Urumbu: Minimal Machine Building

Neil Gershenfeld
Massachusetts Institute of Technology

Quentin Bolsée
Vrije Universiteit Brussel

Robert Hart

Independent researcher

USA Belgium USA

neil. gershenfeld@cba.mit.edu
ABSTRACT

Computational fabrication has enabled the widespread adoption of
rapid-prototyping. There has however been a much higher barrier
to entry to make a machine. We investigate rapid-prototyping of
rapid-prototyping, so that designing a machine can become as ac-
cessible as producing projects on one. We characterize minimum
viable components for machine building, including "controllerless”
designs that virtualize low-level controls in high-level parallel soft-
ware, simplified systems for force transmission, and tradeoffs in
structural systems. In this demo, a machine controlled entirely by a
Python application on a host laptop is presented, with communica-
tion between the host and the machine at kHz rate. User interaction
is enabled by including polling of input modules in the loop. The
machine’s behavior is entirely software-defined within the host
application, and new modules can be dynamically plugged in with
no reconfiguration on the firmware side.

KEYWORDS
Rapid-prototyping, Machine building, Control Systems

ACM Reference Format:

Neil Gershenfeld, Quentin Bolsée, and Robert Hart. 2022. Urumbu: Minimal
Machine Building. In Symposium on Computational Fabrication (SCF °22),
October 2628, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3559400.3565599

1 INTRODUCTION

Widespread access to rapid-prototyping tools has had a transfor-
mative impact, however there remains a high barrier to entry to
create these tools. Rapid-prototyping of rapid-prototyping would
enable machine design to become as expressive and personal as
the projects produced on them, but is inhibited by the range of
skills required for a full custom design, the constraints imposed by
off-the-shelf solutions, and the specialized inventory required. The
most common controllers for additive and subtractive machines
use a G-code interpreter. This embeds complex state to describe a
machine’s configuration, which must be changed if anything about
the machine changes. It has a fixed set of commands that must be
mapped onto any new processes. And it’s intended for feed-forward
control, not for communicating with machines that are sources as
well as sinks of data.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SCF °22, October 2628, 2022, Seattle, WA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9872-5/22/10.

https://doi.org/10.1145/3559400.3565599

quentinbolsee@hotmail.com

roberthart56@gmail.com

Urumbu achine
Host computer rumbu machine

Stepper module Mechanical design
Python threads -
Microcontroller

ut x ML acp

USsB

e Stepper driver ——

Machine state

Servo module

Real-time loop ~——=| USB controller

R Microcontroller Integration
L 1 PWM pulse
Multi DOF
Button module

Microcontroller ~— ‘
1 value

Stateful Stateless

Figure 1: Urumbu architecture: each machine functionality
is implemented through a state-less, individual USB device.

Figure 2: Urumbu USB device examples: stepper driver (a)
and servo actuator (b).

Real-time machine networks can reduce the embedded state, so
that degrees of freedom can be added or removed without being
limited by assumptions imposed by a fixed controller. We investi-
gate here what can be thought of as the asymptotic limit of this
approach, asking how far the interfaces to a machine’s actuators
and sensors can be simplified, to go directly from high-level goals
to low-level control.!

Our approach is motivated by two changes in computing archi-
tecture since the advent of G-codes. The first is the adoption of
multi-core processors in general-purpose computers that can run
multiple parallel processes simultaneously, and the second is the
appearance of low-cost embedded processors that support high-
speed network protocols. Together these allow the logic of machine
control to be virtualized in a real-time parallel process, sending
the smallest primitive operations to minimal nodes, for example a
single step made by a stepper motor, or a single PWM pulse for a
servo motor. Along with this simplification it also eliminates the
complexity of coordination, since all commands are happening in
real time.

The project title “Urumbu” is the Malayalam word for small ants found in the south
of India, which are individually simple but collectively perform complex tasks.

https://doi.org/10.1145/3559400.3565599
https://doi.org/10.1145/3559400.3565599

SCF ’22, October 26-28, 2022, Seattle, WA, USA

Neil Gershenfeld, Quentin Bolsée, and Robert Hart

Figure 3: Examples of Urumbu machines: polar plotter (a), CoreXY plotter (b) and CNC mill (c). The use of kevlar thread and 3D
printed capstans is a minimalist motion transmission aimed at reducing the cost-of-entry to machine prototyping.

2 SYSTEM DESCRIPTION

The core concept of the Urumbu architecture is to provide a distinct
USB module for each functionality of the machine. Each module is
simultaneously powered and controlled through USB 2.0, making
it trivial to add and remove modules at will. As shown in figure 1,
modules are stateless and do not require any configuration. The
host computer implements the machine’s state and motion planning
in real-time by sending USB packets every time an update is needed.
We found that packets can be sent out at 10kHz with no significant
skew, enabling control of a stepper motor at the microstep level.
Each USB packet sent to the motor is minimal, containing a single
CDC character ('f’ for forward, ’b’ for backwards stepping). Another
example of module focuses on servo motor actuation by sending
a single PWM pulse width as specific by two CDC bytes. Stepper
and servo modules are illustrated in figure 2. To enable closed-loop
control within the host application, analog or digital input modules
can also be realized through polling. Examples include switches,
potentiometers, light sensor and magnetometers.

In addition to this highly modular, software defined machine
architecture, we present a cheap motion system aimed at lower-
ing the cost of entry to machine prototyping. Minimalist motion
transmission is realized by a kevlar thread and 3D printed capstans
for tensioning, visible in figure 3 (b). Successful applications of the
Urumbu architecture include a polar plotter, coreXY 2D plotter and
CNC milling machine for PCB prototyping.

Table
Power
plugs
e .
Laptop [-
Inputs USB hub [~ Machine
6837

Figure 4: Dimensions of the demo setup.

3 DEMO REQUIREMENTS

The demo will showcase an Urumbu machine actuated by USB
modules only (i.e. stepper and servo modules). Figure 3 provides
examples of Urumbu machines. The machine’s state and motion
planning is entirely managed by a Python application running on a
typical laptop. User interaction is enabled by input Urumbu modules
presented next to the machine, including potentiometers, magne-
tometers and light sensors. Input states are polled by the Python
application and affect the machine’s motion, showcasing real-time
closed loop control at the OS level. Modules can be plugged in
dynamically, proving the high modularity of the system. Moreover,
the machine itself highlights cheap, minimalist motion transmission
through a kevlar thread and delrin bearing wheels. The physical lay-
out of the demo is presented in figure 4. The following equipment
should be put on display onto a standard-sized table:

o A powered USB 2.0 hub (power plug needed)

e The Urumbu machine

e Input modules for user interaction

o A laptop computer (power plug needed)

Optionally, a poster next to the table will illustrate the principles
of the Urumbu architecture in more details, listing available modules
and machine realizations. There is no specific requirement on the
lighting, the table should be exposed to typical room lighting so
that users can see the equipment and interact with it.

4 CONCLUSIONS

This demo illustrates rapid prototyping of digital fabrication ma-
chines through highly modular USB modules. Each module im-
plements a single functionality and runs on a minimalist stateless
firmware, while a host computer sends USB packets in real-time
to all modules to enable actuation and input polling. This is an
effective example of a software defined machine, with no configura-
tion needed on the firmware side, independently of the machine’s
finality. By interacting with the demo, users can experience real-
time closed loop control entirely managed by a Python application
running on a standard laptop. The high modularity of the system
is showcased by various input modules available next to the ma-
chine; each module can be dynamically plugged in and affects the
machine’s behavior through the host application.

	Abstract
	1 Introduction
	2 System description
	3 Demo requirements
	4 Conclusions

