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Abstract

Quantum compiling addresses the problem of approximating an arbitrary quantum gate with a string of gates
drawn from a particular finite set. It has been shown that this is possible for almost all choices of base sets and
furthermore that the number of gates required for precision ε is only polynomial in log 1/ε. Here we prove that using
certain sets of base gates quantum compiling requires a string length that is linear in log 1/ε, a result which matches
the lower bound from counting volume up to constant factor.

1 Introduction

Quantum computation generalizes computer science to utilize novel quantum physical resources as elementary build-
ing blocks for information processing [1, 2, 3, 4]. Quantum algorithms, like their classical analogues, can be written
in a number of nearly equivalent ways. While a classical program is typically composed of a series of simple boolean
functions, such as NAND and FANOUT, a quantum algorithm is typically written as a product of unitary gates, such as
the Hadamard transform H , the controlled–NOT (CNOT), and the π/8-gate T [5]. For classical computers, a common
problem is that of compiling a program, in which one typically wishes to express the program in as few elementary
operations as possible. By analogy, we can raise the principal questions of quantum compiling: which sets of gates can
be composed to form what sorts of quantum algorithm, how many of them are necessary, and what efficient algorithms
can be devised to express quantum programs in terms of a particular set of base gates?

Mathematically, a gate on n quantum bits (qubits) is represented by a unitary transformation on a 2n-dimensional
vector space. We will denote the set of all determinant-one unitary transformations of a d-dimensional vector space
by SU (d). This space is a manifold and is hence parameterized by a continuum of real parameters; for example, the
2× 2 unitary transforms

(
eiα cos θ eiβ sin θ
−e−iβ sin θ e−iα cos θ

)
(1)

parameterized by α, β, θ represent the group SU (2) of valid single qubit gates.
In contrast, digital quantum algorithms compute with only a finite set of base gates (such as those mentioned

previously: H , T , and CNOT). This is a reasonable restriction in real circuit implementations, since the presence
of noise reduces the number of reliably distinguishable gates to a finite subset of the continuous set. Finite gate
sets are also intrinsic to fault-tolerant quantum computation, the art of constructing arbitrarily reliable circuits from
unreliable parts.[6, 7, 8, 9] Thus, in general we do not desire perfect computational universality, but only the ability to
approximate any quantum algorithm, preferably without using too many more gates than originally required.

A set of base gatesA ⊂ SU (d) is computationally universal if given any gate U , we can find a string consisting of
gates from A and their inverses, such that the product of the gates in the string approximates U to arbitrary precision.
Equivalently,A must generate a dense subgroup of SU (d).
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Which sets of base gates are computationally universal? It turns out that probabilistically speaking, almost all
of them are [10, 11]. If base gates are chosen at random, then all but a set of measure zero are computationally
universal. The idea is that if the eigenvalues of the base gates have phases that are irrationally related to π (which
occurs with probability one), then taking powers of them allows each base gate to approximate a one-parameter
subgroup to arbitrary precision, just as integer multiples of a random vector modulo a lattice will almost always fill
space. Furthermore, the base gates will almost always lie on different one-parameter subgroups, which will generate
all of SU (d) with probability one.

Given that compiling is generically possible, it is vital to determine how short a string of base gates is typically
required to approximate a given gate to a specified precision; this is the question we consider in this paper. The con-
struction described by Lloyd [10] requires using a number of base gates exponential in log 1/ε to achieve a precision of
ε. This is an unreasonable cost for many applications. However, Solovay [12] and Kitaev [13] have independently de-
scribed an efficient (meaning its running time is polynomial in log 1/ε) algorithm for quantum compiling that produces
strings of length onlyO(logc(1/ε)), where c is a constant between 3 and 4. [14] The algorithm works by constructing
successively finer ε-nets; finite sets of gates that can approximate any element of SU (d) to an accuracy of ε.

On the other hand, as we will later discuss, since a ball of radius ε in SU (d) has volume proportional to εd
2−1, it

takesO((1/ε)d
2−1) different strings of gates to approximate every element of SU (d) to a precision of ε. Therefore, no

algorithm will ever be able to reduce c below 1. Furthermore, it is unlikely that the successive approximation method
used by the Solovay-Kitaev theorem will be able to do better than c = 2.[14] This still leaves open the question of
whether some other technique could establish an upper bound asymptotically smaller than the one achieved by the
Solovay-Kitaev theorem.

Here, our main result is that for at least some univeral sets of base gates only O(log 1/ε) gates are sufficient to
approximate any gate to a precision ε (i.e. c = 1). This is within a constant factor of the lower bound obtained from
counting arguments. We say that these base gates are not only computationally universal, but also efficiently universal,
since using them for quantum compiling requires a string length that is optimal up to a constant multiplicative factor.

We present this result as follows. The set of strings from a fixed computationally universal set of base gates cover
SU (d) increasingly densely and uniformly, as the string length grows.[15] First, in Section 2, we quantify how quickly
this occurs by introducing a framework for comparing the distribution of strings with the uniform distribution. We use
this formalism in Section 3 to identify a condition on base sets that implies their efficient universality. In Section 4
we then combine this condition with results from the literature to show that efficiently universal gate sets for Hilbert
spaces of any finite dimension. Section 5 discusses lower bounds for compilation and demonstrates the optimality of
the result; we conclude with open questions and further directions.

2 Preliminaries

We begin by developing a metric of how well strings drawn from a finite set of gates approximate arbitrary elements
of SU (d).

Let dg be the Haar measure on SU (d) normalized so that
∫
dg = 1. Consider the Hilbert space L2(SU (d)) with

norm defined by the usual inner product 〈ψ, ϕ〉 ≡
∫
ψ(g)∗ϕ(g)dg. The norm of a linear transformation onL2(SU (d))

is given by

|M | ≡ sup
{
‖Mf‖

f ∈ L2(SU (d)), ‖f‖ = 1
}
. (2)

When M is bounded and hermitian, the norm is simply the supremum of its spectrum and as a result, |M n| = |M |n.
Define a representation U 7→ Ũ of SU (d) on L2(SU (d)) by

Ũf(x) = f(U−1x) . (3)

Using the right invariance of the Haar measure, we see that Ũ is unitary. For any finite set A ⊂ SU (d), define the
mixing operator T (A) by

T (A) =
1

2|A|
∑

A∈A
Ã+ Ã−1 . (4)
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All such T are hermitian and have norm one. We will often simply write T instead of T (A). These represent averaging
the action of the elements of A and their inverses on a function; when the function is a probability distribution on
SU (d) we can think of T as multiplying by a random element of A.

Applying Tn represents averaging over the action of words of length n. Denote the set of words of length n made
up of elements of A and their inverses by Wn(A), or when the set A is understood, simply Wn. This set comprises
(2|A|)n words, though as matrices there are generally some duplicates since substrings such as AA−1 = 1 for all
A ∈ A. For any positive integer n, expanding T n gives

Tn =
∑

w∈Wn

w̃

(2|A|)n . (5)

We want to compare T n to the integral operator P .

Pf(h) =

∫
f(gh)dg =

∫
f(g)dg . (6)

Note that P is the projection operator onto the set of constant functions on SU (d), and hence P = P † and P 2 = P .
It is not hard to show that TP = P = PT and consequently

(T − P )n = Tn − P . (7)

The metric for comparing T (A) to P is given by

Λ(A) ≡ |T (A)− P | . (8)

From Eq. 7 and the hermiticity of T and P , it follows that

Λ(A)n = |Tn(A) − P | . (9)

If one thinks of T n as a Riemann sum then Λ serves as to quantify how quickly T n converges to the integral. It has
been shown [15] that if A is a computationally universal set that all the eigenvalues of T − P have absolute value
strictly less than one. However, this only implies that Λ(A) ≤ 1, since T − P has an infinite number of eigenvalues.

The proof of main result of our paper—that efficiently universal sets of gates exist—is divided in the next two
sections. In Section 3 we show that Λ(A) < 1 implies that A is efficiently universal and in Section 4 we demonstrate
that for any d an efficiently universal set of gates can be found in SU (d).

3 A condition for efficient universality

Theorem 1 For any A ⊂ SU (d) such that Λ(A) < 1, A is efficiently universal. Specifically, there exists a constant
C such that for all U ∈ SU (d), ε > 0, and n > C log 1/ε, there is a w ∈ Wn(A) such that |w − U | < ε.

Before proving the theorem, we will need to note a fact about the geometry of SU (d). For any d and r0, if V (r) is
the Haar measure of a ball of radius r in SU (d), then there exist constants k1 and k2 such that

k1r
d2−1 < V (r) < k2r

d2−1 . (10)

for all r ∈ (0, r0). This is true because SU (d) is a d2 − 1-dimensional manifold and because V (r) does not depend
on the center of the ball under the Haar measure.

Now we can proceed with the proof of Theorem 1:
Proof Define χ ∈ L2(SU (d)) by

χ(g) =

{
1 for |g − I| < ε/2
0 otherwise

. (11)

Let V = ‖Pχ‖ = ‖χ‖2 be the measure of the ball around the identity of radius ε/2. We will not perform this
integration, but recall from Eq. 10 that V > k1(ε/2)d

2−1.
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Let T = T (A) and Λ = Λ(A).
First we use the Cauchy-Schwartz inequality to give

∣∣∣
〈
χ, (Tn − P )Ũχ

〉∣∣∣ ≤ ‖χ‖‖(Tn − P )Ũχ‖

≤ ‖χ‖2|(Tn − P )Ũ | < ΛnV . (12)

Another way to compute the same inner product is
〈
χ, (Tn − P )Ũχ

〉
=
〈
χ, TnŨχ

〉
− V 2 . (13)

Combining Eq. 12 and Eq. 13 gives that
∣∣∣〈χ, TnŨχ〉 − V 2

∣∣∣ < ΛnV . This means that there existsC which depends

only on A such that if n > C log 1/ε then Λn < V and 〈χ, TnŨχ〉 > 0. Specifically, it suffices to choose

n >
d2 − 1

log(1/Λ)
log(1/ε) +

log(2d
2−1/k1)

log(1/Λ)
. (14)

When this occurs it means that
∫
χ(g)

∑

w∈Wn

χ(wU−1g)

(2|A|)n dg > 0 , (15)

which implies that ∃g ∈ SU (d) and w ∈ Wn such that χ(g) 6= 0 and χ(wU−1g) 6= 0. Thus |g − I| < ε/2 and
|wU−1g − I| < ε/2, implying that |w − g−1U | < ε/2. Combining these and using the triangle inequality gives
|w − U | < ε.

4 A class of efficiently universal gate sets

In this section we show that for each d there exists a set of gates Gd in SU (d) such that Λ(Gd) < 1 (and thus Gd is
efficiently universal). We begin with a result demonstrating this for SU (2) and then extend it to SU (d).

Lemma 2 (Lubotsky, Phillips and Sarnak) Let

V1 =
1√
5

(
1 2i
2i 1

)
, V2 =

1√
5

(
1 2
−2 1

)

and V3 =
1√
5

(
1 + 2i 0

0 1− 2i

)
. (16)

Then λ = Λ({V1, V2, V3}) =
√

5
3 < 1. Furthermore, for any U1, U2, U3 ∈ SU (2), Λ({U1, U2, U3}) ≥ λ.

The proof of this Lemma is presented in [16, 17]. Let G2 = {V1, V2, V3}, as it is a family of quantum gates from
SU (2) for which Λ is strictly less than one. The optimality of Λ for this set is an interesting aside, but has little bearing
on what follows.

Extending the result to SU (d) will require slightly more effort. To this end, if Ik denotes the k×k identity matrix,

then, for any U ∈ SU (2) and 2 ≤ j ≤ d, define β(d)
j (U ) to be

β
(d)
j (U ) =




Ij−2 0 0
0 U 0
0 0 Id−j


 ∈ SU (d). (17)

We will typically omit the (d) where it is understood.
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Lemma 3 (Diaconis and Shahshahani) Let {Gij}, 1 ≤ i < j ≤ d be a series of
(
d
2

)
independent random matrices in

SU (2) that are chosen uniformly according to a Haar measure. Then

d−1∏

i=1

d∏

j=i+1

βj(G
i
j) (18)

is uniformly distributed in SU (d).

This Lemma is proved in [18]. It means that if we had access to random elements of SU (2) that were completely
uniformly distributed, then we could generate uniformly distributed elements of SU (d). When the elements of SU (2)
are only approximately uniform, we can bound the distance to uniformity of the words they form by using what is
known as a hybrid argument: [19]

Lemma 4 (Bernstein and Vazirani) If U1, . . . , Um, V1, . . . , Vm are linear operators such that |Ui| ≤ 1, |Vi| ≤ 1
and |Ui − Vi| < δ, then |Um · · ·U2U1 − Vm · · ·V2V1| < mδ.

Proof If we replace a single Ui in the product Um · · ·U1 with the corresponding Vi, then the entire product will still
change by less than δ since |AB| ≤ |A| · |B| for any operatorsA,B. Thus we can construct a series ofm+ 1 “hybrid”
operators, which start with U1 · · ·Um , end with V1 · · ·Vm and are each separated by less than δ. The proof follows
from the triangle inequality.

We now combine all of the other results in this section to demonstrate a set of gates in SU (d) for which Λ is strictly
less than one.

Proposition 5 For any d > 2, define Gd by

Gd = {βj(V ) | 1 ≤ j ≤ (d− 1), V ∈ G2} . (19)

Then Λ(Gd) < 1.

Proof
The approach of our proof will be to approximate the uniform distribution in Lemma 3, and then we show that this

forces Λ to be less than one. To this end, let Rm ⊂Wm(d2)
(Gd) be the set of all products of the form

d−1∏

i=1

d∏

j=i+1

βj(G
i
j) (20)

such that the Gij are selected from Wm(G2).

From Lemma 2 we have that ∀m, |T (V1, V2, V3) − P |m = λm for some λ < 1. There are
(
d
2

)
terms in Eq. 18,

each of which is approximated to within an accuracy of λm by the appropriate lengthm substring ofRm. Thus, using
the hybrid argument and Lemma 3 gives that

Λ(Rm) =

∣∣∣∣∣
∑

w∈Rm

w̃ − P
|Rm|

∣∣∣∣∣ ≤
(
d

2

)
λm . (21)

Now, if we let R′m denote Wm(d2)
− Rm then

Λ(Wm(d2)
) ≤ |R′m|

|W | Λ(R′m) +
|Rm|
|W | Λ(Rm)

≤
(

1− |Rm||W |

)
+
|Rm|
|W | Λ(Rm)

= 1− |Rm||W | (1− Λ(Rm)) . (22)

If we choose m large enough so that
(
d
2

)
λm < 1, then this last expression will be less than one, and Λ(Gd) < 1.

Thus, efficient quantum compiling is possible for d-dimensional systems, given the appropriate choice of base gate
set.
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5 Lower Bounds

This proves that sets of base gates exist which can achieve a precision of ε in O(log 1/ε) gates, but can we do any
better? An ε-ball in SU (d) has measure of order εd

2−1, so if we expect to cover all of SU (d) with strings of length n,
then we will require (2|A|)nk2ε

d2−1 > 1, or equivalently,

n ≥ d2 − 1

log 2|A| log 1/ε− logk2

log 2|A| . (23)

Thus the result is optimal up to a constant factor. This fact is quite general, since it follows from simple counting
arguments. However, if the assumptions of the problem are relaxed to allow many gates to act in parallel, then using
ancilla qubits it is possible to approximate single-qubit gates with a circuit of size poly(log1/ε) but depth of only
poly(log log 1/ε).[?] This construction, like the one in this paper, relies on having access to a specific set of base gates;
to date, only the Solovay-Kitaev theorem applies to any computationally universal set.

In our original problem, though, eliminating the constant linear factor turns out to be impossible. Consider any
set A of l base gates that is not computationally universal. Let B(A, δ) be the set of gates obtained by perturbing
each gate in A by no more than δ. Then B(A, δ) has non-zero measure (in SU (d)l), almost all of its elements are
computationally universal and from the hybrid argument, any string of length n drawn from gates in B(A, δ) will be
within nδ of something in the (non-dense) group generated by A. Since we can make δ arbitrarily small, any fixed
prefactor in front of log 1/ε will fail on a computationally universal set of non-zero measure for some values of ε.

Note that unlike most results about quantum compiling, this argument also holds if the base gates are parameter-
ized; say, A1, . . . , Al are elements of the algebra su(d) and a single operation now has the form e±Ait, for any t > 0.
The above proof demonstrates that there exist sets with non-zero measure which require arbitrarily many steps, even if
the steps are continuous. If we measure cost not in terms of number of steps, but by the total time taken, then we have
to modify the argument slightly. For small values of t, |eAit − I| is on the order of tδ, but for large t the difference
never gets any higher than δ. This means that no matter how many steps we take, in time t, we will stay within tδ of
some non-dense subgroup and the same result holds.

These results can be obtained more simply by considering the (non-zero measure) set of gates which are very close
to the identity. If every gate does very little, then we will need a large number them in order to accomplish anything.
The reason why universal sets that are very close to non-universal sets are interesting is because of their frequent
appearance in actual physical systems, such as NMR under the weak coupling approximation.[20]

6 Conclusions

We have found a condition that implies the efficient universality of a set of gates and demonstrated a family of gate sets
in SU (d) that satisfy this condition. This means that given access to such a gate set, arbitrary quantum gates can be
approximated to accuracy ε using only O(log 1/ε) gates. Such knowledge will likely be invaluable in crafting future
physical implementations of quantum information processing systems.

Many open questions remain, however. For example, determining or bounding Λ (even numerically) for a given
set of base gates seems to be very difficult, though it is likely an important step in determining the prefactor C , which
measures how effective a set of gates would be for compiling. The method used by [16, 17] involves specialized
arguments from number theory that do not generalize easily to other sets of gates or to SU (d) for d > 2. Our proof
(like the Solovay-Kitaev algorithm) also requires the ability to perform the inverse of each gate in the base set. This
restriction feels unnecessary, yet very little is known in the case where inverses are unavailable.

More broadly, it is also generally unknown which gate sets are efficiently universal and when Λ < 1. Note that
Λ(A) < 1 implies that A is efficiently universal, but the converse is not known to be true. Thus it is possible that the
questions of efficient universality and Λ being less than one will be settled separately.

However, if Λ(A) were to be a continuous function of A (for fixed |A|), then the situation would simplify con-
siderably. In this case, it is not hard to show that Λ(A) < 1 if and only if A is computationally universal, so that
computational universality, efficient universality and Λ < 1 would all become equivalent conditions. We suspect that
this is the case, but have been unable to prove it.

Finally, the techniques used in our results do not suggest any efficient (i.e. running time polynomial in log 1/ε)
algorithms for quantum compiling. The most important, and possibly most difficult, open problem remaining is to find
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a polynomial time algorithm to approximate any unitary gate by a fixed efficiently universal set of base gates with a
string whose length saturates the O(log 1/ε) bound.
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