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Fig. 1. A xylophone music machine built with the Modular-Things framework, comprising four modules: two stepper motors for
motion, and two DC load drivers for triggering the mallets with electric coils.

We present a collection of tools for building plug-and-play modular physical computing systems that we call Modular-Things. Our
tools consist of a set of single purpose embedded devices, a link layer agnostic message passing system for communication between
devices, and a web-based programming environment. The devices are dynamically discovered and virtualized into software objects
that can be programmed in the web IDE. We tested Modular-Things in a classroom setting where groups of novice machine builders
constructed custom machines that integrated embedded systems modules with high-level responsive interfaces built with web and
computer vision technologies. Users also extended our system by constructing new customized devices.
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1 INTRODUCTION

The design and assembly of physical computing systems is challenging. Creators have to navigate a broad set of skills
that cut through disciplines in design, mechanical, electrical, and software engineering. Consequently HCI researchers
and developers have created a collection of physical computing and electronic prototyping systems that aim to reduce
complexity, increase speed of integration, and lower barriers to entry [12] [15]. Platforms like Arduino aimed to do this
by making embedded programming easier with an abstraction layer across systems that allowed users to write portable
embedded code.

This has been highly successful in making embedded programming more accessible, and has created ecosystems of
breadboards, breakout boards, and libraries. But there remains room for improvement in the development process of
physical computing systems. We see three main issues with the single microcontroller compiled firmware approach:

(1) Compiling and flashing firmware limits the interactive potential of the development process, because it inserts a
delay between writing and testing code.

(2) Single-microcontroller projects lead to the creation of monolithic systems where individual functions are tightly
coupled across design, mechanical, electrical, and software layers.

(3) Monolithic systems can present bottlenecks when a single microcontroller’s available physical resources are
used up (i.e. GPIO pins are all occupied or I2C address collisions occur).

One emerging approach to remediating the first issue is to embed high-level language interpreters into devices to
create interactive development environments that run on microcontrollers [19]. This technique is seen in MicroPython
on the Raspberry Pi Pico [7]. We implement an alternative approach to creating responsive development tools. Instead
of trying to put high-level programming into devices, we lift devices into high-level programming environments by
way of virtualization.

Virtualization (akin to the paradigm of Object Oriented Hardware, [16]) means each hardware module is represented
to an application programmer as a unique software object that can be manipulated in a high-level programming
environment (in our case JavaScript). Because this approach allows functionality to be broken out at a device level,
monolithic systems ordinarily composed of one MCU with many peripherals can be recomposed as heterogeneous
systems of many devices each with dedicated functionality.

In this paper we present our approach to improved prototyping of cyber-physical systems with virtualized modules,
Modular-Things. Modular-Things consists of a web-based programming environment that we explain in Section 3.4, a
small message passing library that supports a variety of link layers [10] and topologies (Section 3.6), and a collection of
single purpose boards (or "things") which can be easily extended by users (Sections 3.1 and 3.3). In Section 4 we present
a limited user trial, and in Section 5 we describe some limitations of our approach and plans for future improvements.

2 RELATEDWORK

Our work builds upon developments in accessible physical computing systems [12] and extensible hardware construction
kits [17] [8]. Over the last decade the most popular accessible physical computing tools have included Arduino [3],
micro:bit [1], mini-computers from Raspberry Pi [20], and more recently the Raspberry Pi Pico [7]. These tools are all
based on singular development boards, where users compile firmware for a single MCU and attach peripherals through
exposed GPIO pins.

Some kits are designed with modularization in mind as is the case with SEEED Studio’s Grove [5], Adafruit’s STEMMA,
Sparkfun’s Qwiic [6] and LittleBits [4]. These modularized circuits treat the entire kit as a library of functionalities
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embodied in each circuit which can be composed to build complete systems. This composition occurs by connecting
circuits together in a consistent manner. Sadler et al. [18] emphasize how this interfacing step must be a one step
process.

In order to simplify the interfacing process, construction kit developers use intra-board communication systems.
Notably with Grove, STEMMA, and Qwiic I2C is used for this purpose. I2C is an on-circuit bus protocol for talking to
a large number of devices, but most commonly sensors [9]. One disadvantage of I2C is that devices require unique
addresses, which limits the discoverability of the system because users must know addresses beforehand.

Recently Microsoft Research developed a modular system similar to our own, Jacdac [11] [2]. Jacdac also offers
an extensible physical computing system. We share similar design goals of creating easy hardware composition,
plug-and-play software abstractions, and low cost systems. Superficially our work varies by opting to use USB as the
communication link layer rather than a custom communication protocol and connector. In our system however USB is
only one choice of embodiment among available link layers which the underlying networking system supports. We
further differentiate ourselves from Jacdac by demonstrating the ease of developing new modules. In workshops new
users created new modules by rapidly fabricating boards, hacking existing boards, and using our provided breadboard
Modular-Thing. Figure 2 shows three such ad-hoc boards that were included into the Modular-Things system by their
developers.

Fig. 2. Our circuit kit, including boards designed by beginners and generic development boards. Each embeds a USB-capable
microcontroller for easy interfacing with a host computer. Top row left to right: potentiometer, RGB LED and button, capacitive touch
sensor, accelorometer/gyroscope, DC load driver, LED/button/I2C/Serial Port homemade. Bottom row left to right: SAMD21 H-bridge
stepper motor driver, Xiao RP2040 H-bridge stepper motor driver, breadboard, servo, homemade CNC milled LED/button.

3 DESIGN GOALS AND IMPLEMENTATION

The Modular-Things framework comprises three main elements. (1) An Arduino library that allows embedded pro-
grammers to rapidly turn any Arduino project into a new Modular-Thing. This library provides naming, routing and
discoverability layers that allows modules to be found on simple or complex network topologies, and which enables
inter-device message passing. (2) A web-based interactive development environment that presents available devices to
user-programmers, and allows them to quickly write new programs with those modules. (3) A set of purpose-built
Modular-Things (circuits and firmwares) that can be easily extended.
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Collectively these elements allow developers of physical computing systems to rapidly assemble modules of hardware
into new systems using a high-level programming language. In this section, we go into more detail on each aspect.

Fig. 3. User interface for editing the project’s JavaScript code (upper left), with a dynamic listing of connected modules (middle)
along with their APIs. An optional HTML view can be defined by the user for making custom interfaces (bottom left).

3.1 High-Level Application Programming for Embedded Devices via Virtualization

There are a number of reasons why development in high-level languages is seen to be preferable to development in
the low-level languages used in microcontrollers. (1) High-level languages are easier to learn. (2) The delay between
writing and testing code is brief and interactive. (3) There are rich debugging tools in high-level languages. (4) There is
a broad set of available libraries and packages in high level languages (i.e. the commons of PIP and NPM).

Only two of these points (1, 2), actually pertain to the language itself. The rich debugging tools and availability
of libraries both depend on the context in which those languages are deployed. For example much of the value in
JavaScript is in the browser and its litany of tools. Much of the value of Python is in the availability of PIP packages.

In order to leverage the full value of high-level programming, our system opts to adopt a strategy of virtualization.
In this strategy function-specific firmwares are built ahead of time into composable modules, and those modules are
remotely operated in a high-level language (JavaScript) which is running in a high-level context (the browser). Rather
than "embedding" a high-level language into hardware, we are "lifting" hardware modules into a high-level language. This
lift allows us to shift application-specific code out of hardware systems and into a friendlier programming environment.
It also affords a straightforward way of composing multiple modules, by maintaining that each unique module is
addressable as a unique software object.

3.2 User Workflow

With Modular-Things, users can assemble new physical computing systems in a plug-and-play manner, such as the
example machine illustrated in Figure 1. When users plug devices into a network, they are automatically discovered,
and their unique name, along with their API, is presented to the programmer as a virtualized software object. The
device can immediately be used by calling the functions presented in its API. Since multiple things can be plugged in to
the same network, composition of systems is just as simple as building a program that uses multiple software objects.
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To the programmer, the only substantive difference is that these software objects are remotely operating real hardware
modules.

3.3 Rapidly Virtualizing Embedded Codes

Fig. 4. Integrating a new embedded device as a Modular-Thing means defining an embedded API, and describing that API in a
matching JavaScript file. Modules extend the Arduino framework, and the programming burden can be as small as 50 lines in total for
simple modules.

Using existing modules makes it possible to build new physical computing systems without engaging in any embedded
programming or device design. However, creating new modules is also simple, as shown in Figure 4. First, device authors
write firmwares that operate their module, and design an API. They they install OSAP (a library which is explained in
Section 3.6), which they can use to name their device and instantiate a link layer that allows the device to connect to
the Modular-Things network. Next, authors write message handlers in their firmware that operate their API, and write
a matching file in JavaScript that serves as an intermediary between the high-level API and their device firmware. At
runtime, the JavaScript object is dynamically paired with a data channel to the device, and the device is then virtualized.

3.4 Aligning Code and Reality

A primary goal of our system design was to automatically reconcile misalignments between the programmers’ code
and the physical reality of the system. Generally, embedded devices must know ahead of time what type of messages to
expect and high-level programs must know ahead of time what the devices are and where they will be located. We
address this issue by dynamically presenting a list of available devices, which each maintain individual device identities
with in-device non-volatile names. This list is seen in the side panel of the web IDE in Figure 3. This allows users to
easily switch between writing code, adding/removing devices, and testing devices.

3.5 Built-in UI Development

Physical computing systems often require the integration of user interfaces. This was a strong factor in our choice of
the browser as a high-level computing environment. In order to rapidly combine controllers with UIs, our web IDE
allows programmers to switch from a programming view to a rendered view, as diagrammed in Figure 3. UI-defining
JavaScript simply lives alongside machine controller code.

3.6 Discoverability, Scalability and Extensibility

Many prototyping tools for physical computing systems are characterized by the link layer across which they operate;
for example STEMMA and Qwiic systems are fundamentally based on I2C interconnect and Jacdac is characterized by
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Fig. 5. Modular-Things can be attached to one another using a wide range of link layers, and network topologies using a message-
passing, source-routed scheme.

the Jacdac bus. While we primarily developed USB-based devices, we wanted to enable Modular-Things to be discovered
across any potential link layers, even those that have not yet been designed. Moreover, we wanted to be able to combine
link layers with one another to form ad-hoc networks. To do so, we implemented a small interconnect system called
“OSAP” (Open Systems Assembly Protocol) that provides naming, routing, and discoverability services to our application.
A complete description of this layer is outside of the scope of this paper, but we provide a summary of its operation
here.

3.6.1 Packetized, Source-Routed Message Passing. OSAP’s primary function is to route messages throughout graphs of
various topology. To do so, it uses source routes that are embedded within the packet header itself. This is important
because each OSAP device is also an OSAP router, and source routing means that routers can remain simple and
stateless even in the context of messy graphs.

3.6.2 Link-Layer Agnostic Graphs. OSAP’s own runtime knows nothing about the link layers it uses to form a graph:
it merely differentiates between one-to-one and one-to-many links (ports and busses, respectively). To attach OSAP
devices to one another, link layers are interfaced to the OSAP runtime through a simple API that hands off outgoing
messages and uses a callback for incoming messages. This means that almost any packetized transmission device can
be integrated with OSAP: to date we have used WebSockets, USB Serial, UART and UART-based busses.

Because OSAP devices are also routers, building an OSAP bridge layer (between a WebSocket and USB Serial Ports -
for example), can be done by attaching multiple link layers to the same OSAP runtime. We show a diagram of the types
of device graphs that are possible using this scheme in Figure 5.

3.6.3 Graph Discovery. OSAP contains affordances for automated graph traversal, in the form of a special packet that
queries a device’s neighbourhood for active links. Devices can also respond to queries about their name and their
contents. Using these packets, our web IDE can build a map of the device graph, and use that map to identify new
devices and pair them with their JavaScript APIs.

3.7 Motion Controllers

We found it was possible to implement synchronized motion without motors being directly connected to one another.
We did so using a pure software object called a "synchronizer" that operates multiple motor modules simultaneously.
This was enabled by a performant transport layer, that delivers packets to up to seven devices within 5𝑚𝑠 of one another
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in worst case measurements, and most often within 500𝑢𝑠 . Because packet arrival is nearly synchronous, and the motor
controllers are sophisticated enough to run entire segments of motion, it is feasible to remotely operate a group of
motors as if it were one cohesive machine.

This strategy is akin to virtual machines [14], though our synchronization strategy is less sophisticated, and our
modularization strategy is more extensible. Because these systems are modular by nature, users can assemble new
machine systems that have wide and varying numbers of peripheral devices.

4 APPLICATION, USE AND EVALUATION

We did not conduct a full user study, though we did deploy Modular-Things in a classroom setting and during a five
day workshop with instructors in digital fabrication. Approximately 60 students were broken into groups of 15 and
tasked with building complete machines (including mechanism, actuation, automation and application) over the course
of one week. Each group designed and constructed a unique machine with custom controls and high-level graphical
interfaces. Some of these machines can be seen in Figure 6, and included a sand art drawing machine, a pancake plotter,
a CoreXY[13] pen plotter, and an auto-aiming toilet paper throwing machine that integrated computer vision libraries to
recognize faces and auto-aim the machine towards them. This level of system integration was made possible through
Modular-Things because motor control was available in the same computing environment as the facial recognition
software. Some students found Modular-Things intuitive to use and elected to reuse it for their final projects in the class.
One of these students (a first time machine builder) developed a machine for photopolymerization of photo-responsive
liquid crystal elastomers by direct laser writing. We observed users were able to easily replicate the work of others by
copying code, plugging in the required modules, and renaming devices to match the naming scheme of their example
snippets. Users did this to rapidly recreate motion systems which would have been difficult to recreate at a firmware
level.

Fig. 6. Machines made or modified by students as part of the digital fabrication class. Modular-Things were used to develop these
machines’ control systems, including improvised devices with custom firmware and APIs.

Successful development of these machines demonstrated it was possible for novice users of Modular-Things to create
non-trivial integrated physical computing systems, with demanding coordination among devices. Additionally it was
possible for users to leverage existing knowledge of high-level technologies (i.e. HTML/CSS/JS stack and computer
vision libraries) to create responsive interfaces for these machines which would generally be difficult to integrate with
low-level devices.

We found that during this machine building week and our five day workshop many testers wanted to develop their
own custom devices which could be integrated with Modular-Things. This was demonstrated by users constructing
custom electronics from our "breadboard-thing", hacking DC motors with encoders to be used with "stepper-things",
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and fabricating their own "things" by writing custom firmware with the networking library, one of which is pictured in
Figure 2.

5 LIMITATIONS AND FUTUREWORK

The version of Modular-Things presented here has a few limitations. Notably, most single purpose devices we developed
relied on USB for communication with the high-level programming environment, which can be expensive and unwieldy
as systems scale. Besides including lower-level UART-based link layers that we have already developed in our basic set
of boards, we plan to include lightweight link layers for I2C, SPI, and wireless links like BLE and LoRA.

It could be seen as burdensome that each module requires its own microcontroller and data link. Currently these costs
are on the order of $5 USD per module; we suggest that they are outweighed by the value provided by virtualization in
prototyping contexts.

Another limitation is that systems are tethered to high-level computing devices in which they are programmed,
normally user laptops. We also plan to develop design patterns for stand-alone systems that replace the high-level
desktop computer with an embedded device which can exist within the system, or simple methods for the deployment
of Modular-Things onto smaller, stand-alone computers that can be permanently integrated with projects.

Operating modular devices over a network also presents timing challenges. Although our system can provide order-
of-operation guarantees (using asynchronous programming patterns in JavaScript), function calls to remote modules
can take up to 10ms to complete. This means that user-created real-time feedback applications are not possible, although
feed-forward applications (like most machine controllers) can be implemented (as demonstrated). Our approach relies
on module authors to implement tightly timed system aspects (like motor controllers) in their firmwares, that can be
combined at a high level by user-programmers. It seems likely that the incorporation of lower-level link layers and
deployment on i.e. single-board-computers may improve this performance bottleneck, but much future work lays in
this direction.

6 CONCLUSION

In this work we presented Modular-Things. It consists of a collection of single purpose boards and firmwares, but
more importantly, a toolkit for building extensible virtualized physical computing systems. The toolkit consists of a
networking and discoverability layer to connect modules together, a library for the authorship of new modules, and a
Web IDE for their integration. In the future we plan to develop a wider variety of link layers, and methods to allow
Modular-Things to operate independently of the high-level computing environments in which they are developed and
configured.

With our system users were able to rapidly create machines with rich features and interfaces without writing embed-
ded firmwares. This demonstrated the viability of using virtualized hardware in discoverable interactive development
environments to prototype cyber-physical systems. Importantly, we found that providing the tools to develop new
Modular-Things allowed users to integrate their own virtualized devices, which greatly extended the capabilities of the
overall system.
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