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The Dawn of Multidisciplinary Design

[National Air and Space Museum]




Current Multidisciplinary Design
AIRBUS A380-800

[Flight International]



What is Optimization!

zol f(2)

minimize  f(x)
by varying x € R"
_ subject to ¢j(z) >0, j=12,...,m

f : objective function, output (e.g. structural weight).

x : vector of design variables, inputs (e.g. aerodynamic shape); bounds can be
set on these variables.

c : vector of inequality constraints (e.g. structural stresses), may also be
nonlinear and implicit.



Conventional vs. Optimal Design Process
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MDO: A Wing Design Example

Maximize: T, W,
Range Eln ( Z)

Wy

Aerodynamics: Panel code computes induced drag.Variables: wing twist and
angle of attack

Structures: Beam finite-element model of the spar that computes the
displacements and stresses.Variables: element thicknesses



Aerostructural Coupling — Boeing 787
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Aerostructural Coupling — Boeing 787




Sequential Optimization

Aerodynamic
Optimization

max Range
w.r.t. twist
s.t. lift = weight

A

— displacements
weight

forces
drag

A4

Structural
Optimization

—1 max Range

w.r.t. thicknesses
s.t. stress constraints

The final result is always an elliptic lift distribution



A Sound MDO Approach

The multidisciplinary feasible (MDF) method

Optimizer
max Range
w.r.t. sweep, twist, thicknesses ‘ ‘

s.t. stress constraints .
T sweep, twist sweep, thicknesses

I

coupled sensitivities

Aerodynamics
drag, lift y forces

A

v

displacements

Structures

weight, stresses




Sequential Optimization
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[Chittick and Martins, Structural and Multidisciplinary Optimization, 2008]
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Sequential Optimization vs. MDF
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Optimization Methods

-y

Engineering intuition



Optlmlzatlon Methods: Gradient-Free
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Optimization Methods: Gradient-Based
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Optimization: Gradient-Based vs. Not
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Optimization: Gradient-Based vs. Not
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Optimization: Gradient-Based vs. Not
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The Case for Efficient Sensitivity Analysis

L0
|
Optimizer l
® By default, most gradient-
based optimizers use finite _.< d?reei:fohn Analysis
differences l
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differences with large Line search o | - - » SLGEIVETE
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analysis is the bottleneck
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needed for convergence o



Sensitivity Analysis Methods

Finite differences: very popular, easy to implement, but can be very
inaccurate; need to run analysis for each design variable

oy TN =S

Complex-step method: accurate, easy to implement and maintain;
need to run analysis for each design variable

(z) ~ U (fZ th)

[Martins, Alonso and Sturdza, ACM TOMS, 2003]

Automatic differentiation: automatic implementation, accurate; cost
can be independent of the number of design variables

(Semi-)Analytic Methods: efficient and accurate, long development
time; cost can be independent of the number of design variables

20
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Complex-Step Derivative Approximation

Like finite differences, can be derived from a Taylor series expansion,
but use a complex step instead of a a real one:

Fo+ih) = f(z) + ihf () — h?2 "2(!5“) in3? 3('5’3) .

* No subtractive cancellation
* Numerically exact for small enough step

[Martins, Alonso and Sturdza, ACM TOMS, 2003]
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Complex-Step Derivative Approximation

Like finite differences, can be derived from a Taylor series expansion,
but use a complex step instead of a a real one:

Fo+ih) = f(z) + ihf () — h?2 "2(!‘”) in3? 3('5“) .

I [z +ih)] 51" (@) |
h | 3! T

= fl(2) =

* No subtractive cancellation
* Numerically exact for small enough step

[Martins, Alonso and Sturdza, ACM TOMS, 2003]
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Complex-Step Derivative Approximation

Like finite differences, can be derived from a Taylor series expansion,
but use a complex step instead of a a real one:

_hzf”(m) Z.hgf/”(fl?) |

f(x +ih) = f(z) +ihf () T TR
o ) = Im[f(zzﬁh)] : hzf”:;(!ff) -
o | ) o [f(f; +ih)

* No subtractive cancellation
* Numerically exact for small enough step

[Martins, Alonso and Sturdza, ACM TOMS, 2003]



Aircraft Design for Minimum Environmental Impact

(Henderson, Perez, Martins, 2009) Best Cruise Mach Diversion - 200 nm
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Single Objective Optimization

Cost Fuel Burn LTO NOx
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Results for Increasing Fuel Prices

) Jepea KN '~ 3 S Ts‘ S .
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Multi-Objective Optimization
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Wind Turbine Blade Design Optimization

(Kenway and Martins, 2008)



Wind Turbine Blade Design Optimization

(Kenway and Martins, 2008)

Axial Induction Factor  von Mises Stress

3.8E+07
= 0 —1 3.2E407
0.95 2.6E+07
0.19 2E+Q7
0.13 1.4E+0Q7
0.07 8E+06
?2E+06



