
SVG-PCB: a web-based bidirectional electronics board editor
Leo McElroy

Independent researcher
USA

leomcelroy@gmail.com

Quentin Bolsée
Vrije Universiteit Brussel

Belgium
quentinbolsee@hotmail.com

Nadya Peek
University of Washington

USA
nadya@uw.edu

Neil Gershenfeld
Massachusetts Institute of Technology

USA
neil.gershenfeld@cba.mit.edu

Figure 1: Web-based editor (left) and resulting circuit board (right).

ABSTRACT
We present an open-source, web-based, client-side editor for para-
metric printed circuit board (PCB) design which supports bidirec-
tional editing between our JavaScript hardware description lan-
guage and a direct manipulation graphical interface. We developed
a JSON format for describing component pads as SVG path data
strings, referential component placements, and wire descriptions
with curves, arbitrary degree Bezier splines, fillets, and chamfers.
Boards can be exported in their JavaScript representation, as SVGs,
or in Gerber format. The web-editor also supports interactive el-
ements which update PCB designs in real-time such as number
sliders, component translation handles, and drag-and-drop com-
ponent libraries. Our tool was successfully used for developing
and sharing basic boards in a distributed global class on digital
fabrication and by researchers to produce procedurally generated
designs. SVG-PCB offers the power and flexibility of a general pur-
pose programming language for designing boards with the ease of
use of a graphical user interface.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCF ’22, October 26–28, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9872-5/22/10. . . $15.00
https://doi.org/10.1145/3559400.3562004

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Applied computing→ Computer-aided manufactur-
ing; • Software and its engineering → Domain specific lan-
guages.

KEYWORDS
Electronics, EDA, HDL, web-based

ACM Reference Format:
Leo McElroy, Quentin Bolsée, Nadya Peek, and Neil Gershenfeld. 2022. SVG-
PCB: a web-based bidirectional electronics board editor. In Symposium on
Computational Fabrication (SCF ’22), October 26–28, 2022, Seattle, WA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3559400.3562004

1 INTRODUCTION
Printed Circuit Board (PCB) design allows people to create non-
trivial electronic devices. Designing PCBs is traditionally done in
Electronic Design Automation (EDA) software, popular examples
of which include Altium, Cadence, and free and open-source alter-
natives [Save et al. 2013][KiCad 2017]. Designing and making PCBs
has become increasingly accessible; PCB manufacturing techniques
using entry-level digital fabrication tools lower the barrier to entry
and enable new form factors and applications [Mellis et al. 2013;
Steimle 2015]. Further broadening access to PCB design and fabrica-
tion tools enables the creation of a long tail of complex electronics
prototypes and eventually devices [Khurana and Hodges 2020].

https://doi.org/10.1145/3559400.3562004
https://doi.org/10.1145/3559400.3562004

SCF ’22, October 26–28, 2022, Seattle, WA, USA Leo McElroy, Quentin Bolsée, Nadya Peek, and Neil Gershenfeld

However, there are limitations to current approaches to PCB de-
sign [Lin et al. 2019]. Currently, PCB design software typically dis-
tinguishes between schematic and layout phases. In the schematic
phase, users specify the components (such as passives or specific
microcontrollers) and the electrical topology of their circuit. In the
layout phase, users define the component packages and their place-
ment, and the specific interconnections through traces and vias,
which reifies the schematic. Both of these phases rely extensively
on GUIs and manipulating components with a mouse. Making mod-
ifications to the schematic after layout has already been done can
produce errors which need to be manually corrected. There is a lack
of bidirectionality between the phases, which results in friction in
the process.

We argue that parametric PCB design tools could address some
of these issues. We specifically argue that using a programming
language for PCB design will allow users to parametrically define
and automate board design. Furthermore, programming PCB design
enables the use of programming language techniques for verify-
ing program correctness. This is an approach taken by Hardware
Description Languages (HDLs) [Lin et al. 2021; Mashtizadeh 2007;
Shahdad 1986], but these thusfar have had a high threshold to adop-
tion. Rather than create a new domain specific language we use an
existing general purpose language, JavaScript, along with a small
library for describing PCBs which serves as the HDL. We present
SVG-PCB, both a JavaScript HDL and a browser-based editor for
designing small-scale PCBs. The language provides users the capa-
bility to programmatically and parametrically describe relationships
and placements of board features. The editor supports textual and
graphical representations which are linked through bidirectional
mechanisms. We specifically target the design of small-scale boards
for interactive devices, an example of which is shown in Figure 1,
focusing on hardware’s long tail [Hodges and Chen 2019].

With SVG-PCB, we demonstrate an accessible approach to creat-
ing PCBs which can be easily shared and modified. Our board de-
scriptions are flexible enough to support structured algorithmic rep-
resentations but retain the user-friendliness of direct-manipulation
interfaces, thanks to bidirectional editing mechanisms.

The remainder of this paper is structured as follows: section 2
presents related work and contrasts our approach, section 3 gives
an overview of the features and design choices of our tools, then
their implementation in JavaScript is discussed in section 4. We
provide an evaluation of our tool through demonstration applica-
tions in section 5, followed by future work in section 6 and finally
a conclusion in section 7.

2 RELATEDWORK
In this section, we provide an overview of related work and con-
textualize our contribution in this space. We focus on two main
areas of related work: systems research on PCB design tools and
hardware description languages for PCB design. For our system,
we build upon prior work in geometry processing and user inter-
face development; this prior work is described in Section 4 System
Implementation.

2.1 Toolkits Supporting Electronics Design and
Fabrication

Creating tools for PCB design, fabrication, and debugging is an
ongoing research topic. Prior research includes methods for making
circuit design more iterative and accessible [Lo and Paulos 2014;
Qi and Buechley 2014; Qi et al. 2015], software tools for designing
unconventionally shaped circuits [He et al. 2022; Hong et al. 2021;
Umetani and Schmidt 2017; Zhu et al. 2020], integrating circuits
into existing objects [Ramakers et al. 2016; Tseng and Kawahara
2021], and hardware tools for cross-referencing PCB components to
schematics and datasheets [Goyal et al. 2013; Strasnick et al. 2019].
This prior work demonstrates extensive interest in creating tools
that support electronics design and fabrication.

This recent interest in electronics design tools can be partially
attributed to the Maker Movement, which has significantly broad-
ened interest in interactive technology development [Kuznetsov
and Paulos 2010; Lindtner et al. 2014; Tanenbaum et al. 2013]. As
new groups of people take up electronics design and fabrication,
researchers are exploring how their interests may inform new sys-
tems and methods, for example creating biodegradable electronics
to reduce environmental impact [Arroyos et al. 2022; Song et al.
2022] and friendly electronics design tools [Knörig et al. 2009; Save
et al. 2013; Vidal-Silva et al. 2019; Willis 2015].

While circuit board design tools targeted at the Maker Move-
ment have seen an increase recently, we note that none of these are
focused on parametric design, or leveraging the benefits of integrat-
ing programmatic representations within the tool. This results in
tools that are easy to learn initially, but limited in their capabilities
in the long run. It also results in designs which are difficult to share
and modify among users.

2.2 Hardware Description Languages (HDLs) for
PCB Design

Historically, HDLs were first proposed for describing logic-level
functionality in complex Integrated Circuits (IC) such as FPGA
and ASIC [Flake et al. 2020]. Simulation tools interface naturally
with HDL descriptions, and the board layout can be automatically
generated. Nelson et al. [Nelson et al. 2012] proposed a new form of
HDL that focuses on PCB design rather than IC. Themain advantage
is an object-based description of the schematic, rather than manual
user inputs, while maintaining full flexibility when generating the
PCB layout.

Although most HDL is described in its own language, Mashti-
zadeh [Mashtizadeh 2007] showed how a modern programming
language like Python is an efficient environment for describing
hardware at a high level. More recently, Lin et al. [Lin et al. 2021]
have demonstrated bidirectional editing between Python code and
a graphical representation. However, these works do not consider
the physical layout of the generated board. The user has therefore
no control over the practical aspects of the shape, impacting its
ease of fabrication in the context of the Maker community.

Finally, while there are examples of web-based HDLs [Dasygenis
2014], there is to our knowledge no tool that takes advantage of the
browser’s JavaScript interpreter and is fully client-side. To summa-
rize, our primary improvement over existing HDLs is representing

SVG-PCB: a web-based bidirectional electronics board editor SCF ’22, October 26–28, 2022, Seattle, WA, USA

Figure 2: View of SVG-PCB, showing the text editor (left) and the graphical interface (right).

both board connectivity and layout, while leveraging an existing
general-purpose language.

3 USING SVG-PCB
SVG-PCB was created to help beginner board designers produce
simple designs and re-mix existing board designs quickly and easily.
To develop a board users can start by visiting the SVG-PCB website
1. Because it is entirely client-side users need not download or
configure the software to run locally. Users can define the footprints
of their board design using plain serializable object representations,
or by importing those representations from existing libraries or
external URLs. Users then instantiate a board object which can be
used to place components on the board and add wires with arbitrary
curves. Users can also create arbitrary geometry to define irregular
board shapes. Finally users can render the board by mapping board
layers to colors and exporting the board as an SVG or Gerber file.
The board can be easily shared through its JavaScript description.

To illustrate the usage of SVG-PCB throughout section 3 we will
consider the hypothetical user, Diana. Diana is a small business
owner who makes custom LED lamps. Diana wishes to produce a
custom PCB that fits precisely into a new enclosure her company
designs. When first opening SVG-PCB she is presented with the
interface shown in Figure 2.

3.1 Footprint Description
Our illustrative user, Diana, copies the majority of a previous PCB
description for her LED lamp. But she wants to modify the LEDs
that are used and the way they are positioned on the PCB. Starting
from the new LED’s datasheet, Diana defines a footprint for the
new LED component.

A footprint specifies the landing pattern a component will later
be soldered onto. Our footprint definition follows a straightforward
philosophy:

• Each pad must have a unique name
• Their shape is a general SVG path
• The pad can affect one or more layers

1https://leomcelroy.com/svg-pcb-website/

Footprints of this type can be represented/serialized as purely
generic objects, making it suitable for interoperability with other
EDA tools. The data model is as follows:

1 {

2 padName: {

3 pos: [x, y],

4 shape: "as SVG path data string",

5 layers: ["F.Cu"]

6 }

7 }

Here, F.Cu refers to the front copper layer. This is probably
the default layer one would use most of the time. The pos value
positions the pad relative to the center of the component. The shape
is then centered around pos . A pad can be on multiple layers.

3.2 Adding Components
Diana then wants to add the component she just defined to the
board she is designing.

Components can be added to the board by specifying a footprint
object, a position and angle. The result is a component object which
can be used to access pad positions. Consequently users can directly
reference a pad of a given component when placing another compo-
nent or tracing wires, making parametric boards with little added
complexity for the user. Figure 3 shows an example component
placement.

3.3 Wire Description
Diana then defines the interconnections between the components
by specifying wires. Wires can be described with a list of points,
chamfers, fillets, and Bezier curves of arbitrary degree, as illustrated
in Figure 4.

The different types of points in a wire path are interpreted as
follows:

• Default: a regular point, simply containing a x and y

coordinate.
• Chamfer: specified by a chamfer command followed by
the radius of the chamfer and the location of the corner being
chamfered.

• Fillet: same logic as chamfers but have a rounded corner.

SCF ’22, October 26–28, 2022, Seattle, WA, USA Leo McElroy, Quentin Bolsée, Nadya Peek, and Neil Gershenfeld

Figure 3: Component objects can be instantiated from a footprint.

Figure 4: Different type of wire points. Left to right: regular (a), chamfer (b), fillet (c) and Bezier splines (d).

• Bezier spline: specified by a bezier command followed
by points for the location of each desired control handle.

An example wire path can be seen below:
1 board.wire([

2 [x1, y1],

3 [" chamfer", r1, [x2, y2]],

4 [" fillet", r2, [x3, y3]],

5 [x4, y4],

6 [" bezier", [x5, y5], [x6, y6]],

7 [x7, y7]

8], thickness)

Chamfers and fillets can not be the first or last elements of a wire
because they must be applied at corner points and need a direction
when computing their geometry. Beziers must be preceded and
proceded by plain (non-chamfered and non-filleted) points, in order
to avoid over-constrained geometry. Wire thickness is passed as an
additional parameter when creating a wire.

3.4 Arbitrary Geometry
Diana’s lamp design requires specific irregular geometry. Arbitrary
geometry can be defined from SVG path data which allows Diana
to shape her board to her curvy lamp. This geometry can be added
to any layer of the board.

3.5 Rendering a Board
Finally, Diana renders the PCB and exports it for fabrication. Boards
can be rendered by specifying the target PCB, the target layers with
certain colors, the x and y limits which will be generated upon
export, and the real life scale. An example render is seen below:

1 renderPCB ({

2 pcb: board ,

3 layerColors: {

4 // "layer": "hex",

5 "interior ": "#002 d00ff",

6 "F.Cu": "# ff8c00cc",

7 "padLabels ": "# ffff99e5",

8 "componentLabels ": "#00 e5e5e5",

9 },

10 limits: {

11 x: [minX , maxX],

12 y: [minY , maxY]

13 },

14 mm_per_unit: 25.4

15 });

4 SYSTEM IMPLEMENTATION
SVG-PCB embeds a JavaScript code editor which performs incre-
mental parsing, with a geometry engine that generates board visu-
alizations and export formats. The entire system is designed to sup-
port real-time interaction performance rates (repeated operations
perform in <10ms) in order to enable the bidirectional manipula-
tion features described below. The PCB data structure associates
footprints, shapes, and wire descriptions with named layers of the
board. These layers can be retrieved quickly as unflattened paths
or flattened into the outlines of real geometric features.

The design goals of our system are:

• Allow creation of fully parametric PCBs with formally de-
fined component connectivity and geometric placement.

• Leverage familiarity with a fully-fledged programming lan-
guage to accommodate procedural and programmatic de-
signs.

• Create an easily shareable self-contained representation of
PCBswhich contains footprint declarations, component place-
ment, and wire geometry.

SVG-PCB: a web-based bidirectional electronics board editor SCF ’22, October 26–28, 2022, Seattle, WA, USA

Figure 5: Rendering results with multiples layers (a), and with only traces in black (b).

• Allow users to leverage the flexibility and power of program-
matic representations with the ease of direct manipulation
interfaces through bidirectional editing.

In the remainder of section 4 we will explain the bidirectional
editing feature set, algorithms and techniques used to achieve in-
teractive performance rates, how constraints can be described, and
the output formats of the tool.

4.1 Bidirectional Editing
One of the primary advantages of our tool is providing the power
and flexibility of formal representations through textual interfaces
with the ease of manipulating a graphical interface. The challenge
in providing the user with both representations is synchronizing
manipulations of the design that occur in either. Bidirectional edit-
ing allows users to manipulate either representation, textual or
graphical, while keeping both in sync. Available graphical manip-
ulations are determined by the text source file and graphical user
interactions map to intuitive alterations of the text. There are three
mechanisms that enable intuitive user interaction:

• Any numerical constant in the code editor can be dragged
with the mouse cursor. For instance, a constant defining the
position of a component or wire can be modified in this way,
showing real-time updates in the render.

• A number of visual handles in the graphical interface let
users move positions. This affects the code by adding or
modifying an additive constant to an item’s position. Com-
ponents and wires can be manipulated in this way.

• New components can be added from the graphical inter-
face by selecting a footprint from a component toolbox and
dragging it into the design. The adequate lines of code are
automatically added for instantiating the component at the
target location.

4.2 Real-Time Interaction
Real-time interaction performance rates are necessary to support
bidirectional manipulation. The computations associated with these
manipulations have to be highly efficient to keep interactions re-
sponsive. When the syntax tree is altered by direct manipulations
the entire board program is evaluated. We utilized a variety of
techniques in order to prevent this evaluation from lagging user

interactions. These techniques include selectively generating com-
plete board geometries based upon user actions, relying on the
code editor’s incremental parsing of the concrete syntax tree for
analysis of the source file structure, and selectively updating the
application user interface upon state changes with tagged template
literal rendering. Complete board layer geometries are calculated
only during export.

For visualization, board layers are rendered as SVGs and non-
expanded wires are rendered as paths with the appropriate stroke
thickness. Upon export to real geometry we apply Angus Johnson’s
expanded implementation of Bala R. Vatti’s clipping algorithm
[Vatti 1992] to expand wire geometries and generate collapsed
outlines of all layer geometry.

Abstract syntax tree manipulation is accelerated by leveraging
CodeMirror’s 2 incremental parsing system, Lezer. Incremental
parsing is a technique to avoid re-parsing entire concrete syntax
trees for source files by parsing a source file once and efficiently
updating it upon edits [Wagner and Graham 1998]. These concrete
syntax trees represent the source texts exactly, whereas an abstract
syntax tree only represents the content-related details. Incremental
parsing is notably used in the Tree Sitter project 3, and commonly
applied to develop syntax highlighting systems. When editing por-
tions of the syntax tree through direct manipulation, such as when
dragging a component, the corresponding textual representation
is identified by walking the entirety of the programs syntax tree.
The sub-tree representing the translation is then modified and con-
verted back to textual form which is then re-inserted into the source
file. The modified portion is then re-parsed and the entirety of the
syntax tree reanalyzed upon further action. Analyzing the entire
syntax tree to identify relevant snippets which must be rewritten
allows the system to be robust, while preserving its performance
by only re-parsing modified snippets.

The application is efficiently rendered by only preforming costly
Document Object Model (DOM) updates to portions of the view
modified by state changes. This is enabled by diffing changes in the
view through tagged template literals before updating the DOM
itself, we utilize Andrea Giammarchi’s uhtml library for this 4.

2https://github.com/codemirror
3https://github.com/tree-sitter/tree-sitter
4https://github.com/WebReflection/uhtml

SCF ’22, October 26–28, 2022, Seattle, WA, USA Leo McElroy, Quentin Bolsée, Nadya Peek, and Neil Gershenfeld

Figure 6: Example boards used for teaching digital fabrication, including ATSAMD11C14 USB-to-serial bridge (a), ATtiny1614
with GPS module (b), ATtiny3216 serial echo (c) and ESP32 development board (d).

Figure 7: Left: example board design using SVG insertion and Bezier splines wires. Right: resulting board milled on a desktop
CNC milling machine.

4.3 Referential Constraints
Referential constraints refer to the ability to reference pad and
component positions as variables. This allows users to build up
dependent board designs that maintain internal structure upon
changes. Constraints can be encoded in the programmatic descrip-
tion of the board. Component pads can be referenced when placing
other components or wires. Consequently users can place compo-
nents and board features with relative dependencies to other board
features. An example of such a placement would be positioning a
component 10mm to the right of a ground pin of another compo-
nent. If the ground pin were to be moved the component to the
right would remain 10mm to the pin’s right.

4.4 Output
Exporting files for PCB fabrication is a critical component of EDA.
SVG-PCB supports export in multiple formats, accommodating
both industrial boardhouse expectations and digital fabrication
techniques such as milling. The main output format is a multi-
layered SVG, as this is the native format used during editing. The
user selects the board layers to be rendered as well as their color

and transparency. We also support Gerber file export for common
layer types.

The output layers and colors are defined in a function call in
the textual representation, this leaves full freedom to the user for
generating different outputs based on conditional statements.

5 APPLICATIONS
Here, we present a variety of applications that emerged over the
course of a year refining and sharing our tool with an active com-
munity of makers, programmers, and researchers. Some of these
use cases demonstrate the basic features that we planned for, while
others display the wanted side effects of including a fully-fledged
programming language within the editor.

5.1 Basic Boards for Education
SVG-PCB was successfully applied in an educational environment,
namely as part of a global class on digital fabrication 5. Over 40
simple boards were distributed through URLs, each demonstrating
a basic electronics principle or device. 6 depicts some of these
designs. These boards are primarily surface mount and designed to

5https://fabacademy.org/

SVG-PCB: a web-based bidirectional electronics board editor SCF ’22, October 26–28, 2022, Seattle, WA, USA

Figure 8: Code generating a procedural array of components (a), with arbitrary length and automatic wiring. Examples are
shown for 𝑛 = 3 (b) and 𝑛 = 6 (c).

Figure 9: Reconfigurable board, where the user can select connectors and some components (here, the voltage regulator) from a
list.

be fabricated by a desktop milling machine and soldered by hand.
To support this workflow, SVG-PCB easily integrates with web-
based software for developing re-configurable digital fabrication
pipelines, mods [Peek and Gershenfeld 2018]. The result of milling
one of these boards can be seen in Figure 1.

To summarize, this example shows the ease of sharing designs
while enabling quick customization by the end user, without in-
stalling any additional software or library.

5.2 Bezier Spline Wires
To demonstrate direct insertion of SVG content, as well as full
Bezier capabilities when creating wires, we designed a minimal
board with USB capabilities based on a Microchip ATSAMD11C14,
shown in Figure 7. The Fab Lab logo in SVG format was converted
to a custom footprint by defining each path as a pad. For the wires,
the position of each Bezier spline control point is defined relative to
a nearby element on the board. This results in a fully parametric set
of curvy traces that can distort in a consistent way when dragging
one of the components.

For further showcasing capabilities of the ATSAMD11C14, the
Fab Lab logo acts as a capacitive touch sensor with 3 independent
switches. This microcontroller supports a full HID keyboard USB
class, allowing the pads to trigger keyboard presses.

5.3 Array
Having a full programming language at the user’s disposal lead to
interesting procedural electronics boards, designed in a research
environment. In one specific case, a flexible PCB strip containing
an array of WS2812b LEDs was generated from a simple for
loop directive. Chained wires were easily added by referencing
pads of the previously added component object. Figure 8 shows
a code snippet and the resulting boards for different numbers of
loop iterations. While generating an array is a basic functionality
of HDL tools, having tight control on the geometry and wiring is
unique to our approach.

5.4 Conditional Design
Another emerging use of the code editor is integrating conditional
statements as part of the design. In this example, a generic USB-
capable board was made based on a Microchip ATSAMD11D14, but
the type of connectors and voltage regulator can be selected from
a list. This accommodates for changes in the inventory available
when producing the board, ultimately increasing the potential user
base for a given design with minimal user input. A few examples
are shown in Figure 9.

SCF ’22, October 26–28, 2022, Seattle, WA, USA Leo McElroy, Quentin Bolsée, Nadya Peek, and Neil Gershenfeld

6 DISCUSSION AND FUTUREWORK
We argue that a JavaScript based hardware description language for
PCB design will allow users to more easily share and remix boards
by letting them create parametric and automated board designs.
Programming PCB descriptions enables the use of algorithmic tech-
niques for creating designs which are iterative, conditional, and
hierarchical. Existing HDLs focus on describing board connectivity
but not geometry and give up convenient graphical editing features.
We overcome this by including board layout in our programmatic
representation, and by creating an web-based editor which allows
users to visualize and manipulate board designs graphically. The
editor links the textual and graphical representations through bidi-
rectional editing features. These features allow users to create and
modify designs without having to manually manipulate syntax.

One limitation of our current system is a lack of design rule
checking to verify circuit properties. Some checks, such as deter-
mining shorts, would require knowing the topological connectivity
of boards which could be specified through netlists. These netlists
were not initially included because our system does not rely on
the two part design process of traditional EDA tools where a user
first creates a schematic (which defines a netlist) and then specifies
a layout. Optional netlists in our tool could also be used for auto-
routing. Design rule checking also verifies physical properties of
circuits which relate to board layout, such as separation distances
of wires. These sorts of checks are not precluded by our system and
can be added in the future.

We plan to implement a number of improvements to the tool.
The bidirectional editing currently allows users to drag wires and
components, but creating new wires would require a finer-grain
handling of every component’s pad. Another aspect to improve is
the constraint system, which currently requires users to manually
type references to other components in the code editor. These kinds
of constraints can be inferred from the graphical interface, similar
to graphical constraint tools in a modern CAD software.

7 CONCLUSION
In this work, we have presented an approach to describing PCBs
with a JavaScript HDL and an editor which allows users to dy-
namically create and manipulate these textual representations with
a synchronized graphical interface. Our tool is a hybrid between
HDLs and visual editor EDAs, allowing bidirectional editing from
either context window. Our approach reduces barriers to adoption
of the HDL by leveraging the capabilities of a modern programming
language. This allows users to define board connectivity and geom-
etry parametrically, whereas most HDLs only allow users to specify
connectivity and most visual editors are non-parametric. Single
file representations also enable users to easily distribute modifiable
boards.We presented the use of our board in distributed educational
and research environments. Our hope is that further development
and adoption of tools such as SVG-PCB will allow more people to
discover PCB design through tools which are easy to get started
with, yet flexible and powerful, and with designs which are easy to
modify, remix, and share.

REFERENCES
Vicente Arroyos, Maria L K Viitaniemi, Nicholas Keehn, Vaidehi Oruganti, Winston

Saunders, Karin Strauss, Vikram Iyer, and Bichlien H Nguyen. 2022. A Tale of Two
Mice: Sustainable Electronics Design and Prototyping. In Extended Abstracts of the
2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA,
USA) (CHI EA ’22). Association for Computing Machinery, New York, NY, USA,
Article 263, 10 pages. https://doi.org/10.1145/3491101.3519823

Minas Dasygenis. 2014. A web EDA tool for the automatic generation of synthesizable
VHDL architectures for a rapid design space exploration. In 2014 9th IEEE Interna-
tional Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS). IEEE, 1–2.

Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon J Davidmann. 2020.
Verilog HDL and its ancestors and descendants. Proc. ACM Program. Lang. 4, HOPL
(2020), 87–1.

Pragun Goyal, Harshit Agrawal, Joseph A. Paradiso, and Pattie Maes. 2013. BoardLab:
PCB as an Interface to EDA Software. In Proceedings of the Adjunct Publication of
the 26th Annual ACM Symposium on User Interface Software and Technology (St.
Andrews, Scotland, United Kingdom) (UIST ’13 Adjunct). Association for Computing
Machinery, New York, NY, USA, 19–20. https://doi.org/10.1145/2508468.2514936

Liang He, Jarrid A. Wittkopf, Ji Won Jun, Kris Erickson, and Rafael Tico Ballagas.
2022. ModElec: A Design Tool for Prototyping Physical Computing Devices Using
Conductive 3D Printing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5,
4, Article 159 (dec 2022), 20 pages. https://doi.org/10.1145/3495000

Steve Hodges and Nicholas Chen. 2019. Long tail hardware: Turning device concepts
into viable low volume products. IEEE Pervasive Computing 18, 4 (2019), 51–59.

Freddie Hong, Connor Myant, and David E Boyle. 2021. Thermoformed Circuit Boards:
Fabrication of Highly Conductive Freeform 3D Printed Circuit Boards with Heat
Bending. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New
York, NY, USA, Article 669, 10 pages. https://doi.org/10.1145/3411764.3445469

Rushil Khurana and Steve Hodges. 2020. Beyond the Prototype: Understanding the
Challenge of Scaling Hardware Device Production. Association for Computing
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3313831.3376761

EDA KiCad. 2017. A cross platform and open source electronics design automation
suite. Dispoñible en: http://kicad-pcb. org (2017).

André Knörig, Reto Wettach, and Jonathan Cohen. 2009. Fritzing: A Tool for Advanc-
ing Electronic Prototyping for Designers. In Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction (Cambridge, United Kingdom)
(TEI ’09). Association for Computing Machinery, New York, NY, USA, 351–358.
https://doi.org/10.1145/1517664.1517735

Stacey Kuznetsov and Eric Paulos. 2010. Rise of the Expert Amateur: DIY Projects,
Communities, and Cultures. In Proceedings of the 6th Nordic Conference on Human-
Computer Interaction: Extending Boundaries (Reykjavik, Iceland) (NordiCHI ’10).
Association for Computing Machinery, New York, NY, USA, 295–304. https://doi.
org/10.1145/1868914.1868950

Richard Lin, Rohit Ramesh, Antonio Iannopollo, Alberto Sangiovanni Vincentelli,
Prabal Dutta, Elad Alon, and Björn Hartmann. 2019. Beyond Schematic Capture:
Meaningful Abstractions for Better Electronics Design Tools. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3290605.3300513

Richard Lin, Rohit Ramesh, Nikhil Jain, Josephine Koe, Ryan Nuqui, Prabal Dutta, and
Bjoern Hartmann. 2021. Weaving Schematics and Code: Interactive Visual Editing
for Hardware Description Languages. In The 34th Annual ACM Symposium on User
Interface Software and Technology. 1039–1049.

Silvia Lindtner, Garnet D. Hertz, and Paul Dourish. 2014. Emerging Sites of HCI
Innovation: Hackerspaces, Hardware Startups & Incubators. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario,
Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA,
439–448. https://doi.org/10.1145/2556288.2557132

Joanne Lo and Eric Paulos. 2014. ShrinkyCircuits: Sketching, Shrinking, and For-
mgiving for Electronic Circuits. In Proceedings of the 27th Annual ACM Sympo-
sium on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST
’14). Association for Computing Machinery, New York, NY, USA, 291–299. https:
//doi.org/10.1145/2642918.2647421

Ali Mashtizadeh. 2007. PHDL: A Python hardware design framework. Ph. D. Dissertation.
Massachusetts Institute of Technology.

David A. Mellis, Sam Jacoby, Leah Buechley, Hannah Perner-Wilson, and Jie Qi.
2013. Microcontrollers as Material: Crafting Circuits with Paper, Conductive
Ink, Electronic Components, and an "Untoolkit". In Proceedings of the 7th Inter-
national Conference on Tangible, Embedded and Embodied Interaction (Barcelona,
Spain) (TEI ’13). Association for Computing Machinery, New York, NY, USA, 83–90.
https://doi.org/10.1145/2460625.2460638

Brent Nelson, Brad Riching, and Richard Black. 2012. Using a Custom-Built HDL for
Printed Circuit Board Design Capture. Technical Report. Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States).

https://doi.org/10.1145/3491101.3519823
https://doi.org/10.1145/2508468.2514936
https://doi.org/10.1145/3495000
https://doi.org/10.1145/3411764.3445469
https://doi.org/10.1145/3313831.3376761
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1145/1868914.1868950
https://doi.org/10.1145/1868914.1868950
https://doi.org/10.1145/3290605.3300513
https://doi.org/10.1145/2556288.2557132
https://doi.org/10.1145/2642918.2647421
https://doi.org/10.1145/2642918.2647421
https://doi.org/10.1145/2460625.2460638

SVG-PCB: a web-based bidirectional electronics board editor SCF ’22, October 26–28, 2022, Seattle, WA, USA

Nadya Peek and Neil Gershenfeld. 2018. Mods: Browser-based rapid prototyping
workflow composition. ACADIA 2018 (2018).

Jie Qi and Leah Buechley. 2014. Sketching in Circuits: Designing and Building Electron-
ics on Paper. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machin-
ery, New York, NY, USA, 1713–1722. https://doi.org/10.1145/2556288.2557391

Jie Qi, Andrew "bunnie" Huang, and Joseph Paradiso. 2015. Crafting Technology with
Circuit Stickers. In Proceedings of the 14th International Conference on Interaction
Design and Children (Boston, Massachusetts) (IDC ’15). Association for Computing
Machinery, New York, NY, USA, 438–441. https://doi.org/10.1145/2771839.2771873

Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2016. Retro-
Fab: A Design Tool for Retrofitting Physical Interfaces Using Actuators, Sensors
and 3D Printing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing
Machinery, New York, NY, USA, 409–419. https://doi.org/10.1145/2858036.2858485

Yogesh Dilip Save, Rajalekshmi Rakhi, ND Shambhulingayya, Ambikeshwar Srivastava,
Manas Ranjan Das, Saket Choudhary, and Kannan M Moudgalya. 2013. Oscad: An
open source EDA tool for circuit design, simulation, analysis and PCB design. In
2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS).
IEEE, 851–854.

M. Shahdad. 1986. An Overview of VHDL Language and Technology. In 23rd ACM/IEEE
Design Automation Conference. 320–326. https://doi.org/10.1109/DAC.1986.1586107

Katherine W Song, Aditi Maheshwari, Eric M Gallo, Andreea Danielescu, and Eric
Paulos. 2022. Towards Decomposable Interactive Systems: Design of a Backyard-
Degradable Wireless Heating Interface. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems (NewOrleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 100, 12 pages. https:
//doi.org/10.1145/3491102.3502007

Jürgen Steimle. 2015. Printed Electronics for Human-Computer Interaction. Interactions
22, 3 (apr 2015), 72–75. https://doi.org/10.1145/2754304

Evan Strasnick, Sean Follmer, and Maneesh Agrawala. 2019. Pinpoint: A PCB Debug-
ging Pipeline Using Interruptible Routing and Instrumentation. In Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–11.
https://doi.org/10.1145/3290605.3300278

Theresa Jean Tanenbaum, Amanda M. Williams, Audrey Desjardins, and Karen Tanen-
baum. 2013. Democratizing Technology: Pleasure, Utility and Expressiveness in DIY
and Maker Practice. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Paris, France) (CHI ’13). Association for Computing Machinery,
New York, NY, USA, 2603–2612. https://doi.org/10.1145/2470654.2481360

Tiffany Tseng and Yoshihiro Kawahara. 2021. Circuit Assemblies: Electronic Modules
for Interactive 3D-Prints. In Designing Interactive Systems Conference 2021 (Virtual
Event, USA) (DIS ’21). Association for Computing Machinery, New York, NY, USA,
1115–1128. https://doi.org/10.1145/3461778.3462024

Nobuyuki Umetani and Ryan Schmidt. 2017. SurfCuit: Surface-Mounted Circuits on
3D Prints. IEEE Computer Graphics and Applications 37, 3 (2017), 52–60. https:
//doi.org/10.1109/MCG.2017.40

Bala R Vatti. 1992. A generic solution to polygon. Commun. ACM 35, 7 (1992), 56–63.
Cristian Vidal-Silva, Jorge Serrano-Malebran, and Felipe Pereira. 2019. Scratch and

Arduino for Effectively Developing Programming and Computing-Electronic Com-
petences in Primary School Children. In 2019 38th International Conference of the
Chilean Computer Science Society (SCCC). 1–7. https://doi.org/10.1109/SCCC49216.
2019.8966401

Tim A Wagner and Susan L Graham. 1998. Efficient and flexible incremental parsing.
ACM Transactions on Programming Languages and Systems (TOPLAS) 20, 5 (1998),
980–1013.

Karl D. D. Willis. 2015. Project Wire. https://www.karlddwillis.com/project-wire/,
accessed 2022.

Junyi Zhu, Yunyi Zhu, Jiaming Cui, Leon Cheng, Jackson Snowden, Mark Chounlakone,
Michael Wessely, and Stefanie Mueller. 2020. MorphSensor: A 3D Electronic Design
Tool for Reforming Sensor Modules. Association for Computing Machinery, New
York, NY, USA, 541–553. https://doi.org/10.1145/3379337.3415898

https://doi.org/10.1145/2556288.2557391
https://doi.org/10.1145/2771839.2771873
https://doi.org/10.1145/2858036.2858485
https://doi.org/10.1109/DAC.1986.1586107
https://doi.org/10.1145/3491102.3502007
https://doi.org/10.1145/3491102.3502007
https://doi.org/10.1145/2754304
https://doi.org/10.1145/3290605.3300278
https://doi.org/10.1145/2470654.2481360
https://doi.org/10.1145/3461778.3462024
https://doi.org/10.1109/MCG.2017.40
https://doi.org/10.1109/MCG.2017.40
https://doi.org/10.1109/SCCC49216.2019.8966401
https://doi.org/10.1109/SCCC49216.2019.8966401
https://www.karlddwillis.com/project-wire/
https://doi.org/10.1145/3379337.3415898

	Abstract
	1 Introduction
	2 Related Work
	2.1 Toolkits Supporting Electronics Design and Fabrication
	2.2 Hardware Description Languages (HDLs) for PCB Design

	3 Using SVG-PCB
	3.1 Footprint Description
	3.2 Adding Components
	3.3 Wire Description
	3.4 Arbitrary Geometry
	3.5 Rendering a Board

	4 System Implementation
	4.1 Bidirectional Editing
	4.2 Real-Time Interaction
	4.3 Referential Constraints
	4.4 Output

	5 Applications
	5.1 Basic Boards for Education
	5.2 Bezier Spline Wires
	5.3 Array
	5.4 Conditional Design

	6 Discussion and Future Work
	7 Conclusion
	References

