

Printing Functional Materials

Jennifer A. Lewis

School of Engineering and Applied Sciences
Wyss Institute for Biologically Inspired Engineering

Harvard University

The Science of Digital Fabrication – 3.7.13

Several advances needed for 3D printing of high performance, functional materials

"Before this personal manufacturing revolution can take place, though, researchers will need to develop a broader array of robust printing materials..."

"... rapidly growing market, \$1 B sales... about 70% of market is prototyping"

Chemical & Engineering News, Nov 14, 2011 issue

Specific Objectives and Needs

- Broaden materials palette
- Integration of heterogeneous materials
- Digitally specify form and function
- Print and fold architectural complexity
- Improve feature resolution by 100x
- Improve throughput by 100x

... expedite transformation from rapid prototyping to manufacturing of advanced materials

Functional inks designed for printing

Key Attributes:

- Highly concentrated, water-based formulations
- Engineered flow and printing behavior
- Specifically tailored for targeted functionality

Conductive inks for printed electronics

 10^{-6}

Time (h)

Ahn, Duoss, Nuzzo, Rogers, Lewis, et al., Science (2009); Ahn, Duoss, and Lewis, US-Patent 7,922,939

nozzle

Conductive inks for printed electronics

Pen-on-Paper Flexible Electronics

Printed origami – simple route to complex 3D forms

Ahn, Shoji, Hansen, Hong, Dunand, Lewis, Advanced Materials (2010); Advanced Engineering Materials (2011)

Printed origami structures

Ahn, Shoji, Hansen, Hong, Dunand, Lewis, Advanced Materials (2010)

Embedding microvascular networks enables multifunctionality

Vascular networks enable important biological functions:

- Nutrient transport
- Temperature regulation
- Healing tissue damage

Potential Impact: self healing/cooling, tissue engineering, soft robotics...

3D microvascular architectures

Bioinspiration

Toohey, Sottos, Lewis, Moore, White., Nature Mater. (2007).

3D hydrogel scaffolds for tissue engineering

High throughput printing of 3D architectures

Large-area (1 m²) 3D structures printed in minutes using multinozzle printheads

High throughput printing of 3D architectures

Large-area (1 m²) 3D structures printed in minutes using multinozzle printheads

8-nozzle array

Thank you!

