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Abstract— Assembling lattices from discrete building blocks
enables the composition of large, heterogeneous, and easily
reconfigurable objects with desirable mass-to-stiffness ratios.
This type of building system may also be referred to as a digital
material, as it is constituted from discrete, error-correcting
components. Researchers have demonstrated various active
structures and even robotic systems that take advantage of
the reconfigurable, mass-efficient properties of discrete lattice
structures. However, the existing literature has predominantly
used open-loop control strategies, limiting the performance
of the presented systems. In this paper, we present a novel
approach to feedback control of digital lattice structures,
leveraging real-time measurements of the system dynamics. We
introduce an actuated voxel which constitutes a novel means
for actuation of lattice structures. Our control method is based
on the Extended Dynamical Mode Decomposition algorithm
in conjunction with the Linear Quadratic Regulator and the
Koopman Model Predictive Control. The key advantage of our
approach lies in its purely data-driven nature, without the need
for any prior knowledge of a system’s structure. We illustrate
the developed method via real experiments with custom-built
flexible lattice beam, showing its ability to accomplish various
tasks even with minimal sensing and actuation resources. In
particular, we address two problems: stabilization together with
disturbance attenuation, and reference tracking.

Index Terms—lattice structures, digital materials, extended
dynamic mode decomposition, Koopman model predictive con-
trol

I. INTRODUCTION

Lattices are periodic structures that aim to achieve high
stiffness and strength to weight ratios. Natural systems
have demonstrated many examples of lattice structures, such
as in honeycomb, leaf structure, or bone tissue. Because
of their desirable mechanical properties, researchers across
multiple domains, such as robotics, civil engineering, and
architecture, have been studying these materials. However,
manufacturing large objects with complex internal structures
remains challenging. The decomposition of a period lattice
into repeated discrete blocks, or voxels (volumetric pixel),
can help address this as it enables the assembly of arbitrarily
sized structures from the voxel feedstock. Such structures are
also referred to as digital structures, as they are composed
of discrete elements instead of continuous matter. Arranging
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building elements in repeating patterns to achieve unique and
unconventional properties is also typical for metamaterials.

A digital material system is inherently modular, enabling
easier reconfigurability and replicability as compared to a
continuously fabricated structure. Additionally, the voxelized
system simplifies the processes of both making changes and
repairs to the system since voxels may easily be switched
out of the structure or added in. This substantially improves
the repairability of the voxel system, as a failure in one
part of the structure only requires the affected voxel to be
removed, as opposed to replacing the entire structure, or
adding a patch which might impact structure performance.
By combining voxels with different mechanical structures,
the resulting structure can have very specific bulk mechanical
properties, including pre-programmed anisotropies, such as
relative compliance in only one axis. This type of hetero-
geneous structure is difficult to achieve using conventional
approaches to fabrication, in which either a combination
of material types or significant design experience would be
required to achieve this level of mechanical property control.
Additionally, unlike standard approaches to fabrication, the
size of the final structure is not constrained by the size of the
machine used to make it. Instead, the digital material enables
the assembly of almost arbitrarily sized structures. The
discrete structure also allows for automated (dis)assembly
of these materials.

Digital structures have been predominantly studied in
connection to their structural design [1], [2], [3], [4] and
static behavior [5]. Active control of lattice structures has
been previously explored for space applications, primarily for
active damping, such as in [6] and comprehensive description
of feed-forward and integral force feedback control of lattice-
structured satellites was given in [7]. However, these works
are not aimed at discrete lattice structures, limiting their
extendibility. In recent years the focus has been shifting
also towards studying and controlling the dynamic properties
of metamaterials for larger deflections. In [8], the authors
presented two structures composed by assembling voxel
elements into a lattice: a morphing aircraft wing and an
underwater snake-like robot. Active control was introduced
into these structures allowing the wing to change shape and
the robot to achieve swimming, nature-inspired motion, rep-
resenting a modular approach to approximately continuum-
style robotics. Among other fields where digital materials
find relevance are soft robotics, production of wearable
devices, prosthetics [9], as well as optimized electronic
devices [10]. Possible applications of digital metamaterials
extend even to the construction of space structures [11], [12],
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Fig. 1: (a) The rigid face, (b) the compliant face, an assem-
bled voxel (c), and larger structure (d)

where autonomous structures with active shape control are
of significant interest.

Our primary focus is on robotic structures akin to those
presented in [8], where a voxel structure with specific
anisotropies is actuated. These structures have so far been
subjected to precomputed input sequences, leaving space for
more advanced control algorithms to be explored and ap-
plied. In this paper, we present a novel mechanism to actuate
digital lattice structures and develop a systematic method
for feedback control synthesis. Controlling digital structures
presents a challenge, primarily because it is difficult to
obtain a dynamical model of a structure with many distinct
building blocks. Furthermore, flexible structures naturally
exhibit nonlinear dynamics. In light of that, we opted for
a data-driven modeling approach based on the Extended
dynamic mode decomposition (EDMD) algorithm [13]. Us-
ing the EDMD, we were able to obtain a linear predictor,
allowing us to use standard linear control synthesis methods.
We use Linear Quadratic Regulator (LQR) and Koopman
Model Predictive Control (KMPC) to address the tasks of
stabilization disturbance attenuation, and reference tracking.
The process and results presented in this paper enable the
solution of more complex tasks and expand the potential
applications of digital lattice-based structures.

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION
A. Cuboctahedron as Building Block

We use a face-connected cuboctahedron lattice, i.e., a tiled
polyhedron with eight triangular and six square faces. In
particular, we adopt a construction design developed by the
Center for Bits and Atoms at MIT published in [14]. A
cuboctahedron voxel is assembled using six square faces
connected at the corners. The faces are 3D-printed using
PETG plastic on a commercial 3D printer, and are connected
using rivets. Voxels are assembled together face-to-face with
rivets.

By changing the geometry of each face, we can com-
pose cuboctahedra with different mechanical properties. In
Fig. 1, we show an example of two different face types,
the assembled cuboctahedron, and a structure from multiple
cuboctahedra. Because the voxels are made from plastic, the
assembled structures have the potential to be highly flexible
with many degrees of freedom.

B. Actuated Voxel

We developed a novel mechanism for inducing controlled
motion in the overall structure. Compared to other actua-

Fig. 2: Render of the actuated voxel: (a) assembled; (b)
individual parts

() (b) (©)

Fig. 3: Demonstration of the real actuated voxel (a) at rest;
(b) tilted to the left; (c) tilted to the right

tion mechanisms for lattice structures (see Remark 1), our
mechanism is contained within a voxel, making it fully
compatible with the overall voxel assembly system. The
actuation is based on deforming a voxel with an internally
housed motor. The actuated voxel is displayed in Fig. 2a with
its individual components in Fig. 2b. The housing voxel is
created from two compliant faces and four rigid faces in a
configuration that allows significant deformation along one
axis and relative stiffness in the others. The deformation is
induced by a motor that generates a torque which is then
converted into a push-pull motion by a compliant transmitter
that is connected to the top face of the voxel. This allows to
directly deform specific places in the structure. The motor
is a mj5208 brushless DC motor controlled by the Moteus
r4.11 driver by mjbots, which allows desired torque to be set
directly. We illustrate the motion principle in Fig. 3, where
we show three snapshots of the physical prototype.
Remark 1: One option to actuate voxel-lattice structures
introduced in [8], [14] is using tendons, i.e., anchored wires,
that span multiple voxels. The structure’s motion is then
induced by suitably shortening the tendons’ lengths. Another
option, frequently utilized in modular robotics, is to use a
separate distinct module, an actuated joint, such as in [15],
[16]. In contrast, the actuation mechanism presented in this
paper is fully contained in a single voxel. Additionally, unlike
a specific component such as actutated joint, the housing
voxel does not differ from other building blocks, which
simplifies the construction of the overall structure. See Fig. 4
for an illustration of differences between the mechanisms.

C. Sensing Voxel

For measuring the system’s motion, we use an inertial
measurement unit (IMU) inserted into a voxel. See Fig. 5 for
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Fig. 5: Sensing Voxel

reference. Similar to the actuated voxel, the sensing is also
self-contained within a single voxel. We created the housing
voxel using only rigid faces, but different options could
also be possible with minor changes to the construction.
We used an MPU9250 IMU, which allows measurement of
acceleration, angular speed, and estimated orientation along
all three axes.

D. Problem Definition

Consider a general (arbitrary) voxel-lattice structure with
a fixed arrangement of empty, actuated, and sensing voxels.
We assume that the arrangement of the structure allows the
input u to control the output .

Let the structures’ dynamics be in a form of a discrete-
time nonlinear system

(1a)
(1b)

Tpy1 = f(@p, uk) ,
Yk = h((Ek) 5

where © € R" is the system’s state, u € R™ is the control
input, and y; € RY is the system’s measured output. Both
f(-) and h(-) are unknown, generally nonlinear functions.
The task is to design a feedback control for the system (1)
to get a desirable behavior of the system’s output y, e.g.,
disturbance attenuation or reference tracking.

III. LINEAR PREDICTOR BASED ON KOOPMAN
OPERATOR THEORY

To address the defined problem, we employ a data-driven
approach. We start by identifying a predictor for the dy-
namics (1). By predictor, we mean an artificial dynamical
system designed to predict the original system’s dynamics
(or output) based on the initial state and the input sequence.
We restrict the predictor to have a linear system structure,
so it can be then used for control synthesis through linear

controller design methodologies. The data-driven approach is
particularly well suited for digital structures as it provides a
systematic way to identify the system’s dynamics, regardless
of the system’s structure and placement of controllers or
sensors. The identification is based only on supplying a
suitable input signal into the system and measuring the
outputs.

To obtain accurate predictions of the nonlinear dynamics
using only a linear predictor, the main idea is to [ift the
nonlinear dynamics into a higher-dimensional state-space.
With the original state z € R™ of the nonlinear system,
we consider the predictor in a form of a discrete-time linear
system

zktl Az, + Buy, )
Ok = Czg
with ¢, being the prediction of the nonlinear system’s output
Yk and 2, € RN, N >> n being the lifted state. The concept
of getting better prediction using lifting is supported by the
Koopman operator theory which we briefly explain in the
next section.

However, from the practical point-of-view, the Koopman
operator theory only provides theoretical foundations for the
state-space lifting. The main challenge is finding the matrices
A, B and C that represent the nonlinear dynamics well, for
which we use the Extended Dynamic Mode Decomposition
(EDMD) algorithm.

A. Koopman Operator

We provide only a brief introduction to Koopman operator
theory, as our main goal is to establish the context for the
terminology used. For more rigorous exposition of Koopman
operator theory, we refer the reader to [17] or [18]. The foun-
dations of the Koopman operator for analyzing dynamical
systems were established by the works of Koopman and von
Neumann in the 1930s [19], [20]. We restrict ourselves to
the case of autonomous systems. The extension to systems
with external inputs can be found in [21].

Consider an autonomous discrete dynamical system

Tp1 =T (zx), T €M, 3)

where 7 (zj) is a nonlinear transition mapping and M is
a state space. The core idea is to shift the focus from the
mapping 7 to some (possibly infinitely many) user-defined
functions of the states, so-called observables. An observable
is a function ¢ : M — R which belongs to typically
an infinitely dimensional vector space F. The Koopman
operator K : F — F is then defined as

(KY) (zx) = ¢ (T (wx)) = ¥ (Tg11) “4)

Thus, the operator /C advances every observable ¢ from the
time step k to k + 1. One of the fundamental properties of
K is its linearity since for any two observables 1! and 12
and scalars « and 3 the following holds

K (! + 59?) = ok (01) + BK (7). (5)
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Therefore, using the Koopman operator, one can convert
the analysis of finite-dimensional nonlinear system into the
analysis of the infinite-dimensional linear operator. Addi-
tionally, the Koopman operator fully captures the behavior
of the nonlinear system, provided the space of observables
contains the coordinate identity mappings. Linear predictors
in the form (2) can then be viewed as finite-dimensional
approximation to the Koopman operator.

B. Linear Predictor Identification

We identify the linear predictor (2) of the system’s dynam-
ics (1) using the approach described in [21]. The approach
is based on the Extended Dynamic Mode Decomposition
(EDMD) algorithm for controlled systems. The EDMD was
first introduced in [22], and then generalized to the control
setting in [21]. Full explanation and further information
regarding the algorithm can be found in [23] or [18].

The process starts with gathering p data collections, the

measurements and inputs (y%,y%,u%), i = 1,...,p from the
nonlinear system satisfying
(6)

yi =h (f(lkvuz)) )

where h and f are from (1). Therefore, y* and y’ are
temporally ordered but 3° and y**! are necessarily not, so
the measurements can be from different trajectories. Then,
we select s lifting mappings 17 — the observables — and
combine all observables into a single vector function

U(y) = [0 (), 02 (), 0" ()] (7)

We arrange the data collections in the following manner

Y =[y' 9% P, (8a)
Y. = [yl ot (8b)
VI = [ (yh), U(y?),..., T (y")] , (8c)
VI = [(yl), (yd), ..., ()] (8d)
Q= [ul,u2,...,up] . (8e)

The linear predictor (2) can be then obtained by solving

: Liff Liff
min[|[ Y, — AYH — BO|p

)

(9a)

minl|Y — Y™l (9b)

where ||-||r is the Frobenius norm. The analytical solution
to (9) is

A B ylife] [ylife T ylift] [ylift ™I
& =TT (PaTlaT) - o

where (-)T denotes the Moore—Penrose pseudoinverse [?].

IV. CONTROL METHODS

Having the linear predictor (2), we can design a feedback
controller via classical linear control systems method. We
use two control techniques, the Linear Quadratic Regulator
(LQR), and the Model Predictive Control (MPC).

A. Linear Quadratic Regulator

The discrete-time Linear Quadratic Regulator (LQR) is a
controller that minimizes the quadratic cost function
o0
J(u, z) = Z (szsz + ukT.Ruk) ,
k=0

(1)

subjected to the dynamics of the system (2). The matrices
@ > 0 and R > O represent the penalties on states and input,
respectively. The control law minimizing (11) is

U = 7KZ]€ = 7K\I/(yk) s (12)

where K can be computed from the solution to the discrete-
time Algebraic Riccati Equation.

B. Model Predictive Control

Use of linear prediction in conjunction with model pre-
dictive control was first introduced in [21], and subsequently
coined as Koopman MPC (KMPC). KMPC for control of
dynamical systems has been previously used, such as in [24],
[25].

Model Predictive Control (MPC) is a discrete-time optimal
control algorithm that uses optimization to find input se-
quences that minimize a given cost function J(-) over defined
time frame— the prediction horizon N,. Upon computing the
optimal input sequence, the controller then applies only the
first element from the sequence, and the process is repeated
in the next time step. With linear predictor of the system’s
dynamics, the optimization problem is a convex quadratic
program for which many high-performance solvers exist. We
use the OSQP solver [26].

We formulate the MPC for tracking. Let ey, be the tracking
error and 7y, the reference. At every time step ¢, the MPC
solves an optimization problem

J({Zk}gio 7{Uk}§cv:po) s

min
Uk, 2k
subject to  zp1 = Az +Bug, k=0,1,..., N, —1,
€ =T — Cz;.c 5
Umin < Uk < Umax »
parameters zo = V(y;) ,
ry =given, k=0,1,...,N,,
(13)

where Umin/max are bounds on inputs. After the optimal
sequence uy, is found, only the first element ug is used, new
measurement is obtained, and the process repeats in next
time step t + 1.

The loss function J(-) in (13) has a standard quadratic
form for an MPC tracking problem

Np—1
1 1<
J (zg, ug) = ieLpSeNp + 5 Z (engk + uZRuk) )
k=0
(14)
Matrices Q = 0 and S > 0 penalize the error inside and

the end of the prediction horizon, respectively, while R > 0
penalizes the input.
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Furthermore, to reduce computational complexity, and
due to computational considerations (see Remark 2), we
rewrite the quadratic problem (13) into a dense and delta
input formulation. For the sake of brevity, we omit the full
derivation and present only the resulting formulas; see [27]
or other classical textbooks on MPC for full explanation. Let

Aup = up — Up—1 ,

.
AU = AuOT,AulT,...,AuLp_l , (15)
r= [rJ,rI,...,rI,p_l]T .

The final quadratic problem solved by MPC at each time
step ¢ is

1
min —AU'HAU + [z r'| FTAU ,
AU 2
S.t. bmin < GAU < bmax 5

(16)

where the matrices H, F, G, and vectors b,in, bmax can be
derived from the state (A, B,C) and cost (), R) matrices.
Remark 2: We use the dense formulation so the dimen-
sionality of the optimization problem (16) does not scale
with the number of observables (the size of the lifted state
z). The delta input formulation allows achieving offset-free
control in case of external disturbances acting on the system.

V. EXPERIMENTS

In this section, we present experiments with a lattice
structure built from the voxels, the Voxel fower. The Voxel
Tower is chosen as the experimental structure as it is a basic
geometry applicable to a variety of different application,
such as soft-robotic arms, limbs, or smart architecture. The
structure, together with the scheme of its architecture, is
depicted in Fig. 6. The tower’s motion is controlled by the
actuated voxel at the bottom, and the movement is measured
by sensing voxel mounted halfway up the tower.

The structure consist of eight vertically connected voxels
of two types. The structure is primarily composed of semi-
compliant voxels that enable tilting in one axis, while being
stiff in the other. We additionally used one rigid voxel that
serves as the housing for the sensor.

A. Control Synthesis

To identify the predictor (2), we gathered the inputs
and outputs from the real system. In total, we acquired
p = 4 x 10* measurements points from six trajectories. Each
trajectory consists of supplying a different open-loop input
and measuring the tilt ¢ and tilt speed .

As observables, we used delay-embeddings (time-shifted
copies) of the measured output. The use of delay embeddings
has been documented and justified in [28]. For the stabiliza-
tion task V-B we used s = 2 delay embeddings, while the
tracking predictor iielded better results with s = 3. Upon

introducing ¢ = qﬁ,(ﬁ,Du}, where D"b;, = bp_, is the

rigid faces

actuator

(a) (b)

Fig. 6: The Voxel Tower: (a) a photo of the real prototype;
(b) a graphic of the Voxel Tower system with its individual
parts.

delay operator, we can write the particular lifting functions
as

\Ijstab.(w) = [DQWDUJJ/J]T )
Uirac. () = [D3, D%, Dip, ] " .

The main tuning parameters for the design of the sta-
bilizing LQR controller are the values of matrices ) and
R in (11). Since penalizing delayed states or inputs is not
meaningful, only the values of @) corresponding with the
system’s original states are non-zero and chosen to obtain
the desired performance.

For the design of the KMPC controller, we still have the
state and input penalty matrices ) and R at hand, but on
top of that, there are two extra parameters, that we can
use — the prediction horizon length N, and the final state
penalty matrix S. We set the prediction horizon IV, = 10,
and through a suitable choice of the matrix C in (13), we
can again penalize only the original states ¢ and ¢. The
corresponding values in the ) and S matrices that result in
the desired performance were chosen.

The KMPC gives us the option to bound the control action.
We found the limit on the applied torque to be 0.5 Nm.
This limit ensured the torque would not damage the actuated
voxel, while still deforming the voxel enough to induce
motion into the structure.

a7
(18)

B. Stabilization

In the first testing scenario, presented in Fig. 7, we
tilted the tower into an initial angle deviation: ¢y = —20°
and compared the response in the controlled system to the
uncontrolled system. The figure includes snapshots from the
experiment. Even though the uncontrolled structure would
also eventually stabilize due to damping, the controlled
structure is able to stabilize much faster.

In the second scenario, presented in Fig. 8a, we tested the
response in the case where neither of the state variables is
zero. The figure compares the behavior of the controlled and
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Fig. 7: (a) Response to the initial deviation ¢y = —20° from
vertical position Snapshots of the experiment with active
damping: (b) t = 0s; (¢) t = 0.2s; (d) t = 0.55; (e)
t=0.8s; (f) t=1.0s; (g) t = 1.4s.

uncontrolled systems. We first applied a precomputed sine
wave torque excitation to the system (red area) to initiate
movement. After 6 seconds, when the tower was already in
motion, we switched to the damping control. Again, we can
observe that the controlled system significantly outperforms
the uncontrolled system in terms of settling time.

In the third scenario, presented in Fig. 8b, we applied two
0.5s force pulses, simulating disturbances. The disturbance
signal is shown in the bottom plot as a black dashed line.
During the time of the disturbance (red areas), the motor
acts as the disturbance. The figure also shows the response
of the tower to the disturbance, comparing the behavior of
the uncontrolled system with the controlled system. The
measured results show that the designed controller is able
to successfully dampen even higher-frequency oscillations
caused by the abrupt disturbance.

6(0) # 0, $(0) # 0
Damped

Excitation Phase

Undamped

(a)
Disturbance Attenuation
‘ Damped Disturbance Time |

Undamped

¢ |deg]
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o o o
g 4
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71100
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= 3 | =)
Z 0
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-0.5 . . . . k|

0 2 4 6 8 10 12

Time [s]
(b)

Fig. 8: Two experiments of stabilization

C. Tracking

To test the KMPC controller, we generated two refer-
ence trajectories. First, we required multiple consecutive
step changes in the tilt angle. The second type of tested
trajectories consist of gradual changes in the tilt angle. In
both experiments, the reference velocity remained zero. This
choice was made considering that the tower was intended to
remain stationary or move slowly. We present the measured
responses in Fig. 9. The outcomes of both experiment
confirm that the KMPC is able to track the desired references
and further confirms the efficiency of the developed method.

VI. CONCLUSION

This work introduced sensing and feedback control into
lattice structures made from 3D printed cuboctahedron vox-
els. We presented a novel means for actuation, the actuated
voxel, which uses local deformations to actuate a voxel
structure. We build a structure from these digital materials—
the Voxel Tower— and considered the problem of stabiliza-
tion, disturbance attenuation, and reference tracking. To solve
these tasks, we used the EDMD algorithm to obtain a linear
predictor and implemented two regulators, the LQR and
the Koopman MPC, and demonstrated their performance
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Fig. 9: Two experiments of reference tracking
[21]
on the physical system. The presented work expanded the |27
capabilities of mechanical lattice structures beyond open-
loop control and can serve as a stepping stone toward the
utilization of digital structures in complex applications that 23
demand more advanced control techniques. Future work will
address controlling systems with more complex structure. [24]
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