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Sir George Cayley
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The Dawn of Multidisciplinary Design

[National Air and Space Museum]
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Current Multidisciplinary Design

[Flight International]
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What is Optimization?
5

Optimization Problem

minimize f(x)

by varying x ∈ Rn

subject to cj(x) ≥ 0, j = 1, 2, . . . ,m

f : objective function, output (e.g. structural weight).

x : vector of design variables, inputs (e.g. aerodynamic shape); bounds can be

set on these variables.

c : vector of inequality constraints (e.g. structural stresses), may also be

nonlinear and implicit.
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Conventional vs. Optimal Design Process

6

baseline design usually requires some engineering intuition and represents an initial idea. In

the conventional design process this baseline design is analyzed in some way to determine

its performance. This could involve numerical modeling or actual building and testing. The

design is then evaluated based on the results and the designer then decides whether the

design is good enough or not. If the answer is no — which is likely to be the case for at

least the first few iterations — the designer will change the design based on its intuition,

experience or trade studies. When the design is satisfactory, the designer will arrive at the

final design.

For more complex engineering systems, there are multiple levels and thus cycles in the

design process. In aircraft design, these would correspond to the preliminary, conceptual

and detailed design stages.

The design optimization process can be pictured using the same flow chart, with mod-

ifications to some of the blocks. Instead of having the option to build a prototype, the

analysis step must be completely numerical and must not involve any input from the de-

signer. The evaluation of the design is strictly based on numerical values for the objective to

be minimized and the constraints that need to be satisfied. When a rigorous optimization

algorithm is used, the decision to finalize the design is made only when the current design

satisfies the necessary optimality conditions that ensure that no other design “close by” is

better. The changes in the design are made automatically by the optimization algorithm

and do not require the intervention of the designer. On the other hand, the designer must

decide in advance which parameters can be changed. In the design optimization process, it

is crucial that the designer formulate the optimization problem well. We will now discuss

the components of this formulation in more detail: the objective function, the constraints,

and the design variables.
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Figure 1.1: Conventional (left) versus optimal (right) design process
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Numerical Optimization
A Simple Example

minimize f(x) = 4x2
1 − x1 − x2 − 2.5

by varying x1, x2

subject to c1(x) = x2
2 − 1.5x2

1 + 2x1 − 1 ≥ 0,

c2(x) = x2
2 + 2x2

1 − 2x1 − 4.25 ≤ 0,
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MDO: A Wing Design Example

Aerodynamics: Panel code computes induced drag. Variables: wing twist and 
angle of attack
Structures: Beam finite-element model of the spar that computes the 
displacements and stresses. Variables: element thicknesses
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Example: Trade-off Between Aerodynamics and Structures
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Minimizing drag and weight sequentially does

not lead to the true optimum.

A more representative objective function for

aircraft would be
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D
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�
.

Optimize aerodynamic shape and structural

variables simultaneously.

The result a better overall design that

represents a compromise between

disciplines.
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Aerostructural Coupling — Boeing 787 

[airliners.net]
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Aerostructural Coupling — Boeing 787 

[airliners.net]
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Sequential Optimization

The final result is always an elliptic lift distribution

Structural 

Optimization
max  Range
w.r.t. thicknesses
s.t.    stress constraints

forces
drag

displacements
weight

Aerodynamic 

Optimization
max  Range
w.r.t. twist
s.t.    lift = weight



A Sound MDO Approach
The multidisciplinary feasible (MDF) method

Aerodynamics

Structures 

Optimizer
max  Range
w.r.t. sweep, twist, thicknesses
s.t.   stress constraints

drag,lift forces

displacements

sweep, thicknessessweep, twist

weight, stresses

coupled sensitivities



Sequential Optimization vs. MDO

[Chittick and Martins, Structural and Multidisciplinary Optimization, 2008]
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Sequential Optimization vs. MDF
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Optimization Methods

Engineering intuition



Optimization Methods: Gradient-Free

Genetic algorithms

Example 6.3: Minimization of the Rosenbrock Function Using a Genetic Algorithm

Figure 6.5: Genetic algorithm with bit

representation

Figure 6.6: Genetic algorithm with real number

representation

J.R.R.A.Martins • A Short Course on MDO • http://mdolab.utias.utoronto.ca 231

Nelder-Mead simplex

Example 6.1: Minimization of the Rosenbrock Function Using Nelder–Meade

J.R.R.A.Martins • A Short Course on MDO • http://mdolab.utias.utoronto.ca 214



Optimization Methods: Gradient-Based

Steepest descent (1st order) BFGS (2nd order)
Figure 3.6: Solution path of the steepest descent and conjugate gradient methods
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Figure 3.7: Solution path of the modified Newton and BFGS methods
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Optimization: Gradient-Based vs. Not
18
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The Case for Efficient Sensitivity Analysis

• By default, most gradient-
based optimizers use finite 
differences

•When using finite 
differences with large 
numbers of design 
variables, sensitivity 
analysis is the bottleneck

• Accurate sensitivities 
needed for convergence

19
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Finite differences: very popular, easy to implement, but can be very 
inaccurate; need to run analysis for each design variable

Complex-step method: accurate, easy to implement and maintain; 
need to run analysis for each design variable

Automatic differentiation: automatic implementation, accurate; cost 
can be independent of the number of design variables

(Semi-)Analytic Methods: efficient and accurate, long development 
time; cost can be independent of the number of design variables

Sensitivity Analysis Methods
20

f(x + ih) = f(x) + ihf �(x)− h2 f ��(x)
2!

− ih3 f ���(x)
3!

+ . . .

⇒ f �(x) =
Im [f(x + ih)]

h
+ h2 f ���(x)

3!
+ . . .

⇒ f �(x) ≈ Im [f(x + ih)]
h
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Complex-Step Derivative Approximation
Like finite differences, can be derived from a Taylor series expansion, 
but use a complex step instead of a a real one:

• No subtractive cancellation

• Numerically exact for small enough step 

[Martins, Alonso and Sturdza, ACM TOMS, 2003]
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Aircraft Design for Minimum Environmental Impact

TextText

(Henderson, Perez, Martins, 2009)



Single Objective Optimization

Cost                 Fuel Burn                LTO NOx



Results for Increasing Fuel Prices

Evaluated at US $1.50

Evaluated at US $15.00
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Multi-Objective Optimization



Wind Turbine Blade Design Optimization
(Kenway and Martins, 2008)



Wind Turbine Blade Design Optimization
(Kenway and Martins, 2008)


