separately from the others. Because highly
designable structures can be formed in a relatively large
number of ways, they should be more likely than typical
structures to allow independent changes in their components
without changing the final assembled structure. With respect
to a set of property valuesS characterizing the component
choices, this degree of independence can be characterized by
a entropy measure based on assuming the choices for these
properties for the components are independent, i.e.,

H(G) = −
∑
i

∑
s∈S

fs(i) logfs(i) (2)

where the outer sum ranges over the components in the set
L andfs(i) is the fraction of times, among the component
collectionsL that produceG, that theith component has
property values. Independence of the property choices
for the different components is indicated whenH(G) is
close to logd(G), i.e., the entropy characterizes the number
of waysG can be constructed. With strong dependences
in the choices,H(G) will be much larger than this
value. The relation between high designability and relative
independence of component choices has been observed for
simple protein models [11], but the generality of this relation
remains to be investigated.

A simple generalization of this definition of designability
is when a variety of global structures have the same
functional properties. For instance, if the global structures
are physical shapes, rotated versions of these shapes may
be functionally identical. Or in the case of tiny robots,
matching a shape to within a specific tolerance or delivering a
required force, rather thanexactlymatching a specific shape,
may be sufficient. In such cases, rather than requiring a
single specific resulting structure, a self-assembly process
that producesany structure with the desired behaviour
can be viewed as successful. This leads to considering
functionally identical global structures as equivalent when
defining designability. That is, an equivalence relation,
G ≡ G′, can be defined on the global structures that give rise
to identical behaviours for the particular application under
consideration. Designability then becomes

d(G) = |{L| for someG′, L→ G′ andG ≡ G′}|. (3)

Thus an additional ingredient to consider for designing self-
assembly processes is the actual performance requirement
for the resulting structure, rather than limiting attention just
to forming a particular structure.

A further generalization of designability is to continuous
measures of the quality of the resulting structure. That is,
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instead of asking that the structure have behaviour identical
to that desired, it may be sufficient if the resulting behaviour
is just close to the desired value. Highly designable structures
are still useful in this context, in that they are most likely to
still be constructed in spite of variations in the components.
However, for comparing various options the measure of
designability must include not onlyhow manyL produce
the desired behaviour but alsohow wellthey do so:

d(G) =
∑
G′
q(G′,G)|{L|L→ G′}| (4)

whereq(G′,G), in the range 0 to 1, denotes how well the
structureG′ resulting fromL performs the behaviour desired
forG. Whenq(G′,G) = 1 whenG′ = G and is 0 otherwise,
this definition ofd(G) reduces to equation (1).

As a final note, from the viewpoint of constraint
satisfaction problems, designability is related to studies
of situations that give rise tostable solutions[27], i.e.,
solutions that remain solutions even with a few changes in
the constraints. Failing this, solutions should at least be easy
to fix when conditions change [28], corresponding to simple
repairs that require only adjusting a few components.

3.2. The energy gap: reducing noise sensitivity

As self-assembly operates, the components perform a biased
statistical sampling of the possible global structures on the
way to forming the final structure. This process allows a
variety of complex structures to be formed. Unfortunately,
this exploration can also lead to continual and undesired
changes in the final global structure. In some situations it
will be possible to terminate the exploration by an explicit
command (e.g., a broadcast signal sent to a collection of tiny
robots). In other cases, this will not be possible: either
because the continual changes are driven by uncontrolled
environmental noise or are needed to keep the system
adaptable to further unexpected changes, e.g., additional
weight added to a group of robots supporting a structure. This
latter example illustrates a possible trade-off in the design of
structures: making them stable against undesired changes but
still allowing them to change when appropriate.

Designability addresses the sensitivity of the assembly
process to errors in the local specification, or instructions,
as described in section 3.1. Another important property
is the extent to which desired global structures can resist
continual environmental noise once formed. This property
of self-assembled structures can be formalized by their energy
gap, the difference in energy, due to interactions among the
components, between the global structure with the smallest
energy for those components and that structure with the
second smallest energy:

gap(G,L) = min
{G′|E(G′,L)>E(G,L)}

E(G′, L)− E(G,L). (5)

Corresponding to the first generalization of designability
described above, when the focus is on functionally identical
structures, this definition for the gap generalizes to computing
the minimum over{G′|E(G′, L) > E(G,L) andG′ 6≡ G}.

Structures with relatively large energy gaps will be more
robust with respect to environmental noise than those with

Figure 2. Schematic illustration of one way robustness of global
structures can vary with their designability.

smaller gaps. One way to characterize this value [11] for
a given structureG is with the average of the energy gap
associated with all component configurations that produce
G, i.e.,

gap(G) = 1

d(G)

∑
{L|L→G}

gap(G,L). (6)

This average will be a useful characterization when most
values of gap(G,L) are fairly close to the average.

Designability reflects the behaviour of a given global
structure with respect to different sets of components. Thus
it characterizes the effect of errors or other changes in the set
of components. By contrast, the energy gap characterizes a
given set of components with respect to the different global
structures that set could form.

Significantly, self-assembly processes with skewed
distributions of designability can also produce relatively
large energy gaps for the highly designable structures, as
illustrated in figure 2. This schematic example illustrates
one possibility: an abrupt transition in the energy gap
as designability increases. Such a situation would be
another example of the transition phenomena commonly
found in constrained systems, both physical [29] and
computational [30]. Another possibility is for a smooth
increase rather than an abrupt change.

This association is easily understood since small changes
in the components will usually result in only small changes
in the energies of new configurations. This is because the
overall energyE(G,L) is usually due to the combination
of interactions among pairs of components, based on their
location in the global structure. For structures consisting
of many components, changing a few components will only
modify a small fraction of the total interactions, and typically
give a relatively small shift to the energy associated with
each global structure. That is, a small change fromL to
L′ will usually result in corresponding small changes in
energy fromE(G,L) toE(G,L′). Such shifts are illustrated
in figure 3, which shows the energies associated with four
global structures forL andL′ as the black and grey points,
respectively. Figure 3(a) shows a large energy gap so small
changes in the energies of all the global structures do not
change the one with the minimum energy. On the other
hand, small changes in a situation with a small gap are likely
to change the minimum energy structure, as illustrated in
figure 3(b). Thus large gaps are likely to be associated with
structures that are energy minima for many different local
specifications, i.e., structures that are highly designable.
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Figure 3. Schematic illustration of the association between large
energy gaps and high designability. Black points are energies for
different global structures for a given set of components. Grey
points are the shifted energy values due to a small change in the
component set. The arrows indicate the original energy gaps. With
a small gap, the shifts are likely to change the minimum energy
structure as illustrated here.

Further insight into the possible changes in energies
arises from the nature of the constraints involved in a
structure. In many cases these constraints are somewhat
frustrated, i.e., they cannot all be simultaneously satisfied
completely. For example, we may want a structure that is
light and strong. Typically in these cases a small change
to a global structureG, producing aneighbour structure
Gneighbour, will introduce changes in the constraints involving
just a few parts of the structure, giving rise to a change in
energyEneighbour characterized by the energies involved in
just a few constraints. IfG is a low-energy structure, such
changes are likely to introduce new frustrations and raise the
energy, i.e.,G has a lower energy than its neighbours and
is a minimum in the energy with respect to small changes.
Adjusting to these new frustrations will often require further
changes, involving additional parts of the structure, to again
find a new structureG′ with a relatively low energy and, in
particular, lower energy than its neighbours.

This discussion suggests two qualitatively distinct causes
of the minimum energy gap. First, ifG satisfies the
constraints particularly well, its energy will be considerably
less than any local minima, so the gap will be determined
by the typical energy scale of changes in a few constraints,
Eneighbour. Second, if there are several structures that adjust
reasonably well to the frustrated constraints in different
ways, the energy differences among these local minima will

Figure 4. Schematic illustration of energies associated with
various global structures. The horizontal axis is ordered so
neighbouring structures, i.e., those with similar shapes, are close
together. In this case the energy gap is determined by a local
minimum shown by the solid arrow. The grey arrow indicates the
gap due to a small change in structure.

determine the gap, which will then be considerably less than
Eneighbour, as illustrated in figure 4.

When this distinction holds, we can expect large gaps,
characterized byEneighbour, to arise when some structure can
satisfy the constraints particularly well. In other cases, the
gap will be smaller and characterized by energy differences
among alternate ways of satisfying frustrated constraints.
Such situations will result in two distinct regimes for the
energy gap as illustrated in figure 3.

3.3. Diversity: avoiding local minima

Designability and the energy gap determine the robustness
of the final structure with respect to variations in the
components, interactions or environment. Another important
question is how long self-assembly takes. While structures
can be explored rapidly, especially for molecular sized
components, the number of possible structures often grows
so rapidly with the number of components that they cannot all
be examined in any reasonable amount of time. Fortunately,
the biases introduced in the exploration by the interactions
can greatly reduce the number of structures that need to be
examined.

In some cases, these interactions can also give rise
to local minima, structures with lower energy than all
their neighbouring structures but still with relatively high
energy. Such situations lead to sluggish behaviour in both
physical [31] and computational [30] systems because the
system can remain in a local energy minimum a long time.
In such cases, the bias in the exploration toward lower energy
structures tends to keep the system in the local minimum.

Models of protein folding suggest this need not be a
severe limitation for simple interactions [3]. More generally,
the extent to which local minima are a problem depends
on several factors. First, for some applications a structure
corresponding to a local minimum may be quite adequate,
even though it does not satisfy the constraints as well as
the true minimum. Second, the number of initial structures
leading to the true minimum may be much larger than those
leading to local minima. This is often the case when the
true minimum is associated with a large energy gap and
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the individual constraints are relatively weak. Third, if the
system allows a fine degree of control over the component
behaviours, as with modular robots, it may be possible
to explicitly plan a sequence of motions to avoid local
minima [32]. Finally, local minima may be fairly rare.

One way to reduce the number of local minima is
through another statistical property of systems with many
components: with a sufficient number of ways to change
a structure, i.e., a sufficiently high dimensional space of
configurations, there is likely to be at least one direction in
the space allowing the energy to decrease. This observation
can be formalized by examining the statistical distribution
of stability, particularly the existence of energy minima, in
the space of configurations. Specifically, the stability is
determined by the eigenvalues of the matrix of derivatives
(the Jacobian) of the forces acting on the system, e.g.,
due to component interactions. Generally, increases in the
size of such matrices or the variation in their values lead
to instabilities, i.e., the local minimum becomes a saddle
point with at least one direction of change giving lower
energy [33–36]. In this case, the variation in the matrix
values could arise from a diversity of interactions among
the components, e.g., due to a large number of relatively
weak constraints rather than a few strong ones. These
mathematical properties of large matrices involve systems
that can change continuously, which will apply to self-
assembly tasks where components can move continuously.
For systems with discrete positions, with a sufficiently large
number of components the behaviour in many cases will
be similar to that of a continuous system. For other cases,
extensions of these techniques to discrete dynamical systems
will be necessary [37].

Finally, if local minima are a problem, it will be
necessary to reduce the bias in the exploration to make
changes that temporarily increase the energy more likely.
This can be done through an annealing process of slowly
cooling the system from a relatively high temperature or,
for programmable interactions among robots, using the
software equivalent: simulated annealing [22]. However, by
requiring that the system wait to find a series of improving
changes by chance, such techniques can still be quite slow.
When the components are fairly sophisticated, e.g., with
programmable robots, a more powerful alternative is the
use of computational markets [38] that allow the system
to exploit locally coordinated groups of changes that move
around the energy barriers [39]. In either case, arranging
the self-assembly process so that the desired structures are
highly designable, with large energy gaps, while the other
structures at local minima are just typical structures with
smaller gaps, will allow this annealing process to readily
avoid local minima while being less likely to disrupt the final
desired structure. Making use of this possibility will require
a more extensive analysis of the design possibilities to not
only enhance the designability of the desired structure but
also reduce the designability of competing structures at the
local minima.

4. Decomposability: enhancing robustness

The nature of designability and energy gap distributions affect
the robustness of self-assembly. Particularly favourable

cases occur when highly designable structures are associated
with large energy gaps. While such distributions are seen
in models of protein folding [11], an important practical
question is how widespread such distributions are.

While the full extent of this question remains to
be explored, a particularly simple case is when the
system decomposes into several independent parts. That
is, supposing the local specification consists of parts
L = (L1, . . . , Lk) and the global structure consists of
corresponding partsG = (G1, . . . , Gk). Independence
means the energy is the sum of that from the independent
parts, i.e.,

E(G,L) =
k∑
j=1

E(Gj , Lj ). (7)

With this decomposition, ifG is the minimum energy global
structure forL, then each partGj must be the minimum for
Lj , otherwise another choice for thej th structure will reduce
the energy further. This observation means the number
of local structuresL for which G is the minimum energy
configuration, i.e., the designabilityd(G) of G, is just the
product of the designability of the individual parts:

d(G) =
k∏
j=1

d(Gj ). (8)

On the other hand, the smallest energy gap would be due to
a change in just one of the parts, since changes in any other
parts will increase the energy further. Thus,

gap(G,L) = min(gap(G1, L1), . . . ,gap(Gk, Lk)). (9)

These relations result in enhanced tails for the
distributions of designability and the gap. In particular,
for a wide range of distributions for the individual parts,
the product in equation (8) gives rise to a lognormal
distribution [40, 41] for d(G). This distribution has a
particularly long tail, giving a few highly designable cases
as illustrated schematically in figure 1.

Similarly, gap(G,L) will be governed by the extreme
value distribution [42], again with a relatively extended tail.
Significantly, these relations can also act to enhance the
relation between those cases with high designability and
relatively large energy gap. This is becauseG will be highly
designable when most of the partsGj are so. Further, to
have a relatively large gap, the gaps associated with all of
the parts{gap(Gj , Lj ), j = 1, . . . , k} must be large. Thus
if designability and gap size are somewhat correlated for the
parts, these values can become even more related at the high
end of the distributions for the combined structures.

Of course interesting self-assembled structures will
not have completely independent parts. Nevertheless,
this example provides insight into structures with some
dependence between the parts, i.e., situations where the
energy is nearly decomposable into a sum of contributions
from different parts. In such cases equations (8) and (9)
will be approximately correct and still lead to distributions
with long tails. This extension to nearly decomposable
structures is significant because many structures, both natural
and engineered, are nearly decomposable [25]. That is, they
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consist of a set of parts with relatively strong interactions
within each part and weaker ones between them. The
example of independent parts is the extreme case where there
are no interactions between parts. Furthermore, this near
decomposability often extends through a series of levels in
the structure, giving hierarchical structures where interaction
strengths decrease with the distance between components
in the hierarchy, i.e., the number of levels up the hierarchy
required to find a common ancestor of the components. At
each level in such a hierarchy, equations (8) and (9) will apply
approximately, leading to distributions with enhanced tails,
at least provided the interactions between parts are relatively
weak. This argument suggests highly designable structures
will occur in a variety of self-assembly processes.

5. Discussion

Self-assembly of highly designable structures is particularly
robust, both with respect to errors in the specification of
the components and environmental noise. Thus we have a
general design principle for robust self-assembly: select the
components, interactions and possible global structures so
the types of structures desired for a particular application are
highly designable.

Applying this principle requires two capabilities. The
first is finding processes leading to highly designable
structures of the desired forms. That is, even when a few
highly designable structures exist, there remains the question
of identifying those structures so as to make use of them
for particular applications. Or conversely, finding choices
of components and interactions for which desired global
structures are highly designable. Identifying such processes
uses properties of the tails of statistical distributions, which
are more difficult to characterize than those of their central
parts. However, some specific examples have been identified,
e.g., lattice-based models of protein folding [11] and
analyses of the genetic code [43], that suggest evolution has
taken advantage of this design principle. Whether or not
such simplified models accurately capture the behaviour of
natural protein folding, they show such distributions exist
in systems with fairly simple interactions and components.
Furthermore, this framework is well suited for genetic
algorithms [44] to find appropriate processes where possible
local specifications and global structures correspond to
genotypes and phenotypes, respectively.

The second requirement for applying this design
principle is the ability to create the necessary interactions
among the components. For simple components, the
range of possible interactions may be fairly limited and
hence further restrict the search for suitable processes.
More complex components, such as tiny robots, can have
arbitrary interactions programmed into the components,
subject only to restrictions on the timely availability of
required information, which tends to enforce the use of
local interactions. For example, the interactions could
include negotiation among the components [19] or arbitrage
opportunities in market-based systems [38, 45]. The ability
to program desired interactions is particularly significant
in allowing designed systems to more accurately reflect
simplifications in the models than would be the case for

describing naturally existing assembly situations. Thus, like
the development of computational ecologies [20], designed
self-assembly provides an example of how prescriptive use
of simple models relating global to local behaviours can
result in more accurate analyses than their approximate
descriptive use for naturally existing systems. Moreover,
the flexibility of programmed interactions makes this design
principle particularly applicable to collections of robots.

Achieving a general understanding of the conditions
that give rise to highly designable structures is largely a
computational problem that can be addressed before actual
implementations become possible. Thus, developing this
principle for self-assembly design is particularly appropriate
in situations where explorations of design possibilities
takes place well ahead of the necessary technological
capabilities [46, 47]. Even after the development of precise
fabrication technologies, principles of robust self-assembly
will remain useful for designing and programming structures
that robustly adjust to changes in their environments or task
requirements.
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