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Abstract

This thesis demonstrates a hardware library with related tools and designs for Asyn-
chronous Logic Automata (ALA) gates in a generic 90nm process development kit
that allows a direct one-to-one mapping from software to hardware. Included are
basic design tools to enable writing ALA software, the necessary hardware designs
for implementation, and simulation techniques for quickly verifying correctness and
performance. This thesis also documents many of the hazards and opportunities for
improving them including helpful variations to the ALA model, design tool needs,
better simulation models, and hardware improvements.

To embody software you could compile a hardware description language to an
FPGA or synthesize it all the way to transistors. Alternatively, you could use your
favorite high level language and run it on a standard processor. However, the widening
gap between traditional models of computation and the reality of the underlying
hardware has led to massive costs for design and fabrication as well as numerous
issues for scalability and portability. Unlike any of these other approaches, ALA
aligns computational and physical descriptions making it possible to use a direct one-
to-one mapping to convert an ALA program to a circuit or other physical artifact
that executes that program. No unpredictable fitters or compilers are needed and no
extra expertise is needed for specific technologies. Similar to Mead-Conway design
rules ALA designs trade flexibility for portability and ease of design. Unlike Mead-
Conway design rules, ALA designs do not require any further verification-the design
rule primitives are logical operations suitable for use in analysis at the algorithmic
level. ALA separates many of the scaling issues that plague integrated circuit design
by cleanly separating algorithm design from hardware engineering-improving design
verification, tape-out costs (by reusing masks), yield, portability, and the ability
to break designs across multiple chips. ALA designs are not limited to integrated
circuits and could just as easily be implemented in microfluidics, magnetic logic, or
a lattice of molecular logic gates. Although each of these technologies would require
implementing a basic set of gates and tiling rules, hardware (or equivalently software)
can be developed using the same deterministic noiseless digital abstraction using the



same design in many different technologies.
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Chapter 1

Introduction

Many computational tools, with applications ranging from computer graphics to cryp-

tography, travel the road from clunky prototype to miniaturized commodity hardware.

In this process they can be implemented in an easy to distribute fashion as a program

for a desktop computers, altered to run in specialized but easy to acquire customiz-

able hardware, such as field programmable gate arrays (FPGAs), and reimplemented

and fabricated as application-specific integrated circuits (ASICs). Though the de-

velopment and deployment costs increase with specialization of the hardware, the

performance benefits can be staggering. Unfortunately efficient implementations for

each class of hardware typically require substantial redesign to cater to the quirks of

the technology. Asynchronous Logic Automata (ALA) is a new model of computa-

tion that attempts to approximate the physical constraints common to all possible

hardware into single easy to manipulate abstraction. The basic idea (detailed in

chapter 2) is to allow the designer to place a network of simple processing elements

in a physical space and connect them together. Forcing the designer to maintain

physically realistic spatial relationships ensures that it will be possible to generate

a hardware implementation regardless of the underlying technology-working with

everything from reconfigurable hardware, to custom integrated circuits.

Even if hardware expertise is available, portability can still be an issue. In the-

ory, a design done for one integrated circuit (IC) process using Mead-Conway design

rules, can still be used after feature scaling and other improvements. In practice,



changes in gate carrier mobility, interconnect resistance, relative capacitances, etc.

can easily upset the delicate balances in a complex IC design. Simply scaling designs

will not take full advantage of things like more metal layers and variable threshold

transistors or handle the issues that arise in deep sub-micron technologies. This

thesis demonstrates a standard cell library implemented in a generic 90nm process

development kit of ALA cells, a design abstraction that allows a direct one-to-one

mapping from software to hardware that is portable to different processes scales as

well as radically different hardware such as microfluidics, magnetic logic, or even

technologies not yet predicted. This mapping from software to hardware partitions

algorithmic design issues from technology specific engineering details so that the de-

sign of application-specific integrated circuits (ASICs) can be done portably without

regard to the underling process technology. Although there are an assortment of pos-

sible high level tools and languages to improve performance and ensure correctness

of the algorithms, hardware synthesis of ALA designs is simply an assignment of tiles

to locations and requires no compilers, fitters, or post-design verification.

ALA is based on the assumption that storing information requires a minimum

energy per bit and that the universe allows only a finite energy density (and thus in-

formation density) and only local interactions. It excludes the potential for quantum-

coherent computations as such mechanisms are currently impractical and poorly un-

derstood. It also assumes that computation and communication consume power.

While charge conserving techniques based on reversible computing have been used to

reduce power consumption (for example [18,22]) they are not considered in the ALA

model. When creating fully reversible programs with predicted or current technology

(gigahertz frequency CMOS for example) it is unclear that it is possible to achieve

high enough Q factors that resetting a computation by reversing it would be more

efficient than simply dissipating a cycle's worth of power. It may be possible to use

charge conserving techniques to improve power consumption in the cells (a topic of

current research), but this would be a hardware optimization rather than a change to

the programming model. Finally, it assumes that it is possible to use external entropy

sources or pseudo random number generators if probabilistic behavior is needed.



The ALA model has been engineered rather than derived. Although finite infor-

mation density and local interactions are fundamental properties of physics (perhaps

excluding certain quantum phenomena), ALA is far from the only possible model that

respects those. It would be possible to add or remove some cell types or make individ-

ual cells more complex or simpler while still respecting the fundamental design goals

of ALA, however through trial and error we have found what we believe is a good

balance between simplicity of the cells (to allow portability to other technologies),

ease of design (by providing logical operations as the primitives), and fidelity to the

underlying fabrication capabilities (to improve efficiency). Many of the similarities

between ALA and other models of computation come from using the same approach

for a given trade off. Although the choice of rules is not absolute, there are important

properties that must be maintained to ensure correct operation and to respect the

physics.

When we use a specific technology to design a computer we limit our choice of

building blocks in exchange for simpler abstractions and easier fabrication. You can

build a computer out of transistors in silicon, microfluidic channels [15] in glass, or

tinker toys and strings [9]. For each technology, a reasonable approach is to start with

a library of basic components (transistors and wires, different shapes of channels, or

memory spindles and output ducks) and use those to build up desired functions.

However, by the time we write algorithms for these computers, we are many layers

of abstraction from the underlying physics. While these abstractions are necessary

to mantain the sanity of the programmers, they can make it difficult to write effi-

cient programs. For the von Neumann programming model, hardware designers have

worked hard to preserve the fiction of fast sequential operation with constant time

access to all memory, but for a modern desktop this is far from true. Caching, branch

prediction, parallel dispatch, speculative execution, register renaming, pipeline stages,

and the myriad of other techniques in the processor architect's tool bag make it nearly

impossible to predict when, in a given program, it will proceed immediately to the

next instruction or spend tens of millions of cycles swapping in a new page of memory

from disk. ALA attempts to resolve this issue by exposing the same building blocks



to the programmers that are available to the hardware designers. While there are

necessarily approximations to ensure usability, care has been taken to ensure that

these approximations don't limit the programmers ability to predict the final per-

formance of their algorithm. Many of the same techniques that we see in processor

architectures would likely be components in higher level ALA descriptions.

Presented in this thesis are a set of designs and tools for creating ASICs from

ALA designs including:

1. Several simple ALA modules as well as a minimal programming library for

expressing hierarchical ALA designs

2. Circuit designs for a library of ALA cells that can be tiled to generate an ASIC

layout

3. A graphical simulator for ALA that does performance modeling orders of mag-

nitude faster than general techniques

4. Suggestions for several alternative designs and possible improvements

1.1 Historical Background

The foundations of most modern computer architectures can be traced back to work

started by John von Neumann in the 1940s [20] and to this day the majority of com-

puters use the same basic principle of a single active processing element connected to

a large bank of passive memory. His later work on Cellular Automata (CA) was in-

spired by his interest in self reproducing machines, but in the process he demonstrated

the possibility of computation in CAs. Later work by Roger Banks [2], published in

1971, demonstrated universal computation with simpler symmetric rules. Of the

many other CAs that have been shown to be universal, one of my personal favorites

is John Conway's Game of Life [10], which was a major inspiration for my initial

interest in computer science. While CAs were not attractive for early computers,

the development and scaling of integrated circuits changed many of the engineering



constraints. Instead of expensive, power-hungry vacuum tubes connected by fast,

cheap and nearly arbitrary wiring, designs were using cheap and power-efficient tran-

sistors with increasingly difficult routing and wire delay issues. Unfortunately, the

von Neumann processor architecture, which is dominant even today, assumes that in-

terconnect is free and has no way of expressing spatial constraints. The need for new

computing abstractions was recognized early in the 1980s [8] and inspired dataflow

machines, the CAM-8, and the Connection Machine among others. In many cases,

their lack of success arguably stemmed from non-technical issues [17]. The same

scaling trends that began to make these alternate architectures favorable have con-

tinued to progress. Even mainstream hardware has had a distinct trend towards more

parallel computing, but progress has been slow on better parallel programming ab-

stractions and nearly nonexistent on spatial computing models. At today's gigahertz

clock speeds, speed of light limits can be significant even over centimeter distances.

The continued scaling of process technologies and clock speeds will make spatial con-

straints significant well below the level of a chip. There are predictions [1] that in

deep submicron designs less than 1% of a chips area will be reachable in a single cycle.

These trends have lead to my research group's interest in physically based models of

computation. Notable prior work in which ALA was developed includes [3,6,7,11].

1.2 Relationship of ALA to Other Models

ALA has many similarities with other models of computation. This is partly from

convergent engineering under similar constraints and partly from using good ideas

where they are compatible. In this section we discuss similarities and differences with

selected models. More details on many of these relationships and others can be found

in [7]

1.2.1 RISC Processor Architectures

ALA can be considered as an extrapolation of the current trend for multi-core RISC

architectures to its limit as an infinite array of single bit processors with a fixed



program. Unlike a single processor, which becomes progressively more difficult to

scale up in speed, ALA performance scales by spreading computation over more cells.

ALA designs work at a fine enough granularity that many of the tricks that could

be used to speed up a traditional processor, like pipelining or speculative execution,

can be implemented above the ALA abstraction. This makes it possible to integrate

these techniques where they will help without being forced to pay their overhead in

all cases.

1.2.2 Asynchronous Logic

Asynchronous logic is not a new concept, but making use of it often involves specific

expertise and significant caution to ensure correct operation. The careful choice of

ALA gates and design rules encapsulates all of the non-deterministic behavior to

ensure that designers do not need to worry about rare edge cases but can still have

most of the benefits to power from only consuming dynamic power where useful

computation is taking place and robustness to power supply or process variations.

1.2.3 Petri Nets

Although similar to Petri nets, in that cell updates are activated by the presence of

tokens on their inputs and are allowed to happen in any order, the cell update rules

have been carefully restricted to enforce deterministic results regardless of the firing

order. It is worth noting that there are some situations where this is not beneficial,

but a possible fix for this is described in section 6.3.

1.2.4 CA Logic

Arbitrary computation has been demonstrated in many different cellular automatons

(notably [2], [19], [5]); however these typically take dozens to hundreds of cells running

for many generations to perform even a single logical operation or only work for very

specific kinds of computation (i.e. [14]). In ALA the primitive rules are chosen to

try and minimize the cost of implementing practical systems by allowing a single



cell in one step to perform a logical operation. This is a significant benefit both for

simplicity of creating designs from the ALA gates as well as flexibility in implementing

the underlying hardware. Finally, the global clock needed in synchronous CAs isn't

physically realistic and is avoided by using ALA without the complications that arise

in other asynchronous CAs such as [13].

1.2.5 Wavefront and Systolic Arrays

ALA also has a strong resemblance to wavefront and systolic array processors, but

there are no restrictions on how information flows through the system allowing arbi-

trary classes of computation with irregular data dependencies.

1.2.6 FPGA and Sea of Gates Designs

ALA design bears a strong resemblance to digital circuit design and in particular to sea

of gate design styles. Similarly, the reconfigurable version of ALA (RALA) resembles

FPGAs. However, ALA designs have a direct one-to-one mapping to the hardware

that does not depend on fitters and their synthesis capabilities. Even for experienced

users it can be difficult to account for the impact of fitter behavior on a design.

Unlike in an FPGA, where the capabilities are often chosen based on what is efficient

to implement in a specific technology, the rules for ALA are chosen to ensure that

they can be implemented in many different technologies. This makes ALA designs

substantially more likely to be portable. Section 4.4.1 compares a very simple design

done in ALA and with standard synchronous gates. Although the custom design has

better performance, after accounting for improvements from chapter 6's designs and

clock generation and distribution costs, the ALA design would likely be competitive

with traditional FPGA and sea of gate implementations.

1.2.7 Dataflow Architectures

ALA gates are dataflow architectures in that computation is triggered by the flow of

information except the scaling and scheduling issues that plagued dataflow architec-



tures are solved by limiting cells to local interconnect and allowing the designer to

choose how to handle that constraint.



Chapter 2

The ALA Software Model

ALA is a programming model based on cellular automata, which consists of a regular

grid of cells. Each cell has a permanent configuration or 'gate' that controls how

it will pass and accept chunks of information or 'tokens' from adjacent neighbors.

Different gates can pass tokens unchanged, fanout tokens, compute logic functions,

or create and destroy tokens. Gates are analogous to the primitive instructions on a

processor. Unlike a petri net, tokens contain a small amount of internal information

on which the logic functions are computed or behaviors are controlled. Gates do not

operate in lock step and can operate at different speeds, however their update rules

wait until enough tokens have arrived to produce a deterministic result.

This chapter focuses on a specific ALA programming model describing the partic-

ular gates that were developed and how they work. This chapter also discusses some

of the motivations for choosing this specific set of gates.

2.1 An ALA Gate Set

The gates used here are very similar to those used in [3,6,11,12] but have been revised

slightly to make the hardware simpler and take advantage of things that were easy

to implement in CMOS. The variations used here likely bring the rules closer to a

lowest common denominator for many representative technologies. Slightly different

optimizations may be possible in other technologies (microfluidics, magnetic logic,



etc.) however it is difficult to predict exactly how they would differ before doing those

designs. Comparing possible optimizations across a broad spectrum of technologies

remains a topic for future work.

These ALA designs use a rectangular 2D grid of cells that can be set as one of ten

different gates with outputs going to adjacent neighbors (not including diagonals).

Unlike the reconfigurable variant described in [11], the cell configuration is hardwired

and cannot be changed short of making a new chip. Cells communicate by passing

boolean tokens to each other that can be either true (T) or false (F). The output of a

cell doesn't need to have a token at all times and can be empty (X). Inputs and outputs

to an ALA program are done by special cells that exchange tokens with the outside

world. One could imagine having pixels in a display or some kind of sensor at regular

intervals throughout the ALA grid or a network connection attached at a specific

point. Figure 2.1 shows the symbols for tokens and the set of gates we implemented.

The basic operation of all of the cells is relatively uniform throughout. Each cell waits

until all of the needed input tokens have arrived from neighbors, consumes them, and

emits new output tokens. In the CMOS implementation, inputs are consumed by

signaling over an acknowledge wire connected to the cell that emitted that token

which then clears its output. For a microfluidic implementation, input tokens might

literally be physically consumed. The implementation used here differs from those

described in [6,11,12] in that cells may produce outputs before all the inputs arrive

if it is possible to deduce what the output token will necessarily be. For example if

one of the inputs to an AND gate is an F (false) token, then the cell may produce an

output of F before the other input arrives. This is called short circuiting. This is more

powerful than previous versions of ALA because any design that would have worked

with older versions will still produce the same outputs but not necessarily as quickly.

This can allow some designs to function which would have stalled indefinitely without

short circuiting. This is unlikely to be a problem unless the design was connected to

an external peripheral which was time sensitive. Arguably, this is a generalization

where cells are allowed to take on faith that the other input would eventually arrive.

This idea can be further extended by allowing acknowledge signals to propagate up
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Figure 2-1: Ten Implemented ALA Gates and Token Legend

empty inputs as antibits.

The ten types of gates are divided into 6 sub-types. Because of the dual rail

encoding of tokens in the CMOS implementation, inverting a token can be done by

swapping how the inputs are connected. By inverting inputs or outputs, the buffer

and inverter have equivalent implementations. Likewise, AND/NAND/OR/NOR are

equivalent by DeMorgan's law. Except for the CROSSOVER, all gates have symmet-

ric outputs that can be fanned out to up to two different neighbors.

2.1.1 BUFFER/INVERTER Gate Behavior

The BUFFER/INVERTER gate is a one input gate that waits until the input has a

token and the output is empty and then emits it (or its complement) to the output

and acknowledges the input. A chain of BUFFER gates connected to each other can

hold a series of tokens. A simple way to generate a periodic sequence is to have a

loop of BUFFER gates that have been initialized to your desired sequence. As the

sequence travels around the loop, a copy can be fanned out. It is important to note

that in addition to allowing temporary storage of tokens, the BUFFER/INVERTER

gate is necessary because interconnect is only local in ALA, meaning cells can only

.. .. ......... ... ............. ... .- - - ..........



communicate if they are adjacent to one another. There is no wire primitive-cells

must be connected by a chain of BUFFER gates.

2.1.2 AND/NAND/NOR/OR Gate Behavior

The AND gate is a two input gate that waits until at least one F input or two T

inputs have arrived and the output is empty. It then emits a F output if there was an

input of F, and a T output if both inputs were T. After the output has been generated

and both inputs have arrived, they are acknowledged. NAND, NOR, and OR can be

constructed from AND by using DeMorgan's law.

2.1.3 XOR Gate Behavior

The XOR gate is a two input gate that wait waits until both inputs have arrived and

emits their exclusive or, i.e. it emits an F if both inputs match and a T if they do

not match. Unlike the AND gate, it does not short circuit.

2.1.4 CROSSOVER Gate Behavior

The CROSSOVER gate is essentially two BUFFER gates in the same position. It

waits for an input and emits the input in the same direction it was going. So if an

input arrives from the east of the CROSSOVER gate, the gate emits it to the west.

2.1.5 COPY Gate Behavior

The COPY gate is a two input gate with asymmetric inputs called control and data.

Control selects whether or not to copy the data input. So when a T token arrives

at the control input, the token on the data input is copied to the output, but not

acknowledged and therefore remains on the data input. If more T tokens arrives on

the control, the gate will continue to emit copies of the token waiting on the data

input. An F token at the control input causes the data input to be passed on as it

would be in a buffer and be acknowledged. If you consider the BUFFER gate to pass



tokens across space, the COPY gate passes them across time. The COPY gate always

emits the same number of tokens as it consumes via the control input, but consumes

only as many tokens via the data input as it receives F tokens on the data input.

2.1.6 DELETE Gate Behavior

The DELETE gate is the dual of the COPY gate. Like the COPY gate, the two

asymmetrical inputs are called control and data. Unlike the COPY gate, control

selects whether or not to delete the data input. When a T token arrives at the

control input, a token is acknowledged from the data input and no new tokens are

emitted. When an F token arrives at the control input, the data is passed on with the

same behavior as a COPY gate when it receives an F control token. The DELETE

gate always consumes the same number of tokens on the control and data inputs, but

emits only as many tokens as it receives F control inputs.

2.2 Choice of Rules

There is a minimum complexity/variety necessary to enable universal behaviors, but

this is fairly low. For example, Banks demonstrated universal logic in a 3 state

4 neighbor synchronous CA [2] (which can in turn be implemented by 2 state 4

neighbor CA). However in a system like that, many cells must undergo many steps to

compute even a single binary operation. One of the goals for ALA was to ensure that

implementations of practical sorts of systems could be done with reasonably small

overheads. To allow optimization below the granularity of the cells, we wanted cells

that were as complex as would be useful. On the other hand, very complicated cells

would be difficult to analyze and implement in other technologies and might have

capabilities that would be wasted. The eventual choice was to use two input boolean

operations as the core granularity.

Although in general, NAND is sufficient to construct universal Boolean logic func-

tions, within ALA we also need explicit support for wiring and crossovers. To fully

take advantage of the asynchronous nature of the circuits, we need to be able to pass



information between domains that are operating at different rates. The COPY and

DELETE gates provide this functionality and the CROSSOVER gate ensures that

we can route signals in different domains across each other without worry about their

relative rates as would be necessary using XORs. Thus the true minimum set of gates

would contain NAND, CROSSOVER (which could be used as a buffer), COPY, and

DELETE. However, for ease of design we choose to include the other logic functions

as well. Since the hardware uses a dual rail encoding for the logic in which inver-

sion can be done by swapping where inputs or outputs are connected, AND, NAND,

OR, and NOR all use the same circuit. It would have been possible to include a

much larger set of gates, but finite design effort and a desire for compatibility with

future reconfigurable designs motivated us to keep the number of gates close to the

minimum.

At least in CMOS, it is likely that actual wires could be used to connect over

dozens or possibly hundreds of cells without significant degradation of performance.

This would reduce power consumption substantially.

2.2.1 Ensuring Deterministic Behavior and Allowed Varia-

tions

The choice of gates for ALA can not include anything that can be affected by when

tokens arrive. This is to avoid introducing technology dependent design constraint

based on how fast each gate processes inputs. The current design ensures this by

using what is close to a single-assignment single-reader model one might see used for

parallel programming. New values can be written, but only after the old one has been

garbage collected by acknowledge signals.

2.2.2 ALA Buffer Chain Example

This section will provide an example of the basic operation of an ALA design. Here

is a diagram of four ALA cells (labeled A,B, C, and D). The arrows between cells

represent state storage elements for tokens. Red arrows indicate where a True token is



stored, blue arrows indicate where a False token is stored, and gray arrows indicated

that no token is stored at that location. The three cells labeled A, B, and C are buffer

cells that wait until their input has a token and their output is empty. The fourth

cell, labeled D, is an AND cell that atomically consumes a pair of input tokens and

produces a single output token that is a logical AND of the two consumed tokens.

Figure 2.2.2 shows the initial state of the cells. Figure B shows the same cells

again a short time later. We see that the True token waiting at the input of cell B

has been propagated to cell C.

After another small amount of time, figure 2-3 shows both cells A and C have

fired propagating their tokens onwards. Note that because the cells are operating

asynchronously there is no defined order for these events. (In the hardware described

later in this document the token would probably propagate all the way to cell D by

the time the acknowledge logic cleared the token from the input.) However, regardless

of the order of these updates, the next token to arrive at cell D will be a True token.

Eventually the two tokens will end in the configuration shown in figure 2-4. The

True token waiting at the input to cell D will not propagate through the AND cell

labeled D because it must wait until both inputs are present. Similarly, cell C cannot

propagate the False token from its input because it is blocked by the token waiting

in front of cell D.
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Chapter 3

Example ALA Designs and Tools

This chapter presents a few simple examples of ALA designs and tools. The devel-

opment of better design tools and more efficient designs are active areas of research

and have progressed beyond what is described in this chapter, however these designs

offer a good introduction to how gates can be combined and used and some minimal

requirements for design tools.

3.1 Oscillators and Control Signals

Transporting data and performing computations have roughly equivalent costs in the

ALA universe so for many applications it is useful to work with serial streams of data.

This creates a trade off between throughput of blocks and their area and complexity.

While doing serial processing, it is often necessary to have a periodic control signal

(for example to mask out carry bits in a stream of fixed width additions so that the

overflow doesn't end up in subsequent calculations). A simple solution for this is to

create a loop of BUFFER gates initialized to the desired sequence.

This structure can be initialized to hold an arbitrary pattern which will be emitted

at the output and loop back around so that it is repeated. However, many situations

do not call for an arbitrary sequence but instead need a single False token in the loop

or similar. For these situations, filling the entire bit loop with the pattern costs n 2

power for each copy of the output (size of ring grows with n, and each bit has to travel
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Figure 3-1: Bit Loop Emitting (0,1,1,1) Attached to Line of Buffers
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Figure 3-2: Binary Oscillator Attached to Line of Buffers

around the entire ring every cycle) and linear space. However, we can generate a signal

with an arbitrary period with a constant power cost per bit and logarithmic space

cost by building a hierarchical oscillator. We start with a simple 2 state oscillator as

shown in figure 3.1. A short set of buffer cells has been attached to the output to

illustrate the generated output.

Now there are two units that we will add to this. The first is a bit doubler that

emits two copies of each input it receives. The two cells on top form another oscillator

that produces a stream of alternating True/False tokens. These feed into the control

of the copy at the bottom which will duplicate the data input on the True tokens

and pass it through on the False input which has a net result of creating two copies

of each input token. One of these with a binary oscillator connected to the input

will produce two True tokens followed by two False token, as show in figure 3.1, for a

period of 4 tokens.

By chaining together these bit doublers we can generate any period that is a power

of two. Because each doubler only fires half as often as the one before it, the total

power is a geometric sequence summing to a constant. Figure 3.1 shows a heat map

of an oscillator indicating the relative amounts of power consumed in each cell (red

is most, blue is least).

While power of two length sequences are sufficient for many situations, we may

...... .... ...... ................. ....... .......... .
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Figure 3-3: 4 State Oscillator and Line of Buffers

Figure 3-4: Heat Map of 64 State Oscillator

also want to be able to generate sequences with arbitrary periods. A circuit that

copies the next bit after a False-True sequence will effectively add one to the pe-

riod. Combining this with the doubler makes it possible to generate sequences of

arbitrary periods. Appendix B shows a parametric design that generates oscillators

with arbitrary periods.

3.2 Adder Design

An important aspect of the ALA architecture is that it allows trade-offs between

energy, throughput, and area even for fairly basic primitives. The following are

> 0 D+> 0 0 D+> 0
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Figure 3-5: 42 State Oscillator
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Cells used Throughput (Steps) Throughput Energy/Bit (pJ)
8 1/2 773 MHz 1.51

11 2/3 781 MHz 2.68
13 1 1.24 GHz 3.00

Table 3.1: Relative Adder Performances

three different adder designs which range from smallest size and energy per token

through two larger and higher power designs with better throughput. The smallest

design, shown in figure 3.2 was created by hard-earned insight about how to order

the intermediate steps of the computation to preserve intermediate information, as

well as lots of trial and error focused only on size. It has the lowest throughput. The

intermediate design in figure 3-6 lays out the expected operations along a diagonal

to try and ensure uniform buffering depth. The largest and fastest design from [12]

shown in figure 3-7 used graph analysis techniques to add the exact buffering needed

to compensate for the feedback of the carry bit and achieve perfectly equal buffering

with maximum performance.

The following chart shows their relative performance in Specter simulations. Here

step throughput refers to the steady state ratio of output tokens to updates if all

cells are updated simultaneously in a synchronous fashion as discussed in [12]. A

graphical representation of the step throughput can be seen in the spacing of tokens

on the output buffers in figures 3.2, 3-6 and 3-7, where the maximum throughput

would be 1 token every other cell.

The difference between the step throughput and the predicted throughput from

circuit simulations likely stems from optimizations in the circuit design that allow to-

kens to propagate through ready cells faster than the full handshake time. By optimiz-

ing our design to allow this, we reduced the cost of buffering mismatch and decreased

latency substantially. However in comparison to each other, the increased area and

power usage still provide a significant speed improvement. Although counterexamples

could likely be constructed, this indicates that even very simple performance metrics

could be useful to compare designs across technologies.
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3.3 Design Tool

While pencil and paper or your favorite vector graphics program are reasonably useful

for prototyping designs, a more structured approach is necessary to get designs into

a format suitable for simulation or automatic processing. Many designs can also be

expressed with repeating structures or can be parametrized in terms of things like

word length or important constants. While more specific tools are being developed,

the designs in this document were generated by Python code that makes calls to

the simulator to define the initial cell positions. The choice of language was nearly

arbitrary, but the use of a programming language allows substantial flexibility for ways

to describe hierarchical and parametric designs. Although working in this fashion

requires substantial visualization skills (and often a good bit of debugging), it makes

it very easy to add new design capabilities simply by writing more Python modules.

For example, I implemented a simple search that builds a chain of buffers along the

shortest unoccupied path between two cells. In their current state using these tools

is analogous to using an assembler. It is possible to specify a design if you know

exactly what you want, but there are no safety nets. One could easily imagine adding

a simple type system to help ensure that modules were being connected correctly or

automatically doing buffering checks that identify sections where mismatched data

path lengths could harm performance to try and come closer to a high level language.

Tackling this issue fully would be a substantial research project on its own. The tools

used here are more analogous to an assembler than a high level compiler, but they

still allow moderately complex designs with the ALA gate set.

3.3.1 Hierarchical Designs

One very important feature of high level languages is the ability to abstract away

complex functions and later refer to them as primitive operations. One of the first

extensions I did was to create a part class that allows cells or other parts to be added

using a local coordinate system. A part could than be instantiated at any position,

rotation, or reflection. This serves the same role as function calls in a high level



language by encapsulating complex behavior in a way that is easy to reference multiple

times. It also turned out to improve readability of the generated designs substantially.

Simply coloring the backgrounds for different parts made it much easier to see how

the modules were connected to each other. Interestingly enough, part shapes tend to

be sufficiently distinct that it was possible to recognize them without any additional

markings. Admittedly, knowing what the parts do requires either careful examination

or prior knowledge.

3.3.2 Parametric Designs

A feature that will be useful to preserve in future design tools is the ability to do

parametric designs. The spatial structure of ALA naturally lends itself to graphical

design tools, but there is a class of designs that are not readily possible with a direct

graphical description. The appendix shows an example of this in a parametric design

that creates oscillators with arbitrary periods. The simple addition of repeating tiles

covers a broad class of designs, although there are examples where more complex

behaviors can be critical. The oscillator is a simple example, but more complex ones

could include the Fast Fourier Transform and many examples from cryptography.

The ability to optimize away unneeded data paths can represent substantial savings

as each "function call" requires space to be allocated for the module that computes

that function. On the other hand, design with graphical primitives has the advantage

of being much more intuitive. The balance between graphical intuition and descriptive

flexibility remains an interesting question for future research.
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Chapter 4

ALA Hardware Design

The asynchronous aspect of ALA could be implemented in traditionally clocked logic

with token state simply remaining unchanged when cells are not ready to update.

Unfortunately this consumes dynamic power even when cells are idle and requires a

globally distributed clock. In addition, having cells operate in lock step greatly in-

creases the sensitivity of performance to careful design, as shown with the adders. A

clocked design would likely be worth exploring to see to what extent the simpler logic

enables faster operation or lower dynamic power. The current designs uses a Quasi

Delay Insensitive (QDI) style. In many ways QDI is the "purest" kind of computa-

tionally universal asynchronous logic in that it makes the fewest assumptions about

the underlying technology. While this made design easier and increases portability

and reliability, subsequent experiments predict that using a Self-Timed logic style

could result in substantial area savings and an additional 30% improvement in power

and throughput [3]. Other designs in progress, include one with carefully selected

representations for the internal signals to reduce power and area that avoids ratioed

logic to allow lower operating voltages for improved efficiency at lower speeds, as well

as a design based on SRAM cells that could substantially reduce transistor count. At

this time, these designs are incomplete and remain as subjects for future work.



4.1 Asynchronous Handshaking

Synchronous circuits are carefully designed to ensure that all signals will be ready

before the next clock edge. In asynchronous circuits, a local ready signal is computed

that replaces the clock. This can be done with a carefully engineered delay element

or a data representation, like the one used here, where intermediate and final values

can be recognized. In our design we used a dual rail data encoding where two wires,

one for 0/F and one for 1/T, represented the state of each token. When both of these

lines were low the port is said to be empty or X. If the T or F line was high that

was the state of the port. Both lines high was an invalid state. We used a four phase

handshake where a third acknowledge line would go high to signal ready for a new

token and go low to indicate after the new token had been latched.

4.1.1 State Storage with C-Elements

Each ALA cell needs to hold a small amount of state which would normally be held

by a register or latch in regular sequential logic. However, in asynchronous logic there

is no global clock to coordinate operation among registers as normal. To compensate

for this a common component in asynchronous logic is a C-Element. Instead of using

a single input to trigger when data begins being passed to the output it waits for

a combination of inputs to be set or cleared and then transitions or otherwise holds

the current state. Careful design of the logic ensures that the computation remains

within the stable inputs until it is complete, which then triggers the output to change

and cascades into the next phase of the computation. There are numerous ways to

implement C-Element (for some examples see [16]). Here is an inefficient but easy

to understand C-Element constructed from an AND gate, NOR gate (AND with

inverted inputs), and a Set Reset Flipflop. When both inputs or set or cleared the

output will likewise be set or cleared.

The C-Element is a powerful component for the design of asynchronous circuits.

For example, the following circuit is an asynchronous 4 state oscillator. It is left as

an exercise for the reader to understand the exact operation. It is very similar to the
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Figure 4-1: Basic C-Element built from AND/NOR/SR-Flipflop

handshake mechanism in a precharge full buffer described in the next section if you

want a hint.

Figure 4-2: C-Element Oscillator

4.1.2 Precharge Full Buffer

The core of each cell centers around a precharge full buffer similar to [21]. This circuit

implements a 4 phase handshake. In the idle state C1 and C2 are reset and C3 and

C4 are set. In this situation ackA (C3) will be high to signal that the buffer is waiting

for a new input. The handshake works as follows:

1. New input arrives at either AO or Al triggering C1/2 to emit a new Z value if

ackZ is high

2. The new Z value causes ackA to go low by way of Zempty resetting C4 in the

process

3. Low ackA from this buffer causes the preceding buffer to clear this buffers input

Z



4. Aempty going high sets ackA (signaling ready for new token) and returns the

cell to idle

Figure 4-3: PCFB Schematic

The full state diagram for the PCFB is shown in figure 5.1. For more details of

operation, information on incorporating logic, and the modifications to implement

COPY and DELETE cells see [4].

4.2 Gate Layouts

Figures 4.2 to 4-8 show the full layouts for the 6 gates classes. The BUF Gate can be

converted to a INV gate by swapping the T/F token wires of either the input or the

output. Similarly the NAND gate can be converted to AND, OR, or NOR. Fanout

requires the addition of a C-Element which is not shown.



4.3 Performance

After finishing the layouts we used the Spectre simulation tool to estimate their

performance. Table 4.3 shows our results. Throughput is the maximum rate at which

a gate can process available tokens. Latency is the time between when the inputs

arrive and when the output is emitted. Because outputs can be emitted immediately

before the full handshake is complete, tokens can propagate through empty cells much

faster than the cycle time that limits throughput. This significantly decreases the

performance impact of buffering mismatches. Energy/Op is the amount of energy

consumed when a cell fires. Transistors measures the total number of transistors

needed for each kind of cell. Transistor Area is the total area of the transistor gates

(the control terminal of the MOSFET, not the entire cell). Cells are placed on a

lattice that is 28.2 pm by 4.295 pm to accommodate the largest cell (the crossover)

and thus occupy 122 pm 2 each.

Adding fannout to a gate is done with a single C-element and increases the Ener-

gy/Op by about 0.039 pJ and decreases the Throughput by 10 to 15%.

Gate Throughput Latency Energy/Op Transistors Transistor Area
BUF/INV 1.71 GHz 0.0893 ns 0.144 pJ 52 2.724 pm2

CROSS1  1.71 GHz 0.0893 ns 0.144 pJ 104 5.448 pum 2

AND 2  1.41 GHz 0.105 ns 0.163 pJ 60 3.084 pm 2

XOR 1.27 GHz 0.115 ns 0.168 pJ 64 3.520 pum 2

COPY 1.37 GHz 0.0909 ns 0.231 pJ 75 3.984 pm 2

DELETE 1.50 GHz 0.105 ns 0.170 pJ 63 3.408 pum 2

Table 4.1: Cell Performance Numbers

4.4 Design Flow: ALA to Silicon

We have developed a library of ALA cells in a generic 90nm process that can be

arbitrarily tiled. The first layer of tiles are function tiles that select an operation (i.e.

'Energy/Op for the CROSS cell is for 1 token in either direction.
2AND, NAND, NOR, and OR as well as BUF and INV have equivalent hardware; logical inversion

on inputs and outputs are trivial due to dual rail encoding



NAND, COPY, CROSS) as well as choosing between one or two outputs. Directly

on top of this are tiles that connect inputs and outputs with their counterparts in

adjacent tiles. Figure 4.4 shows the tiles needed to create a NAND cell with inputs

from the east and north. While standardizing the locations of the input and output

ports and adding a separate layer of wiring was largely motivated by wanting to

avoid doing new layouts for every combination of inputs, it illustrates the ease with

which ALA could be used in a sea of gates style fabrication process. All ten of the

implemented function tiles could be encapsulated with just 4 tiles and a wiring layer

that can rearrange inputs. AND, NAND, OR, and NOR are equivalent and would

work as a buffer/inverter if the inputs were connected in the same direction, XOR

has different logic and could serve as the second buffer in a crossover by connecting

one of the 0 wires in the input to the ack pin. COPY, and DELETE would be the

remaining two tiles. With fairly minor optimizations it would likely be possible to

get this area overhead within a factor of two of the current tiles sizes. Using these

superfunction tiles, it would be possible to fabricate custom ALA ASICS with only

one or two custom masks which would drastically reduce cost (in both money and

time) of fabrication.

Currently, the process of selecting and placing tiles is manual, but because of the

direct one to one mapping to the hardware, the only obstacle to automating this

process is being able to manipulate the appropriate file formats. As it stands, I was

able to design, layout, verify, and simulate a small LFSR in less than two and a half

hours. The majority of that time was spent on tracking down a bug where I had used

two input tiles that connected to the same side of the function tile and on setting up

simulations. Figure 4.4 shows the ALA design for a three bit LFSR and its hardware

layout.

4.4.1 Comparison with a traditional design: 3 Bit LFSR

For comparison with existing techniques, I implemented a 3 bit LFSR in the same

process technology using synchronous logic. Table 4.4.1 shows the relative perfor-

mance of the ALA and custom versions before layout. This comparison ignores the



cost of external clocking (which could as much as double total power consumption)

and potential benefits of the asynchronous circuits. To actually deploy this design the

clock speed would likely need to be significantly lower to account for manufacturing

imperfections. After accounting for the clock overhead and some of the possible im-

provements from chapter 6, the overhead would be favorably comparable to the 10x

overhead one might expect when using an FPGA instead of custom hardware.

Design Spectre Throughput Spectre Energy Transistor Count Gate Area
ALA 1.23 GHz 0.717 pJ 340 1482
Custom 5.68 GHz 0.0196 pJ 78 101
Overhead 4.61 36.6 4.36 14.67

Table 4.2: Comparison of ALA Design and Custom Design Before Layout



Figure 4-4: BU F Gate

Figure 4-6: NAND Gate

Fimiire 4-7: XOR ant.e

Figure 4-8: COPY Gate

Figure 4-9: DELETE Gate



Figure 4-10: Main Tile For NAND Cell

Figure 4-11: Overlay Tile With Wires For North Input

Figure 4-12: Overlay Tile With Wires For West Input 1

e 4-13: Overlav Tile With Wires For East OutDut

Figure 4-14: Combination of All Tiles
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Figure 4-16: LFSR as Layout



Chapter 5

ALA Simulation

Although we are planning to do so in the near future, none of the ALA hardware

designs have been fabricated. Instead, we have used performance estimates based

on Spectre simulations of our design done in a generic 90nm process. From these

simulations I extracted timing and power consumption information which I integrated

with a custom simulator for ALA. This chapter describes a discrete event model of the

ALA hardware and the simplified model used in the custom ALA simulator TkALA.

5.1 Discrete Event Model of PCFB

One of the powerful aspects of ALA is that there is only a small set of unique cells with

very controlled discrete interactions. Figure 5.1 shows the full set of events and inter-

actions for a buffer cell and its two neighbors. Each of the ovals represents a transition

on one of the C-elements inside the cell. Boxes represent transitions in neighboring

cells. Solid black arrows represent internal dependencies. Colored arrows represent

external dependencies of internal transitions. Dashed arrows represent dependencies

of external transitions. Each of these arrows has some delay value associated with it.
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Figure 5-1: Full PCFB State Diagram

5.2 Simplified Model of PCFB

The full state diagram contains many events that are not externally visible and some

delays which can be redundant when the only information that we are likely to care

about is when new output tokens are generated. I used a simpler model that attempts

to capture the critical delays without needing all of the intermediate events. The

simplified state diagram for a buffer cell is shown in figure 5.2. This model was created

primarily through inspection and for compatibility with the simulator architecture.

It could likely be improved with a more rigorous analysis.

5.3 TkALA Simulator

Well before the hardware was designed, we needed a simulator to see how hard differ-

ent gate sets were to work with. To fill this need I wrote TkALA. After the hardware

was designed I added timing and power information extracted from Spectre simula-

........ ....... - ., 11 .......... .. . ........ .......



Tokentime Input-time Token_Time

Out_.ack time Ack-time do *d*

Figure 5-2: Simplified PCFB State Diagram

tions of our cell designs and the simplified state model to enable performance analysis

directly from the TkALA simulator. Despite being an interactive tool written entirely

in Python, TkALA is substantially faster than Spectre thanks to the simplicity of the

event model. Although the exact timing was difficult to measure, a design in Spectre

that would take 10-15 minutes to simulate took only few seconds in TkALA (which

for designs of this size was limited because cell updates were triggered by keyboard

events). Unfortunately, the simulator was primarily intended for interactive use and

experimenting with different gate rules. As a result, the timing information was an

incremental hack on top of the existing framework and doesn't fully match the states

in the hardware. Work is currently in progress to write a new simulator in C++

that uses the complete state model and doesn't have a graphical interface. I expect

the new simulator will be many orders of magnitude faster and will further exceed

Spectre in speed while improving on TkALA in accuracy. Currently, there are some

flaws in how short-circuiting is handled. Because of these, it is likely possible to

construct circuits with arbitrarily large errors, but this is an issue with the current

implementation rather than a fundamental flaw in the approach. Future simulators

will not have these issues. The designs shown here were chosen because they didn't

operate in a way that exposed this problem. Table 5.1 shows the results of simulating

several different designs in both tools.

That simply modeling cell updates as discrete events produces fairly accurate

results indicates substantial possibilities for rapidly analyzing and improving large

designs using the techniques described in [12] combined with more accurate event

...... ....... . ...................................
............ ... . .................. .... .......... . ....



Design Throughput (MHz) Energy per Token (pJ)ALA DSpectre TkALA Error Spectre TkALA Error
8 Cell Adder 772 758 1.8% 1.68 1.40 -16%
Multiplier 752 730 2.6% 12.9 14.7 14%

Table 5.1: Comparison of Simulation results between Spectre and TkALA

models. While modeling circuits as discrete events is not a new idea, the strict

correspondence between the ALA design and the hardware means that issues that

normally arise as netlists are converted to layouts can be avoided.



Chapter 6

Alternative Hardware

Implementations

Just as the rules used are a subset of a broader class of possible rules, the design

presented in chapter 4 is a single possible implementation. As the first implementation

of ALA it doesn't incorporate many of the lessons learned while doing the design.

This chapter attempts to capture some of the lessons that were learned too late to

be incorporated. While an exciting prospect for future work would be to leverage

the design flexibility of ALA to enable rapid development of designs in maturing

technologies, there is much room for improvement in the CMOS implementations.

The example design makes minimal assumptions about timing of the gates and is

very robust to process variation. While this made it easier to design, it ignores

the potential to heavily optimize the small number of cells and reap the benefits as

they are duplicated many times. The self-timed implementation presented in [3] is

predicted to have over 30% better speed and energy consumption in exchange for

more rigorous design constraints. This chapter describes two other possible designs

that might offer similar improvements as well as some additional considerations on

CMOS scaling and possible new gate types.



6.1 Quad-Rail Asynchronous SRAM Half-Buffer

In order to be able to buffer a full token per cell, the current design needs to store

additional state to indicate if the current token has been latched or not; this differ-

entiates between a token that is in the process of being copied from one cell to the

next and two tokens that are in adjacent cells. An alternative is to require at least

one empty cell between tokens. Tokens can then remain separated without using any

additional state storage (or arguably by reusing the token storage). This changes the

high level semantics and could make many designs no longer function. For example a

two cell loop with one token would jam because the token couldn't propagate forward

without filling in the empty cell-essentially it would be at risk of eating its own tail.

A good cell type to consider in that case would be a full-buffer cell that was two

half-buffer cells in series.

Although this is strictly less powerful than the suggested version, it has a very

simple implementation. By storing state in SRAM cells, using ratioed logic, passing

signals and their complements to avoid inversions, using half-buffer cells, and being

careful about signal representation to use stronger NMOS transistors where possible,

we can significantly decrease hardware size. Figure 6.1 shows a design for a half-buffer

that uses only 20 transistors. This design is incomplete because it doesn't include

transistor sizes and may have timing glitches that prevent correct operation.

Assuming that proper sizing or using signals from the other side of the SRAM

cell (and adding an inverter) would be sufficient to avoid any issues, the operation

is fairly straightforward. An empty cell has BF and BT low. A cell has a token

when either BF or BT are high. When a token is present in the preceding cell (as

determined from the outputs AT and AF) and no token is present in the next cell

(as determined from CF and CT) then one of the two SRAM cells will be pulled low

on the left side setting either BF or BT high. Once the preceding cell has cleared

its value (as seen from AF and AT) and the next cell has latched the token (as seen

from CF and CT) the branches on the right will pull down BF and BT resetting

the token. For use in a full circuit two additional NMOS transistor will be needed to
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Figure 6-1: Quad-Rail Asynchronous SRAM Half-Buffer and Connections

reset the circuit. The design relies on the fact that AT and AF will never be high at

the same time so the set branch on the left can be shared.

To create an AND gate in this style, simply replace the transistor driven by AT

with two in series controlled by XT and YT and the transistor driven by AF with

ones driven by XF and YF in parallel. Similarly for fanout, modify the stack to

insure that set and reset are only done when all of the output cells are full or empty.

There is no reason why this design style couldn't be used to implement a full-

buffer, but it will require additional design work.

6.2 Using Non-Ratioed Logic for Low Voltage Low

Energy Operation

Much of the energy dissipated in CMOS logic comes from charging and discharging

capacitive loads formed by the transistor gates. Because the energy stored in a ca-

pacitor is jCV2 , reducing the operating voltage of a circuit is an easy way to reduce

power consumption. In synchronous circuits reducing the voltage must be done care-



fully to ensure that the timing constraints are still satisfied and may require reducing

the clock speed. Asynchronous circuits can be designed so that they automatically

slow down with voltage to maintain correct operation (as the designs in chapter 4

do). We collected data shown in figure 6.2 to demonstrate this for an early design.

For situations where speed is not critical or where energy is limited, operating at a

lower supply voltage can be very helpful.

600 160 0.3

500 0.25

400 .100 .2

-300 80 0.15
0) 0

200 0.1
W 40

100 1 0.05

0 0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

wItage Voltage Voltage

Figure 6-2: Voltage Scaling for 4-bit 3-tap FIR Filter

Sadly, the ratioed logic used in the C-elements can not switch below about 0.6V.

To improve on this, I experimented with an alternate design that used C-elements

constructed from SR latches controlled by And and Nor gates. The design shown here

ran in simulation at as low as 0.14V with an order of magnitude decrease in energy

per token (though also a three order of magnitude decrease in speed). After layout

and with real world noise and process variation it might not be feasible to reduce the

operating voltage to such an extreme, but there remains substantial room for energy

improvement. If the processing demand was variable and multiple supply voltages

were available, it would be possible to trade efficiency for speed boosts on the fly

while the circuit was running. Although this particular design has more transistors

than the design in chapter 4 (86 instead of 52), the total transistor width is less

(116.5 times minimum instead of 227) resulting in lower power consumption even at

the same voltage.
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Figure 6-3: Non-Ratiod PCFB Design

6.3 Lack of Asynchronous Merge

For all of the cells, the order in which tokens arrive doesn't affect how cells are con-

sumed or the value of the next cell that will be produced. This ensures that regardless

of variations in cell speeds across fabricated chips or technologies, the resulting values

will be consistent. This is an important property for ensuring technology indepen-

dence and it is enforced at the individual cell level making it impossible to design

a system that doesn't work correctly. However, one of the important goals of using

asynchronous cells is to ensure that power is only consumed where operations are

taking place and this goal is not fully met with the basic gate set. The issue stems

from what we call timing domains. Any connected group of logic cells (AND, NAND,

XOR, BUF, etc.) will fire exactly once (in the steady state) for each token that passes

through the group. Essentially, there is a conservation of tokens similar to conserva-

tion of current in an electrical circuit. The total number of tokens may vary (because

of fanout and fanin), but the number of firings will be constant. Using the copy

and delete gates breaks cells into different timing domains (copy gates have control

and output in the same domain and delete gates have control and input in the same

domain). Breaking cells into different domains allows some sections to be run slower

which can consume less power. This is perhaps most notable in something like the

oscillator design from chapter 3 which asymptotically consumes a constant amount

of dynamic power (though most implementations are likely to have some leakage).



Figure 6-4: Heat Map of a Simple Multiplier

Figure 6.3 shows a simple multiplier where gates have been colored based on energy

consumption. Although some gates consume more power per cycle (the crossover con-

suming power for both directions in particular) we can see the boundaries between

the domains.

While being able to programmatically cross these domains does work in the ma-

jority of cases one might have, it remains difficult to implement asynchronous inter-

actions between modules. For example, imagine implementing a multi-agent system

where agent interactions involved unpredictably sending messages to each other. Ide-

ally it shouldn't be necessary to send any data unless a new message is ready. However,

with only copy and delete gates it is impossible to construct a circuit that will, for

example, accept the first available message. This is largely by design to ensure that

there are no possible race conditions. It would be plausible to create a distributed

.. .. ....... . ...................... ..



"clock" signal and have agents send null messages, but this could require substantial

design work for the agents and might involve a significant power overhead for the null

messages. It would also work poorly if one group of cells was running substantially

slower than the rest (due to manufacturing or power supply variations for example).

However, many of the obvious gates one might use are difficult to use in any way

without making assumptions about the timing of the hardware.

6.3.1 POLL Gate

We have considered many potential new gate types that would enable an asynchronous

merge, however often the designs need to make assumptions about the timing of the

hardware to guarantee correctness. Even designs that initially seem correct can have

critical issues that are only exposed with specific update patterns. Of these gates the

one that seems the most promising, though not very efficient, I call a POLL gate.

Like COPY and DELETE it is a two input gate with a control and data input. When

the control input is T it emits a T token if there is a token at the input or a F token

if there is no token. When the control input is F it waits until a token arrives on the

data input and then consumes and emits that token. This gate appears to function

correctly in many cases, but more thorough examination is needed.

6.4 Lack of Wires: Transport Cell

Although one of the key goals of ALA is to expose the cost of wiring, wires are still

very good. The constraint that tokens must be buffered at every cell is likely far too

conservative. An obvious fix would be to add a gate that is literally just a wire, but

only so many of these could be chained together before delays became impractical

or crosstalk had substantial risk of causing errors. For a given technology with a

known RC delay of the wiring and buffer drive strength it is possible to compute an

optimal spacing between buffers. A good compromise would be to allow the designer

to specify arbitrarily long wires with a single post-processing step to insert buffers at

the optimal spacing. While this somewhat violates the spirit of the ALA design it



would likely offer substantial performance gains. Determining exactly what kinds of

spacings are optimal in typical technologies is a topic for future work.



Chapter 7

Conclusion

If you read and understand chapter 2 you will be an ASIC designer. While you may

not be capable of designing general ASICs, this thesis presents all of the ingredients

necessary to go from an ALA design to taping out an ASIC. Chapter 3 and the

appendixes describe some basic building blocks to help build advanced ALA designs.

With some minor work to migrate to a specific process technology, the designs in

chapter 4 can be used to fabricate an ASICs that implements any ALA program.

The simulation methods from chapter 5 can estimate the performance of ALA designs

almost as accurately and much faster than current state-of-the-art general purpose

tools. Though performance of most ALA designs are currently inferior to full custom

designs, chapter 6 presents several ideas that will minimize that gap.

There are weaknesses in the current ALA model that need to be fixed. The

addition of a wire cell would take minimal effort but likely help even simple designs.

As more complicated designs are developed the addition of an asynchronous merge

operation (perhaps using the POLL gate described in section 6.3.1) will likely be worth

the potential design complications. Although it is larger than what is documented

here, the current library of ALA designs will need to be expanded.

In considering ALA is a substitute for traditional models of hardware there is

significant potential to explore new high-level languages. The von Neumann processor

has been the dominant model of computation for the last 50 years of technological

progress. With current computers well into the realm of diminishing returns on



optimizations there is a significant opportunity in trying to expose the full capabilities

of modern fabrication processes. While it has weaknesses as noted above, this thesis is

a step closer in that direction. Using ALA, as shown here, to align computational and

physical models presents an oppertunity to make the design of ASICs substantially

easier by making design verification easier, reducing tape-out costs by reusing masks,

increasing yield, and enabling portability between processes and beyond silicon.



Appendix A

Hierarchical Design Example:

Scalable Encryption Algorithm

Round

1 from part import part

2

3 class line (part):

4 def __init_ -(self , ala, start , dx, dy, len , dir , parent=

None, values=[]):

self . start = start

self .dx = dx

self .dy = dy

self .len = len

self.dir = dir

part . _ init_ ( self , ala , (0 ,0) , parent=parent ,

False , mirror-y=False)

self. initial-values

mirror-x-

= values
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Figure A-i: Scalable Encryption Algorithm Round

14

15 def build(self):

16 self.mvalues = list (self. initialvalues)

17 x = self . start [0]

18 y =self . start [1]

19 dx =self .dx

20 dy = self .dy

21

22 for i in range(0, self.len):

23 self make-wire((x + dx*i , y+dy*i) , self.dir , init=self.

next-val())

24

25 def next-val(self):

. .. ......... .......... ... ....- I , - I I - ,



26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

build(self):

c = 0, 0

.add(c

.add (c

.add (c

.add (c

.add (c

'wire '

'nand',

'wire

'wire

'nand',

'e ') ;c+=1

'ee ');c+=1

'eO ');c+=1

'n' );c+=1

'ww') ; c+=1

, 'wn') ; c+=1

'w' );c+=1

' 'wn1');c+=1

'wn') ; c+=1

'wnl');c+=1

r-=1; c=0

add(c

add(c

add (c

add (c

add(c

S'cross

'wire '

'delete

'copy'

'and',

def

r,

if len(self.values) > 0:

v = self.values.pop()

else:

return v

class bit-rotate-r (part):

def __init_ (self , ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

part . _ init -- (self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

self

self

self

self

s e lf

self

self

self

s e lf

self



54 r -=1; c=O

55

56 self .add(c,r , 'wire', 'n');c+=1

57 self.add(c,r, 'delete ', 'nwO');c+=1

58 self.add(c,r, 'copy', 'ws');c+=1l

59 self.add(c,r, 'and', 'ws-');c+=1

60 self .add(c,r , 'or', 'wn') ;c+=1

61

62 r-=1; c=0

63

64 self.add(c,r, 'wire ', 'n');c+=1

65 self .add(c,r , 'wire ' , 'w') ;c+=1

66 self.add(c,r,'wire', 'w');c+=1

67 self .add(c,r , 'nand' , 'ww') ;c+=1

68

69 r+=7; c=1

70 self add(c,r, 'nand' , 'ee ') ;c+=1

71 self.add(c,r,'wire', 'wl');c+=1

72 r -=1; c=0

73 self.add(c,r, 'nand', 'ee ');c+=1

74 self.add(c,r, 'wire', 'wO');c+=1

75 self.add(c,r, 'copy', 'nOwl');c+=1

76 r -=1; c=0

77 self.add(c,r, 'nand', 'ee');c+=1

78 self .add(c,r, 'wire ', 'wl');c+=1

79 self.add(c,r, 'copy', 'nlwO');c+=1

80 self .add(c ,r , 'wire ' , 'w');c+=1

81 r -=1; c=2

82 self.add(c,r, 'nand', 'nln');c+=1

83 self.add(c,r, 'and', 'nlwO');c+=1



84

85 self. build-children ()

86

87 #output = 0111 1111 >

88 class control-generator(part):

89 def __init__(self , ala, location, swap-out=False, parent=

None, mirror-x=False , mirror-y=False , rotate=O, color=

None):

90 part . __init- -(self, ala , location, mirror-x, mirror-y

rotate , parent=parent , color=color)

91 self . swap-output _location=swap-out

92

93 def build(self):

94

95 if self . swap-output _location:

96 c-start = 0

97 else :

98 cstart = 1

99

100 r=3; c=cstart

101 self.add(c,r,'wire', 'eO');c+=1

102 self .add(cr, 'nand' , 'ww') ;c+=1

103 r-=1; c=c _start

104 self.add(c,r,'copy', 'nlel');c+-=1

105 self.add(c,r,'wire ', 'eO');c-c+=1

106 self .add(c,r , 'nand' , 'ww') ; c+-I=1

107 r-=1; c=c _start -1

108 self.add(c,r,'wire', 'e');c+-=1

109 self.add(c,r, 'copy', 'nOel');c+=1

110 self.add(c,r,'wire ', 'eO');c+=1



self .add(c, r , 'nand', 'ww') ;c+-=1

r-=1; c=c _start -1

if self. swap-output _location:

self.add(c,r, 'nand', 'non');c+=1

self.add(c,r, 'or', 'nOwl');c+=1

else:

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

.add(c,r, 'or',

.add(c,r, 'nand

'nOel');c+=1

', 'nOn');c+=1

self . build-children ()

class bit-rotate l(part):

def __init__(self , ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

part . __init-- (self , ala , location, mirror-x, mirror-y

rotate , parent=parent , color=color)

def build( self):

r , C = 0, 0

c += 2

self .add(c ,r , 'nand ' ,

self .add(c ,r, 'wire',

self . add(c , r , 'wire ' ,

r -=1; c=0

delinloc = (c-1,r)

self .add(c,r , 'delete'

copy-in-loc = (c , r+1)

self .add(c,r, 'copy',

'w~w') ; c+=1

'w');c+=1

'w') ;c+=1

,'sw'); c+=1

'wn' ) ; c+=1

self

self



self.

self.

self.

r -=1;

add(c

add(c

add(c

c=0

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

'and',

'or,)orI

' cross

'wire '

'wire '

'wire '

'and',

'nand '

'wire '

'wire'

'wire

'wire

'wire

'wire

'wire

'wire

'wn') ; c+=1

'ws '); c+=1

' 'wn');c+=1

'w')

's')

'w')

's0e '

'n '

IlW

self . add(c

self .add(c

self .add(c

self .add(c

self .add(c

r -=1; c=0

self .add(c

self .add(c

self .add(c

self .add(c

r -=1; c=0

self .add(c

self .add(c

self .add(c

s e lf . add (c

r -=1; c=0

control-generator ( self . ala ,

rotate=90);

control-generator ( self . ala ,

parent=self , rotate=0);

c+=1

:+=1

:+=1

+=1

:+=1

:+=1

:+=1

:+=1

del-in-loc , parent=self

copyin-loc , swap-out=True,

self . build-children ()

'n')

's')

'n')

's')

'n')

'w' )

'n ' )

'w')



167

168 #permutes side input as if word rotate was done before

passsing in input (and output was rotated back)

169 class xor-and-rotate-block(part):

170 def __init__(self , ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

171 part . _init-- (self , ala , location, mirror-x, mirror-y

rotate , parent=parent , color=color)

def build(self):

r, c = 0, 0

s e1f . add (c

self. add(c

self .add(c

r -=1; c=0

self .add(c

self .add(c

self .add(c

r -=1; c=0

self .add(c

self .add(c

self. add(c

r -=1; c=0

wire'

wire'

xor

xor

'cross '

cross

wire'

'xor '

'cross '

c+=1

c+=1

c+=1

'n

'n

ne

ne')

'ne

'ne

n')

ne

'ne

c+=1

'c+=1

c+=1

c+=1

); c+=1

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192 #permutes side

passsing in

input

input

as if word rotate was done before

(and output was rotated back)

self . build-children ()



193 class xor_2_0(part):

194 def __init__(self , ala, location, parent=None, mirror-x=

False , mirrory=False , rotate=0, color=None):

195 part . _ init -- (self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

196 def build(self):

197 r , c = 0, 0

198 self.add(c,r,'wire ', 'n');c+=1

199 self .add(c ,r , 'wire ' , 'n'); c+=1

200 self.add(c,r,'xor', 'ne');c+-=1

201 self. build-children ()
202

203 class xor_0_1(part):

204 def __init __ (self , ala , location , parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

205 part . _-init -- ( self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

206 def build(self):

207 r , c = 0, 0

208 self.add(c,r,'xor', 'ne');c+=1

209 self .add(c,r, 'cross ' , 'ne') ;c+=1

210 self .add(c,r, 'cross ' , 'ne') ;c+=1

211 self. build-children ()
212

213 class xor_1_2(part):

214 def -_init -- (self , ala , location , parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

215 part . -_init -- (self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

216 def build(self):



217 r, c = 0, 0

218 self.add(c,r, 'wire ', 'n');c+=1

219 self.add(c,r, 'xor', 'ne');c+=1

220 self.add(c,r, 'cross ', 'ne');c+=1

221 self. build-children ()

222

223 class fanout-1(part):

224 def __init- _(self , ala , location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

225 part . _ init -- (self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

226 def build( self):

227 r , c = 0, 0

228 self.add(c,r,'cross', 'ne');c+=1

229 self.add(c,r,'wire', 'n');c+=1

230 self .add(c,r, 'wire', 'n');c+=1

231 self. build-children ()
232

233 class fanout2 (part):

234 def __init__(self , ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

235 part . _init _ _(self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

236 def build(self):

237 r, c = 0, 0

238 self.add(c,r,'cross', 'ne');c+=1

239 self.add(c,r,'cross', 'ne');c+=1

240 self.add(c,r,'wire', 'n');c+--=1

241 self. build-children ()

242



243

244 class fanout-block(part):

245 def __init __ (self , ala, location , parent=None, mirrorx=

False , mirror-y=False , rotate=0, color=None):

246 part . __init-_ (self , ala , location, mirror-x, mirror-y

rotate , parent=parent , color=color)

247

248 def build(self):

249 r, c = 0, 0

250 self.add(c,r,'wire ', 'n');c+=1

251 self .add(c,r , 'wire ' , 'n') ;c+=1

252 self.add(c,r,'wire ', 'n');c+=1

253 r-=1; c=0

254 self.add(c,r, 'cross ', 'ne');c+-=1

255 self.add(c,r,'wire ', 'n');c+=1

256 self.add(c,r,'wire ', 'n');c+=1

257 r -=1; c=0

258 self .add(c,r, 'cross ' , 'ne') ;c+=1

259 self.add(c,r,'cross ', 'ne');c+=1

260 self.add(c,r,'wire', 'n');c+=1

261

262 self. build-children ()
263

264 #adder with minimal carry loop and overflow prevention

265 class adder(part):

266 def __init__(self , ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

267 part. __init (self, ala, location, mirror-x, mirror-y,

rotate , parent=parent , color=color)

268



def build(self):

c, r = 0+1, 0

self .add(c , r ,

self .add(c , r ,

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

c, r

self

self

self

self

= 0, r-1

.add(c, r,

.add(c, r,

.add(c, r,

.add(c, r,

= 0, r-1

.add(c, r,

.add(c, r,

.add(c, r,

.add(c, r,

c , r = 0+1, r-1

self.add(c, r,

self .add(c, r,

carry-kill = (c

self.add(c, r,

'wire

'wire

'wire '

'cross

'xor

'xor

'wire

'and'

'and'

'or

'wire

'wire

r-1)

'and ' ,

control-generator ( self

rotate =180);

'w');

,wn

'wn');

'ws0')

S 'n')

'wn')

'ne0'

'ws')

'n')

'w )

c +=1

c +=1

+= 1

c +=

+=1

c +=1

c +=1

c +=1

c +=1

c += 1

c +=

c +=

'ws'); c += 1

.ala, carry-kill , parent=self

self .build-children ()

#adder with minimal carry loop and overflow prevention

class adder-no-carry gen (part):

, r

elf

elf

elf

elf



298 def __init- (self, ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

299 part . _ init_ (self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

def build(self):

c, r = 0+1, 0

self.add(c, r,

self.add(c, r,

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

= 0, r

.add(c,

.add (c,

.add (c,

.add(c,

= 0, r-1

.add(c, r

.add(c, r

.add(c, r

.add(c, r

c , r = 0+1, r-1

self.add(c, r,

self.add(c, r,

carry-kill = (c

self .add(c, r,

'wire'

'wire

'wire '

'cross

'xor '

xor ',

wire'

'and'

'and',

S,or

wire

wire

r-1)

and',

'w')

, 'wn

'wn')

'ws0'

7n)
, 'n'

'wn

'ne0

'ws')

'n')

'w')

c += 1

c +=1

c += 1

'; c += 1

c +=1
; +=1

c += 1

c +=1

c += 1

c += 1

c += 1

c +=1

'we'); c += 1

self . build-children ()

C, r

self

self

self

self

C, r

self

self

self

self



class s-box (part):

def __init__(self , ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=0, color=None):

part . -- init -- (self , ala , location , mirror-x , mirror-y

rotate , parent=parent , color=color)

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

self):

, 0

self .add(c

self .add(c

self .add(c

self .add(c

self .add(c

r-=1; c=0

self.

self.

self.

self.

self.

r -=1;

add(c

add(c

add (c

add (c

add(c

c=0

self. add(c

self. add(c

self . add(c

s e l f . add (c

self add(c

r -=1; c=0

'xor

'wire '

'wire '

'wire '

'wire

'and',

'wire

'and'

'or ' ,

'wire

'wire

'cross

xor ' ,

wire '

'cross

ws

, w'

, w'

, w'

'se

, 's'

wn

sn )
,7w')

c+=1

c+=1

c+=1

c+=1

c+=1

c+=1

c+=1

c+=1

c+=1

; c+=1

' s') ; c+=1

'wn') ; c+=1

'w') ; c+=1

def build(

r , c = 0



self .add(c,r ,'wire'

self .add(c,r ,'wire'

self .add(c,r, 'wire'

self .add(c,r ,'wire'

self.add(c,r, 'xor'

r-=1; c=0

, 's)c+=1

, 's)c+=1

, 'w );c+=1

, 'w );c+=1

wn');c+=1

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

def build

r, c =

xor_2_0

xor 0_1

xor_1_2

( self ):

0, 0

(self. ala ,(r ,c+1)

(self . ala ,(r ,c-1)

(self. ala ,(r ,c-5),

parent=self ,

parent=self ,

parent=self ,

color='#ffe0e0 ')

color='#e0ffe0 ')

color='#e0e0ee ')

r += 3

bit _rot at e _r ( self . ala , ( r+4,c+3) , parent=self , mirrorx=

True, color='#ffe0ff ')

bit rotateAl(self.ala,(r+4,c-6), parent=self , mirror-x=

True, mirror-y=True, color='#ffffe0 ')

s-box(self.ala, (r+9, c+1), parent=self , mirror-x=True,

color='#e0ffff ')

self . build-children ()

class sea-round(part):

def __init..(self , ala, location , parent=None, mirror-x=

False , mirrory=False , rotate=0, color=None):

part .__init__ ( self , ala , location , mirror-x , mirrory

rotate , parent=parent , color=color)



379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

fanoutI(self.ala

color='#e0e0ff

fanout2 (self. ala

color='#e0e0ff

for i in

#left

if i

range (-9,

side path

not in [-5

elf . add(0,

elf. add(1,

elf. add(2,

adder( self. ala, (r+14, c-0) , parent=self,

color='#ffe0e0 ')

adder-no-carry gen (self .ala , (r+14, c-4),

rotate=180, color='#e0ffe0 ')

adder-no-carry-gen ( self .ala , (r+14, c-8),

rotate=180, color='#eOeOff ')

fanout1 (self. ala , (r+18, c-3) , parent=se

color='#e0e0ff ')

fanout_2 ( self . ala , (r+18, c-7) , parent=se

color='#e0e0ff ')

(r+15, c-4), parent=self ,rotate=0,

)
(r+i15, c-8), parent=self ,rotate=0,

8) :

skipping

-1, 1]:

i , wire

i, wire

i , 'wire

#key path

if i not in [-7, -3,

self.add(18, i,

self.add(19, i,

self.add(20, i,

elif i not in [-4, -

self.add(18, i,

over xor blocks

1]:

'wire

wire

wire

8]:

'cross , 'en')

rotate=180,

parent=self

parent=self

lf ,rotate=0,

lf , rotate=0,



self. add(19,

self .add(20,

#right side path

if i not in [-7,

self.add(21,

self .add(22,

self.add(23,

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

self.add(i,

#wire from

self.add(8,

self.add(8,

#wire from

self.add(8,

# control si

for i in ra

if i no

sbox

-3

-4

sbox

2,

gnal

nge(

t in

i, 'cross

i, 'cross',

-3]:

i 'wire'

i 'wire'

i ' wire '

'en' )
'en' )

'n')

'n')

'n')

(signal 1)

-1, 'wire'

to rotate 1

'wire', 'n'

'wire', 'n'

to rotate r

'wire ', 's')

path

-5, 4)

[-3,

for

1]:

self .add(13,

ad

e')

eft

)
)

(signal 2)

ight

ders

'wire', 'n')

else:

self add

self add

(13, 4,

(13,

'wire

#route signal 1 from key

self .add(12, -3, 'wire ',

cross

'e ')

,'ne')

addition to sbox

'e')

#wire

for i

from sbox to xor

in range(3, 8):



432

433 #route signal 2 from key addition to sbox

434 self.add(11, -3, 'wire ', 's')

435 self .add(11, -4, 'wire ', 'e ')

436 self.add(12, -4, 'wire ', 's')

437 self.add(12, -5, 'wire ', 's')

438 self.add(12, -6, 'wire ', 's')

439 self.add(12, -7, 'wire ', 'e')

440 self .add(13 , -7, 'wire ' , 'e ')

441

442 #wires from key to addition blocks

443 self.add(17, 0, 'wire ', 'e')

444 self.add(17, -4, 'wire ', 'e')

445 self .add(17, -8, 'wire ', 'e')

446

447 self. build-children ()
448

449 def build (my-ala, my-view):

450 test = sea-round(my-ala, (0, 0))

451 test . build ()



Appendix B

Parametric Design Example:

Arbitrary Period Oscillator

o0 D+>0 0 D > 0

Figr4e B-i:4tOscillat +04040

Figure B-1: 42 State Oscillator

1 from part

2 from part-lib

import part

import line

3

4 class osc (part):

5 def -_init--(self

mirror-x=False

ala , location ,

mirrory=False

value , parent=None,

rotate=0, color=None):

ala , location ,

rotate , parent=parent,

mirrorx , mirror-y,

color=color)

7 self. value = value

8

9 def build(self):

.... ..........

part . _ _init _-_ ( self ,



assert self .value >= 2

s =

v self .value

while v > 2:

if v & 1:

v - 1

self .add(s-1,1,"and" ," se")

self .add(s-1,0,"copy" ,"wn " )
self .add(s ,1,"nand" ,"sOs")

self .add(s,O,"wire" ,"w" )
s -= 2

if v > 2:

v = v 1

self add(s ,2 ,"nand"

self .add(s,1 ,"and",

self .add(s,0 , "copy"

s - 1

self

self

add(s,1,

add(s ,0,

ss" )
n1n")

, "wn")

"nand" ," ss")

"and" , "nn")

self .build-children ()

class test (part ):

def __init_ (self , ala, location, parent=None, mirror-x=

False , mirror-y=False , rotate=O, color=None):

part . _ init -- (self , ala , location , mirror-x , mirror-y



rotate , parent=parent , color=color)

def build(self):

osc(self.ala, (0, 0),

line(self.ala, (1, 0)

= [] , cap=False)

self . build-children ()

42,

,1,

parent=self)

0, 10, 'w' , parent=self , values

def build (my-ala, my-view):

t = test (my-ala, (0, 0))

t . build ()
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