
1

Automatic Discovery of Self-Replicating
Structures in Cellular Automata

Jason D. Lohn, James A. Reggia

Abstract

Previous computational models of self-replication using cellular automata have been manually designed, a
difficult and time-consuming process. We show here how genetic algorithms can be applied to automatically
discover rules governing self-replicating structures. The main difficulty in this problem lies in the choice of the
fitness evaluation technique. The solution we present is based on a multiobjective fitness function consisting
of three independent measures: growth in number of components, relative positioning of components, and the
multiplicity of replicants. We introduce a new paradigm for cellular automata models with weak rotational
symmetry, called orientation insensitive input, and hypothesize that it facilitates discovery of self-replicating
structures by reducing search-space sizes. Experimental yields of self-replicating structures discovered using our
technique are shown to be statistically significant. The discovered self-replicating structures compare favorably
in terms of simplicity with those generated manually in the past, but differ in unexpected ways. These results
suggest that further exploration in the space of possible self-replicating structures will yield additional new
structures. Furthermore, this research sheds light on the process of creating self-replicating structures, opening
the door to future studies on the discovery of novel self-replicating molecules and self-replicating assemblers in
nanotechnology.

Keywords

artificial life, cellular automata, genetic algorithms, self-replication

I. Introduction

Self-replicating systems have the ability to produce copies of themselves. Biological organisms are
the most familiar examples of such systems, and until the late 1940s, the only instances formally
researched. Mathematicians and scientists began studying artificial self-replicating systems when it
became desirable to gain a deeper understanding of complex systems and the fundamental information-
processing principles involved in self-replication [43], [44]. The initial models consisted of abstract
logical machines, or automata, embedded in cellular spaces [2], [8], [14], [18], [35]. Other computational
models, such as self-replicating computer programs have also been investigated [17], [34], as well as
mechanical and biochemical models [15], [29], [30]. The field of artificial life, which studies life-like
behaviors (such as self-replication) from a computational perspective, grew largely out of work based
on self-replicating cellular automata structures [19]. The automatic discovery of such systems could
be useful in areas such as nanotechnology [9], programming massively parallel computers [33], and
computer viruses [16].
Over the decades since von Neumann first demonstrated cellular automata structures that can self-
replicate [44], theoretical and modeling studies have led to progressively simpler and smaller struc-
tures [8], [5], [18], [35]. They have produced structures that do problem solving while replicating [7],
[31], [40], as well as demonstrated that self-replicating structures can emerge from a “sea” of non-
replicating components [6]. However, all such past models have been manually designed, a process
that is very difficult and time-consuming, and is prone to subjective biases of the implementor.
This research introduces the use of genetic algorithms [13], [10] to discover automata rules that
govern emergent self-replicating processes. Identification of effective performance measures (fitness

Manuscript received on .
J. D. Lohn is with Caelum Research Corporation at NASA Ames Research Center, Mail Stop 269-1, Moffett Field, CA 94035-
1000 (email: jlohn@ptolemy.arc.nasa.gov).
J. A. Reggia is with the Computer Science Department and the Institute for Advanced Computer Studies at the University of
Maryland, College Park, MD 20742 (email: reggia@cs.umd.edu).

Administrator
J.D. Lohn, J.A. Reggia, ``Automatic Discovery of Self-Replicating Structures in Cellular Automata,'' IEEE Transactions on Evolutionary Computation, vol. 1, no. 3, 1997, pp. 165-178.

2

functions) for self-replicating structures is the key challenge in this problem. A genetic algorithm using
multiobjective fitness criteria was applied to automate rule discovery. The experimental results show
that statistically significant quantities of discovered structures were found, showing for the first time
that genetic algorithms can be used to successfully automate the search for self-replicating structures.
The specific examples of self-replicating structures presented here provide evidence that our tech-
niques are effective. While these self-replicating structures are specialized, the techniques by which
they were evolved are not, being quite general and applicable to other structures in cellular automata.
Evidence of this generality is presented by using the same fundamental technique for different size com-
ponent structures. The main factor currently limiting the complexity and size of evolved structures is
computer time.
The size of the search spaces for CA models (the set of all possible CA rule tables) can be incredibly
large. Genetic algorithms are a well-known strategy for searching such extremely large search spaces.
In addition to its size, the search space fitness landscape is not well understood. While there are
detailed reports examining small (two state) cellular automata [45], little has been reported which
attempts to understand the larger search spaces of models having more than two states. Such search
spaces are very unlikely to be smooth and unimodal, which would suggest they cannot effectively be
searched using gradient-ascent algorithms.
We provide a crossover technique that partitions the rule table genome into segments, one segment
per cell state. This has the effect of evolving “state behaviors” independently, and proved to be more
effective than any of the standard crossover techniques that were tried. This crossover technique may
prove useful in general for genetic algorithm practitioners when evolving cellular automata rule sets.
As researchers continue to evolve successively larger cellular automata models, having effective genetic
operators can greatly speed up the search.
In this work, the goal of automatically finding self-replicating structures is not directly concerned with
finding the optimal self-replicating structure, the definition of which would be subjective. Given that
less than 30 self-replicating structures have been reported in the literature, finding a diverse set of such
structures is of greater importance and more interesting. Our results show that novel self-replication
processes were uncovered by the genetic algorithm. For example, some of our structures both rotate
and move during self-replication, and some leave around unused components (debris) which promote
the formation of new structures. Such behaviors, which have not been used or considered in past
manually-designed self-replicating structures, are especially interesting, suggesting that evolutionary
computation can discover novel design concepts of general value.
A new paradigm for cellular space models with certain rotational symmetries is introduced which
significantly reduces rule table size without adversely affecting the key properties of the model. Called
orientation-insensitive input, this technique reduces the search space size, thus facilitating the search
process. Experimental results using genetic algorithms are presented which verify this.
The remainder of this paper is organized as follows. Cellular automata and self-replicating structures
are introduced and described in Section II. Section III presents the genetic algorithm that was applied,
and in Section IV our experimental results are analyzed. We discuss our conclusions in Section V.

II. Cellular Automata and Self-replicating Structures

A. Cellular Automata

Cellular automata (CA) are a class of spatially-distributed dynamical system models in which many
simple components interact to produce potentially complex patterns of behavior[8], [45]. In a cellular
automata model, time is discrete, and space is divided into an N -dimensional lattice of cells, each
cell representing a finite state machine or automaton. All cells change state simultaneously with each
using the same function δ or rule table to determine its next state as a function of its current state
and the state of neighboring cells. This set of adjacent cells is called a neighborhood, the size of which,
n, is commonly five or nine cells in 2-D models (see Fig. 1). By convention, the center cell is included

3

in its own neighborhood. Each cell can be in one of k possible states, one of which is designated the
quiescent or inactive state. When a quiescent cell has an entirely quiescent neighborhood, a widely
accepted convention is that it will remain quiescent at the next time step.

top

left right

bot.

center

top

left right

bot.

center

ul ur

lrll

(a) (b)

Fig. 1. Common neighborhood templates in 2-D CAs: (a) 5-cell von Neumann neighborhood; (b) 9-cell Moore neigh-
borhood

The CA rule table is a list of transition rules that specify the next state for every possible neigh-
borhood combination. In a 2-D, 5-neighbor model the individual transition rules would be of the
form CTRBL → C′, where CTRBL specifies the states of the Center, Top, Right, Bottom, and Left
positions of the neighborhood’s present state, and C′ represents the next state of the center cell.
The underlying space of CA models is typically defined as being isotropic, meaning that the absolute
directions of north, south, east, and west are indistinguishable. However, the rotational symmetry of
cell states is frequently varied. Strong rotational symmetry implies that all cell states are unoriented,
meaning that each neighbor to a cell has no distinguishable position. Weak rotational symmetry
implies that at least one cell state1 is directionally oriented, meaning that the cell designates specific
neighbors as being its top, right, bottom, and left neighbors. For example, the cell state designated ↑
in von Neumann’s work is weakly-symmetric and thus permutes to different cell states →, ↓, and ←
under successive 90◦ rotations. It represents one oriented component that can exist in four orientations.
In CAs that contain both weak and strong rotationally symmetric states, it is common to represent
the “strong” states using symbols that appear rotationally symmetric (e.g., ◦, +, ×), and the “weak”
states (components) using symbols that are not rotationally symmetric (e.g., ↑, A, L).
In cellular automata models with weak rotational symmetry, an automaton is sensitive to the ori-
entation of states of its neighboring cells, and uses this input to make a state transition. We call
this method of cell input orientation sensitive input. We introduce an alternative method in which
an automaton receives only information about its neighboring cell’s component type, and not the
component’s orientation. Such automata are called orientation insensitive. Component types are rep-
resented by underlining cell state symbols. For example, the symbol L represents the component type
for the four oriented cell-states {L, L ,

L

, L}, with each of the four cell-states being functionally iden-
tical. Fig. 2 shows an example of a cell’s input patterns under both types of input sensitivity. In the
orientation-sensitive case, the center cell ↑ senses an L cell state below it. Under orientation-insensitive
input, however, the center cell ↑ senses only the component type L. Orientation insensitivity is differ-
ent from strong rotational symmetry since the positions of top, right, bottom, left, are not explicitly
distinguished for cell states having strong rotational symmetry.
By decreasing the amount of input information each automaton receives using orientation insensi-
tivity, the rule table is significantly reduced in size. Using smaller rule tables has advantages such
as a decreased computational load and decreased search space size. In the context of manipulating
large rule tables, and searching vast rule table search spaces, orientation insensitive input allows more
effective experimentation while benefiting from using the same underlying CA space as standard CA

1The quiescent state is always a strongly rotation symmetric cell state and is generally included in CA models with weak
rotational symmetry.

4

models.

L

+

Input pattern TRBL under
orientation-sensitive input:

→ + L ↓

Input pattern TRBL under
orientation-insensitive input:

↑ + L ↑

Fig. 2. Example illustrating the effects of differing input sensitivity. The set of cell states is {•,+, L,

L

,

L

, L, ↑,→, ↓,←},
and the set of component types is {L, ↑}.

The amount of rule table reduction under orientation insensitive input is calculated by comparing the
expressions for rule table sizes under both methods of input. First assume there is only one strongly
rotation symmetric state. This is reasonable since it is common for weakly rotation symmetric models
to have only one strongly symmetric state which represents the quiescent cell state. Letting |δ| represent

rule table size, the ratio for the rule table sizes is
|δ|osi
|δ|oii
, where osi denotes orientation sensitive input

and oii denotes orientation insensitive input. This ratio is derived in [24] and can be expressed as

(βc+1)CPn−1 + c(βc+ 1)
n−1

(c+1)CPn−1 + c(c+ 1)n−1
(1)

where β denotes the number of coordinate systems rotations permitted, c is the number of component
types, and kCPn−1 denotes the circular permutation function [12] used to count distinct neighborhood
patterns. This ratio converges to a constant as the number of components c is increased:

lim
c→∞

(βc+1)CPn−1 + c(βc+ 1)
n−1

(c+1)CPn−1 + c(c+ 1)n−1
= βn−1 (2)

Thus as we increase the number of components, models using orientation insensitive input have rule
tables that are approximately βn−1 smaller than models using orientation sensitive input. For a
typical coordinate system with β = 4, and using the von Neumann and Moore neighborhoods, it is
seen that the |δ| ratios are 256 and 65536, respectively, as the number of components increases. This
multiplicative increase translates into orders of magnitude increases in search space sizes:

|Dkn|osi = k(|δ|osi)

' kβ
n−1(|δ|oii)

' (|Dkn|oii)
βn−1 (3)

where |Dkn| denotes the size of the set of all possible rule tables for a CA with k states and n neighbors.
From Eq. (3) it is seen that by using orientation insensitive input, the search space is decreased by
approximately βn−1 orders of magnitude. As an example, the models used in this work have β = 4
and n = 5, giving a difference of 256 orders of magnitude.

B. Self-replicating Structures

In CA models, one state is designated the quiescent state, and the remaining states are considered
active. A self-replicating structure is represented as a contiguous configuration of active cells that

5

......

......

.OO...

.L>OO.

......

......

t = 0

......

......

.O<...

.OL>O.

......

......

t = 1

......

......

.vL...

.OOL>.

......

......

t = 2

......

......

.LO.O.

.>OOL^

......

......

t = 3

......

......

.OO^O<

.L>OOL

......

......

t = 4

......

...<..

.O<.vL

.OLvOO

......

......

t = 5

......

..#<..

.vL.LO

.OO.>O

...>..

......

t = 6

..O...

..O...

.LO.OO

.>O.L^

...>#.

......

t = 7

..O...

..O...

.OO.O<

.L^.OL

....O.

....O.

t = 8

..O...

..O...

.O^.vL

.OL.OO

....O.

....O.

t = 9

..O...

..^...

.vL.LO

.OO.vO

....O.

....O.

t = 10

Fig. 3. The first 10 time steps of structure UL06W8V [35]. Signals L> circulate counterclockwise around the loop
starting at t=0. By time t=10 a duplicate structure has appeared on the right (rotated), while the arm of the
original structure has moved upwards.

goes through a sequence of steps to construct a duplicate of itself. The replica can be displaced
and potentially rotated relative to the original at a later time t′. An example two-dimensional CA
(from [35]) illustrating this is shown in Fig. 3. This figure shows structure UL06W8V, so named because
it is an unsheathed loop (UL), is comprised of six components, uses weak rotational symmetry (W),
is embedded in a model in which each cell may be in one of eight states, and uses the von Neumann
neighborhood (V). Twenty CA transition rules are used during its self-replication process. The struc-
ture that undergoes self-replication is seen at t = 0 in Fig. 3. At t = 8 the first replicant can be seen,
on the right, detached from the original structure. Then these two structures each begin a process of
self-replication until, several time steps later, a diamond-shaped colony has formed.

A summary of some previous research involving self-replicating structures in cellular space models
is shown in Table I. Most models studied have been 2-D CAs with strong rotational symmetry.
The sizes of the self-replicating structures are measured in non-quiescent cells, and are sometimes
estimates since some systems were never implemented. The listed models are primarily designs and
implementations, though existence proofs of self-replicating structures have appeared (e.g., [38]). We
note that all of the CA self-replicating structures listed were hand-designed. Holland’s model [14] was
one of the first to provide for emergent self-replicating structures (vs. hand-designed). His CA space
included chemistry-inspired properties, and was designed to show both emergence and evolution of
self-replicating structures. However a later study [25] posited that such structures would not emerge
in this model.

A configuration S is a self-replicating structure if the following criteria are met. First, S is a structure
comprised of more than one non-quiescent cell, and changes its shape during its self-replication process.
Second, replicants of S, possibly translated and/or rotated, are created in neighbor-adjacent cells by
the structure. Third, there must exist a time t such that S can produce i or more replicants, for
any positive integer i, for infinite cellular spaces (Moore’s criteria [27]). Fourth, if the self-replication
process begins at time t, there exists a time t + ∆t (for finite ∆t > 1) such that the first replicant
becomes isolated2 from the parent structure.

The above requirements encompass the more recently reported models of self-replication, yet they
preclude most trivial self-replication processes. They also preclude “artifact” replicants – structures
that form the appropriate size and shape, for example, from a supply of unused components without
being directed to do so. The issue of triviality was circumvented in early models by requiring universal
computation and universal construction. Inspired by biological cells, more recent models (those start-
ing with [18]) have abandoned this requirement by insisting that an identifiable instruction sequence
be treated in a dual fashion: interpreted as instructions (translation), and copied as raw data (tran-
scription). As with unsheathed loops, we consider the instruction sequence and the structure itself to
be the same, and thus the structure’s components directly influence its self-replication process.

Trivial self-replicating structures are easily produced. For example, a 1-D, 3-neighbor CA can be
made to give the behaviors shown in Fig. 4. In both examples shown, the seed structures are shown
at t=0 and replicants subsequently appear isolated. Note that the structure of Fig. 4(a) would be

2Two structures are isolated if they have no adjacent active cells.

6

Year Model Type Dim.
Rot.
Sym-
metry

States
per
Cell

Neigh-
borhood
size(s)

Struc-
ture
size(s)a

Func-
tion-
alityb

Refs.

1951 CA 2D weak 29 5 > 104 a [44], [32]
1965 CA 2D strong 8 5 > 104 a [8]
1966 CT-mach. 2D weak ≈ 10100 5 ≈ 102 a [2]
1973 CA 2D strong 8 5 > 104 s [42]
1976 α-Univ. 1D strong 5 var. ≈ 60 s [14]
1984 CA 2D strong 8 5 86 s [18]
1989 CA 2D strong 6 5 12 s [5]
1993 CA 2D both 6,8 5,9 5–48 s [35]
1995 CA 2D strong 10 9 52 a [40]
1995 EA 2D weak 9,13 5 2,3 s [23]
1995 non-uni. CA 2D strong 3 9 5 s [37]
1996 CA/W-mach. 2D strong 63 5 127 a [31]
1997 CA 2D weak 192 9 4,8,. . . a [6]
1997 CA 2D weak 12 5 4,8 a [28]

aSome systems were never implemented, thus certain values are theorized or approximations.
bs=self-replication, a=capabilities in addition to self-replication.

TABLE I

Comparison of some self-replicating structures in cellular space models. Models shown include

variations of cellular automata: CT-machines are programmable finite automata with registers,

α-Universes are CAs augmented with chemistry-like operators, non-uniform CAs allow cells to

have differing rules, and W-machines are Turing machine models that are programmable using

high-level instructions.

trivially self-replicating because of the requirement that a non-trivial self-replicating structure’s size
be greater than one. Also the requirements above state that self-replication processes must include
shape-changing steps. While Fig. 4(b) does meet these requirements, it is considered trivial because
its shape remains unchanged while all of its components simultaneously split at t=1.

XX

X

X

X

X

X

t=0

t=1

t=2

t=3

X

XX

XX

X

X

X

t=0

t=1

t=2

t=3

YY

Y

Y

Y

Y

Y

X

XYX X Y
(a) (b)

Fig. 4. Examples of trivial self-replicating structures in a 1-D, 3-neighbor cellular space model. Seed structures are
seen at t=0, and three more time steps are shown. (a) 2-state, 1-component structure; (b) 3-state, 2-component
structure.

III. Genetic Algorithm

Relatively few studies have reported using genetic algorithms (or related techniques) to automatically
produce rule tables for cellular automata (see, for example, [1], [26], [36]). With the exception of our
preliminary report [23], there are no reports of using GAs to discover self-replicating structures in
cellular space models. Such research has most likely not been undertaken for at least two reasons. First,
the computational load can become enormous. Rule tables for modest CA systems can quickly grow
extremely large (e.g., 25,000 transition rules for a ten-state, five-neighbor, strongly rotation symmetric
CA), and manipulating numerous large rule tables in a GA (even when compressed) can exhaust the
memory capacity and processing capabilities on many computer systems. Second, identification of

7

effective fitness functions is a difficult task. Apparently obvious fitness functions, such as those that
count the number of replicants, are useless early on as there will typically be no replicants. This has
been borne out in extensive testing of randomly initialized rule tables, and agrees with intuition, given
the immense search space sizes. Further, comparing a developing structure to a predefined template
of multiple seed structure copies (located in specific positions) by way of pattern matches fails to give
partial credit during the replication cycle itself, when the structure has changed shape as it undergoes
its self-replication. Having a predefined template also imposes a strong bias on the self-replication
process, which is undesirable since it severely limits the types of self-replicating behaviors that could
possibly emerge.
Another difficulty involves the temporal aspects of self-replication: at what time step or range of time
steps should the quality of self-replication be decided? Using cellular space state data from a single
time step would require knowing a priori in which configuration will replicants appear and assumes
that replicants appear all at once rather than at different time steps. Data from multiple time steps are
needed so as to identify replicants as they are produced. This leads to the problem of deciding which
configuration to start with, and how many subsequent configurations to examine for self-replicating
behavior. In general, assigning small values of fitness to behaviors that do not resemble self-replication
yet have the potential to evolve into such a process is a difficult problem. A solution to this problem
is one of the key contributions of this paper.
Since the GA begins with a population of randomized rule tables, it is extremely unlikely that such
rule tables will lead to self-replicating behavior. If the fitness functions of the GA assign positive
fitness values only to rule tables that lead to self-replicating behavior, then all rule tables will have
fitnesses of zero, and the GA will not be able to apply its genetic operators effectively. In such cases
the search degenerates into an ineffective random search process. Assigning small values of fitness to
behaviors that do not resemble self-replication yet have the potential to evolve into such a process is
needed for an effective search.
The fitness functions derived in this section are general in that they could be used in other 2-D
cellular space automata models, and any size and shape seed structure containing unique components
may be used. In addition, the fitness functions do not impose a strong bias toward any particular
process of self-replication. That is, in their definitions, the fitness functions do not assign fitness based
on aspects such as: 1) the contents of specific cell locations at specific instants, 2) whether/how the
structure should translate or rotate itself over time, 3) the quantity/timing of replicant production, or
4) the extent to which configurations match a predefined configuration.
The problem of automatically finding rule tables that yield self-replicating structures in cellular
automata is a type of rule discovery problem. An overview of our specific approach is given in Fig. 5.
After the rule discovery process has produced a candidate solution, the cellular space must be manually
simulated to determine if the discovered rule table does result in a self-replicating structure. This step
is needed since a rule table that scores the highest fitness could potentially be trivial or circumvent
the fitness function in unanticipated ways.

A. Rule Discovery using a GA

The genetic algorithm applied in this study employed a small population size of 100 rule tables for
two reasons: computer resource limitations, and for consistency so that GA performance using larger
CA models3 could be compared directly to those that had small CA models. Rule tables in the GA
were encoded in a natural manner: a table containing next-state entries indexed by neighborhood
patterns (four rule tables are shown in Fig. 6). For example, if the ith transition rule of the rule
table were BCCDE → A, then the ith entry in the encoded rule table would be A. Rule table sizes for a
system with three component types are 14787, and 838 for CA models with orientation sensitive and
orientation insensitive input, respectively. The type of crossover used here was a version of multi-point

3Increased number of states, thus larger rule tables.

8

Description of Cellular
Space Model

(C A)

Rule Discovery Process
(GA or other technique)

Evaluation Criteria
(fitness functions)

Initial Conditions
(seed structure,

parameters)

rule
table

produces

rule
table

space
iterates

over time

simulate

Examine Results

Fig. 5. Overview of the rule discovery system showing the major components, production of a discovered rule table,
and the manner in which the discovered set of rules is analyzed.

crossover whereby single-point crossover is applied within segments marked by the heavy lines in Fig. 6.
A crossover point was randomly selected within each segment, and single-point crossover occurred in
each segment. The diagram shows a CA model where each component type has only five transition
rules for illustration purposes. Using “d” to represent a don’t-care cell-state, we can imagine that
transition rules of the form Xdddd → d program the behavior of component X, Ydddd → d program
the behavior of component Y, etc. Performing crossover within each segment allows the GA to operate
on the behavior of each component individually. At a higher level, because the fitness functions are
rewarding cooperation among components, component types are evolved together in a co-adapted
manner. Empirical results comparing this crossover technique to that of single-point crossover (across
the entire rule table) showed higher performance for the multiple application of crossovers. After
selection and crossover, each transition rule was subject to mutation which occurred by randomly
choosing a new state.
The evaluation phase of the GA is depicted in Fig. 7. Evaluating each individual requires that
a complete CA simulation be executed (Fig. 7, middle). The initial conditions for each evaluation
were comprised of a rule table and seed structure. The seed structures remained fixed in every GA
evaluation, and the specific structures used in the experiments described below were comprised of the
two, three, and four unique components as shown in Fig. 8.
As shown in Fig. 7, the fitness function used data extracted from the first 15 configurations during
an individual evaluation. Since the seed structures that we dealt with were very small, fast replication
cycles were very likely [35]. Such cycles were generally less than 10 time steps, with critical steps of the
self-replication process occurring very early on, generally in the first five time steps. Therefore, so as
not to exclude any useful information that could occur early on, statistics from the first time steps are
included. The choice of how many configurations to use in the evaluation of a self-replication process
was determined as follows. Let ∆t denote the duration of time which will be examined for fitness
calculations. If ∆t is too small, this may not give enough time for a self-replicating process to emerge.
If ∆t is too large, two undesirable situations will arise. First, the efficiency of the GA will decrease since
the GA will be spending more time examining behaviors that, in general, do not exhibit self-replication.
The CA simulations are inside two loops of the GA: one for each population member and one for each
generation. The product of these two numbers is on the order of 200,000 for our experiments. Thus the
expression 200, 000∆t represents the total number of CA simulation time steps executed during a run
of the GA. For statistical sampling purposes, we required 100 GA runs per experiment. Therefore each
increment to ∆t adds 20,000,000 more time steps to the overall experiment, which becomes a significant
computational burden. Second, as ∆t increases, the likelihood of coincidental seed structure copies
appearing increases, and this could potentially disrupt fitness function calculations. Such copies could
then inflate the fitness values and hinder the search process. Based on previous studies of hand-designed

9

•
•

•

rules for
component

type 1

crossover
point 2

rules for
component

type 2

rules for
component

type c

crossover
point 1

crossover
point c

•
•

•

•
•

•

•
•

•

p1 p2
p1a p2a

c1

p1b
p1c
p1d
p1e
p1f
p1g
p1h
p1i

p2b
p2c
p2d
p2e
p2f
p2g
p2h
p2i

c2

p2kp1k

p2m
p2n
p2p

p1m
p1n
p1p

p1a p2a
p1b

p1c
p1d
p1e

p1f

p1h
p1i

p2b
p2c
p2d
p2e

p2f
p2g
p2h
p2i

p1g

p1q
p2r

p2q
p1r

p2k p1k

p2m
p2n
p2p

p1m
p1n
p1p

p1q
p2r

p2q
p1r

Fig. 6. Illustration of crossover using rule tables. Parents p1 and p2 (left) are recombined to form offspring c1 and c2
(right) by segmenting the rule tables into c partitions according to component type, and crossing over transition
rules within each partition, with each crossover point chosen at random.

self-replicating structures [35] and considering these tradeoffs, a value of ∆t < 10 was determined too
restrictive and ∆t > 20 too large. A value of ∆t = 15 time steps was chosen.

Statistics collected from the 15 configurations of each CA simulation are time-averaged component
counts (multiplicities), adjacency information, and replicant counts. Multiplicity values M tv record the
quantity of each component type v at each time t. Adjacency information includes relative positioning
data regarding each component type over time. Replicant count quantifies the number of replicants
seen at each time step.

After collection of these three types of statistics, three corresponding fitness measures are computed
and combined in an overall fitness function F for each simulation. The first is a growth measure,
denoted fg, which correlates growth in number of individual component types with high performance.
The second criteria is called the relative position measure, denoted fp. This measure is concerned with
awarding fitness to component types that have a high percentage of neighboring components positioned
in the same manner as is seen in the seed structure. The third criteria is one that measures isolated
replicants, denoted fr. This function scans configurations looking for isolated replicants and awards
proportionate amounts of fitness depending upon the number of replicants seen over time. Isolated
means that a structure separates completely and is surrounded by only quiescent cells.

The fitness function F used in the selection process is a linear sum of the above three measures.
Specifically, defining a fitness measure vector f = (fg, fp, fr) and a weight vector w = (wg, wp, wr), we
have

F = f ·w (4)

For convenience, the fitness measure functions in f are each normalized to values in [0, 1], and weights
(positive) are such that wg + wp + wr = 1.

10

Configurations, C1,...,C15
Seed Structure, S0

time-step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run Simulation

Population of Rule Tables
at Generation g

1 2 100

Extract Statistical Measures from each Configuration

extract each individual

Calculate Fitness Measures, fg, fp, fr

Calculate Overall Fitness, F

Fig. 7. Evaluation phase of genetic algorithm.

A B
A B

C

A B D

C

(a) (b) (c)

Fig. 8. Seed structures: (a) 2-component; (b) 3-component; (c) 4-component.

B. Fitness Measures

In order for a self-replicating process to emerge, one would expect to observe, over time, increasing
quantities of the individual components. In analyzing past, manually-designed self-replicating struc-
tures, it was seen that individual component counts, or multiplicities, generally increased over time,
punctuated by periods of plateaus and small decreases in value.
The growth measure fg used computes the degree to which each component type maintains an
increasing supply of components from one time step to the next. The number of components of type
vi at time t is denoted M

t
vi
. Multiplicity data forms a τ × c table, since τ time steps are used and c

components are present in the simulation:

M1v1 M1v2 · · · M1vc
M2v1 M2v2 · · · M2vc
...

...
. . .

...
M τv1 M τv2 · · · M τvc

To distill these values into a single meaningful value, multiplicities are first converted using a function
ρv, which assigns fitness based on whether a given component type increased its production or stayed
the same, and no fitness if it decreased:

ρv(t) =



1 if M tv > M

t−1
v

0.5 if M tv =M
t−1
v

0 if M tv < M
t−1
v

0 < t ≤ τ (5)

11

For example, if there were 12 Y components at t = 5 and 14 at t = 6, then ρY(t = 6) would be assigned
a value of 1. The function ρ encourages increased quantities of components from one time step to the
next, but does not harshly penalize fitness when production declines.
The growth measure fg is then calculated by summing all ρv values and then dividing by the maxi-
mum attainable fitness

fg =
1

τc

∑
v∈V

τ∑
t=1

ρv(t), (6)

so fg calculates a measure of how well the supply of all components increased over time. One might
propose simply using a function that assigns high fitness when the total component count increases
over time. However, since this does not distinguish among individual component types, such a function
could encourage growth of only one or possibly two components, as this will satisfy such a function.
The relative position measure fp is the most important fitness measure of the three presented here.
If a rule table is approximating support for self-replication, it would be expected that an individual
component would frequently find itself surrounded by the same components that surrounded it in the
seed structure. The function fp measures the degree to which such relative positionings are satisfied
over time. Note that correct relative positions do not necessarily have to occur simultaneously (i.e.,
during the same time step) among the components of the structure in order for partial fitness to be
awarded. The ability of fp to give partial fitness in this manner proved to be critical to providing the
GA with positive reinforcement needed to search effectively.
The seed structure plays a critical role in deriving the function fp since it contains the relative
positioning information. The adjacencies contained in the seed structure are formulated in terms of an
adjacency vector, s = (sv1 , sv2 , . . . , svc), representing the number of neighborhood-adjacent components
for each component type. Here svi represents the number of components that are neighborhood-
adjacent to component vi in the seed structure. Examples of adjacency vectors are shown in Fig. 9.

(a) A B s = (1, 1)

(b)
A B

C
s = (1, 2, 1)

(c)
A B

C D
s = (2, 2, 2, 2)

(d)
A B C

D
s = (1, 3, 1, 1)

Fig. 9. Examples illustrating the adjacency vector of various seed structures.

The function mv(t) is the number of neighbors of component v at time t that were the same type
and in the same relative position as in the seed. The function σv(t) represents to what degree, at time
t, all the components of component type v have the same neighbors as in the seed and is defined as:

σv(t) =

{
0 if M tv ≤ 1
mv(t)
M tv · sv

if M tv > 1
(7)

When M tv ≤ 1, component v is extinct or is presumably part of the seed. When M
t
v > 1, σv(t) is

the ratio of mv(t) to the maximum value possible. Thus σv(t) can never exceed unity because mv(t)
represents the number of adjacent cells that matched correctly, and the denominator represents the
total number of adjacent cells. As in the growth fitness measure, a τ × c table of values is generated

12

by σ. Measure fp is then defined to be the mean of σv(t) over component types and time, weighted by
s as follows:

fp =
1

τ
∑
v∈V sv

∑
v∈V

τ∑
t=1

svσv(t) (8)

The adjacency vector s as used in Eq. (8) gives higher priority to components that have more neighbors
in the seed structure. For example, the B component in Fig. 9(d) receives a normalized weight of 0.5
and the other components each receive 0.17.
Lastly, the isolated replicant fitness measure fr correlates fitness with increasing numbers of isolated
replicants formed during the course of a simulation. In contrast to the relative position fitness measure,
fr provides little if any positive reinforcement to the GA during the beginning of the discovery process
since no replicants are typically present. Its main purpose is to guide the GA toward fitter and fitter
self-replicating structures once nascent ones have been discovered.
Let rt represent the number of isolated replicants in configuration Ct. Then fr is calculated as a
sigmoid/logistic function of the maximum rt obtained in the simulation:

fr =
1

1 + e−(max(rt)−θ)
(9)

The constant θ represents the inflection point of the sigmoid, and a value of 4.0 was typically used.
This allows fitness to increase at a faster rate during periods when two or three isolated replicants are
seen, and at a slower rate when more than four appear.
The GA was iterated over many generations until either the best of generation individual achieved
a fitness greater than 0.9, or until it reached a prespecified number of generations. The main GA
parameters used were: population size of 100, crossover rate between 0.6 and 0.8, mutation rate
between 0.08 and 0.10, and a maximum of 2000 generations.
An overview of the technique is depicted in Fig. 10. The approach taken here is to execute numerous
independent GAs, and use statistical methods to analyze the results of the set of GAs. As it is used
here, one “experiment” is taken to be a set of 100 trials, with each trial being an identical GA except
that the stream of random numbers differs from one instance to the next. The top box of Fig. 10 depicts
the common inputs to all of the independent GAs. While executing, each GA stores the highest-fitness
rule table it has ever evaluated, and stops when the convergence criteria are met. At that point, the
highest-fitness rule table is its output (Fig. 10, middle). The outcome of each trial is either success (a
self-replicating structure found) or failure. Such a decision must be made by manual examination of
a subsequent simulation, since the rule table with the highest fitness value may not always conform
to requirements. The quantity of self-replicating structures found divided by 100 (trials) is called the
yield. The goal of a given experiment is to maximize the yield.
We calculated the statistical significance of the yields obtained from each experiment. Comparing the
yield found using the genetic algorithm in an experiment to the yield found via random search allowed
us to gauge the effectiveness of the search process. For every experiment that was run, comparable trials
using random search were also done. In each trial of random search, zero self-replicating structures
were produced. Applying Fisher’s Exact test, let d represent the number of replicants discovered by
the GA. The 2× 2 table can be written:

successes # failures
GA d 100− d

Random Search 0 100

We use this statistical test to calculate the statistical significance for our results in the next section.

IV. Experimental Results

The experiments conducted can be classified according to the size of the seed structure used. With
the computational resources available, structures having two, three, or four components were feasible

13

GA2GA1 GA100

Examine by Simulation

Select Non-trivial
Self-replicating Structures

Seed Structure,
Fitness Functions,

GA Parameters

Trials

Highest Fitness
Rule Tables

Calculate Yield

Fig. 10. Overview of experimental method.

to use in the experimental method described above. For example, experiments using four-component
structures required approximately one week of dedicated time on a 40-node processor farm consisting
of 275 MHz DEC Alpha processors. The limitations on this resource allowed for only three experiments
to be conducted using four-component seed structures.
For each of the seed structures (Fig. 8), two variations of cellular automata models were used. We
call the CA model using orientation sensitive input the “standard” CA model, since it is identical to
what has been used in research to date. We included it because it is has been studied the most with
respect to self-replicating structures and it is desirable to see how it performs compared to CA models
that use orientation insensitive input.
In the context of the fitness calculation of F (Eq. (4)), it is desired to optimize F by finding an ideal
vector w with which to weight the independent fitness measures fg, fp, and fr. A second meta-level
GA [11] was used to find this weight vector. Under the control of the meta-GA, the primary GA
was executed repeatedly. Since the primary GA was resource intensive by itself, experimenting with
the meta-GA required that smaller GA parameters be used. A population of 20 14-bit individuals
was used, with each individual encoding weights w1, w2, w3. The fitness function employed for the
meta-GA was the fr fitness measure described above. Thus if a primary GA run was able to find
isolated replicants, this would give high fitness to a specific weight vector, which would then be bred
into the next population of the meta-GA. A thorough study of weight vector optimization was deemed
prohibitive, but the weight vectors found in about 10 meta-GA runs generally produced better results
than those found during manual trial and error.

A. Production of Replicants

Table II presents the yields of self-replicating structures found during 100 trials for the CA models
and seed structures studied. The labels CAoii and CAosi denote the cellular automata model using
orientation insensitive input and orientation sensitive input, respectively.
Beginning with the 2-component structures, the model with orientation insensitive input had the
most successful results with 93 discovered self-replicating structures. While each of the 93 rule tables
are distinct, many of the self-replication processes were qualitatively similar.
For the 3-component experiments, it is seen that the CA model with orientation insensitive input

14

Seed Names Yields
Structure CAoii CAosi CAoii CAosi

A B PS2WI9V PS2W9V 0.93 0.49

A B

C
PS3WI13V PS3W13V 0.22 0.03

A B C

D
PS4WI17V PS4W17V 0.02 0.00

TABLE II

Highest numerical yields from each experiment.

again had the highest yield. The orientation sensitive input CA model had a yield of only 3%, which is
not statistically significant at the 0.05 level of significance using Fisher’s Exact test. Three-component
yields were lower than that for 2-components, indicating that the discovery process is more difficult
for larger structures. This agrees with the intuition that self-replication processes for 3-component
structures are more complex than for structures having two components.
In the 4-component experiments, the CAoii model had the only non-zero yield. Although not sta-
tistically significant at the 0.05 significance level, it is of interest that the GA was able to discover 2
self-replicating behaviors in only the CAoii model, the model which gave the best results in the other
experiments.
These results suggest that by using the orientation insensitive input paradigm, higher yields of self-
replicating structures may be found. One of the potential reasons for the higher yields in the CAoii
model is that it has the smallest search space size of the two models, and thus the GA may have a
slightly easier search task. To quantify the correlation between increasing yields and decreasing search
space sizes, we calculated the sample correlation coefficient r for the three seed structures shown in
Table II: r = −0.237 for the 2-component seed, r = −0.406 for the 3-component seed, and r = −0.499
for the 4-component seed. All coefficients are negative, indicating that as the search space search
increases, the yields decrease. With values of r ranging between −0.2 and −0.5 we can posit that
there is some degree of correlation, but not strongly so.

B. Discovered Structures

Representative samples of the automatically discovered self-replicating structures are shown below,
and are of interest in themselves in that they have significant differences from past manually-designed
self-replicating structures [18], [5], [35]. A naming convention is established so that each structure can
be given a unique name and the underlying cellular space model can be easily identified. The notation
in [35] is used, augmented with the prefix PS to indicate polyomino structures, and the letter I is added
prior to the number of states field to denote orientation insensitive input. Table II lists six structures
using this naming convention.
Figs. 11–13 present the first nine time steps of configurations for two typical 3-component structures
and a 4-component structure. These structures differ from previously reported hand-coded structures
in unanticipated ways. Most striking is the way parent structures move while replicating. In addition,
instead of “dead structures” forming inside of an expanding colony of replicants (common phenomena
in previous work), we see that less organized “debris” forms due to collisions of moving structures (see
Fig. 14).

15

AB
C

t=0

A

BA
C

C
t=1

A

B

B

A
C

A C

t=2

B

B

A
C

A

C

C

t=3

A

A

B

B

B

A
C

C

A

C

AC
C

t=4

A

A

B

B

B

B

B

A
C

A C

A
C

A

AC

C

t=5

A

B

B

B

B

B

A
C

A

C

C

A

C
A

A

C

C C

C

t=6

A

A

A
A

A

B

B

B

B

B

B B

B

A
C

C

A

C

AC
C

A
C

AC

A

C

CA

C

C

A

C

t=7

A

A
A

A

B

B

B

B

B

B

B

B

B

B

B

B

A
C

A C

A

A

A

C
A

C

A

C
A

AC

A

A

C

C
AC

C

t=8

Fig. 11. Self-replicating structure PS03WI13V. The seed structure moves downward on successive time steps, producing
rotated replicants. A 5-step replication process can be seen, and production of the second replicant (t=4) begins
while the first replicant is still forming. Thus the first isolated replicant appears at t=5 and the second at t=6.
Each replicant is rotated and forever moves in a straight line producing rotated replicants of its own.

16

ABC
D

t=0

B

C

D
C

t=1

B

B

C DC

D
C

t=2

A

BB

B

C
D

D
C

C

D
C

t=3

A
B

B

B

B

D

C
DD

CD

C

D

C

C

t=4

A

A
B

B

B

B

B

C
D

C

D

C
D

C

D

C DC

C

t=5

A

BB

B

B BB

B

A

C
D

D
C

C

D

C C

D

C

C

D

C
D

D
C

C

C

t=6

A

A

B

B

B

B B

B

B
B

B

B

B

DD
C

DD

C CD

C

D
C D

D

C

C

CD

C

D

C
DD

CD

C

C

C

t=7

A

A

A

A

A

A

B

B B

B

B

B

B

B

B

B

B

B

B

B

D

C
D

C

D

D

A

D D

C

D

C
D D

C AC

D

C
D

C

D

C
D

C

C DC

t=8

Fig. 12. Self-replicating structure PS04WI17V. The seed structure moves towards the right on successive time steps and
produces two replicants: the first is seen at t=4 and then again at t=7 along with the second replicant (upper right
quadrant of each respective frame). These replicants are rotated 90◦ counterclockwise and proceed upward. During
the production of the first replicant, debris forms (near coordinate system origin of t=3 and t=4) and coalesces
into two structures seen at t=5, lower left. One structure moves downward and attempts to self-replicate but due
to crowding, is unable. The other moves to the left and produces its first replicant at t=8 (lower left quadrant).

17

AB
C

t=0

A C

BA
C

t=1

A

B
A

B

C

A
C

t=2

C

AC

B

A
B

A
C

A
C

t=3

B

B

A
C

A
C

t=4
C

C

A
B

A
B

A
C

A
C

t=5

B

B

A

A

A

A

B

B

C

C

A
C

A
C

t=6

C

C

A

A

C

C

B

B

A
B

A
B

A

A

C

C

A
C

A
C

t=7

B

B

B

B

A

A

C

C

A
C

A
C

t=8

Fig. 13. Self-replicating structure PS03W13V. The seed structure proceeds downward while producing an isolated replicant
every four time steps. Note that the first replicant is fully formed at t=2, yet not isolated. A unique behavior seen
in this structure is the fact that there are no unused components during much of the colony formation (later, the
colony collapses in on itself and collisions occur).

18

A

B

A

B

C

C

C

B

C
C

B

A

B
C

A

A

A

CA

A

C

A

B

C
A

B
A

C

B

B
BB

C

C

C

C

C

A

B

B

B

B
B

C

C

C

A

C

C

A

B

A

A

C

C

B

B

C

B

A

A

A

B

C

C

A

C

C

B
B

C

B

B

A

A

C

A
B

B

C

A

B

A

B C

C

B

B

B

B

C

C

A

B

A

A

B

B

B

B

B
A

C

A

B

A

C

A

A

C

B

B

C

B

C

A

A

A

A

C

B

B

A

A

C

B
A

A

A

B

C

A
B

A

B

B

A
B

C

A

A

A

B

B

B

C

C

B

C

C

C

A

C

B

C
B

A

A

A

B

A
B

A

C

B

A

C

B

A

B

B

A

C

B
B

B

B

A

BC

A

A

C

B

B

A

B

B

A

C

B

B

B

B

C

B

A

C
A

C

C

C

B
C

B

A
B

C

B
C

B

C

B

BA

B

B

A
A

B

B

B

B

A

A

C

A

B

B

B

B
A

A

A

A

B
BA

C

C

A

A
B

A

A

A

A
A

C

B

B A

B

C

A

A
A

A

C

A
A

A

A

A

A

C

A

A

A

B

A

A

A

B

A

A

A

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

A

A

A

A

A

B

B
A

A

A

A

C
A

A

A

A

A

A

B

B

A

B

B
A

A

C C

B

C

C

C

B

A

A

A

A

B

A

B

B

A

B
B

C
A

A A

A

C

A

A

C

C

C

B

BB

B

A

B

A

B

C

A

B

A

B

A

B

C
B

C

B

B

B

CC

C

A

B

A

A

C

B

C

B

B
A

B

B

CA

A

B

A

C

C
A

A

C
A

B
C

B

A

C

B

B
B

A

B

C
B

B

C

A

B

A

C A

B
C

A

B

A
B

B

B

BA
A

B

B

B

B

A

A

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

B

B

B

B B

B

B

B

C

B

B

B

B

B B

B

B

B

B B

B

B

B

B B

B

B

BB

B B

B

B

B

B B

B

B

B

B

B

B

B

B

A

B

B

B

B

B

B

B

B

B

A

B

B

B

B

B

B

BB

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B
B

BB

B

B

B

B B

B

B

B

C

B

B

B

B

B

B
B

B

B

B

B

B

B

B
A

B

B

B

B

B

B

B

B

B

B B

B

A

C

C

B
B

C

C

A

C

C

C

A

B

A

B B

B

A

A

CA

A

B

B

C

B

C

A

B

A

C
C

BBA

B

AA

C

C

C

A

C

B

A

A

C
C

C

B
C

C

B

B

C
A

C B
B

A

A

A

A

A

C

B

C

A
B

C

B

C

B

B

A

C

AC

B

A

C

C

C

C

B
C

C A
C

B

C

C

C

C

A

C

C

BA

A

A

A

A

B

C

A

B

C

A
A

A

A

A

A

B

C
B

C

C

C

BA A

A

B
A

B

C

B
C

A

C

C

C

A

A

C

A

A

C

C

A

A
C

A

C

A

AC

AA A
C

A
C

C

A

A

A
C

C

C

A

C

C

C

C

AA

C

C

C

C

C

A
C

A C

A
A

A

C
A

C

A

A

A

AC

A

A

A

C
AC

C

A

A

A

A

C

A

C

A
C

A

C

A

A

C

CA

A

A

A

A

A

A

C

C
AC

C

A

A

A

A

C

A

A

A

A

A

A

A

A

C

C
AC

C

A

A

A

A

C

A

C

A

A

A

A

A

A

A

A

C

C
AC

C

A

A

A

A

C

A

A

C

CA

A

A

A

A

A

A

A

A

C

C
AC

C

A

A

A

A

C

A

C
A

AC

A

C
AA

A

C

A

C

C

CA

A

C

A

A

C
CA

C

A

A

A

A

C

A

A

A

C

CA

C

A

A

A

A

C

A

A

A

A

A

A

C

C

CA

C

A

A

A

A

C

A

A

A

A

A

A

A

C

C

CA

C

A

A

A

A

C

A
A

A

C

AC

C

C

C
C

C

CA

C

CA

A

C

AC

C

C

CA

C
AC

C

CA

C

CA

A

C

AC

C

A

A

C

C

CA

A

A

C

C

CA

C

C
AC

C

CA

C
AC

C
AC

A

C

CA

C

C

C
AC

C
AC

A

C

CA

C

A

A CA

A

A

C
AC

C
AC

A

C

CA

C

C

CA

A

A

C

C
AC

C
AC

A

C

CA

C

A

A

C

C
AC

A

A

C

C
AC

C

Fig. 14. Self-replicating structure PS03WI13V at time step 38 illustrating formation of debris inside of the expanding
colony.

19

C. Statistical Testing

Employing Fisher’s Exact test as described in the previous section, it is relatively easy to show that
when there are four successes (four self-replicating structures discovered in 100 trials), p=0.061, and
with five successes, p=0.029. Thus a yield of five or more self-replicating structures is statistically
significant at the 0.05 significance level. For the experimental results presented in Table II, it is seen
that some yields are not statistically significant at the 0.05 significance level. For example, in the
3-component experiments, while the 22% yield is statistically significant, the 3% yield from the CAosi
model is not. Also, both of the 2-component experiments and none of the 4-component experiments
gave statistically significant results at the 0.05 significance level.

D. GA Performance

A typical GA performance graph showing the behavior of individual fitness measures is shown in
Fig. 15. This GA run produced a self-replicating structure using F = 0.05fg +0.75fp+0.20fr. In this
case the overall fitness value for a rule table mainly comes from the relative positions of components.
Less important are the isolated replicants and growth of components. However, there is a deeper
interpretation. The apparently insignificant growth measure plays a key role in the early generations of
the GA, the relative position subsequently maintains a steady increase in F , and the isolated replicant
measure serves to lock-in a newly discovered self-replicating structure. These behaviors suggest that
the three parts of the fitness function support each other in complex and unanticipated ways.
Fig. 15 shows values of F , fg, fp, and fr for the highest ranking rule table of each generation.
The growth measure fg is seen to be the most volatile, and this agrees with intuition: since it has
the smallest weight in F , larger fluctuations are easily tolerated and have less of an effect on F .
The relative position measure fp remains the highest contributor in most generations, which is not
surprising since it has 75% of the weight in F . The isolated replicant measure fr, being the hardest
fitness measure to satisfy, remains near zero for many generations until the other measures discover a
rule table that promotes elements of a self-replicating process.
As can be seen in Fig. 15, during the first few generations, the growth measure increases rapidly,
helping to prime the search. The growth measure is the easiest way of gaining fitness since it is only
concerned with quantities of components and not positioning. The relative position measure increases
more slowly, as increasing numbers of components gain proper positioning. Near generation 150,
isolated replicants begin to proliferate. The isolated replicant measure then increases quickly and the
GA converges, with only small refinements being made.
Typically performance curves exhibit two regions of behavior, as seen in Fig. 15. The first region
is characterized by high component growth: fg > fp > fr. The performance enters the second
region when the isolated replicant measure dominates, indicating convergence. In this region we have:
fr > fp > fg. Since growth is weighted the least, it has less of an effect when the other measures are
elevated.
A simple experiment was constructed to determine if each of the three fitness measures, by them-
selves, can promote development of a self-replicating structure. If none of the individual fitness mea-
sures is able to produce such a structure, this suggests that the emergence of self-replication is de-
pendent on the interactions and combined effects of the individual measures. The three experiments
involve setting the weight vector w = (wg, wp, wr) as w = (1, 0, 0), w = (0, 1, 0), or w = (0, 0, 1). With
each of these three weight vectors, no self-replicating structures were ever discovered in 100 GA runs
(using 3-component seed structures), suggesting that the fitness measures interact and depend on each
other to promote self-replicating behaviors.

V. Discussion

Our experiments show, for the first time, that rule sets for self-replicating structures can be auto-
matically discovered. Creating rules for self-replicating structures is difficult and has only been done

20

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

fit
ne

ss

generation

Growth, fg
Relative Position, fp
Isolated Replicant, fr

Overall Fitness, F

Fig. 15. Individual fitness measure values for the best-of-generation rule table during GA discovery of PS03WI13V. The
overall fitness function is F = 0.05fg + 0.75fp + 0.20fr.

manually in the past. Prior to this work, fewer than 30 hand-designed self-replicating structures have
been reported in 45 years.

This paper presented three main contributions towards automating the discovery of self-replicating
structures. First, we demonstrated that the process of discovering self-replicating structures in cellular
automata can be automated. The simulation results showed that statistically significant amounts of
such structures were generated. The discovered structures compared favorably in terms of simplicity
with those generated manually. In addition, the structures did not rely on extraneous components as
seen in past models.

The process of replication discovered in many cases was quite interesting because it differed in
unexpected ways from previous manual attempts, e.g., the structures all move during self-replication.
Second, we presented a multiobjective fitness function that was able to promote diverse self-replicating
behaviors. The derived fitness functions are general in the sense that they can be used with other
reinforcement learning techniques. Also, these fitness measures do not impose undue biases toward
any particular process of self-replication as evidenced by the large variety of specific rule tables found.
Third, a new variation of cellular automata was presented which produced a higher yield of self-
replicating structures, yet maintained the desirable properties of the underlying cellular model. The
technique of orientation-insensitive input is also applicable to other cellular space models and is less
demanding of computer resources. We hypothesize that the discovery process is facilitated by having
reduced search space sizes under this input method.

These results suggest that further exploration in the space of possible self-replicating structures could
yield numerous new structures. The technique presented is independent of structure size, therefore au-
tomatic production of larger self-replicating structures is feasible for future study. Finally, this research
sheds light on the process of creating self-replicating structures, potentially leading to future studies
on the discovery of novel self-replicating molecules and self-replicating assemblers in nanotechnology.

21

Acknowledgment

The authors would like to thank D. B. Fogel and the anonymous reviewers for their helpful comments
and suggestions. This work was supported by NASA Award NAGW-2805.

References

[1] D. Andre, F. H. Bennett, and J. R. Koza, “Evolution of Intricate Long-distance Communication Signals in Cellular Automata
using Genetic Programming,” in Artificial Life V, C. G. Langton and K. Shimohara, Eds. Cambridge, MA: MIT Press, 1997.

[2] M. A. Arbib, “Simple Self-Reproducing Universal Automata,” Information and Control, vol. 9, pp. 177–189, 1966.
[3] R. A. Brooks and P. Maes, Eds., Artificial Life IV, Proceedings of the Fourth International Workshop on the Synthesis and

Simulation of Living Systems, MIT Press, 1994.
[4] A. Burks, Essays on Cellular Automata, Univ. of Illinois Press, 1970.
[5] J. Byl, “Self-Reproduction in Small Cellular Automata,” Physica D, vol. 34, North-Holland, pp. 295–299, 1989.
[6] H. H. Chou, J. A. Reggia, “Emergence of Self-Replicating Structures in a Cellular Automata Space,” Physica D, 1997, in

press.
[7] H. H. Chou, J. A. Reggia, “Problem Solving During Artificial Selection of Self-Replicating Loops,” Physica D, 1997, in press.
[8] E. F. Codd, Cellular Automata, Academic Press, 1968.
[9] K. E. Drexler, “Biological and Nanomechanical Systems: Contrasts in Evolutionary Capacity,” in [20], pp. 501–519, 1989.
[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.
[11] J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,” IEEE Transactions on Systems, Man, and

Cybernetics, vol. 16, No. 1, pp. 122–128, 1986.
[12] M. Hall, Combinatorial Theory, Waltham, MA: Blaisdell Publishing, 1967.
[13] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, MI: Univ. of Michigan Press, 1975.
[14] J. H. Holland, “Studies of the Spontaneous Emergence of Self-Replicating Systems Using Cellular Automata and Formal

Grammars,” in Automata, Languages, Development, A. Lindenmayer and G. Rozenberg, Eds., North-Holland, pp. 385–404,
1976.

[15] J.-I. Hong, Q. Feng, V. Rotello, and J. Rebek, Jr., “Competition, Cooperation, and Mutation: Improving a Synthetic
Replicator by Light Irradiation,” Science, vol. 255, pp. 848–850, 1992.

[16] J. O. Kephart, “A Biologically Inspired Immune System for Computers,” in [3], pp. 130–139, 1994.
[17] J. R. Koza, “Artificial Life: Spontaneous Emergence of Self-Replicating and Evolutionary Self-Improving Computer Pro-

grams,” in [22], pp. 225–262, 1994.
[18] C. G. Langton, “Self-Reproduction in Cellular Automata,” Physica D, vol. 10, pp. 135–144, 1984.
[19] C. G. Langton, “Studying Artificial Life with Cellular Automata,” Physica D, vol. 22, pp. 120–149, 1986.
[20] C. G. Langton, Ed., Artificial Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. VI, Addison-Wesley, 1988.
[21] C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds., Artificial Life II, Santa Fe Institute Studies in the Sciences

of Complexity, vol. X, Addison-Wesley, 1991.
[22] C. G. Langton, Ed., Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity, vol. XVII, Addison-Wesley,

1994.
[23] J. D. Lohn and J. A. Reggia, “Discovery of Self-Replicating Structures using a Genetic Algorithm,” 1995 IEEE International

Conference on Evolutionary Computing, Piscataway, NJ: IEEE Press, pp. 678–683, 1995.
[24] J. D. Lohn, “Automated Discovery of Self-Replicating Structures in Cellular Space Automata Models,” Dept. of Computer

Science Tech. Report CS-TR-3677, Univ. of Maryland at College Park, 1996.
[25] B. McMullin, “The Holland α-Universes Revisited,” in Toward a Practice of Autonomous Systems: Proceedings of the First

European Conference on Artificial Life, F. Varela and P. Bourgine, Eds., Cambridge, MA: MIT Press, pp. 317–326, 1992.
[26] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform

Computations,” Complex Systems, vol.7, no. 2, pp. 89–130, 1993.
[27] E. F. Moore, “Machine Models of Self-Reproduction,” Proc. Fourteenth Symp. on Applied Mathematics, pp. 17–33, 1962.
[28] K. Morita, K. Imai, “A Simple Self-Reproducing Cellular Automaton with Shape-Encoding Mechansim,” in Artificial Life

V, C. G. Langton and K. Shimohara, Eds., Cambridge, MA: MIT Press, pp. 489–496, 1997.
[29] L. E. Orgel, “Molecular Replication,” Nature, vol. 358, pp. 203–209, 1992.
[30] L. Penrose, “Mechanics of Self-Reproduction,” Ann. Human Genetics, vol. 23, pp. 59–72, 1958.
[31] J.-Y. Perrier, M. Sipper, J. Zahnd, “Toward a Viable Self-Reproducing Universal Computer,” Physica D, vol. 97, pp. 335–352,

1996.
[32] U. Pesavento, “An Implementation of von Neumann’s Self-Reproducing Machine,” Artificial Life, vol. 2 no. 4, pp. 337–354,

1995.
[33] T. S. Ray, “Evolution, Ecology and Optimization of Digital Organisms,” Santa Fe Institute Working Paper 92-08-042, 1992.
[34] T. S. Ray, “An Approach to the Synthesis of Life,” in [21], pp. 371–408, 1991.
[35] J. A. Reggia, S. Armentrout, H. H. Chou, and Y. Peng, “Simple Systems That Exhibit Self-Directed Replication,” Science,

vol. 259, pp. 1282–1288, 1993.
[36] F. C. Richards, T. P. Meyer, and N. H. Packard, “Extracting Cellular Automaton Rules Directly from Experimental Data,”

Physica D, vol. 45, pp. 189–202, 1990.
[37] M. Sipper, “Studying Artificial Life Using a Simple, General Cellular Model,” Artificial Life, vol. 2, no. 1, pp. 1–35, 1995.
[38] A. R. Smith, “Simple Nontrivial Self-Reproducing Machines,” in [21], pp. 709–725, 1991.
[39] A. H. Taub, John von Neumann: Collected Works. Volume V: Design of Computer, Theory of Automata and Numerical

Analysis, Oxford: Pergamon Press, 1961.
[40] G. Tempesti, “A New Self-Reproducing Cellular Automaton Capable of Construction and Computation,” in ECAL95: Pro-

ceedings of the Third European Conference on Artificial Life, F. Moran, A. Moreno, J.J. Morelo, and P. Chacon, Eds.,
Springer, pp. 555–563, 1995.

22

[41] J. W. Thatcher, “Universality in the von Neumann Cellular Model,” in [4], pp. 132–186, 1970.
[42] P. M. B. Vitányi, “Sexually Reproducing Cellular Automata,” Mathematical Biosciences, vol. 18, pp. 23–54, 1973.
[43] J. von Neumann, “The General and Logical Theory of Automata,” in [39], pp. 288–328, 1951.
[44] J. von Neumann, Theory of Self-Reproducing Automata, A. Burks, Ed., University of Illinois Press, 1966.
[45] S. Wolfram, Cellular Automata and Complexity, Reading, MA: Addison-Wesley, 1994.

