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Advanced materials hold great promise, but their adoption is impeded by the challenges of developing, 
characterizing, and modeling them, then of designing, processing, and producing something with 
them. Even if the results are open, the means to do each of these steps are typically proprietary and 
segregated. We show how principles of open-source software and hardware can be used to develop 
open instrumentation for materials science, so that a measurement can be accompanied by a complete 
computational description of how to reproduce it. And then we show how this approach can be extended 
to effectively measure predictive computational models rather than just model parameters. We refer to 
these interrelated concepts as “computational metrology.” These are illustrated with examples including 
a 3D printer that can do rheological characterization of unfamiliar and variable materials.

Introduction
Accelerated methods for obtaining advanced materials has long 
been a goal of the research and development enterprise. To 
address this, The US Materials Genome Initiative (MGI) seeks 
to accelerate the discovery, design, development, and deploy-
ment of new materials at a fraction of the cost, through the crea-
tion of a materials innovation infrastructure. This experimental, 
computational, and data infrastructure lowers the barriers to 
materials design, and; thus, exists as a democratizing means to 
the end of accelerated materials R&D. In what follows, we will 
discuss how the concepts of open and computational metrology 
emerged in the MGI.

One of the primary motivations driving the establishment 
of the MGI was the need for a shift in how modeling and sim-
ulation were used as part of the materials R&D enterprise. It 
had long been the case that modeling was viewed as inferior to 
experimental approaches, and not as a crucial and equal partner. 
Building off prior materials modeling successes [1] the MGI 
sought to foster computational approaches that were tightly 
integrated with experiments, with a supporting data infrastruc-
ture to manage flows of information both within a lab, and with 
federated resources around the world.

The MGI’s focus on data and the potential of data-driven 
materials R&D [1] anticipated and then supported the subse-
quent rise of artificial intelligence-based models of materials 

synthesis and characterization. Now, thirteen years after the 
establishment of the MGI, all of these ideas are converging 
towards a conceptual framework we term “computational 
metrology.”

The focus of the MGI has been around mitigating the ardu-
ous process of designing and deploying a new material. There 
are numerous challenges that need to be overcome at each stage 
of the materials R&D process. There is a large loop from design-
ing a material, to characterizing it, to modeling it, to designing 
with it, to processing and manipulating the material, to pro-
ducing a finished product. In general each of these steps can 
be quite time consuming and expensive, employing proprietary 
equipment and processes, which are often poorly integrated with 
other tools that make up the materials R&D enterprise. In addi-
tion, materials design requires specialized skills and training. 
Finally, materials R&D is continuously hindered by the lack of 
data. Often data is just not available, and when it is available 
it can be proprietary. The deployment of MGI-inspired tools 
will lower the barriers to efficiently exercising the large loop of 
materials development, while also reducing the required skill-
sets, and allowing for the generation of material data on the fly, 
further democratizing access to these approaches. Indeed, as 
we will explore, one can go beyond just generating data for use 
in a model if one takes the more holistic view of computational 
metrology.
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To measure something presumes the existence of a model 
that is assumed to be correct for the response of a system to a 
range of applied changes or probes. A linkage between measure-
ment and model is typically done by controlling the variables 
besides the measurand to the highest degree possible, but this 
strategy, while time-tested, is not necessarily feasible. Instead, 
with the aid of computation, we can now solve highly complex 
models by indirectly inferring them from accessible observa-
tions. This is the heart of computational metrology.

Ultimately, this work is suggesting a shift in how measure-
ments are described. In general, what is desired by most scien-
tists and engineers is a model with predictive power that pro-
vides a pathway towards a desired objective (a stronger material, 
a more recyclable battery with double the lifetime,…). In many 
cases it will be expedient to bypass the idea of a single meas-
ured quantity, and jump directly to “measuring the model.” The 
combination of these ideas and the ability to share open-source 
specifications for instruments, and models of the measurement 
process, allows for wider democratization of materials research, 
and connects with a growing movement in open metrology.

Open metrology
Metrology by definition requires openness, because measure-
ments cannot be exchanged without agreement on their mean-
ing. However, this openness may not extend to the means for 
making those measurements, which are typically performed 
using proprietary instrumentation. The instrument specifica-
tions and their traceability may be open, but not their imple-
mentation. This lack of transparency can be a barrier to their 
access, integration, and application.

An alternative approach is based on the use of open-source 
hardware [2]. This extends principles of open-source software 
to hardware. Along with freely sharing complete design speci-
fications, these come with licenses specifying how they can be 
used and modified.

Open hardware is enabled by the spread in the availability 
and capabilities of rapid-prototyping tools, including physi-
cal fabrication, embedded electronics, and sensing and actua-
tion. These are being combined to enable rapid prototyping of 
rapid-prototyping, for rapid machine building [3]. Those same 
elements can be used to create a range of open materials sci-
ence instrumentation [4]. Examples include a rheometer [5], 
a Raman spectrometer [6], a fiber spectrometer [7], an opti-
cal microscope [8], an Atomic Force Microscope [9], a plastic 
scanner [10, 11], a liquid handling platform [12] used for syn-
thesis of CdSe nanocrystals [13], and a PCR (polymerase chain 
reaction) thermal cycler [14]. In each case, these include a bill 
of materials, design files for additive and subtractive processes, 
schematics, and microcode, allowing not just experiments but 
the experimental apparatus to be reproduced.

One challenge for open hardware has to do with inter-
change formats; much of open software’s success is based on 
the availability of software design texts. Similar interchange 
formats for generalized data structures exist like Comma Sep-
arated Values (CSV), JavaScript Object Native (JSON), and 
Tom’s Own Markup Language (TOML), and designs and data 
using these formats are readily shared and collectively devel-
oped. Software designs are easily transformed into working 
code on almost any computing system by way of interpreters 
and compilers, despite a heterogeneity of processor and com-
puter architectures.

Re-creating the mechatronic systems required to make 
real-world measurements requires a more heterogeneous set of 
design documents: embedded code that runs on physical devices 
is required, but in order to understand what a line of embed-
ded code is doing in the physical world, we need also to see the 
circuit schematic where it lives, and also to read the datasheet 
provided by the microcontroller’s manufacturer. We also need 
datasheets and schematics of any other device on the circuit in 
question.

Beyond the circuit, we need physical representations of the 
rest of the instrument: an ADC or DAC (Analog to Digital Con-
verter, and Digital to Analog Converter) might be connected to a 
coil, a heater, or a thermistor: how many windings are in the coil, 
at what diameter? Where is the coil positioned? These data can 
be encoded in physical design CAD (Computer Aided Design) 
software, but no standard interchange format exists that pre-
serves 3D design intent, and the same is true of circuit designs. 
Both disciplines have standard output formats like Gerber and 
STEP (Standard for the Exchange of Product Data), and mature 
open-source editing tools, but neither has an interoperable edit-
able interchange format.

Interoperable design formats across software and hardware 
would make it possible in hardware to do what is common in 
software: distributed development and improvement, global 
reproducibility, and application spanning reusability. Research 
articles in computer science are routinely published alongside 
working demo code—or better yet, alongside software modules 
that can be used by other researchers to further their own sci-
entific efforts. The same is possible for hardware, though there 
is another challenge in this domain: not everyone has the same 
access to the supply chains and fabrication equipment that make 
it possible to reproduce designs [15]. Access to digital fabrica-
tion is pushing this boundary, allowing designs to be developed 
that are more readily fabricated using homogenous feedstocks, 
parametric CAD, and a common set of direct-write processes 
[16, 17].

Extending this effort, we developed an open, fabricatable 
tensile testing machine and published open-source files for the 
hardware (CAD) and electronics (developed on a breadboard 
with modules from other open-source hardware developers) and 
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controllers (firmware and a browser-based interface) that we 
called the displacement exercise [18] (Fig. 1).

Like many of the other examples referenced earlier, DEX is 
a monolithic open-source project, i.e. it is a stand-alone device 
that is meant as a drop-in replacement for closed-source alterna-
tives. While these kinds of projects can be valuable in many con-
texts (lowering barriers to access, and educating other would-be 
systems builders), their adoption has been small relative to their 
closed-source counterparts. Scholars who study the prolifera-
tion of open software would note a similarity to early efforts in 
that domain: to produce large end-user facing programs such 
as office suites that were meant to replace proprietary counter-
parts [19]. Open software’s contemporary success is not found 
in these types of programs, but in the countless libraries and 
packages that are available to other software developers. In this 
paradigm, functional building blocks are shared in a commons 
and re-used in many different application-specific projects [20]. 
Based on this insight, we have focused our successive efforts on 
the development of interoperable modular systems for low-level 
control of mechatronic devices [21, 22].

Computational metrology
The goal of material measurements is not just obtaining a 
parameter, it’s enabling an application. There are many inter-
vening steps from a measurement, to a model, to its use in a 
process. In computational metrology, we seek to eliminate them 
by directly measuring a predictive model.

Computational metrology is based on the observation that 
end-use applications might not be able to directly access tradi-
tional model parameters, but we can instrument process tech-
nologies to characterize a range of process parameters that can 
serve as indirect observations of the underlying model. These 
can then be developed by reinforcement learning, and validated 
by testing their ability to generalize beyond the observations.

As an example of this indirect measurement technique, we 
can consider modeling the elastic and plastic deformation of a 
thermoplastic coupon. Traditionally, we would need to select 
a theoretical framework, such as linear elasticity for the elastic 
regime, and viscoelastic and/or viscoplastic theories for plastic 
deformation. Before we could apply these models, we would 
need to measure a variety of fundamental material properties, 

Figure 1:   An exploded view of the Displacement Exercise (DEX), an open-source tensile testing machine [18].
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such as the Young’s modulus, shear modulus, Poisson’s ratio, 
yield strength, viscosity, and strain rate sensitivity, all of which 
may depend on temperature.

Alternatively, one may select a simple computational model 
with tunable generic parameters. This could be a neural network 
such as a physics informed neural network [23], or a particle 
model with a parametric force law such as memoryless isotropic 
point particles (MIPS) [24]. In either case, the model is used 
to directly predict whatever sensor measurements are available, 
and the generic parameters are optimized in order to make the 
simulated results match the physical results. For example, we 
may take as our objective function the force vs displacement 
curve measured by a machine such as DEX. A MIPS model can 
be fit to this data, and then directly used to predict deforma-
tion of a particular geometry under different loads. One simple 
model subsumes both the elastic and plastic regimes (Fig. 2).

This opens the door to process-specific measurement and 
prediction. By simulating each of the sensors onboard a machine 
(e.g. an FDM printer), as well as the function of the machine 
itself (e.g. extrusion), we can merge the metrological and con-
trol aspects of the entire system. This bypasses an entire suite of 
independent lab tests that determine traditional material prop-
erties. It can also function in real-time, so that process param-
eters can be adapted to new materials on the fly.

In addition, computational metrology provides a rigorous 
framework for the analysis and propagation of uncertainty in 
input variables with respect to the observational model, with 
validation through out-of-sample generalization as we’ve illus-
trated. As an inherently model-based approach to materials 
measurement and, ultimately, design, a systematic exploration 

of the influence of uncertainties in inputs and the sensitivity of 
the system to such variations can enable deeper insights into the 
measurement system and its limitations.

In manufacturing equipment we need models that are 
hybrids of the machine’s dynamics and the materials’ proper-
ties, both of which have meaningful impact on how a machine 
would be optimally operated. For example an injection molding 
machine’s controller should have information about the maxi-
mum pressures and heat fluxes that can be generated by the 
machine, as well as the plastics’ rheological properties [25]. At 
the heart of this control paradigm is the increasing availability 
of software tools and libraries that make the development and 
deployment of optimization-based control easier [26, 27] and 
more general autograd packages [28].

To bring situated metrology online with process control 
and “machines learning” we developed the Rheoprinter, an FFF 
(Fused Filament Fabrication) printer that measures the materials 
it is using alongside its own dynamics (Fig. 3). The Rheoprinter 
adds to its extruder a load cell (for pressure measurement) and 
a filament sensor (to measure real feed rate into the hotend), 
based on Ref. [29]. These allow the machine to build machine-
material models that predict pressures at given flowrates and 
temperatures. These models allow us to generate working pro-
cess parameters in one shot, using a short experiment that takes 
about 15 min [30].

The system can work well with relatively low quality meas-
urements because those measurements are normalized to the 
same system that the metrology is performed on. In the recent 
work, we have extended our system to account for dynam-
ics, completing a controller for the machine that follows the 

Figure 2:   Optimization progress and resulting stress–strain curve for a MIPS model.
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design pattern laid out in the previous section. In this work, 
we use computer vision and the machine’s own controller to 
develop a model that describes flow rates given the system’s 
full dynamics (including filament compression). We couple 
this model with a kinematic model of the machine’s motion 
system, and use them together in an online optimizer (a 
Model Predictive Controller—MPC) to operate the machine. 
By doing so, we can bypass many of the feed-forward param-
eters that users normally need to set by hand.

This approach departs significantly from traditional rheo-
logical practices, where the viscoelastic response of polymers 
is determined under idealized conditions and used to develop 
constitutive models linking stress to strain. These models are 
then employed to make predictions or control process out-
comes, aiming to capture the complete state of the system 
and the material’s response to it. However, achieving this 
in real time is rarely feasible. Unlike purpose-built rheom-
eters—costing between $10,000 and $100,000—that create 
isothermal environments, idealized flow fields, and often 
linear flows, with well-defined stress and strain conditions, 
the Rheoprinter captures critical aspects of rheology, such as 
stress and strain indices (load cell and filament encoder), but 
under nonisothermal and nonlinear conditions. Instead, its 
measurements reflect the process state, combining both the 
process conditions and material response. This approach sig-
nificantly simplifies modeling by eliminating the need for a 
comprehensive multiphysics understanding of both the pro-
cess and the material.

Conclusion
With a focus on materials science, we’ve illustrated how 
metrology can migrate from proprietary to open-source tools, 
offering opportunities to perform faster (by reducing develop-
ment time), better (by easing integration across devices and 
algorithms), and cheaper (by reducing costs over the bill of 
materials). The use of open hardware along with open soft-
ware will aid reproducibility, by allowing not just the descrip-
tion of an experiment but also its implementation to be repli-
cated. Realization of this vision will require a corresponding 
integration of open interchange formats, which today requires 
separate descriptions of mechanical design, production path 
planning, schematics, circuit boards, bills of material, microc-
ode, interface protocols, and application code. It also requires 
a new paradigm for open-source systems integration to allow 
developers to easily build application-specific devices from 
modular building blocks.

Open metrology leads to computational metrology, by 
exposing internal degrees of freedom and allowing added 
instrumentation that is unavailable within the internals of a 
proprietary system. We’ve shown how this can be used to indi-
rectly determine quantities that are not observed directly, and 
to effectively measure predictive computational models rather 
than just model parameters. Computational metrology is the 
embodiment of machine learning in machines.

Figure 3:   The Rheoprinter’s instrumented printhead (left) combines off-the-shelf printer components with custom instrumentation. At right, a model 
made by the Rheoprinter to predict relative nozzle pressures as a function of material flow rate and nozzle temperature.
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