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ABSTRACT

We present a method of musically expressive synthesis-by-analysis
that takes advantage of recent advancements in auditory scene anal-
ysis and sound separation algorithms. Our model represents in-
coming audio as a sub-conceptual model using statistical decor-
relation techniques that abstract away individual auditory events,
leaving only the gross parameters of the sound– the “eigensound”
or generalized spectral template. Using these approaches we present
various optimization guidelines and musical enhancements, specif-
ically with regards to the beat and temporal nature of the sounds,
with an eye towards real-time effects and synthesis. Our model
results in completely novel and pleasing sound textures that can be
varied with parameter tuning of the “unmixing” weight matrix.

1. INTRODUCTION AND BACKGROUND

There are many ways to generate perceptually lifelike sounds [1]
but our main interest is making these texturesmusical– that is,
finding analytical approaches that generate musical textures for
parameterized synthesis. We discuss below a method to generate
interesting sound textures from a large amount of ‘source’ audio
material and ways to control the synthesis process in real-time.

Much of this work was influenced by pure audio analysis tech-
niques; specifically the case of general audio understanding tools
or classification, but also the auditory scene analysis and source
separation literature. Representing audio as a weighted set of sta-
tistical basis functions as in [2] is used in the MPEG-7 standard
for coding audio representation and classification.

Other synthesis measures for creating sound textures have used
linear prediction [3] to capture both time and frequency informa-
tion, and also functional iteration synthesis [4] to generate realistic
rain and thunderstorm sounds. Other texture generation techniques
have used the principal components analysis (PCA) transform [5].

In the image domain, we find many applications of princi-
pal components analysis for recognition and synthesis [6]. The
analogy of sound textures is prevalent in image and movie cod-
ing, specifically to generate realistic non-linear natural image se-
quences [7].

Here we explore using the residuals of these statistical audi-
tory analysis techniques to generate musically-interesting and con-
trollable textures.

1.1. Statistical Decorrelation Techniques

In general, removing statistical dependence of observations is used
in practice to dimensionally reduce the size of datasets while re-
taining important perceptual features. Many audio analysis sys-
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Figure 1: Spectrograms of the stages towards generalized audio.
The original signal (drums and guitar for 3 seconds) is first rank-
reduced in frequency (the beats are still visible) and then rank-
reduced in time (where the final texture is shown.)

tems use these techniques as a pre-processing step prior to classi-
fication for understanding, as in [8].

1.1.1. PCA

Principal components analysis(PCA) aims to reduce the dimen-
sionality of a data set by only keeping the components of the sam-
ple vectors with large variance. By projecting onto these highly
varying subspaces, the relevant statistics can be approximated by
a smaller dimensional system. This provides efficiency in storage,
regression, and estimation as algorithms can take advantage of the
statistical compression.

1.1.2. Singular Value Decomposition

The main tool of Principal components analysis is called theSin-
gular Value Decomposition(SVD) [9]. The SVD provides both a
framework and a convenient algorithm for diagonalizing the sam-
ple covariance matrixCx. Givenn data points of lengthm, we
can construct a matrixA = [(x1 − x̄)/

√
n . . . (xn − x̄)/

√
n].

There exist unitary matricesU of sizem×m andV of sizen×n
such that

UT AV = Σ = diag(σ1, . . . , σn) (1)

with σ1 ≥ . . . ≥ σn ≥ 0. Using this, we see that

Cx = UΣVT VΣUT = UΣ2UT (2)
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Figure 2: General overview of our synthesis by analysis system. Time domain audio is converted to the frequency domain and then rank-
reduced to a low number of frequency dimensions. Multiple short time chunks of these frequency fingerprints are then lined up and given to
another PCA algorithm, which reduces dimensionality along the time axis. The end result is a spectral fingerprint representing “generalized
audio,” or the observational mean of the audio perception. This resultant data is invertible back to the time domain via inverting both the
time and frequency PCA weight matrices. Enhancements to this process (described below) include adaptive dimensionality reduction (for
a real-time effect implementation) and beat and tempo locking for synthesis of a generalized texture loop.

and thus computing the SVD ofA is equivalent to diagonalizing
the covariance matrixCx. Furthermore, by computing the SVD,
we find the appropriate scheme for dimensionally reducing the
samplesxn. Writing U = [u1 . . . um], we can take the firstK
singular values and construct the matrix

W = diag(1/σ1, . . . 1/σK)[u1, . . . , uK ]T (3)

Then the dataWxk will be vectors of lengthK and each compo-
nent of the vectors will be uncorrelated with variance 1.

2. APPROACH

Our general approach is illustrated in Figure 2. We start with a
source signaly(t) which is usually a few measures long. We first
create a spectrogram and perform an initial complex-valued PCA
(which creates the first weight matrixW1) on the spectra along the
frequency domain, reducing theb bins of frequency resolution to
a statistically-uncorrelated set of rank-reduced bins. This reduced
spectraA is then cut up into uniform-length pieces, each of which
are unrolled to a single vector and treated as a column of the new
observation matrixM.

We find that best-sounding results on beat-oriented data are
achieved when the observations areregistered. Registration aligns
the tempo and start point of each observation. Various techniques
can be used to achieve registration, such as beat detection [10] or
hand-alignment. We then compute another PCA onM, reducing
the time resolution. (This creates our second-order weight matrix
W2.) TheW1 andW2 saved are then used to resynthesize the
reducedM back to ayr(t). The result of this process is shown in
Figure 1. We note that theW1 step is not critically necessary in
an offline process– it often colors the timbre, and if computational
power and memory is available to store the entire rank of frequency
rather than the reduced representation, the PCA on the frequency
domain can be omitted.

3. MUSICAL IMPLEMENTATION

We next describe the steps we take to make the generalized audio
musical and useful as both an effect and a controllable synthesis
technique.

3.1. Musical Parameters

If we view this process as a source separation technique, the gen-
eralized audio created in the default case is better represented as
the optimal mixing (given the constraints and parameters) of the

decorrelated spectral activity. To make an evolving musical tex-
ture expressive, we can modulate the mixing parameters of the
generalized audio using a multi-controller mixer paradigm. Each
‘optimal channel’ controller affects the relative strength of one in-
dependent audio feature over the time period of the texture. There
can be as many channel controls as there is rank in theW1 andW2

weight matrix. In a loop-based resynthesis situation, there can be
envelopes placed on the weighting matrices of both frequency and
time.

3.2. Time and Beat Matching for Tempo-Locked Effects

In an offline “model-building” situation we have found success
with aligning each example sound to a common beat template.
For example, givenn source sounds (orn subdivisions of a single
source sound) with heavy beat content, we choose a source beat
clock soundn∗ through some heuristic manner (beat strength, pe-
riodicity, or complexity.) We choose a period length of this beat
clock and all other sounds are then warped to this source using a
dynamic time warping algorithm (DTW) [12] which uses the the
magnitude of the PCA-down-weighted frequency as its examples
and a gaussian cost function

V (x1, y2) = e
− (|x1−y2|)

2

σ2 , σ = 0.5 (4)

to find the best fitting path of an example soundn in the tempo
space ofn∗.

Using the above cost function, dynamic time warping finds
an optimal warping pathw(k) through FFT space by solving the
dynamic program

g1(x1, y1) = V (x1, y1)w(1)

gk(xk, yk) = min
xk,yk

gk−1(xk−1, yk−1) + V (xk, yk)w(k) (5)

Herexk is a particular FFT frame of the example sound andyk is a
frame of the tempo master. The resulting seriesxk is a time series
for the playback of the frames ofn so that they are tempo locked
to n∗.

The result is a set of same-length examples of audio, all with
roughly the same beat structure (as much as would be reflected
in the spectral magnitudes.) We then iterate through each period
length ofn∗ in this manner for a user-specified amount of time,
creating an evolving structure that retains the tempo information
of n∗ but whose frequency and time envelopes are generalized
from the other sound examples. This process is implemented in
Eigenradio [11], an on-line art project that synthesizes a constant
stream of generalized audio from multiple real-time radio sources.
See Figure 3 for a diagram.
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Figure 3: Offline generalized audio synthesis process used in the Eigenradio[11] system to create a constant stream of sound texture from
multiple real-time sources. Radio data from multiple stations is segmented into songs. The generalized audio process then creates theW1

(here thef by fw matrix) and time stretches equally-sized periods of example songs to a common time base (obtained from a beat detection
component) using a dynamic time warping algorithm (here labeled DTW) before creating theW2 (thetn by tw matrix) and resynthesizing
a single song from the many examples.

3.3. Considerations for a Real-Time Implementation

We also consider work in two real-time scenarios– effect and syn-
thesis. In the synthesis case, a model is trained offline of a long
sample, broken into the necessary subdivisions. The regenerated
audio from the model is looped as a single generalized subdivision
(possibly beat-locked to the host’s tempo.) In this case an offline
DTW beat registration step is helpful to align time information in
the loop.

The effect scenario uses adaptive methods of dimensionality
reduction to synthesize generalized audio from real-time sources.
We initialize randomly ourW1 andW2 and buffer incoming audio
into the chunk size necessary for the time envelope generaliza-
tion. As the required amount of data comes into to the buffers,
we update our weight models iteratively, which requires far less
processing time than solving the system of equations at once.

There are several iterative update rules for computing an ap-
proximate PCA factorization. An attractive method is an adapta-
tion of Seung and Lee’s Non-negative Matrix Factorization algo-
rithm [13] for general PCA. This algorithm finds a local minimizer
of component-wise norm

‖V −WT‖ (6)

whereV is a givenn×m matrix andW andT are matrices of size
n × r andr ×m respectively. Such a factorization can be found
using the update rules

T new
kj = Tkj

(W>V )kj

(W>WT )kj

W new
ik = Wik

(V W>)ik

(WTT>)ik

(7)

If the matrixV is positive, the iterative algorithm returns only posi-
tiveW andT matrices. In our case,V is a general complex-valued
spectrogram and we cannot restrict theW andT to be positive. In-
stead, the iterations returns a proxy for a rank reduced model of the
frequency spaceW and time spaceT by forcingW andT to have
the same component-wise norm. In real time, the matrixV will
be constantly changing with the input stream and henceW andT
will never settle to a final answer, but will be pulled to a general
center of frequency/time down-weightings.
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Figure 4: Mockup of real-time synthesis interface from a trained
model. Users can adjust the weighting of the various time and
frequency components from the source audio as the loop plays.
MIDI control can LFO or apply envelopes to the parameters.

In both real-time effects models an interface allows the user to
tweak the mixing parameters of the frequency and time resynthe-
sis. In future implementations these parameters can be controlled
by ADSR envelopes or LFOs for musical control locked to master
tempo. See Figure 4 for a potential user interface to the real-time
synthesis system.

4. CONCLUSIONS

We presented a model of musical synthesis-by-analysis based on
auditory scene and source separation research that allows for ex-
pressive generation of sound textures. We are currently extending
our model to the real-time implementation and are investigating
user interface solutions for controlling the mixing parameters of
the resynthesized textures.
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