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Abstract

Numerous applications, from high-performance scientific computing to large, high-
resolution multi-touch interfaces to strong artifical intelligence, push the practical
physical limits of modern computers. Typical computers attempt to hide the physics
as much as possible, running software composed of a series of instructions drawn from
an arbitrary set to be executed upon data that can be accessed uniformly. However, we
submit that by exposing, rather than hiding, the density and velocity of information
and the spatially concurrent, asynchronous nature of logic, scaling down in size and up
in complexity becomes significantly easier. In particular, we introduce “asynchronous
logic automata”, which are a specialization of both asynchronous cellular automata
and Petri nets, and include Boolean logic primitives in each cell. We also show some
example algorithms, means to create circuits, potential hardware implementations,
and comparisons to similar models in past practice.
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Chapter 1

Background

1.1 Introduction

To build a computer is to create initial conditions and define the interpretations of

inputs, outputs, and states such that the dynamics of physics, within a limited spa-

tial domain, corresponds exactly to that of a more easily useful (yet equally versatile)

mathematical model. Various modes of physics have been employed to this end, in-

cluding electromechanical (relays), thermionic (vacuum tubes), and even fluidic [32]

and quantum [15]. In addition, many distinct families of models have been emulated,

including pointer machines (in which all information is accessed by traversing a di-

rected graph), Harvard architectures (in which instructions are separate from data),

and dataflow architectures (in which there is no explicit flow of control). However,

almost all computers for the past 50–60 years have made one specific choice: namely,

the so-called “von Neumann” [47] model of computation (also known as Random

Access Stored Program or RASP).

Physics inherently allows only local information transfer, and computation, like every

other process, relies on physics. Thus, programming models which assume non-local
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14 1.1: Introduction

processes, such as data buses, random access memory, and global clocking, must be

implemented at a slow enough speed to allow local interactions to simulate the non-

local effects which are assumed. Since such models do not take physical locality into

account, even local effects are limited to the speed of the false non-local effects, by a

global clock which regulates all operations.

In computing today, many observers agree that there is a practical physical speed

limit for the venerable von Neumann model (see for instance [33]), and that the bulk

of future speed increases will derive from parallelism in some form. Chipmakers are

currently working to pack as many processors as they can into one box to achieve this

parallelism, but in doing so, they are moving even further from the locality that is

necessary for a direct implementation as physics. At the other end of the abstraction

spectrum, while sequential programming models can be generalized to use multiple

parallel threads, such models are often clumsy and do not reflect the physical location

of the threads relative to each other or memory.

In addition, research has long suggested that asynchronous (or “self-timed”) devices

consume less power and dissipate less heat than typical clocked devices [48]. However,

traditional microarchitectures require significant book-keeping overhead to synchro-

nize various functional blocks, due to the nature of their instructions, which must

be executed in sequence. Most asynchronous designs to present have derived their

performance benefits from clever pipelining and power distribution rather than true

asynchrony – known as “globally asynchronous, locally synchronous” design – and

often this is not enough to offset the overhead [14].

These shortcomings are accepted because of the tremendous body of existing code

written in sequential fashion, which is expected to run on the latest hardware. How-

ever, by removing the assumption of backwards compatibility, there is an opportunity

to create a new, disruptive programming model which is more efficient to physically

implement. The trick is to expose the underlying physical limitations formally in the
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model, instead of hiding them, and to bring engineering tradeoffs traditionally fixed

in advance into the dynamic and reconfigurable realm of software. Such a model

could scale favorably and painlessly to an arbitrary number of parallel elements, to

larger problem sizes, and to faster, smaller process technologies.

Potentially, this may have eventual impact across the field of computing, initially in:

• high-performance computing, in which parallelization is the only way forward,

and sequential algorithms are not scaling favorably;

• very large, high-resolution human-computer interfaces, which not only require

parallelism but have a natural sense of spatial distribution;

• physical simulations and 3D rendering, which are volumetric in nature and could

take advantage of this type of model if extended to 3D;

• as well as strong AI and the Singularity (see [23]), which requires massive par-

allelism to emulate the myriad functions of the human brain.

1.2 Past Work

The ideas discussed so far are not original: the history begins with the cellular au-

tomata (CAs) of von Neumann [46], designed to explore the theory of self-replicating

machines in a mathematical way (though never finished). Note that this was some

time after he completed the architecture for the Electronic Discrete Variable Auto-

matic Computer, or EDVAC [47], which has come to be known as “the von Neumann

architecture.” Many papers since then can be found examining (mostly 2-state) CAs,

and there are a few directions to prove simple CA universality – Alvy Ray Smith’s [38],

E. Roger Banks’ [5], and Matthew Cook’s more recent Rule 110 construction [10].

However, while interesting from the point of view of computability theory, classical
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CAs clearly over-constrain algorithms to beyond the point of practicality, except in a

certain class of problems related to physical simulation [13].

Norman Margolus and Tommaso Toffoli, among others, built special-purpose hard-

ware called the Cellular Automata Machine 8 (CAM-8) for these and other appli-

cations [44, 25]. However, although the CAM-8 was optimized to simulate cellular

automata, it was not physically embodied as an extensible cellular structure. Our

work is also distinguished by constraints that are closer to physics than the rigid

clocking of a classical cellular automaton.

Another related sub-field is that of field-programmable gate arrays (FPGAs). Gate

arrays have evolved over time from sum-product networks such as Shoup’s [37] and

other acyclic, memory-less structures such as Minnick’s [26] to the complex, non-

local constructions of today’s commercial offerings, yet skipping over synchronous

and sequential, but simplified local-effect cells. Because neither FPGA type is strictly

local, an ensemble of small FPGAs cannot easily be combined into a larger FPGA.

The tradition of parallel programming languages, from Occam [34] to Erlang [3] to

Fortress [41] is also of interest. Although they are designed for clusters of standard

machines (possibly with multiple processors sharing access to a single, separate mem-

ory), they introduce work distribution techniques and programming language ideas

that are likely to prove useful in the practical application of our work. However, they

are still based on primitive operations such as multiplication or message passing,

which are far from primitive from a physical perspective.

Paintable Computing [8], a previous project at the Media Lab, and Amorphous Com-

puting [1], a similar project in MIT’s Project on Mathematics and Computation

(Project MAC), share similar goals but still used stock von Neumann devices at each

node, although they assumed much less about the density or relative position of nodes

in space. Regular, tightly packed lattices are clearly more spatially efficient than ran-

dom diffusion, and the only cost is that the “computing material” would come in
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sheets or blocks rather than paint cans or powder (“smart dust”). In addition, our

work requires far less capability to exist at the lowest level of hierarchy it describes,

so it is not tied to a particular processor architecture or even process technology.

Finally, the Connection Machine [19] was designed with a similar motivation – merg-

ing processing and memory into a homogeneous substrate – but as the name indicates,

included many non-local connections: ”In an abstract sense, the Connection Machine

is a universal cellular automaton with an additional mechanism added for non-local

communication. In other words, the Connection Machine hardware hides the de-

tails.” We are primarily concerned with exposing the details, so that the programmer

can decide on resource trade-offs dynamically. However, the implementation of Lisp

on the Connection Machine [40] introduces concepts such as xectors (spatially dis-

tributed, inherently parallel sequences of data) which are likely to be useful in the

implementation of functional programming languages in our architecture.

To sum up, the key element of our approach that is not present in any of these models

is that of formal conformance to physics:

• classical CAs are an “overshoot” – imposing too many constraints between space

and time above those of physics;

• the CAM-8 machine, while specialized to simulate CAs, is not physically an

extensible cellular structure;

• gate arrays have become non-local and are trending further away from local

interactions, and cannot be fused together into larger gate arrays;

• practical parallel languages accept the architecture of commercial computers

and simply make the best of it in software;

• Paintable Computing and Amorphous Computing assume a diffuse set of nodes
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rather than a tight space-packing lattice, as well as building up from micropro-

cessors rather than more primitive primitives; and

• the Connection Machine allows non-local communication by hiding physical

details.

Also, at least as important as this is the fact that our model operates precisely without

clocking, while the models above do not. This decreases power requirements and heat

dissipation, while increasing overall speed.

We now discuss at a lower level the development and specifics of the Logic CA and

Asynchronous Logic Automata.



Chapter 2

Models

2.1 Inspiration

We initially sought the simplest, most lightweight models we could to enable maxi-

mum hardware flexibility. Much past work has begun with the assumption of a certain

processor (e.g. ARM9, PowerPC), but in the spirit of staying close to physics, we

wanted a much more conceptually minimal universal computing element. Not only

would this free us from the choice of architectures and programming languages, but

if the primitive element is simple enough, it can be ported across physical modes

(semiconductor, fluidic, molecular, mechanical, etc.). This naturally led to an exam-

ination of cellular automata: among the simplest computationally universal models

known, and local by nature. Cellular automata make only local assumptions about

communications, have limited state, and thus limited logic in each node. However,

most cellular automata are considered mere theoretical curiosities due to the number

of such minimalistic cells it takes to implement even elementary logical functions such

as AND or XOR.

In 1970, Banks published a thesis supervised by Fredkin, Minsky, Sheridan and Payn-

19



20 2.1: Inspiration

ter in which he proved that a two-state cellular automaton communicating only with

its four nearest edge neighbors is computationally universal. The automaton is gov-

erned by three simple rules: a “0” cell surrounded by three or four “1” cells becomes

a “1”, a “1” cell which is neighbored on two adjacent sides (north and west, north

and east, south and west, or south and east) by “1” cells and on the other sides by

“0” cells becomes a “0”, and finally, that any other cell retains its previous value.

Universality was proven largely by the implementation of a universal logic element,

B ∧ ¬A, shown in Fig. 2-1. Other logic elements, such as B ∧A, can be constructed

using this one and similarly sized routing and fan-out components exhibited in the

Banks thesis. Despite the simplicity of each individual cell, to perform interesting

computation, a large number of such cells is needed.

↓ A ↓
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

→ 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
B 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 →
→ 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 →

0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 →
0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Figure 2-1: E. Roger Banks’ universal logical element (computes B ∧ ¬A). A logical
TRUE is represented by a two-“0” pattern along three parallel lines of “1”s (seen
here coming into input “B”).
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2.2 Logic CA

2.2.1 Motivation

The original model presented in this section improves the product of complexity per

cell and the number of cells needed to achieve the design by incorporating Boolean

logic directly in the cells instead of deriving it from ensembles of cells. For instance,

although a Banks CA cell can be implemented in about 30 transistors, implement-

ing a full adder would require over 3000 Banks cells (about 90,000 total transistors).

Another way of looking at this is to say that we are trading off system complexity

against design complexity, but in fact, in any given application, design complexity

bounds total system complexity (enough cells are needed in the system to represent

the design) so both are improved in practice. Note that this does impact the theoret-

ical power of the model: a consequence of Turing-universality is that any universal

CA can compute an equivalent class of functions given sufficient time and storage.

What we are considering here is a means to decrease the specific storage requirement

for a representative problem (in this case, the simple combinatorial circuit of the full

adder). We considered some different ways to achieve this, and found that a rela-

tively low complexity product is attained by a CA in which each cell is essentially

a processor with one one-bit register and a set of one-bit instructions, which we call

the “Logic CA”. The basic concept of the Logic CA is to recognize that if making

Boolean logic circuits is the goal, and if transistors (or other types of switches) are

the physical substrate, then it is quite sensible to include Boolean logic functions

directly in the definition of the CA. In addition, if crossovers are part of the goal, and

are admissible in the substrate, then it is reasonable to allow diagonal connections

between cells to cross each other. In this model, a full adder can be implemented in 6

cells, each consisting of 340 transistors, for a total of 2040 transistors, improving the

complexity product by more than an order of magnitude. However, these concessions
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do not only improve the numbers, but are also qualitatively beneficial for ease of

design synthesis.

2.2.2 Details

The Logic CA consists of cells with 8 neighbors and 9 total bits of state. The state

bits are divided into 8 configuration bits (specifying the “instruction” to be performed

at every clock tick) and 1 dynamic state bit. The configuration bits are further

divided into 2 gate bits which choose among the four allowed Boolean functions (G =

{AND, OR, XOR, NAND}) and 6 input bits which choose among the 36 possible

pairs of (potentially identical) inputs chosen from the 8 neighbors (1
2
·8·(8−1)+8). At

each time step, a cell examines the dynamic state bit of its selected inputs, performs

the selected Boolean operation on these inputs, and sets its own dynamic state to the

result.

Mathematically, an instance of the Logic CA can be described as a series of global

states St (t ∈ N0) each composed of local states st
(i,j) ∈ {0, 1} (i, j ∈ Z) and a set of

constant configuration elements

c(i,j) ∈ C = (G × ({−1, 0, 1}2 − {(0, 0)})2)

= G × {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}

× {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}

(note that there is a bijection between C and {0, 1}8, 8 bits) such that given the

definitions

g(i,j) = (c(i,j))1 ∈ G (the selected gate)

a(i,j) = (i, j) + (c(i,j))2 ∈ Z
2 (the coordinates pointed to by input A)

b(i,j) = (i, j) + (c(i,j))3 ∈ Z
2 (the coordinates pointed to by input B)
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we have the update rule:

st+1
(i,j) =































if g(i,j) = AND st
a(i,j)

∧ st
b(i,j)

if g(i,j) = OR st
a(i,j)

∨ st
b(i,j)

if g(i,j) = XOR st
a(i,j)

⊕ st
b(i,j)

if g(i,j) = NAND ¬( st
a(i,j)

∧ st
b(i,j)

)

This description as a formal CA is cumbersome because the Logic CA sacrifices math-

ematical elegance for practical utility, but be assured that it represents the same

concept as the paragraph of prose at the beginning of the section.

In pictures of the Logic CA such as Fig. 2-2, the smaller squares outside the large

squares representing each cell indicate the selected input directions for a given cell,

the central glyph indicates the selected Boolean function, and the color of the glyph

indicates the dynamic state (the shade on the farthest left cell represents 0, and the

shade on the farthest right represents 1).

Figure 2-2: Logic CA gates (from left: AND, OR, XOR, NAND)

cagates3.eps
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2.3 Asynchronous Logic Automata

2.3.1 Motivation

There are a few driving factors that push us to consider a version of the Logic CA

which is not driven by a global clock (i.e. not all cells update simultaneously). The

first is simply the cost of distributing the global clock without losing phase over an

indefinitely sized array. Even if it may be possible to correct phase and distribute the

clock locally using a phase-lock loop [17] or similar strategies, clock distribution will

still cost power. More importantly, updating all cells simultaneously wastes power

since some areas of the array may have more work to do than others at any given

time, and ought to be updated more because of it.

By “asynchronous” here, we do not simply mean that each element might perform its

designated operation at any moment, nor do we mean that there are a few clocked

elements which each have an independent clock. Rather, there are strict conditions

on when operations can be performed based on data dependencies (the inputs must

be ready to provide input, and the outputs must be ready to receive output). These

conditions cannot be reversed except by the operation, and the operation can be

delayed any amount of time without causing the overall system to have a different

result (the result would simply appear later). When traditional architectures are

made to run without a global clock [48], the data dependencies in these architectures

can be very complex, and a huge amount of design effort is required to make sure

they are always resolved. The trick here that makes asynchronous design easy is

that because each individual bit is a processor, and each processor is only dealing

with O(1) bits at any given time, the constraints necessary to make an asynchronous

circuit work can be enforced by the substrate itself, below the level of Logic CA circuit

design.

Another benefit of making the Logic CA asynchronous is the elimination of “delay
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lines”. These are parts of the circuit which exist solely to make the length of two con-

vergent paths equal so that their signals arrive at the same time. In an asynchronous

version, these become unnecessary, since the merging point will have to wait for both

signals to be ready. This saves space, time, and power, and makes creating valid

algorithms simpler.

Also, as we will see, the changes needed to make the Logic CA work asynchronously

without explicit acknowledgment signals also make the application of charge-conserving

logic possible. Traditional complementary metal-oxide-semiconductor (CMOS) logic

sinks charge at every gate input and sources it again at the output, dissipating and

consuming energy. Charge-conserving logic ejects the same electrons at the output as

entered the input (along with some extra to restore those which left due to thermal

factors). This also saves a large amount of power.

In short, power is saved by:

• not distributing a clock signal over a large physical space,

• not consuming power in areas which are idle,

• and not dissipating 1
2
CV 2 with every operation.

In addition, speed is improved since cells which are only passing data from input

to output, and not computing, may move data at gate propagation speed, (about 1

millimeter per nanosecond) which is a couple orders of magnitude slower than light,

but a few orders of magnitude faster than a synchronous Logic CA would be.

2.3.2 Details

Asynchronous Logic Automata (ALA) are modification of the Logic CA, inspired

by both lattice-gas theory [43] and Petri net theory [31], that realizes the benefits
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described above.

By “lattice gas”, we mean a model similar to cellular automata in which the cells

communicate by means of particles with velocity as opposed to broadcasted states.

Practically, this means that the information transmitted by a cell to each of its neigh-

bors is independent in a lattice gas, where in a cellular automaton these transmissions

are identical. By convention, a lattice gas also has certain symmetries and conser-

vation properties that intuitively approximate an ideal gas [18], and in some cases,

numerically approximate an ideal gas [13].

Meanwhile, Petri nets are a broad and complex theory; we are primarily concerned

with the subclass known as “marked graphs” (a detailed explanation can be found

in [29]). In short, a marked graph is a graph whose edges can be occupied at any

given time by zero or more tokens. According to certain conditions on the tokens in

edges neighboring a node of the graph, the node may be allowed to “fire” (at any time

as long as the conditions are met) by performing some operations on the tokens (such

as moving a token from one of its edges to another or simply consuming a token from

an edge). Petri nets have been used for the explicit construction of asynchronous

circuits in the past [11, 28], but not in combination with a cellular structure.

Asynchronous Logic Automata merge these with the Logic CA as follows. We remove

the global clock and the bit of dynamic state in each cell, and replace the neighborhood

broadcasts with a set of four edges between neighboring cells, each containing zero

or one tokens, thus comprising a bit of state (see Fig. 2-3). Between each pair of

cells, in each direction, we have a pair of edges, one to represent a “0” signal, and

the other a “1” signal. Note that each pair of edges could be considered one edge

which can carry a “0” token or a “1” token. Instead of each cell being configured to

read the appropriate inputs, this data is now represented by an “active” bit in each

edge. Then, each cell becomes a stateless node (except that it still maintains its own

gate type) in this graph, which can fire on the conditions that all its active inputs
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Figure 2-3: Edges of one ALA cell
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are providing either a “0” token or a “1” token and that none of its active output

edges is currently occupied by a token of either type. When firing, it consumes the

input tokens (removing them from the input edges), performs its configured function,

and deposits the result to the appropriate output edges (see Fig. 2-4 for an example

of a 2-input, 2-output AND gate firing). As it is a marked graph, the behavior of

this model is well-defined even without any assumptions regarding the timing of the

computations, except that each computation will fire in some finite length of time

after the preconditions are met.

The model now operates asynchronously, and removes the need not only for a global

clock, but any clock at all. In addition, the ”handshaking” mechanism is simply

the charging of a capacitor to signal data ready (which capacitor is charged represents

the value of the data) and the discharging of the same capacitor by a neighboring

cell to represent data acknowledgment. As a final bonus, the charge removed from

each capacitor can be placed by bucket-brigade logic [36] onto the output capacitor

with minimal energy dissipation, lowering power consumption.

We have also introduced explicit accounting for the creation and destruction of tokens

instead of implicitly doing both in every operation, as with traditional CMOS logic.

For instance, in Fig. 2-4, since there are equally many inputs and outputs, no tokens

must be created or destroyed. Only cells with more outputs than inputs must consume

power, and only cells with more inputs than outputs must dissipate heat. While

the model still uses the same irreversible Boolean functions, these functions can be

thought of as being simulated by conservative logic which is taking in constants

and dispersing garbage [12], enabling an easy pricing of the cost of non-conservatism in

any given configuration.
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Figure 2-4: An ALA cell firing; note that despite the loss of information (the inputs
are not deducible from the outputs), tokens are conserved in this example
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In addition, this model adapts much more easily to take advantage of adiabatic logic

design. For instance, when a cell is being used only to ferry tokens from one place

to another (e.g. an inverter, shown in Fig. 2-5), it can do so physically, instead of using

a traditional, charge-dumping CMOS stage.

0

1

1

0

NOT

0

1

1

0

(a) A token is output by the cell to the left

0

1

1

0

NOT

0

1

1

0

(b) The token now passes to the right cell

Figure 2-5: A bit travels left to right through an inverting cell

Note the following possible ALA variations:

1. No Diagonals. Connections may only be present between vertically or horizon-

tally adjacent cells, to simplify hardware layout.

2. Alternate Lattices. Indeed, any regular connection topology may be used,

including alternate two-dimensional layouts such as hexagonal lattices or even

three-dimensional structures such as the body-centered cubic lattice.

3. More Functions. The class of possible functions executed by each cell need

not be limited to {AND, OR, XOR, NAND} but may include any function

f : {0, 1, ∅}n → {0, 1, ∅}n (mapping from possible input states to possible output

actions) where n is the number of neighbors of each cell. For n = 4, there

are about 1061 functions on a fixed number of inputs; for n = 6, there are about

10687. A cell executing function f may fire if f ’s present output is not ∅n (i.e. if

the output has some non-empty elements) and every non-empty element of

David_Dalrymple_fig3-1.eps
David_Dalrymple_fig3-2.eps
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the output points to either an inactive or empty set of output edges. Then each

of those output edges would become populated with the value specified by

f ’s output. There is a tradeoff between the number of functions allowed and the

number of configuration bits in each cell needed to specify the function.

4. Multiple Signals. More than four token-storing edges may connect neighbor-

ing cells, allowing the conveyance of more parallel information in the same

period of time. This could be used for special programming inputs, or for

gates which act bitwise on multiple bits.

2.3.3 ALA Simulator

We wrote a simulator for Asynchronous Logic Automata using the C language, Guile

(an embeddable Scheme interpreter), OpenGL, and freeglut. The code is listed in

Appendix A. The high-level algorithm is to keep a list of cells whose firing conditions

are met, and choose a random one to fire at every time step. The description of

the configuration to simulate is generated at run-time by a Scheme program provided

as input. Some examples of input code can be found in Appendix B. Figure 2-6

is a montage showing the first few frames of output from the circuit described by

lfsr.scm (section B.2). The visualization used by the ALA simulator is different to

that of the Logic CA: gate type is represented by color, and bits traveling through the

gates have fading trails through these gates. This reflects where computation is

happening (and where power is being dissipated).
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Figure 2-6: Six frames from the initial evolution of lfsr.scm
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Chapter 3

Algorithms

3.1 SEA Implementation

3.1.1 Motivation

One application that is particularly well-suited to implementation in a model such

as this is symmetric encryption as a Feistel cipher. Because these cipher structures can

operate on streams, they can take advantage of an arbitrary degree of parallelism

to deliver a corresponding degree of security, and because Feistel ciphers are typically

expressed as dataflow diagrams, it is natural to express the algorithm in the form

of a fixed picture that data flows through – the easiest way to program the logic CA.

In the space of Feistel ciphers, with a context in which resources are priced at fine

granularity, it is natural to choose a minimalistic Feistel cipher which provides all

the desired security properties such as diffusion and resistance to linear and differential

cryptanalysis while requiring the least computation. This is the role filled by SEA:

a Scalable Encryption Algorithm for Small Embedded Applications [39].

33
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3.1.2 SEA Components

SEA assumes very little computing power from its host. The primitive operations used

to construct the Feistel functions are:

1. Bitwise XOR

2. Substitution box composed from AND, OR, and XOR

3. Word rotate

4. Bit rotate

5. Addition

Each of these components has been implemented using the synchronous Logic CA

model, as seen in Fig. 3-1. Note that computation proceeds from right to left and

bottom to top in these figures.

Since XOR is a primitive function of the CA cell, bitwise XOR over 3 simultaneous

streams is largely an exercise in routing and timing, with the computation taking

place in the center (Fig. 3-1a). The substitution box (s-box, Figure 3-1b) is simply

implemented as it is described in the SEA paper (with some extra cells to ensure

timing uniformity in the Logic CA):

x0 = (x2 ∧ x1) ⊕ x0

x1 = (x2 ∧ x0) ⊕ x1

x2 = (x0 ∨ x1) ⊕ x2

As shown, x0 is on the bottom. Word rotate (Fig. 3-1c) is a series of four swaps which

re-routes three parallel streams of bits to rotated positions. Bit rotate (Fig. 3-1d) is a
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carefully timed delay circuit which extracts the last bit of each byte and delays it until

the end of the byte. The addition block (Fig. 3-1e) is actually the simplest of these

circuits – it need only keep track of the carry bit and execute a full add every time step.

(a) Bitwise XOR (b) S-box (c) Word ro-
tate

(d) Bit rotate

(e) Addition

Figure 3-1: Components of SEA implemented in the Logic CA

3.1.3 Complete Round

Given these primitives, an encryption round of SEA can be constructed as seen in Fig.

3-2. The two inputs are at the bottom edge on either side. The right-hand block

is passed through an adder (which would be connected in the context of the full

cryptosystem to a key generation round which looks much the same), then left to

the S-box, then two of the three words are bit-rotated, and finally the result is XORed

with the word-rotated left-hand block to produce what will be the right-hand block

in the next round (in the context of the full cryptosystem, sequential rounds are

followed by a crossover). Note that the right-hand block must arrive in advance of the

xor.eps
sbox.eps
wordrot.eps
bitrot.eps
serial_adder.eps
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left-hand block in this model, since it must pass through the horizontal section before

meeting the left-hand block at the XOR. By assembling this building block into

the appropriately sized structure, we can obtain any desired degree of cryptographic

confusion and diffusion, with no cost to continuous throughput (only latency).

Figure 3-2: A single round of SEA built from primitives

3.1.4 Encrypt-Decrypt

Fig. 3-3 is a montage showing what happens when we feed the letters “CBA” through

one encryption round and one decryption round of SEA. It should be read from

left to right and then from top to bottom. In the first frame, you can see the vertically

stacked letters on the left side, then you can follow the bits as they are delayed

while the meaningless right-hand block is passing through the horizontal elements. In

the fifth frame, the blocks meet at the XOR junction. The seventh frame shows

the “encrypted” data in full between the encrypt round and the decrypt round. In the

round.eps
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eighth frame, this data is re-XORed with the same key, regenerated by the machinery

of the decrypt round, and word-rotated in the inverse direction. In the final frame, we

can see that the letters “CBA” have once again emerged.

Figure 3-3: An encrypt round and a decrypt round of SEA passing the information
“CBA”.

montage1.eps
montage2.eps
montage3.eps
montage4.eps
montage5.eps
montage6.eps
montage7.eps
montage8.eps
montage9.eps
montage10.eps


38 3.2: Bubble Sort Implementation

3.2 Bubble Sort Implementation

3.2.1 Overview

“Bubble sort” is a simple, classic sort algorithm which can be described as repeatedly

checking each neighboring pair of elements and swapping them if they are out of order

[21]. It is so called because elements which are out of place will gradually “bubble” up

to their sorted location through a series of nearest-neighbor transpositions. On

sequential computers, the checks must be performed one at a time, meaning that

a sequence of O(n2) operations (one check/swap each) is needed to guarantee that the

entire set has been sorted. Thus bubble sort is typically ignored in favor of algorithms

such as quicksort, which can sort with only O(n lg n) operations. On a cellular com-

puter, checks of non-overlapping pairs of elements can be performed simultaneously at

no extra cost, so O(n) operations (each comprising O(n) checks) are sufficient – fewer

than the best possible sequential algorithm. Note that with denser interconnection

topologies, such as shuffle-exchange or hypercube, only O(lg2 n) operations may

be needed [7], but with only local connections, O(n) operations is provably optimal [6].

The CA implementation of bubble sort is made from two main components, which

we call the “switchyard” and the “comparator”. Fig. 3-4 shows how these components

interact. Note that this scheme can be viewed as a compromise between the sequential

bubble sort algorithm and the “diamond” sorting network of Kautz [20], which

is in turn equivalent to the odd-even transposition sorting network [22, 35]. Each

comparator operates on two binary strings (elements to be sorted) and outputs

them unmodified, along with a single-bit control line which indicates whether the

elements are out of order. If so, the corresponding switchyard transposes them;

otherwise, it also passes them back out unmodified for the next round of comparisons.

Half the comparators or half the switchyards are active at any given time step

(necessary since all the pairs being compared simultaneously are non-overlapping).
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...
...

...

Switchyard

⇒
⇐

Comparator
⇐

←
⇐ ⇐

Switchyard
⇒

Comparator
⇒
→

Switchyard

⇒ ⇒
⇐

Comparator
⇐

←
⇐ ⇐

Switchyard
⇒

Comparator
⇒
→

⇒ ⇒
⇐

...
...

...

Figure 3-4: Block-level architecture of bubble sort in the Logic CA

3.2.2 Sort Components

Fig. 3-5 shows a left-side switchyard and comparator implemented in the synchronous

Logic CA, oriented the same way as the topmost switchyard and comparator in Fig.

3-4. The inputs of the switchyard are on the right-hand side in the vertical center, with

the control line being between the binary string inputs. The outputs of the switchyard

are on the right-hand side at the vertical extremes. The inputs of the comparator are

on the right, and the outputs on the left (with the control line in the vertical center).

The switchyard (Fig. 3-5a) includes very little logic; it is mostly wires (chains of AND

gates whose inputs are both tied to the last). These paths extend from both inputs to

both outputs (four in all), and the control paths extend from the control input to both

corners (where the NAND gates are). The paths which cross in the middle are

only enabled when the control line is on (they are ANDed with it), and the paths which

are aligned with the top and bottom edges are only enabled when the control input is

off (they are ANDed with the NAND of the control line). The paths are merged at the
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outputs using OR gates.

(a) Switchyard (b) Comparator

Figure 3-5: Components of sort implemented in the Logic CA

The comparator (Fig. 3-5b) also includes long data paths, which can be traced along

most of the top and bottom edges, but unlike the switchyard, contains significant logic

and state in the center. At the right edge are detectors for bit mismatches in the input,

which are inputs to two OR-based bit stretchers that stabilize NAND-NAND flip-flops

which compute the output and latch it on the control line. A reset input, intended to

connect to a timer depending on the length of strings being sorted, can be seen

coming down from the top, toward the left-hand side.

3.2.3 Complete Sort

We can flip and assemble these elements, given the pattern in Fig. 3-4, into a CA

like Fig. 3-6. In order to match up the vertical locations of inputs and outputs

in the comparator and switchyard, vertical wires are added where needed.

switchyard.eps
comparator.eps
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Figure 3-6: A four-element sorter built from primitives

sort.eps
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Chapter 4

Ongoing and Future Work

4.1 Conformal Computing Team

This work was done in the context of the Conformal Computing project, a project

to develop computers that:

• cover surfaces and fill volumes

• are incrementally extensible

• have embedded, unobtrusive form factors

• solve distributed problems with distributed solutions

• adapt to applications and workloads

• operate reliably from unreliable parts

This project is a collaboration between the Massachusetts Institute of Technology

Center for Bits and Atoms and the North Dakota State University Center for Nanoscale

43
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Science and Engineering. The Conformal Computing team includes Kailiang Chen,

Kenny Cheung, David Dalrymple, Ahana Ghosh, Forrest Green, Mike Hennebry,

Mariam Hoseini, Scott Kirkpatrick, Ara Knaian, Luis Lafeunte Molinero, Ivan Lima,

Mark Pavicic, Danielle Thompson, and Chao You. Work being done in this project

fills in the lower and higher level components necessary to turn the concepts in

this thesis into a complete system:

• Programming Models

– Hierarchical Design Tool and

– Mathematical Programming

• Cellular Microcode

– Logic CA or

– ALA, possibly with

– Coded Folding,

– Scale-Invariance, and

– Fault Tolerance

• Hardware Realizations

– CA Strips,

– CA ASIC, and

– Molecular Logic [2, 9, 42]

4.2 Programming Models

The primary disadvantage to practical fabrication and use of ALA in their present

form is the need to simultaneously initialize all cells with the configuration data
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before useful computation can be performed, as well as the lack of special-purpose

tools for generating this data.

4.2.1 Hierarchical Design Tool

Forrest Green is working on a design tool for the Logic CA and ALA that uses ”li-

braries” of small hand-coded primitives for operations such as adding and comparing,

and allows the composition of new, more complex primitives using a path-finding algo-

rithm to connect input and output ports. This tool would have the appearance of a vi-

sual dataflow programming language like Max/MSP, Labview, or Simulink, but the

picture would actually represent a directly executable plane of CA configuration data.

4.2.2 Mathematical Programming

Scott Kirkpatrick and Luis Lafuente Molinero are working on the theory of gen-

erating ALA patterns as the result of an optimization problem. For instance, the

sort described in section 3.2 can be derived as the optimal searcher through the

space of permutations described as products of primitive transpositions. In ad-

dition, they are developing an optimization solver which will run in software on

the ALA, and fully solve certain classes of mathematical programs in general.

4.3 Model Improvements

4.3.1 Coded Folding

Erik Demaine and Kenny Cheung are helping to develop a protocol for loading

configuration data in with a communication channel to exactly one cell, by com-

puting a Hamiltonian path which contains all the cells to be programmed, and
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informing each cell, after it is configured, in which direction it should forward the rest

of the data stream, then finally propagating a signal to begin the computation.

We are also considering similarities between ALA and von Neumann’s original self-

reproduction automaton [46] and are exploring ways to make the von Neumann

automaton asynchronous and easier to design in.

4.3.2 Scale-Invariance

ALA are translation-invariant: moving a boundless, unprogrammed ALA any num-

ber of cells in any direction does not change it. This is particularly useful for problems

with a naturally translational structure: sorting flat lists, processing streams, simulat-

ing locally interacting elements in space, etc. However, many types of problems

are naturally scale-invariant (i.e. they contain structures similar to their own),

such as parsing markup languages or complex recursive algorithms. These prob-

lems, when embedded in Euclidean space, require direct, high-speed interactions

between relatively distant elements, since the number of elements reachable through n

scaling steps of k scale factor grows as kn, while the number of elements reachable

through n translations in k dimensions grows as nk, and kn ≫ nk as n → ∞.

Even though the ALA can propagate signals along fixed paths fairly quickly, we ex-

pect that with hardware available today, this speed would come at best within

two orders of magnitude of the speed of light, and this cost will accumulate for

scale-invariant sorts of problems. This suggests that a reasonable (though significant)

modification to the ALA concept would be to add a hard-wired, scale-invariant

overlay which helps speed up this type of problem.
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4.3.3 Fault Tolerance

Although error correction can implemented in ALA software using redundant wires

and majority voting [45], we are exploring various ways to make the model itself tol-

erant of faults in the underlying hardware. This may take the form of an arm searching

for defects and designing around them [24], or cells which implement a code internally

[30]. Both methods may also be helpful, since some hardware defects are per-

manent as a result of fabrication errors, while others are transient as a result of ther-

mal noise or other factors disturbing an element which is otherwise in specification.

4.4 Hardware Realizations

4.4.1 CA Strips

Mike Pavicic, Michael Hennebry, and their team at the Center for Nanoscale Sci-

ence and Engineering and North Dakota State University (NDSU) have created

a hardware platform (Fig. 4-1) based on an 8x8 array of ATMega168 AVR pro-

cessors, with a 32x32 array of color LEDs on the opposite face, which implements a

Logic CA simulator. This substrate is actually composed of 8 “strips” each with 8 pro-

cessors, and can be indefinitely extended in one direction. They are working towards

processes which are indefinitely extensible in two directions, and eventually three.
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(a) One side of the strips is an 8x8 array of AVR processors

(b) The other side is a 32x32 array of color LEDs

Figure 4-1: CA “strips” developed at North Dakota State University

strips-avrs.eps
strips-leds.eps
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4.4.2 CA ASIC

Chao You (also at NDSU) has designed a silicon layout for a Logic CA (Fig. 4-2)

and Kailiang Chen (MIT) has fabricated an analog logic version of the Logic CA

(Fig. 4-3) and is working on a silicon layout for an ALA.

Figure 4-2: Logic CA silicon layout by Chao You

chao-ic.eps
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Figure 4-3: Analog Logic Automaton silicon layout by Kailiang Chen

chen-ic.eps
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4.4.3 Molecular Logic

We are also looking ahead toward direct-write nanostructures working with Joe

Jacobson’s group, which have demonstrated the fabrication of nanowire transistors [2],

and toward other types of molecular logic such as that being developed at Hewlett-

Packard Laboratories [9, 42].
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4.5 Applications

Increasingly, computer graphics performance is improved mainly by adding pixel

pipelines, but consider the possibility that every single pixel can be processed in paral-

lel. We are examining 2D and 3D graphics applications in which sites at regular in-

tervals on a planar array or one face of a spatial array corresponds to a light-

emitting element, and the computation of pixel values takes place in a spatially

distributed, concurrent way. For 3D graphics we may even imagine a raytracer operat-

ing by actually firing rays as propagating signals through the volume of the de-

vice. In addition, we are considering the case that these special sites on the surface cor-

respond to photodetectors, or even that both types of sites are present, and us-

ing clever optical filtering to make an indefinitely high-resolution camera, or to

make an indefinitely large multi-touch display.

Meanwhile, high-performance computing is limited by the power consumption of

the largest computers, but also by the ability to program them. We have also had sub-

stantial interest from the high-performance computing community, not just about

using physical ALA to solve scientific problems, but even to use the ALA programming

model as a way to program existing supercomputers. By implementing an extremely

well-optimized ALA simulator, the ALA software running on top of it need not

take the standard considerations that make developing sequential software for su-

percomputers so difficult. In addition, the flexibility of ALA architectures allow for in-

definite fixed-precision numbers, removing floating-point roundoff as a common source

of scientific computing bugs. Implementing a high-performance computer using ALA

as the physical substrate would provide all these benefits in addition to saving power.

Finally, we are looking forward to using the ALA to implement Marvin Minsky’s Emo-

tion Machine architecture [27], which requires numerous agents acting concurrently

as well as a hierarchy of critics which determine which agents ought to be en-

abled at any given time. The massive, but non-uniform, parallelism of the Emotion
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Machine fits neatly onto ALA (which are also non-uniform and massively parallel). Al-

though this architecture would be a useful one for the development of ALA software in

any case, it is supposed that this could lead to a machine which displays some

characteristics of intelligence.
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Chapter 5

Concluding Remarks

Computer science as an industry, and to some extent as a field of study, was derailed

by a series of unfortunate events that led to von Neumann’s EDVAC [47], a machine

made to do arithmetic in a flexible way, being the ancestor of all modern com-

puter designs. The first microprocessor, Intel’s 4004, was built using this archi-

tecture because it was designed for a high-end desk calculator. Unfortunately, the con-

cept of the microprocessor has been tied to this architecture ever since, despite

the best efforts of academics and venture capitalists alike, leading to much pain

for programmers, who pass much of it on to the end user through unreliable software.

However, this type of machine will soon finally reach the point in its evolution at which

it is no longer even “good enough” for the constantly rising performance that industry

expects and demands. This is a golden opportunity for a brand of “fundamen-

talist” computer science: we can revisit the final (rather than the earlier, mis-

understood, and hopelessly popular) wisdom of von Neumann [46] and Backus [4], and

give credence to all the great ideas from over 20 years ago (including but hardly limited

to [19, 12, 24, 11, 20]) that have been ignored by the mainstream establishment. Fun-

damentalist computer science is also fundamentalist in that we are interested in

the fundamentals of computing. This may sound like a vacuous statement, but there is

55
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far too little attention given today to the theory of how real-world physics can

best support reliable, controlled computations of arbitrary size and complexity.

In a world where computers are not so distanced from physics, they will be far

more intuitive to work with and program, since humans are very comfortable with

items that have a size, location, speed, and other well-defined properties. We call these

things “concrete”, although they may in fact be abstract concepts in our minds, be-

cause they can be thought of in the physical framework all people need to deal with the

world we live in. In a modern computer program, variables are omnipresent, and ma-

terialize wherever they are summoned by name, while statements exist only one

at a time, in an order that is not even possible (in general) to determine in advance.

These concepts are plainly impossible physically, so we simulate them by using

random-access memories and program counters. These concepts are all well and

good, but should be chosen, rather than imposed. For instance, when so-called

“object-oriented programming” is employed, the computer is required to do extra work

to ensure that certain variables are only accessible within a restricted domain, while

from a physical perspective, such a restriction ought to make the computer’s work

much lighter, since it would no longer need to deliver variables between distant objects

while keeping their values consistent. The hiding of physics behind an over-generalized

model of computation introduces an exaggerated tradeoff between “programmer time”

and “computer time”. Would you rather take full advantage of the computer’s

forced non-physicality, but be burdened in your programming by the non-intuitiveness

of non-physicality; or would you rather program in an intuitive way (by encapsulating

variables in objects and composing transforming functions with each other) but

pay the price of having these more physically constrained ideas simulated by a

non-physical model that is in turn being simulated by physics itself, causing program

speed to suffer? Programming in an intuitive way ought to result in faster pro-

grams, because physical constraints are recognized to a greater extent.



57

In addition, the design, construction, and configuration of systems which are phys-

ically large or sparse should become far easier, because the size or sparsity (and the as-

sociated restrictions on state mixing) could be represented automatically in the pro-

gramming model. No longer must such systems be subdivided into “nodes” – domains

within which engineers were successfully able to circumvent physics without too much

cost, and outside of which, there exist few principled ways to construct programs. In-

stead, by exposing the physical constraints within the programming models, these sys-

tems can be exploited fully without any distinguished programming techniques.

We can imagine a world [16, 23] which is filled with computing devices, which are

not so much hidden as transparent. This computation can be put to use for everything

from managing the energy use of buildings, to distributed videoconferencing in which

network routing is derived as an optimization constrained by physics rather than

as ad-hoc algorithms, to simulating human brains. All this computing can be made far

easier to use, to the extent that the distinction between users and programmers

will become blurred. Due to the less profound boundaries between the inside and

outside of an individual “computer”, it can be made available much more flexibly.

Of course, these ideas have a long lineage, but we believe that the need and the means

to make it happen are present (or at worst, imminent). More than the final vision or

the specific details, the overall message to take away is that we are likely on the verge

of a paradigm shift since von Neumann’s EDVAC architecture is no longer working

for many industry applications, and that making the physics of computing transparent

instead of hidden is a good way to proceed. On a lower level, the author has shown

that the problem of synchronicity can be addressed by making the individual bits

each their own processor which can enforce data dependencies, and that dividing space

into a regular lattice of similar processing elements at the granularity of one bit

is a simple yet effective way of representing the speed of light and density constraints of

physics. This work is a small but important step toward the computers of the future.
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Appendix A

ALA Simulator Code

A.1 ca.c

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <string.h>

4 #define CELL_OUTPUTS 8

5

6 long int cell_fade = 1000000;

7 unsigned int shuffle_mix = 1000;

8

9 struct ca_cell {

10 char drawable ;

11 struct ca_cell* input_a ;

12 struct ca_cell* input_b ;

13 struct ca_cell* outputs [CELL_OUTPUTS ];

14 int output_count ;

15 int input_a_output_idx;

16 int input_b_output_idx;

17 char function ;

18 char input_a_state;

19 char input_b_state;

20 long int latest_update;

21 char latest_bit ;

22 int order_index ;

23 int draw_order_index;

59
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24 };

25

26 struct ca_canvas {

27 unsigned int width;

28 unsigned int height;

29 struct ca_cell* cells;

30 int* update_order ;

31 int ready_cells ;

32 int* draw_order ;

33 int drawable_cells;

34 unsigned long int ca_time ;

35 };

36

37 char ca_and(char a, char b) {

38 return a & b & 1;

39 }

40 char ca_or(char a, char b) {

41 return (a | b) & 1;

42 }

43 char ca_xor(char a, char b) {

44 return (a ^ b) & 1;

45 }

46 char ca_nand(char a, char b) {

47 return ~(a & b)&1;

48 }

49

50 typedef char (* ca_operation )(char ,char);

51

52 static ca_operation ca_functions [4] = {&ca_and , &ca_or , &

ca_xor , &ca_nand };

53

54 int ca_cell_check_conditions (struct ca_cell* cell) {

55 if(!(( cell -> input_a_state & 2) && (cell -> input_b_state &

2))) return 0;

56 int i;

57 for(i=0; i<cell ->output_count ; i++) {

58 if(cell ->outputs [i]->input_a == cell) {

59 if(cell ->outputs [i]-> input_a_state & 2) return 0;

60 } else if (cell ->outputs [i]->input_b == cell) {

61 if(cell ->outputs [i]-> input_b_state & 2) return 0;

62 }

63 }
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64 return 1;

65 }

66

67 int ca_cell_update(struct ca_cell * cell) {

68 if(ca_cell_check_conditions (cell)) {

69 char new_output_state;

70 int i;

71 new_output_state = 2 | ca_functions [(int)cell ->

function ](cell ->input_a_state ,cell ->input_b_state);

72 cell -> latest_bit = new_output_state & 1;

73 #ifdef CA_DEBUG

74 printf("cell updated  recently , output %d\n",

new_output_state);

75 #endif

76 cell -> input_a_state = 0;

77 cell -> input_b_state = 0;

78 for(i=0; i<CELL_OUTPUTS ; i++) {

79 if(cell ->outputs [i]!= NULL) {

80 if(cell ->outputs [i]->input_a == cell) {

81 cell ->outputs [i]-> input_a_state=new_output_state

;

82 }

83 if (cell ->outputs [i]-> input_b == cell) {

84 cell ->outputs [i]-> input_b_state=new_output_state

;

85 }

86 }

87 }

88 return 0;

89 } else {

90 return 1;

91 }

92 }

93

94 void ca_canvas_swap(struct ca_canvas * canvas , int n, int k

) {

95 int temp;

96 temp = canvas ->update_order [n];

97 canvas -> update_order [n] = canvas ->update_order [k];

98 canvas -> update_order [k] = temp;

99 canvas ->cells[canvas ->update_order [k]]. order_index =k;

100 canvas ->cells[canvas ->update_order [n]]. order_index =n;
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101 }

102

103 void ca_canvas_shuffle(struct ca_canvas * canvas) {

104 int n;

105 if(shuffle_mix ==0) {return ;} else if (shuffle_mix ==1000)

{n=canvas -> ready_cells ;} else {

106 n = (( double)shuffle_mix )/1000*(( double)canvas ->

ready_cells );}

107 if(n>canvas ->width*canvas ->height) n=canvas ->width*

canvas ->height;

108 while (n > 1) {

109 int k = rand () % n;

110 n--;

111 ca_canvas_swap(canvas , n, k);

112 }

113 }

114

115 void ca_canvas_update(struct ca_canvas * canvas) {

116 int k;

117 struct ca_cell* updated_cell = NULL;

118 for (k=0;k<canvas ->ready_cells ;k++) {

119 int i=canvas -> update_order [k];

120 if(canvas ->cells[i]. drawable ) {

121 if(!( updated_cell || ca_cell_update(&canvas ->cells[i

]))) {

122 updated_cell =&( canvas ->cells[i]);

123 canvas ->cells[i]. latest_update=canvas ->ca_time ;

124 } else if (! ca_cell_check_conditions (&canvas ->cells[

i])) {

125 canvas ->ready_cells --;

126 ca_canvas_swap(canvas , canvas ->ready_cells , canvas

->cells[i]. order_index );

127 }

128 } else {

129 canvas ->ready_cells --;

130 ca_canvas_swap(canvas , canvas ->ready_cells , canvas ->

cells[i]. order_index );

131 }

132 }

133 if(updated_cell ) {

134 int i;

135 if(updated_cell ->order_index < canvas -> ready_cells ) {



A.1: ca.c 63

136 canvas ->ready_cells --;

137 ca_canvas_swap(canvas , canvas ->ready_cells ,

updated_cell ->order_index );

138 }

139 for(i=0; i<CELL_OUTPUTS ; i++) {

140 if(updated_cell ->outputs [i]!= NULL) {

141 if(updated_cell ->outputs [i]->input_a ==

updated_cell ) {

142 if(updated_cell ->outputs [i]->order_index >=canvas

-> ready_cells ) {

143 if( ca_cell_check_conditions (updated_cell ->

outputs [i])) {

144 canvas ->ready_cells ++;

145 ca_canvas_swap(canvas , canvas ->ready_cells

-1, updated_cell ->outputs[i]-> order_index

);

146 }

147 }

148 }

149 if (updated_cell ->outputs [i]-> input_b ==

updated_cell ) {

150 if(updated_cell ->outputs [i]->order_index >=canvas

-> ready_cells ) {

151 if( ca_cell_check_conditions (updated_cell ->

outputs [i])) {

152 canvas ->ready_cells ++;

153 ca_canvas_swap(canvas , canvas ->ready_cells

-1, updated_cell ->outputs[i]-> order_index

);

154 }

155 }

156 }

157 }

158 }

159 if(updated_cell ->input_a ->order_index >=canvas ->

ready_cells ) {

160 if( ca_cell_check_conditions (updated_cell ->input_a ))

{

161 canvas -> ready_cells ++;

162 ca_canvas_swap(canvas , canvas ->ready_cells -1,

updated_cell ->input_a -> order_index );

163 }



64 A.1: ca.c

164 }

165 if(updated_cell ->input_b ->order_index >=canvas ->

ready_cells ) {

166 if( ca_cell_check_conditions (updated_cell ->input_b ))

{

167 canvas -> ready_cells ++;

168 ca_canvas_swap(canvas , canvas ->ready_cells -1,

updated_cell ->input_b -> order_index );

169 }

170 }

171 }

172 ca_canvas_shuffle(canvas);

173 canvas ->ca_time ++;

174 #ifdef CA_DEBUG

175 if(canvas ->ca_time % 100000 == 0) {

176 printf("ca_time : %ld\tunix time: %d\n", canvas ->

ca_time , (int)time(NULL));

177 }

178 #endif

179 }

180

181 void ca_clear_cell(struct ca_cell * cleared_cell ) {

182 if(cleared_cell ->input_a ) {

183 cleared_cell ->input_a ->outputs [cleared_cell ->

input_a_output_idx ]= cleared_cell ->input_a ->outputs

[--cleared_cell ->input_a ->output_count ];

184 }

185 if(cleared_cell ->input_b ) {

186 cleared_cell ->input_b ->outputs [cleared_cell ->

input_b_output_idx ]= cleared_cell ->input_b ->outputs

[--cleared_cell ->input_b ->output_count ];

187 }

188

189 cleared_cell ->drawable =0;

190 cleared_cell ->function =0;

191 cleared_cell ->input_a =NULL;

192 cleared_cell ->input_b =NULL;

193 cleared_cell -> input_a_state=0;

194 cleared_cell -> input_b_state=0;

195 cleared_cell -> input_a_output_idx =0;

196 cleared_cell -> input_b_output_idx =0;

197 cleared_cell -> latest_bit =0;
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198 cleared_cell -> latest_update=-cell_fade ;

199 }

200

201 int ca_is_cell (struct ca_cell * cell) {

202 if(cell ->drawable ) {

203 return 1;

204 } else {

205 return 0;

206 }

207 }

208

209 void ca_canvas_clear(struct ca_canvas * canvas) {

210 int i;

211 memset(canvas ->cells ,0, sizeof(struct ca_cell )*canvas ->

width*canvas ->height);

212 for (i=0;i<(canvas ->width*canvas ->height);i++) {

213 ca_clear_cell(&(canvas ->cells[i]));

214 memset (&(canvas ->cells[i]. outputs) ,0,sizeof(struct

ca_cell *[ CELL_OUTPUTS ]));

215 canvas ->cells[canvas ->update_order [i]]. order_index =i;

216 canvas ->cells[i]. output_count =0;

217 }

218 }

219

220 struct ca_canvas ca_canvas_create(unsigned int width ,

unsigned int height) {

221 struct ca_canvas result;

222 int i;

223 result.width = width;

224 result.height = height;

225 result.ca_time = 0;

226 result.cells = (struct ca_cell *) malloc(width*height*

sizeof(struct ca_cell ));

227 result.update_order = (int*) malloc(width*height*sizeof(

int));

228 result.draw_order = (int*) malloc(width*height*sizeof(int

));

229 result.ready_cells = width*height;

230 result.drawable_cells = 0;

231 for(i=width*height -1;i >=0;i--) {

232 result.update_order [i]=i;

233 }
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234 ca_canvas_clear(& result);

235 return result;

236 }

237

238 int ca_index_translate(unsigned int width , unsigned int x,

unsigned int y, int dir) {

239 switch(dir) {

240 case 0:

241 return (y*width)+(x+1);

242 case 1:

243 return (y+1)*width+(x+1);

244 case 2:

245 return (y+1)*width+x;

246 case 3:

247 return (y+1)*width+(x-1);

248 case 4:

249 return y*width+(x-1);

250 case 5:

251 return (y-1)*width+(x-1);

252 case 6:

253 return (y-1)*width+x;

254 case 7:

255 return (y-1)*width+(x+1);

256 default :

257 return y*width+x;

258 }

259 }

260

261 int ca_canvas_clear_cell (struct ca_canvas * canvas ,

unsigned int x, unsigned int y) {

262 if(x >= canvas ->width || y >= canvas ->height) {return

1;}

263 if(!canvas ->cells[(y*canvas ->width)+x]. drawable ) {return

0;}

264 canvas -> draw_order [canvas ->cells[(y*canvas ->width)+x].

draw_order_index]=canvas ->draw_order [--canvas ->

drawable_cells];

265 ca_clear_cell(&( canvas ->cells[(y*canvas ->width)+x]));

266 return 0;

267 }

268

269 int ca_canvas_is_cell(struct ca_canvas * canvas , unsigned
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int x, unsigned int y) {

270 if(x >= canvas ->width || y >= canvas ->height) {return

1;}

271 return ca_is_cell (&(canvas ->cells[(y*canvas ->width)+x]))

;

272 }

273

274 int ca_canvas_set_cell(struct ca_canvas * canvas , unsigned

int x, unsigned int y, int func , int input_a_state , int

input_b_state , int input_a , int input_b ) {

275 struct ca_cell* new_cell = &(canvas ->cells[y*(canvas ->

width)+x]);

276 struct ca_cell* neighbor_cell;

277 int translated_index , translated_index2;

278 if(x >= canvas ->width || y >= canvas ->height) {return

1;}

279 new_cell -> input_a_state = input_a_state;

280 new_cell -> input_b_state = input_b_state;

281 new_cell ->function = (char)func;

282 new_cell ->drawable = 1;

283

284 canvas -> draw_order [canvas -> drawable_cells]=y*canvas ->

width+x;

285 new_cell -> draw_order_index=canvas -> drawable_cells;

286 canvas -> drawable_cells++;

287

288 translated_index = ca_index_translate(canvas ->width , x,

y, input_a);

289 if(translated_index <= (canvas ->width*canvas ->height)) {

290 neighbor_cell=&(canvas ->cells[translated_index ]);

291 new_cell ->input_a = neighbor_cell;

292 neighbor_cell ->outputs [neighbor_cell ->output_count ]=

new_cell ;

293 new_cell -> input_a_output_idx = neighbor_cell ->

output_count ;

294 neighbor_cell ->output_count ++;

295 }

296

297 translated_index2 = ca_index_translate(canvas ->width , x,

y, input_b );

298 if(translated_index2 <= (canvas ->width*canvas ->height))

{
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299 neighbor_cell=&(canvas ->cells[translated_index2 ]);

300 new_cell ->input_b = neighbor_cell;

301 neighbor_cell ->outputs [neighbor_cell ->output_count ]=

new_cell ;

302 new_cell -> input_b_output_idx = neighbor_cell ->

output_count ;

303 neighbor_cell ->output_count ++;

304 }

305

306 return 0;

307 }

308

309 void ca_canvas_print_states (struct ca_canvas * canvas) {

310 int i,j;

311 for(j=canvas ->height -1; j>=0; j--) {

312 for(i=0; i<canvas ->width; i++) {

313 struct ca_cell * ptr = &(canvas ->cells[j*canvas ->

width+i]);

314 printf("%c ", (ptr?((ptr ->latest_bit )?’#’:’.’):’ ’))

;

315 }

316 printf("\n");

317 }

318 printf("\n");

319 }

A.2 graphics.c

1 #include <math.h>

2 #include <GL/freeglut_std .h>

3 #include <GL/freeglut_ext .h>

4

5 #define NAND1R 0.7411

6 #define NAND1G 0.2705

7 #define NAND1B 0.0156

8 #define NAND0R 0.2000

9 #define NAND0G 0.6941

10 #define NAND0B 0.7411

11 #define NANDXR 0.3372

12 #define NANDXG 0.2705

13 #define NANDXB 0.0156

14 #define XOR1R 0.7411
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15 #define XOR1G 0.2039

16 #define XOR1B 0.3294

17 #define XOR0R 0.0431

18 #define XOR0G 0.5019

19 #define XOR0B 0.7411

20 #define XORXR 0.0431

21 #define XORXG 0.0156

22 #define XORXB 0.3372

23 #define OR1R 0.7450

24 #define OR1G 0.2549

25 #define OR1B 0.0156

26 #define OR0R 0.0666

27 #define OR0G 0.6941

28 #define OR0B 0.7372

29 #define ORXR 0.0823

30 #define ORXG 0.3372

31 #define ORXB 0.0156

32 #define AND1R 0.7411

33 #define AND1G 0.1764

34 #define AND1B 0.2000

35 #define AND0R 0.3215

36 #define AND0G 0.5019

37 #define AND0B 0.7411

38 #define ANDXR 0.3372

39 #define ANDXG 0.0156

40 #define ANDXB 0.0823

41 #define WIRE1R 1.0

42 #define WIRE1G 0.0

43 #define WIRE1B 0.0

44 #define WIRE0R 0.0

45 #define WIRE0G 0.5882

46 #define WIRE0B 1.0

47 #define WIREAR 1.0

48 #define WIREAG 1.0

49 #define WIREAB 1.0

50 #define WIREXR 0.0

51 #define WIREXG 0.0

52 #define WIREXB 0.0

53 #define BLACK 0,0,0

54 #define WHITE 1,1,1

55

56 unsigned int cell_size ;
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57 int and0 ,and1 ,or0 ,or1 ,xor0 ,xor1 ,nand0 ,nand1;

58 unsigned int draw_all = 1;

59

60 void ca_graphics_draw () {

61 int i;

62 static unsigned long int last_draw ;

63 if(draw_all ) {

64 glClear (GL_COLOR_BUFFER_BIT);

65 }

66 if(draw_all || last_draw < cell_fade ) {

67 last_draw =cell_fade ;

68 }

69 glBegin (GL_QUADS );

70 for(i=0; i<canvas.drawable_cells; i++) {

71 struct ca_cell* cell = &( canvas.cells[canvas.

draw_order [i]]);

72 int x = canvas.draw_order [i] % canvas.width;

73 int y = canvas.draw_order [i] / canvas.width;

74 if(draw_all || (cell ->latest_update >= last_draw -

cell_fade )) {

75 double brightness = (( double)(cell_fade - (canvas.

ca_time - cell ->latest_update)))/(( double)

cell_fade );

76 if(!(( canvas.ca_time - cell -> latest_update) <=

cell_fade )) brightness = 0.0;

77 switch(cell ->function ) {

78 case 0:

79 glColor3f (AND1R*brightness *cell -> latest_bit +

AND0R*brightness *(1-cell ->latest_bit )+ANDXR

*(1- brightness ),AND1G*brightness *cell ->

latest_bit +AND0G*brightness *(1-cell ->

latest_bit )+ANDXG*(1- brightness ),AND1B*

brightness *cell ->latest_bit +AND0B*brightness

*(1-cell ->latest_bit )+ANDXB*(1- brightness ));

80 break;

81 case 1:

82 glColor3f (OR1R*brightness *cell ->latest_bit +OR0R*

brightness *(1-cell ->latest_bit )+ORXR *(1-

brightness ),OR1G*brightness *cell ->latest_bit +

OR0G*brightness *(1-cell -> latest_bit )+ORXG *(1-

brightness ),OR1B*brightness *cell ->latest_bit +

OR0B*brightness *(1-cell -> latest_bit )+ORXB *(1-
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brightness ));

83 break;

84 case 2:

85 glColor3f (XOR1R*brightness *cell -> latest_bit +

XOR0R*brightness *(1-cell ->latest_bit )+XORXR

*(1- brightness ),XOR1G*brightness *cell ->

latest_bit +XOR0G*brightness *(1-cell ->

latest_bit )+XORXG*(1- brightness ),XOR1B*

brightness *cell ->latest_bit +XOR0B*brightness

*(1-cell ->latest_bit )+XORXB*(1- brightness ));

86 break;

87 case 3:

88 glColor3f (NAND1R*brightness *cell ->latest_bit +

NAND0R*brightness *(1-cell -> latest_bit )+NANDXR

*(1- brightness ),NAND1G*brightness *cell ->

latest_bit +NAND0G*brightness *(1-cell ->

latest_bit )+NANDXG *(1- brightness ),NAND1B*

brightness *cell ->latest_bit +NAND0B*brightness

*(1-cell ->latest_bit )+NANDXB *(1- brightness ));

89 break;

90 default :

91 continue ;

92 }

93 glVertex2i (x*cell_size , y*cell_size );

94 glVertex2i ((x+1)*cell_size , y*cell_size );

95 glVertex2i ((x+1)*cell_size , (y+1)*cell_size );

96 glVertex2i (x*cell_size , (y+1)*cell_size );

97 }

98 }

99 glEnd();

100 glBegin (GL_LINES );

101 for(i=0; i<canvas.drawable_cells; i++) {

102 struct ca_cell* cell = &( canvas.cells[canvas.

draw_order [i]]);

103 int x = canvas.draw_order [i] % canvas.width;

104 int y = canvas.draw_order [i] / canvas.width;

105 if(draw_all || (cell ->latest_update >= last_draw -

cell_fade ) || (cell ->input_a && (cell ->input_a ->

latest_update >= last_draw - cell_fade )) || (cell ->

input_b && (cell ->input_b -> latest_update >=

last_draw - cell_fade ))) {

106 struct ca_cell * ina = cell ->input_a;
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107 struct ca_cell * inb = cell ->input_b;

108 int ina_d = ina - canvas.cells;

109 int inb_d = inb - canvas.cells;

110 int ina_x = (double)((( ina_d % canvas.width)*

cell_size )+cell_size /2);

111 int ina_y = (double)((( ina_d / canvas.width)*

cell_size )+cell_size /2);

112 int inb_x = (double)((( inb_d % canvas.width)*

cell_size )+cell_size /2);

113 int inb_y = (double)((( inb_d / canvas.width)*

cell_size )+cell_size /2);

114 int cur_x = (double)((x*cell_size )+cell_size /2);

115 int cur_y = (double)((y*cell_size )+cell_size /2);

116

117 int p1a_x = 0.25* ina_x +0.75* cur_x;

118 int p1a_y = 0.25* ina_y +0.75* cur_y;

119 int p2a_x = 0.75* ina_x +0.25* cur_x;

120 int p2a_y = 0.75* ina_y +0.25* cur_y;

121 int p1b_x = 0.25* inb_x +0.75* cur_x;

122 int p1b_y = 0.25* inb_y +0.75* cur_y;

123 int p2b_x = 0.75* inb_x +0.25* cur_x;

124 int p2b_y = 0.75* inb_y +0.25* cur_y;

125 int transa_x = (p1a_y -p2a_y);

126 int transa_y = (p2a_x -p1a_x);

127 int transb_x = (p1b_y -p2b_y);

128 int transb_y = (p2b_x -p1b_x);

129 double transa_length = (double)(sqrt(transa_x *

transa_x +transa_y *transa_y ))/(( double)cell_size

/6.0);

130 double transb_length = (double)(sqrt(transb_x *

transb_x +transb_y *transb_y ))/(( double)cell_size

/6.0);

131 transa_x = (double)(transa_x /transa_length);

132 transa_y = (double)(transa_y /transa_length);

133 transb_x = (double)(transb_x /transb_length);

134 transb_y = (double)(transb_y /transb_length);

135

136 if(cell ->input_a_state ==2) {

137 double brightness ;

138 if(cell ->input_a ->latest_update >= (signed long

int) canvas.ca_time - cell_fade ) {

139 brightness = (( double)(cell_fade - (canvas.
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ca_time - cell ->input_a -> latest_update)))/((

double)cell_fade );

140 } else {

141 brightness = 0;

142 }

143 glColor3f (WIREAR*brightness +WIRE0R *(1- brightness ),

WIREAG*brightness +WIRE0G *(1- brightness ),WIREAB*

brightness +WIRE0B *(1- brightness ));

144 /* glVertex2d (p1a_x+1*transa_x , p1a_y+1* transa_y );

145 glVertex2d (p1a_x+3*transa_x , p1a_y+3* transa_y );*/

146 } else {

147 glColor3f (WIREXR ,WIREXG ,WIREXB);

148 }

149 glVertex2d (p1a_x +2* transa_x , p1a_y+2* transa_y );

150 glVertex2d (p2a_x +2* transa_x , p2a_y+2* transa_y );

151 if(cell ->input_a_state ==3) {

152 double brightness ;

153 if(cell ->input_a ->latest_update >= (signed long

int) canvas.ca_time - cell_fade ) {

154 brightness = (( double)(cell_fade - (canvas.

ca_time - cell ->input_a -> latest_update)))/((

double)cell_fade );

155 } else {

156 brightness = 0;

157 }

158 glColor3f (WIREAR*brightness +WIRE1R *(1- brightness ),

WIREAG*brightness +WIRE1G *(1- brightness ),WIREAB*

brightness +WIRE1B *(1- brightness ));

159 /* glVertex2d (p1a_x+1*transa_x , p1a_y+1* transa_y );

160 glVertex2d (p1a_x+3*transa_x , p1a_y+3* transa_y );*/

161 } else {

162 glColor3f (WIREXR ,WIREXG ,WIREXB);

163 }

164 glVertex2d (p1a_x +1* transa_x , p1a_y+1* transa_y );

165 glVertex2d (p2a_x +1* transa_x , p2a_y+1* transa_y );

166

167 if(cell ->input_b_state ==2) {

168 double brightness ;

169 if(cell ->input_b ->latest_update >= (signed long

int) canvas.ca_time - cell_fade ) {

170 brightness = (( double)(cell_fade - (canvas.

ca_time - cell ->input_b -> latest_update)))/((
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double)cell_fade );

171 } else {

172 brightness = 0;

173 }

174 glColor3f (WIREAR*brightness +WIRE0R *(1- brightness ),

WIREAG*brightness +WIRE0G *(1- brightness ),WIREAB*

brightness +WIRE0B *(1- brightness ));

175 /* glVertex2d (p1a_x+1*transa_x , p1a_y+1* transa_y );

176 glVertex2d (p1a_x+3*transa_x , p1a_y+3* transa_y );*/

177 } else {

178 glColor3f (WIREXR ,WIREXG ,WIREXB);

179 }

180 glVertex2d (p1b_x +2* transb_x , p1b_y+2* transa_y );

181 glVertex2d (p2b_x +2* transb_x , p2b_y+2* transb_y );

182 if(cell ->input_b_state ==3) {

183 double brightness ;

184 if(cell ->input_b ->latest_update >= (signed long

int) canvas.ca_time - cell_fade ) {

185 brightness = (( double)(cell_fade - (canvas.

ca_time - cell ->input_b -> latest_update)))/((

double)cell_fade );

186 } else {

187 brightness = 0;

188 }

189 glColor3f (WIREAR*brightness +WIRE1R *(1- brightness ),

WIREAG*brightness +WIRE1G *(1- brightness ),WIREAB*

brightness +WIRE1B *(1- brightness ));

190 /* glVertex2d (p1a_x+1*transa_x , p1a_y+1* transa_y );

191 glVertex2d (p1a_x+3*transa_x , p1a_y+3* transa_y );*/

192 } else {

193 glColor3f (WIREXR ,WIREXG ,WIREXB);

194 }

195 glVertex2d (p1b_x +1* transb_x , p1b_y+1* transb_y );

196 glVertex2d (p2b_x +1* transb_x , p2b_y+1* transb_y );

197 }

198 }

199 glEnd();

200 glFlush ();

201 glutSwapBuffers();

202 last_draw = canvas.ca_time ;

203 if(draw_all ) draw_all --;

204 }
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205

206 void ca_graphics_reshape (int w, int h) {

207 draw_all =5;

208 glViewport (0, 0, (GLsizei ) w, (GLsizei ) h);

209 glLoadIdentity();

210 if (w <= h) {

211 gluOrtho2D (0, canvas.width*cell_size ,canvas.height*

cell_size *(1-( GLfloat )h/( GLfloat )w)/2, canvas.height

*cell_size +canvas.height*cell_size *(( GLfloat )h/(

GLfloat )w-1) /2);

212 } else {

213 gluOrtho2D (canvas.width*cell_size *(1-( GLfloat )w/(

GLfloat )h)/2, canvas.width*cell_size +canvas.width*

cell_size *(( GLfloat )w/( GLfloat )h-1)/2,0, canvas.

height*cell_size );

214 }

215 }

216

217 void ca_graphics_init(unsigned int cell_size_ ) {

218 cell_size = cell_size_ ;

219 int glutArgc = 0;

220 glutInit (&glutArgc , NULL);

221 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB );

222 glutInitWindowSize(canvas.width*cell_size , canvas.height

*cell_size );

223 glutCreateWindow("CA");

224 glClearColor (0.0 ,0.0 ,0.0 ,0.0) ;

225 gluOrtho2D (0, canvas.width*cell_size ,0, canvas.height*

cell_size );

226 glutDisplayFunc(ca_graphics_draw);

227 glutReshapeFunc(ca_graphics_reshape);

228 glutTimerFunc(msecs , timercb , 0);

229 glutSetOption(GLUT_ACTION_ON_WINDOW_CLOSE ,

GLUT_ACTION_GLUTMAINLOOP_RETURNS );

230 glutMainLoop ();

231 glClear (GL_COLOR_BUFFER_BIT);

232 }
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A.3 main.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <libguile .h>

4 void timercb(int);

5 unsigned int msecs = 100;

6 #include "ca.c"

7 struct ca_canvas canvas;

8 #include "graphics .c"

9

10 SCM scm_canvas_init(SCM width , SCM height) {

11 canvas = ca_canvas_create(scm_to_uint (width),scm_to_uint

(height));

12 ca_canvas_clear(& canvas);

13 return SCM_BOOL_T ;

14 }

15

16 SCM scm_canvas_update(void) {

17 ca_canvas_update(& canvas);

18 return SCM_BOOL_T ;

19 }

20

21 SCM scm_canvas_clear(void) {

22 ca_canvas_clear(& canvas);

23 return SCM_BOOL_T ;

24 }

25

26 SCM scm_canvas_clear_cell (SCM x, SCM y) {

27 if(ca_canvas_clear_cell (&canvas , scm_to_uint (x),

scm_to_uint (y))) {

28 return SCM_BOOL_F ;

29 } else {

30 return SCM_BOOL_T ;

31 }

32 }

33

34 SCM scm_canvas_set_cell(SCM x, SCM y, SCM func , SCM

input_a_state , SCM input_b_state , SCM input_a , SCM

input_b ) {

35 if(ca_canvas_set_cell (&canvas , scm_to_uint (x),

scm_to_uint (y), scm_to_int (func), scm_to_int (
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input_a_state), scm_to_int (input_b_state), scm_to_int

(input_a), scm_to_int (input_b ))) {

36 return SCM_BOOL_F ;

37 } else {

38 return SCM_BOOL_T ;

39 }

40 }

41

42 SCM scm_canvas_is_cell(SCM x, SCM y) {

43 if(ca_canvas_is_cell (&canvas , scm_to_uint (x),

scm_to_uint (y))) {

44 return SCM_BOOL_T ;

45 } else {

46 return SCM_BOOL_F ;

47 }

48 }

49

50 SCM scm_canvas_print_states (void) {

51 ca_canvas_print_states (& canvas);

52 return SCM_BOOL_T ;

53 }

54

55 SCM scm_set_shuffle_mix(SCM shuffle_mix_v) {

56 shuffle_mix = scm_to_uint (shuffle_mix_v);

57 return SCM_BOOL_T ;

58 }

59

60 SCM scm_graphics_init(SCM cell_size , SCM cell_fade_v ) {

61 cell_fade = scm_to_uint (cell_fade_v ) + 2;

62 ca_graphics_init(scm_to_uint (cell_size ));

63 return SCM_BOOL_T ;

64 }

65

66 SCM scm_glut_main_loop_event (void) {

67 glutMainLoopEvent ();

68 return SCM_BOOL_T ;

69 }

70

71 SCM scm_graphics_draw () {

72 ca_graphics_draw();

73 return SCM_BOOL_T ;

74 }
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75

76 SCM scm_set_msecs(SCM msecs_val ) {

77 msecs=scm_to_uint (msecs_val );

78 return msecs_val ;

79 }

80

81 void timercb(int value) {

82 SCM idle_symbol = scm_c_lookup ("timer");

83 SCM idle_func = scm_variable_ref(idle_symbol );

84 scm_call_0 (idle_func );

85 glutTimerFunc(msecs ,timercb ,0);

86 }

87

88 int main (int argc , char *argv [])

89 {

90 if(argc != 2) {

91 printf("Usage: %s <ca file >\n", argv [0]);

92 return 0;

93 }

94 scm_init_guile();

95 scm_c_define_gsubr("canvas -init" ,2,0,0, scm_canvas_init);

96 scm_c_define_gsubr("canvas -update" ,0,0,0,

scm_canvas_update);

97 scm_c_define_gsubr("canvas -clear" ,0,0,0, scm_canvas_clear

);

98 scm_c_define_gsubr("canvas -clear -cell" ,2,0,0,

scm_canvas_clear_cell );

99 scm_c_define_gsubr("canvas -is -cell" ,2,0,0,

scm_canvas_is_cell);

100 scm_c_define_gsubr("canvas -set -cell" ,7,0,0,

scm_canvas_set_cell);

101 scm_c_define_gsubr("canvas -print -states" ,0,0,0,

scm_canvas_print_states );

102 scm_c_define_gsubr("set -msecs" ,1,0,0, scm_set_msecs);

103 scm_c_define_gsubr("set -shuffle -mix" ,1,0,0,

scm_set_shuffle_mix);

104 scm_c_define_gsubr("graphics -init" ,2,0,0,

scm_graphics_init);

105 scm_c_define_gsubr("graphics -draw" ,0,0,0,

scm_graphics_draw);

106 scm_c_define_gsubr("glut -main -loop -event" ,0,0,0,

scm_glut_main_loop_event );
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107

108 srand(time(NULL));

109

110 scm_c_primitive_load (argv [1]);

111

112 return 0;

113 }
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Appendix B

Example Input Code

B.1 smart-wire.scm

1 (load "pairing-heap .scm")

2 (load "sets.scm")

3

4 (define favor-diagonals-heuristic

5 (lambda (cur dest p)

6 (let* (( propx (caaar p))

7 (propy (cadaar p))

8 (curx (car cur))

9 (cury (cadr cur))

10 (destx (car dest))

11 (desty (cadr dest))

12 (square (lambda (n) (* n n)))

13 (pyth (lambda (x y) (sqrt (+ (square x) (square

y)))))

14 (dirx (- propx curx))

15 (diry (- propy cury))

16 (vecnorm (/ (pyth dirx diry) (sqrt 2)))

17 (ndirx (/ dirx vecnorm ))

18 (ndiry (/ diry vecnorm ))

19 (testx (+ curx ndirx))

20 (testy (+ cury ndiry)))

21 (+ (length p) (pyth (- testx destx) (- testy desty))

))))

22

23 (define direct-path-heuristic

81
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24 (lambda (cur dest p)

25 (let* (( propx (caaar p))

26 (propy (cadaar p))

27 (destx (car dest))

28 (desty (cadr dest))

29 (square (lambda (n) (* n n)))

30 (pyth (lambda (x y) (sqrt (+ (square x) (square

y))))))

31 (+ (length p) (pyth (- propx destx) (- propy desty))

))))

32

33 (define cell-crowding

34 (lambda (x y)

35 (count (lambda (p) (and (>= (car p) 0) (>= (cadr p) 0)

(< (car p) canvas-width ) (< (cadr p) canvas-height

) (canvas-is-cell (car p) (cadr p))))

36 ‘((,(1- x) ,y )

37 ( ,(- x 2) ,y )

38 (,(1- x) ,(1- y))

39 ( ,x ,(1- y))

40 ( ,x ,(- y 2))

41 (,(1+ x) ,(1- y))

42 (,(1+ x) ,y )

43 (,(+ x 2) ,y )

44 (,(1+ x) ,(1+ y))

45 ( ,x ,(1+ y))

46 ( ,x ,(+ y 2))

47 (,(1- x) ,(1+ y))))))

48

49 (define uncrowded-cell-heuristic

50 (lambda (weight)

51 (lambda (cur dest p)

52 (let* (( propx (caaar p))

53 (propy (cadaar p))

54 (destx (car dest))

55 (desty (cadr dest))

56 (square (lambda (n) (* n n)))

57 (pyth (lambda (x y) (sqrt (+ (square x) (

square y))))))

58 (+ (* (cell-crowding propx propy) weight) (length

p) (pyth (- propx destx) (- propy desty)))))))

59
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60 (define favor-uncrowded-diagonals-heuristic

61 (lambda (weight1 weight2 )

62 (lambda (cur dest p)

63 (let* (( propx (caaar p))

64 (propy (cadaar p))

65 (curx (car cur))

66 (cury (cadr cur))

67 (destx (car dest))

68 (desty (cadr dest))

69 (square (lambda (n) (* n n)))

70 (pyth (lambda (x y) (sqrt (+ (square x) (

square y)))))

71 (dirx (- propx curx))

72 (diry (- propy cury))

73 (vecnorm (pyth dirx diry)))

74 (+ (* (cell-crowding propx propy) weight1 ) (/

weight2 vecnorm ) (length p) (pyth (- propx

destx) (- propy desty)))))))

75

76 (define smart-wire

77 (lambda (src dest heuristic )

78 (let* (( closed set-empty )

79 (final-path ’())

80 (neighbors (lambda (p)

81 (let ((x (caaar p))

82 (y (cadaar p)))

83 (list

84 (cons ‘((,(1- x) ,y ) 0) p

)

85 (cons ‘((,(1- x) ,(1- y)) 1) p

)

86 (cons ‘(( ,x ,(1- y)) 2) p

)

87 (cons ‘((,(1+ x) ,(1- y)) 3) p

)

88 (cons ‘((,(1+ x) ,y ) 4) p

)

89 (cons ‘((,(1+ x) ,(1+ y)) 5) p

)

90 (cons ‘(( ,x ,(1+ y)) 6) p

)

91 (cons ‘((,(1- x) ,(1+ y)) 7) p
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)))))

92 (pq-comp (lambda (a b) (<= (car a) (car b))))

93 (init-path ‘((,src 0)))

94 (queue (( unit-pq pq-comp) (list (heuristic src

dest init-path ) init-path ))))

95 (while (and (not (pq-empty ? queue)) (null?

final-path ))

96 (let* ((p (cadr (( pq-min pq-comp ) queue)))

97 (x (caar p)))

98 (set! queue (( pq-remove-min pq-comp ) queue)

)

99 (if (not (member x closed))

100 (if (and (>= (car x) 0) (>= (cadr x) 0)

(< (car x) canvas-width ) (< (cadr x)

canvas-height) (or (not (

canvas-is-cell (car x) (cadr x)) ) (

equal? x src)))

101 (if (equal? x dest)

102 (set! final-path p)

103 (begin

104 (set! closed (( set-adjoin equal?) x

closed))

105 (for-each (lambda (succ) (set!

queue (( pq-insert pq-comp ) queue

(list (heuristic x dest succ)

succ))))

106 (neighbors p))))))))

107 (if (null? final-path )

108 (error (list "couldn ’t find path from" src "to"

dest)) (dumb-wire final-path )))))

109

110 (define dumb-wire

111 (lambda (path)

112 (cond ((null? path) ’())

113 ((null? (cdr path)) ’())

114 (#t (let ((cell (car path)))

115 (begin (canvas-set-cell (caar cell) (cadar

cell) 1 0 0 (cadr cell) (cadr cell))

116 (dumb-wire (cdr path))))))))
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B.2 lfsr.scm

1 (use-modules (srfi srfi-1))

2

3 (define canvas-width 100)

4 (define canvas-height 100)

5

6 (defmacro ring (x1 y1 x2 y2)

7 ‘(begin

8 (do ((i 1 (1+ i)))

9 ((> i ,(- x2 x1)))

10 (begin

11 (canvas-set-cell (+ ,x1 i) ,y1 1 3 3 4 4)

12 (canvas-set-cell (- ,x2 i) ,y2 1 3 3 0 0)))

13 (do ((j 1 (1+ j)))

14 ((> j ,(- y2 y1)))

15 (begin

16 (canvas-set-cell ,x2 (+ ,y1 j) 1 3 3 6 6)

17 (canvas-set-cell ,x1 (- ,y2 j) 1 3 3 2 2)))))

18

19 (load "smart-wire .scm")

20

21 (define timer (lambda ()

22 (let lp (( count 100))

23 (if (= count 0)

24 (graphics-draw)

25 (begin

26 (canvas-update)

27 (lp (1- count)))))))

28

29 (set-msecs 16)

30

31 (canvas-init canvas-width canvas-height)

32

33 (ring 0 0 99 99)

34 (define clusterx 50)

35 (define clustery 53)

36 (canvas-set-cell clusterx clustery 2 0 0 2 3)

37 (canvas-set-cell clusterx (- clustery 1) 2 0 0 2 1)

38 (canvas-set-cell clusterx (- clustery 2) 2 0 0 2 3)

39 (canvas-set-cell clusterx (- clustery 3) 2 0 0 2 1)

40 (canvas-set-cell clusterx (- clustery 4) 2 0 0 2 3)
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41

42 (define my-heuristic (favor-uncrowded-diagonals-heuristic

3 2))

43 ;(define my-heuristic direct-path-heuristic )

44 (smart-wire ’(99 60) ‘(,(+ clusterx 1) ,(- clustery 2))

my-heuristic )

45 (smart-wire ’(30 99) ‘(, clusterx ,(+ clustery 1))

my-heuristic )

46 (smart-wire ’(70 99) ‘(,(+ clusterx 1) ,clustery )

my-heuristic )

47 (smart-wire ’(0 30) ‘(,(- clusterx 1) ,(- clustery 1))

my-heuristic )

48 (smart-wire ’(0 70) ‘(,(- clusterx 1) ,(+ clustery 1))

my-heuristic )

49 (smart-wire ’(49 0) ‘(,(- clusterx 1) ,(- clustery 3))

my-heuristic )

50 (canvas-clear-cell 50 0)

51 (smart-wire ‘(, clusterx ,(- clustery 4)) ’(50 0)

my-heuristic )

52

53 (set-shuffle-mix 1000)

54 (graphics-init 12 1500)

B.3 ring.scm

1 (defmacro repeat (times action)

2 ‘(do ((i 0 (1+ i)))

3 ((>= i ,times))

4 ,action))

5

6 (defmacro ignore (body) #t)

7

8 (defmacro ring (x1 y1 x2 y2)

9 ‘(begin

10 (do ((i 0 (1+ i)))

11 ((>= i ,(- x2 x1)))

12 (begin

13 (canvas-set-cell (+ ,x1 i) ,y1 1 (if (= i 0) 3

0) (if (= i 0) 3 0) 0 0)

14 (canvas-set-cell (- ,x2 i) ,y2 1 0 0 4 4)))

15 (do ((j 0 (1+ j)))

16 ((>= j ,(- y2 y1)))
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17 (begin

18 (canvas-set-cell ,x2 (+ ,y1 j) 1 0 0 2 2)

19 (canvas-set-cell ,x1 (- ,y2 j) 1 0 0 6 6)))))

20

21 (define frameloop-count 0)

22

23 (define timer (lambda ()

24 (canvas-update)

25 (set! frameloop-count (1+ frameloop-count))

26 (if (> frameloop-count 100)

27 (begin

28 (graphics-draw)

29 (set! frameloop-count 0)))))

30

31 (set-msecs 0)

32 (set-shuffle-mix 0)

33

34 (canvas-init 2000 2000)

35 (ring 0 0 1998 1999)

36 (graphics-init 1 2500)
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