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Abstract
Materials with effective properties dominated by geometric structure rather than composition,
or architected materials, are used in nature and engineering to maximize performance subject
to constraints of mass and energy. Conventional engineering examples have included textiles,
polymer and metal foams, and honeycombs, but developments in digital fabrication have vastly
expanded the field. The majority of this new work has focused on 3D printing for its high de-
gree of geometric control, though production rates have been slow, material properties poor, and
manufacturing costs high. An alternative, growing body of work has developed around structural
origami and kirigami, where planar sheets are processed and folded to create three-dimensional
architected materials. This work aims to leverage planar fabrication for scalable manufacturing,
on-demand customization, and low embodied energy while exploiting the geometric richness of
origami to tailor shape and maximize mechanical performance.

This thesis seeks to demonstrate the engineering potential of folded architected materials
by showing scalability through automated production, structural control of three-dimensional
shape and stiffness, and functional control of energy transduction. We first show a custom ma-
chine for automating cutting and folding of shaped honeycombs, illustrating the capability to
prescribe large-scale geometry of an architected material in a continuous production process.
We then modify this construction to make shaped architected materials with prescribed stiffness,
producing shoe soles as a demonstration. Finally, we show three forms of energy transduction
in folded architected materials – reflection, absorption, and transmission – and apply each to a
relevant, difficult engineering problem. For energy reflection, we maximize the ratio of strain
energy output to input in a collision event, taking running shoe soles as a test case and com-
paring performance to conventional polymer foams. For energy absorption, we maximize total
energy absorbed per unit mass and apply this to vehicular crashboxes, comparing the results
to aluminum honeycombs. For energy transmission, we use energy input to drive deformation
modes with desired output force and geometry, taking as an application the generation of travel-
ing waves on a hydrofoil surface (a longstanding goal of active flow control), evaluating viability
under tow tank testing.

Thesis Supervisor: Neil Gershenfeld

Director, MIT Center for Bits and Atoms, Program in Media Arts and Sciences
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Chapter 1

Introduction

Materials with mechanical behavior dominated by geometric structure rather than composition,
or architected materials, have long found use in applications where no uniform material would
suffice. In nature, where geometric complexity has low cost, intricate structures optimize per-
formance subject to minimal material or energy use, including featherweight bird bones [74],
resilient palm tree trunks [72], tough glass sea sponges [1, 199], and strain-stiffening tendons
[13, 66] (shown in Figure 1.1). In manufactured systems, where complexity is more expensive,
architected materials have relied on clever applications of physical or mechanical principles to
produce the necessary geometric complexity and dynamic range. Polymer and metal foams use
chemically or physically blown voids with desired statistical properties [197, 6]. Honeycomb
production uses selective bonding or corrugation to form many hexagonal cells at once [22, 193].
Textile production uses shaped needles, hooks, and other elements to set tension and direction
of fibers in the cellular structure of fabrics [12, 85]. These examples are shown in Figure 1.2.

As these engineered architected materials became indispensable to modern engineering, this
success spawned a field of research around the design of architected materials and creation of
metamaterials, those with effective properties not naturally occurring [43, 161, 111]. This work
included the realization of negative Poisson ratios [110], negative stiffnesses [138], unbounded
positive and negative thermal expansion ratios [112], and a host of unusual electric, magnetic, and
optical property values [29]. Several methods showed that any positive semi-definite constitutive
tensor can be realized by a two phase geometry [133, 170], and bounds on effective material
properties, including elastic modulus [83], were derived. For architectedmaterials with amaterial
phase and an air phase, commonly called cellular solids or simply foams, fundamental scaling laws
were derived from solid mechanical principles and codified into design metrics [73, 6].

This progress highlighted the need for newmanufacturing methods to expand range of realiz-
able geometry [21], and digital fabrication has begun to fill this need [153]. Computer-controlled
tools have moved the field from simply creating exotic material properties to generating fully
functional systems and fundamentally new material capabilities like shape-morphing, wave-
guiding, and reprogrammability [16, 97, 103]. The vast majority of this new work, however,
has exceeded the clever manufacturing methods described above, instead relying on additive
manufacturing for production. While 3D printing promises the ability to directly write arbitrary
geometric complexity, it has generally suffered from low production rates and resolution, limited
material choice, high energy intensities, and large equipment and material costs compared to
conventional processes. A recent survey of additive manufacturing technologies found between
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Figure 1.1: Natural architected materials. a) Internal structure of bird bones (Image from [174]), b) Interlocking
barbs of feathers (Image from [174]), c) Density gradients in bamboo and palm (Image from [200]), d) Hierarchical
glass skeletons of sea sponges (Image from [198]).

two and three orders of magnitude slower production rates and between one and two orders of
magnitude higher energy intensities when compared to conventional manufacturing [79]. Re-
search into improving these shortcomings has made exciting progress [191, 75, 44, 114, 120, 152],
but in many cases the technologies are near their thermodynamic limits, and so improvements
in any one of these metrics will likely come at the expense of the others.

While 3D printing has seen considerable development, so too has two-dimensional digital
fabrication, albeit with less acclaim. At prototype scales, computer-controlled laser, waterjet,
and knife cutting machines (Figure 1.3(a-e)) produce prototypes in seconds rather than the hours
taken by additive manufacturing, and commodification of precision components has brought
high resolution machines into the price range of consumers and small businesses. At production
scales, printing presses like the one shown in Figure 1.3e now pattern ink at 15 m/s (35 mph)
[126], and rotary dies like the one shown in Figure 1.3f can cut or crease at 5 m/s (12 mph)
[105, 142]. Roll-to-roll manufacturing of printed circuits can pattern functional ink at rates of 10
m2/s with features sizes of 10-100 um [55, 93]. Solar cells produced in a roll-to-roll process pay
back their cost in one day of operation [58] and pay back their embodied energy several times

16



Figure 1.2: Engineered architected materials: a) Polystyrene foam (Image from [162]), b) EVA foam (Image from
[192]), b) Honeycomb manufacturing (Images from [193]), c) Knitting textiles (Images from [91])

faster than conventional polycrystaline silicon cells [51, 77, 57, 157].
Critically, the output of these planar processes need not be purely two-dimensional. Conven-

tional sheet metal fabrication transforms rolls of material into precise three-dimensional forms,
and robotic process automation has massively scaled this process, for instance in automobile
production [30]. Rigid-flex PCB manufacturing uses flexible substrates to fold circuit boards,
bringing electronic interconnect to space-constrained, three-dimensional shapes. Corrugated
cardboard, of which more than 200 billion square meters are produced annually [67], is made
extremely cheaply by patterning and bonding rolls of paper in a continuous process. Continuous
processes for cost-effectively producing thermoplastic honeycomb cores by thermoforming and
folding have been recently developed [151, 26, 150, 166]. Sandwich panel cores have also been
constructed using only folding, enabling the use of high-performance materials in these foldcores
[136, 107, 86, 56, 81, 106].

Despite the apparent restrictions of creating three-dimensional geometry from a flat pattern,
advances in algorithms for folding [49] have demonstrated that remarkable complexity and func-
tionality can be produced this way, and the field of structural origami has grown around this ob-
servation [88]. For instance, any polyhedral mesh can be formed by folding a single flat origami
pattern [50] (shown in Figure 1.4a), and an arbitrary connected three dimensional volume can be

17



Figure 1.3: Planar processes. a) CO2 laser cutting, b) fiber laser cutting, c) waterjet cutting, d) drag knife cutting, e)

powered knife cutting, f) high speed printing press (Image from [126]), g) rotary die cutting (Image from [105]).

filled by folding a one-dimensional chain [41]. Rigid simulation has been used for form finding
[176], and considerable progress has beenmade tomodel the interplay of geometry with elasticity
[164, 178, 62, 71], and of global geometry with local folds and cuts [52, 38, 37]. Exotic material ca-
pabilities have been demonstrated, including bi-directional flat-foldability [165, 163, 179, 137, 42],
reconfigurable states [63, 146, 147], in-situ tunable thermal expansion [24], and acoustic waveg-
uide behavior [11]. Particularly striking examples of complexity of folded structure come from
Pop-up MEMS (shown in Figure 1.4b), where layers are micromachined, laminated, and folded
into three dimensions based on custom design algorithms [10, 9], forming monolithic structure
with high performance materials [206, 173, 201], mechanisms for transmission [129] and assem-
bly aid [84, 60, 143, 123, 144], using a variety of actuation [99, 53, 76, 61, 115, 122] and sensing
[5, 102, 27, 169, 175] technologies. Related methods enabled by atomically thin graphene kirigami
[23] have produced autonomous machines on the scale of a single biological cell [134].

This thesis works to show that structural origami is not only a scalable way to manufacture
architected materials, but also spans a rich enough geometric space to solve important engineer-
ing problems with those materials. In each of five case studies (shown in Figure 1.5), I build the
mathematical and physical machinery necessary to meet a given functional requirement. First, in
Chapter 2, I show a method to fill a desired three-dimensional shape with a structurally efficient
architected material by cutting and folding a flat sheet. I then design, build, and test a machine
to automate this construction. Second, in Chapter 3, I demonstrate control over the stiffness of

Figure 1.4: a) Origamizer 3D model and folding pattern (Image from [50]), b) Pop-up MEMS RoboBee and Wright Flier

(Image from [7])

18



an architected material in addition to its shape. I apply this construction to make custom shoe
soles and show that the achievable properties span a similar range as conventional foams used in
footwear. Third, in Chapter 4, I maximize the resilience of an architected material, or its ability
to return energy in an impact event. To this end, I develop a design method for architected mate-
rials with curved creases, a composite manufacturing technique to fabricate them, and dynamic
impact test equipment to evaluate them, showing resilience approaching that of state-of-the-art
polymer foams. Fourth, in Chapter 5, I maximize the toughness of an architected material, or
its ability to absorb energy from an impact event, taking as an example a vehicular crashbox. I
develop a hierarchical folded architected material and a machine for its construction, showing
its specific energy absorption (the energy absorbed per unit mass) to be twice that of commonly
used honeycombs. Fifth, in Chapter 6, I build active folded structures, taking as an application the
generation of traveling waves on a hydrofoil surface (a longstanding goal of active flow control).
I develop several methods of embedding actuation into folded architected materials, design and
build a hydrofoil with active surface, and evaluate drag reductions in tank testing.

Each of these examples has important engineering applications in its own right, but taken to-
gether, they demonstrate the potential of folded architected materials for next-generation manu-
facturing. Not only can geometric design be used to increase performance, but in many cases, less
material can be used to meet a design specification, and undesirable materials can be substituted
for more environmentally benign ones. Energy-intensive thermal manufacturing processes can
be replaced by efficient isometric operations. The cost of customization can be reduced by avoid-
ing molds and tooling, and multiple functional parts can often be combined to simplify designs
and supply chains. I discuss these implications in Chapter 7, estimating the energetic impact of
adoption of architected materials.

1. Shape 2. Stiffness 3. Resilience 4. Toughness 5. Action

(geometry) (quasistatics) (reflection) (absorption) (transmission)

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6

Figure 1.5: Visual table of contents of test cases
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Chapter 2

Shape

2.1 Introduction

In this chapter1, I develop a method to fill a desired three-dimensional shape with a structurally
efficient architected material by cutting and folding a flat sheet. I then design, build, and test a
machine to automate this construction.

This approach uses a honeycomb structure as the base geometry, as it is extremely efficient
in supporting out of plane compression and shear loads. I extend a method for producing shaped
honeycombs directly using cutting and folding, requiring no post-processing operations [140].
Figure 2.1 shows an example of the method, where an airfoil shape is filled with a honeycomb,
decomposed into a flat pattern, laser-cut and folded, and finally skinned to create a load-bearing
aerodynamic surface.

Figure 2.1: Airfoil filled with a shaped honeycomb, decomposed into a flat pattern, laser-cut and folded, and finally
skinned to create a load-bearing aerodynamic surface.

Previously it had been shown that any constant-cross-section volume can be filled with a
honeycomb produced by cutting and folding a flat sheet [160, 158, 139], up to a piecewise linear
approximation at the pitch of the honeycomb. More recently, this technique has been extended

1The work of this chapter was presented at the 2018 ASME Manufacturing Science and Engineering Conference
[32].

20



to fill a broader class of doubly-curved three-dimensional shapes [159] by describing the folding
pattern in a polar coordinate system. This opens a broader class of sandwich shapes, but has the
downside that many of the folds are no longer straight and parallel, significantly increasing man-
ufacturing complexity. Researchers have also produced sandwich panel cores using only folding.
These foldcores have been the subject of considerable research, mostly due to their advantages
for ventilating the core of a sandwich panel against water ingress [107] and high compression
and shear strength [86]. Batch and continuous manufacturing processes have been demonstrated
[56], but only for limited panel widths, uniform thicknesses, and with a relatively large folding
pitch. There has been some work on modifying patterns of creases to create shaped foldcores
[81, 106] but the patterns quickly increase in manufacturing complexity. For these reasons, this
work focuses on the using cutting and parallel folding only to fill volumes.

In this chapter, I first detail the approach for generating cut and fold patterns for a given
three-dimensional shape. Next, I discuss motivation, design, and construction of the machine
for folding these patterns, drawing on common mechanisms from the folding of paper media in
industry. Finally, I characterize the crease spacings produced by this machine, show a shaped
honeycomb produced on this machine, and sketch directions for future work.

Figure 2.2: Basic folding motion from flat to three-dimensions.

2.2 Pattern construction

We begin by describing the method of constructing a cut and fold pattern for a honeycomb filling
a three dimensional volume specified by two functions t(x, y) and u(x, y), which define upper
and lower bounding surfaces of the volume (as shown in Figure 2.3). We parameterize the pitch
of the desired honeycomb by its side length s and define a set of lattice coordinates

h(i, j) =
(√

3
2
si, 3

2
s⌊ j

2
⌋+ s(j mod 2)

)

(2.1)

where ⌊x⌋ denotes the smallest integer less than x and j mod 2 denotes the remainder upon
division by 2. We use the shorthand ti,j = t(h(i, j)) and ui,j = u(h(i, j)) to denote the boundary
functions evaluated at the coordinate h(i, j). Figure 2.3 also shows a parameterized cutting and
folding pattern which undergoes the transformation to become a shaped honeycomb, drawn for
the case of a regular hexagonal honeycomb. For example, after folding, the line from A0,0 to B0,0

runs into the page at h(0, 0), while the lines fromC0,0 toD0,0 and fromA1,0 toB1,0 run out of and
into the page at h(2, 0), respectively. Further, the lines from A0,2 to B0,2 and from C0,2 to D0,2

run into and out of the page at h(1, 2), respectively. The task at hand is to choose the parameters
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Ai,j, Bi,j, Ci,j, Di,j such that the bounding surfaces of the resulting honeycomb match the input
functions t and u.

Figure 2.3: Parameterizing cut-and-fold pattern of a shaped honeycomb. a) Defining bounding surfaces and lattice
coordinates, b) Lattice coordinates in two dimensions, c) Defining cut pattern parameters.

We first note that the y coordinates in the pattern are completely determined by the lattice
coordinate system and hence can be computed independently from the x coordinates. The hor-
izontal lines are parallel and simply spaced by the side length s. Without loss of generality, we
let the parameters ai,j, bi,j, ci,j, di,j denote the x coordinate of these points only. To ensure that
no sections of the folding pattern overlap, we first calculate parameters a′i,j, b

′
i,j, c

′
i,j, d

′
i,j based

only on the bounding surfaces t and u. Then we calculate column-wise shifts wi and vi such that
ai,j = a′i,j + wi, bi,j = b′i,j + wi, ci,j = c′i,j + vi, and di,j = d′i,j + vi determine a non-overlapping
pattern.

From the correspondence between Figures 2B and 2C, we have

a′i,j =

{

u2i,j if j ≡ 0 or j ≡ 1

u2i+1,j if j ≡ 2 or j ≡ 3
(mod 4) (2.2)

b′i,j =

{

t2i,j if j ≡ 0 or j ≡ 1

t2i+1,j if j ≡ 2 or j ≡ 3
(mod 4) (2.3)
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We can write formulas for c′i,j and d
′
i,j recursively over j. Setting c′i,0 = t2i+2,0, we can write

c′i,j =



















c′i,j−1 − t2i+2,j + t2i+1,j−1 if j ≡ 0

c′i,j−1 − t2i+2,j + t2i+2,j−1 if j ≡ 1

c′i,j−1 − t2i+1,j + t2i+2,j−1 if j ≡ 2

c′i,j−1 − t2i+1,j + t2i+1,j−1 if j ≡ 3

(mod 4) (2.4)

Setting d′i,0 = c′i,0 + t2i+2,0 − u2i+2,0, we can recurse similarly over j:

d′i,j =



















d′i,j−1 − u2i+2,j + u2i+1,j−1 if j ≡ 0

d′i,j−1 − u2i+2,j + u2i+2,j−1 if j ≡ 1

d′i,j−1 − u2i+1,j + u2i+2,j−1 if j ≡ 2

d′i,j−1 − u2i+1,j + u2i+1,j−1 if j ≡ 3

(mod 4) (2.5)

Finally, to guarantee no overlaps occur in the pattern, we can set v0 = w0 = 0 and calculate
recursively:

wi = max
j

(d′i−1,j − a′i,j) + wi−1 (2.6)

vi = max
j

(b′i,j − c′i,j) + wi (2.7)

This parameterization is similar to that of [160], except we do not require that di,j = ai+1,j for
j ≡ 0, 1 mod 4. and that bi,j = ci,j for j ≡ 2, 3 mod 4. This extra freedom allows the definition
of the offset parameters, which allows any bounding functions t and u to be used as bounding
surfaces. This approach also maintains straight and parallel horizontal fold lines instead of using
a polar coordinate system as in [159] when describing volumes with non-constant cross-section.
This difference significantly simplifies the manufacturing process for these honeycombs. For
instance, Figure 2.4 shows a wind turbine airfoil with a taper given by the optimal 1/R chord
length scaling [127]. The bottom left image shows a fold pattern produced using a polar coordi-
nate system to create a linearly tapering airfoil approximating the optimal scaling. The bottom
right image shows a fold pattern for the optimal 1/R taper, produced with the current approach,
keeping the folds linear, straight, and parallel. While the polar coordinate approach makes more
efficient use of material, the current approach is easier to manufacture and allows greater control
over shape.

The only penalty of this approach is that we must include extra pleats (e.g., B0,2C0,2C0,3B0,3)
to account for the variable width of each column in the folding pattern. Depending on the appli-
cation, these pleats can be simply trimmed off, or folded down between the adjacent honeycomb
walls. In the case where t and u define a volume with constant cross section (normal to y), the
offset parameters equal zero. In this case, the pleats have zero size and the formulas above are
equivalent to those derived in [160].

2.3 Folding mechanism design

The derivation above has shown that the combination of cutting and folding operations can pro-
duce honeycombs bounded by arbitrary functions u(x, y) and t(x, y). For the cutting operations,
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Figure 2.4: Creating folding patterns for honeycombs with non-constant cross section. a) Airfoil with optimal 1/r
chord length, b) Linearly tapering airfoil folding pattern in polar coordinate system, c) 1/r tapering airfoil folding
pattern with parallel creases and pleats.

there exist a large number of options for processing thin sheet materials, including passive and
active knife cutting, laser cutting, abrasive waterjet machining, and die cutting. For folding, fewer
options exist in industry. One recent study has shown an automated batch process for producing
flat, uniform thickness kirigami honeycombs [194]. Motivated by industrial folding of maps and
newspapers, I now demonstrate a folding machine for producing shaped kirigami honeycombs
(shown in Figure 2.7), capable of producing a variably spaced sequence of mountain and valley
folds in a roll of material. I characterize the accuracy of this fold placement using an optical
scanning technique. By adding a cutting stage on this machine, I show that two of the three re-
quired steps for producing kirigami honeycombs can be realized. Finally, I sketch a mechanism
for gathering the output into a finished, shaped honeycomb.

Thick or ductile materials are often folded using computer controlled press brakes or corru-
gation dies. Very thin materials require a small radius of curvature to reach a plastic onset strain
level. Further, many papers and plastics exhibit greater elasticity than the metals which are usu-
ally folded using these methods. For these reasons, I looked to folding methods, suited to these
materials and thicknesses, which correspondingly crease material to a much greater angle during
forming than is required in the final, creased state. These same techniques work on thin metal
foils also, provided no brittle fracture occurs. To this end, production of maps and newspapers
offers an impressive example of precise, high-speed folding at industrial scales [131]. Figure 2.5
shows two folding mechanisms commonly used in this industry. In both cases, a set of rollers at
the left pulls a sheet into the machine where it is folded. In the left configuration, a physical stop
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Figure 2.5: Folding mechanisms used in processing print media. a) Folding using a physical stop, b) Folding using
a moving knife.

is positioned so that a moving sheet hits it, forming a buckle. Guides support the paper every-
where except the desired location for the buckle. This buckle is then grabbed and creased by a set
of folding rollers. The process at the right is similar but uses a descending knife to push a buckle
into the set of folding rollers. The position of the buckle on the sheet is set not by the physical
position of a stop, but by the timing of the knife’s movement relative to the moving sheet. In this
way, fold position on the sheet can be varied in real time, unlike as with the first mechanism. The
price to this functionality an additional degree of freedom as compared to the first mechanism.

To produce a set of folds, multiple versions of these mechanisms are connected in series; as a
sheet travels from one to the next, a desired set of folds is produced. As the honeycomb folding
patterns derived in the last section contain a large number of parallel folds, it is untenable to have

Figure 2.6: Mechanism for programmable folding with arbitrary fold spacing and orientation. a-d) Performing a
move sequence to create a valley-mountain folding sequence.

25



Figure 2.7: a) Machine for cutting and folding used in processing shaped honeycombs. b) Voice coil drag knife
cutting stage, c) Cut and folded output from machine, d) Machine processing vulcanized fiber.

such a large number of independent folding mechanisms. Further, as drawn, both mechanisms
are only capable of producing upwards facing “valley" folds. If a downwards facing “mountain"
fold is desired, inverted versions of the mechanisms are required.

Based on these constraints, I designed a mechanism (shown in Figure 2.6) inspired by the
preceding two which is capable of forming both mountain and valley folds at locations which
can be varied in real time, using only two degrees of freedom. To see this, consider the top left
image where material enters through a roller at the left and exits through a roller at the top right.
If these two rollers turn in the same orientation, the sheet simply moves through the machine. If
they turn in opposite directions, a buckle is formed and folded by the third pair of rollers (shown
at top right and bottom left). In this way, we have used the top right roller as a programmable
stop, allowing us to place a valley fold at a variable position on the sheet. The symmetry of this
configuration, however, also allows us to create mountain folds, provided we have first pulled the
sheet into the bottom roller pair (shown at bottom right). The progressive formation of a buckle
and then a fold is shown in Figure 2.8.

In fact, this mechanism is universal, in that it can fold any sequence of mountain and val-
ley folds, provided the sequence starts with a valley, and the minimum crease spacing is lower
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Figure 2.8: Forming a fold inside the machine. a) Sheet traveling through rollers, b) Rear roller reverses direction,
causing a buckle to form, c) Curvature of buckling increases, d) Crease is formed as the buckle passes between rollers.

bounded by a constant ǫ, depending on the machine dimensions. In practice, the first condition
is not a significant constraint, as we can always perform a valley fold at the start of operation,
discarding the valley after all folding has been performed. The second condition is a harder con-
straint, as if crease spacing is less than the distance between the contact points of the folding
roller pairs, consecutive creases can interact inside the machine. In practice, the exact value of ǫ
depends on the orientation of the incident creases. If they have opposite orientation (one a valley
and one a mountain), ǫwas determined experimentally to be roughly d/3, where d is the diameter
of the rollers. If the incident creases have the same orientation (both valleys or both mountains),
dense crease spacing presented few problems, and hence ǫ was considerably smaller than in the
first case.

Given a particular pattern of creases to form with this machine, we must generate a set of
commands to send to the motors driving the rollers. In the case of producing honeycomb cores,
wemust produce a repeating valley-valley-mountain-mountain patternwith a constant spacing s.
Figure 2.9 shows a simple command set which produces this folding patternwhere each command
consists of the distance to drive each degree of freedom in the machine. In this commands, the
variable c is a distance we drive both roller pairs to transform an initially taut sheet into a buckled,
then creased state (the transition shown in Figure 2.8). We can choose any value for c as long as it
is greater than πd/12, the approximate minimum distance to drive the midpoint of the taut sheet
to the point of mutual tangency of the opposing rollers. In this figure, we first crease and uncrease
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Figure 2.9: A move sequence to create a V-V-M-M fold sequence by folding creases in order.

Figure 2.10: A move sequence to create a V-V-M-M fold sequence by folding creases out of order.

a valley fold, then advance by the crease spacing before creasing another valley fold. With this
valley fold held, we drive to the location of the subsequent mountain fold before creasing and
uncreasing it. Finally, we drive to the location of the final mountain fold, crease it, and then eject
all the folds from the machine.

Figure 2.10 shows another command set which produces the same folding pattern. In contrast
to the previous command set, these folds are not produced in a consecutive order. The advantage
of this pattern is that the minimum distance during folding between folds of opposite orienta-
tion is 2s, rather than s. For dense spacings, where s < ǫ < 2s, this nonconsecutive sequence
can be folded accurately, while the consecutive pattern cannot. This is measured empirically in
Section 2.5.

2.4 Machine construction

To construct the folding machine, a set of pinch rollers were fabricated by overmolding a Shore
80A urethane rubber (Smooth-On PMC-780 Dry) onto 25mm knurled aluminum rods. The rubber
was pressure cast, demolded, rough turned, and finished ground, as shown in Figure 2.11. Two
grit rollers were fabricated by knurling an aluminum rod of the same diameter as the urethane
pinch rollers. All rollers had an outer diameter of 32 mm andwere sized to give a 750 mmworking
width for the machine.
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Figure 2.11: Fabrication of rollers used in the folding machine. a) Pressure molding of polyurethane rubber onto
knurled aluminum rod, b) Demolding roller, c) Rough turning polyurethane surface using high-rake tool, d) Finish
grinding surface to dimension.

In selecting these dimensions, I sought a balance between the maximum width material ca-
pable of being processed and the densest crease spacing possible. The wider the input material,
the larger, thicker the honeycombs that can be produced. Over a large width, however, deflection
of the rollers would decrease the effectiveness of the machine’s creasing operation. I expected
that increasing the roller diameter to compensate for this would limit the minimum spacing of
creases that the machine would be capable of producing. Therefore, to balance these competing
design constraints, I sized the rollers based on the expected forces per unit length required to
form a plastic hinge in the material. It has been shown [154] that under a creasing force, the
ratio of radius of curvature to the material thickness initially follows a plastic deformation power
law. At some point, a discontinuity occurs, and additional force produces much smaller changes
in residual curvature. For Tyvek of 143 micron thickness, this discontinuity was experimentally
shown to occur at 200 N/m at a radius of curvature of 750 microns, while increasing the force
per unit length to 1000 N/m only reduced the radius of curvature to 500 microns. Approximating
the rollers as uniformly loaded beams with circular cross section, we can calculate the maximum
deflection of the center point subject to these creasing loads. We can then calculate the maximum
width subject to a deflection equal to the radius of curvature of the crease. Using this approach,
I calculated that aluminum rollers of 25 mm diameter at 750 mm length would be able to crease
this Tyvek. Given that Tyvek is a very elastic material requiring high force to induce crisp fold, I
reasoned that more plastic materials would be easily creasable with rollers of these dimensions.
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Figure 2.12: Workflow for measuring accuracy of machine-placed creases. a) Measuring crease lines for 9mm spac-
ing, showing scanned image, detected creases, and calculated errors, b) Errors versus crease spacing for consecutive
and non-consecutive move strategies.

These rollers were arranged into a front pair of driving rollers and a rear triple of folding
rollers. The rotation of these roller groups was synchronized using spur gears and actuated using
a pair of NEMA-23 bipolar stepper motors and a 3:1 timing belt reduction. These motors have 200
steps per revolution, giving a potential resolution of roughly 160 microns without microstepping,
or 20 microns with 1/8th microstepping.

The cutting stage was built around a Roland drag knife holder (XD-CH2) using a 3D printed
voice coil bobbin wound with 400 turns of 30 AWG magnet wire, rare earth magnets inside a
12L14 steel enclosure, and an LM8UU linear bearing with return spring. This simple voice coil
actuator produced roughly 300 grams of downward cutting force, more than enough to cut a
variety of sheet stocks up to 500 micron thickness.

When the sheet emerges from the machine, it has been cut according to the pattern, and the
majority of creases have been folded. We call these straight and parallel folds spanning the entire
pattern the corrugation folds. The remaining folds, which we call the zig-zag folds, transform the
corrugated sheet into a honeycomb core. At this stage, some process for cross linking adjacent
walls is necessary to retain the honeycomb in a condensed state. In the case of sandwich panels,
this usually involves bonding face sheets to the core. In Figure 2.13, we bond cell walls with adhe-
sive to avoid the need for face sheets. The machine presented above can automate the cutting and
corrugation folding, but it doesn’t yet automate the zig-zag folding. Later, I sketch an extension
for automating the complete process.

2.5 Crease spacing evaluation

To characterize the accuracy of creasing using this folding method, a simple experiment was
constructed. Vulcanized fiber sheets of 125µm thickness were prepared. These sheets crease
consistently and exhibit strain whitening of the crease lines. This allows optical measurement
of the spacing of crease lines. The folding machine was used to crease the sheets in a repeating
valley-valley-mountain-mountain pattern, with trials for many values of the desired crease spac-
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Figure 2.13: A prototype fabricated using folding machine. a) Digital design of 3D form and 2D pattern, b) After
machine processing, c) During face bonding, d) Completed prototype.

ing (from 7mm to 20mm). The sheets were flattened and scanned at a resolution of 100 dots per
millimeter using an Epson Perfection V19 photo scanner. These images were processed using a
Python script with the Numpy and OpenCV [145] libraries to detect the crease lines.

The results of this experiment are shown in Figure 2.12. At the left, I show the results from a
particular trial where the desired spacing was 9mm. The top image shows the scanned sample,
the middle image shows the measured intensity values and detected peaks, and the bottom graph
plots the difference between spacing of each consecutive pair and the desired value of 9mm. The
graph at right shows results over all crease spacings.

For crease spacings larger than 12 mm, a consecutive strategy for folding the creases produces
errors with a standard deviation of roughly 100microns. Below this spacing, however, the densely
spaced creases can interfere with each other during folding. In this case, folding the creases
out of order can avoid collisions. In the case of a repeated valley-valley-mountain-mountain
pattern, folding in the order 1-2-4-3 eliminates a collision between the third crease and one of the
rollers. Using this non-consecutive sequence, we can produce the same pattern down to 7mm
crease spacing with standard deviation of error below 200 microns. The move sequences for these
consecutive and nonconsecutive strategies are shown in Figure 2.9 and Figure 2.10, respectively.

2.6 Prototypes

In order to test the machine, I designed and fabricated a simple shaped honeycomb using PETE
film (130µm thickness). As shown in Figure 2.13 at top left, the shape was designed to be flat on
one side and parabolic on the other based on a honeycomb with s = 7.5mm. In the top right
image, the sample is shown after being processing by themachine, and after initial zig-zag folding
has been performed manually. At bottom left, the sample is shown during bonding of adjacent
faces. At bottom right, the finished sample is shown.
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Figure 2.14: Concept for continuously gathering the folding machine output.

This sample was also used to show the viability of combining this manufacturing process with
the production of flexible printed circuit boards. The shaped honeycomb acts as a carrier for an
array of LEDs, positioning them accurately in three dimensional space based on their placement
on the two dimensional material. The copper traces are applied using a pressure set adhesive
after leaving the folding machine, but more common etching processes could be used prior to
folding as well.

2.7 Conclusions

This chapter demonstrated the ability to fill a desired three-dimensional shape with a structurally
efficient architected material by cutting and folding a flat sheet. First, an algorithm for computing
flat patterns of cuts and folds based on three dimensional geometry was developed. Based on
the large proportion of straight and parallel folds produced in these patterns, a machine was
designed to both produce these folds as well as make the required cuts. This machine was then
characterized by measuring the deviation of the placed folds from the desired fold locations. It
was shown that with appropriate choice of crease order, the error can be kept below 200 microns
over a range of desired crease spacings of 7 to 20 mm. A simple prototype was produced with this
machine demonstrating its ability to combine cutting and folding to create a shaped honeycomb.

This research opens several directions for future work. First, a fully-automated continuous
process for shaped honeycombs requires the addition of a final stage of this continuous process
where the cut and corrugated sheet is folded in a zig-zag fashion into the final honeycomb. De-
pending on the application, this stage of the process may take different forms, but in the case of
sandwich panels it involves gathering the cut and corrugated output from the folding machine
into a honeycomb form and attaching face sheets. Similar “pattern and gather" approaches have
experienced considerable success [163] in efforts to automate the folding of other origami pat-
terns. In these techniques, a sheet is weakened along crease lines by partial cutting operations
and a global contraction can cause all the creases to be folded synchronously. A sketch of this
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Figure 2.15: Prototype machine for rule die creasing of aluminum honeycomb cores.

technique as applied to the shaped honeycomb problem is shown in Figure 2.14. The machine
detailed above feeds its output into a narrowing passage, finally passing through its minimum
width with the assistance of pulling rollers. Once started, each column of honeycomb cells im-
parts a bias to the next column of cells, extending the zig-zag fold. The corrugation makes each
row stiff in comparison to the zig-zag crease lines, increasing the effectiveness of the gathering
process. Once gathered, face sheets can be applied to fix the honeycomb in its condensed state.

A second direction for future work is to fully exploit the ability of the machine presented in
this research to produce honeycomb cores of continuously varying cell size. This can be easily
accomplished by changing the honeycomb cell side length s by placing corrugation folds at a
different spacing. This capability could be used to provide a dense, stiff core in a region that
experiences high loads (e.g., at the root of a wind turbine blade), while placing a much lighter
core in regions (e.g., at the tip of the wind turbine blade) where high load capacity is not needed
and weight savings has significant benefit.

Finally, alternative folding and creasing mechanisms can be incorporated into such machines
to aid in processing additional materials. The folding mechanism described above was designed
to crease materials like papers and polymers requiring a full 180 degree fold to create plastic
deformation. For other materials like many metal foils, significantly less deformation is required,
and often a full 180 degree fold can cause undesirable material fracture. Rule die creasing is often
used to fold such materials. In this method, a stiff, thin metal rule, is pushed into a compliant
substrate, which deforms around the rule. To investigate the use of this method in a computer
controlled folding process, we build a simple rule die creasing machine, shown in Figure 2.15.
Using this machine, I prototyped an array of honeycombs in aluminum, demonstrating that this
method would work favorably in a version of the machine described in this chapter designed for
metal foils.
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Chapter 3

Stiffness

Next I demonstrate control over the stiffness of an architected material in addition to its shape1.
To do this, the constructions for shaped kirigami honeycombs of Chapter 2 aremodified to replace
the hexagonal cells with Tachi-Miura polyhedral cells. The Tachi-Miura polyhedron possesses a
number of useful properties, including bidirectional, rigid flat-foldability, tailorable Poisson ratio,
and tileability. I analyze the rigid mechanics of these Tachi-Miura honeycombs, and experimen-
tally test the elastic behavior subject to realistic materials and boundary conditions. Finally, I
apply this construction to make custom shoe soles and show that the achievable properties span
a similar range as conventional foams used in footwear.

In [137] and [179], several rigid-foldable origami cylinders are proposed and analyzed. One
example, the Tachi-Miura polyhedra, is a rigid, bidirectionally flat-foldable cylinder which is
tileable. Such foldable, space-filling cylinders open the possibility of constructing cellular mate-
rials with rigid folding mechanisms. The mechanical properties of cellular materials based on the
Tachi-Miura polyhedron have been analyzed in several studies [211, 212, 213]. As these materials
are rigidly flat-foldable, they can be used to create objects that undergo large reversible strains,
with Poisson ratios determined by the Miura angle used to create the underlying polyhedra. This
capability is a powerful tool for engineering compliant structures.

Physically constructing such cellular materials by simply joining many cylinders is difficult
to implement at scale, but we can adapt strategies that were developed to efficiently construct
origami honeycombs [140, 158, 160, 194]. These works show how a single sheet can be cut and
folded to create a straight-walled honeycomb filling the space between two bounding surfaces.
The current research extends these methods to fabricate honeycombs with Tachi-Miura polyhe-
dra instead of hexagonal prismatic cells. These cellular materials are efficiently constructed by
cutting and scoring a flat sheet which rigidly folds into the cellular material. By specifying loca-
tions of cuts, these cellular materials acquire a desired shape, just as with hexagonal honeycombs.
We call such structures Tachi-Miura honeycombs.

In this chapter, I first describe our construction for these cellular materials and characterize
the rigid folding motions of the resulting cellular materials by calculating their Poisson ratios.
To validate the application of these cellular materials to engineer compliant materials, I measure
the mechanical response of samples under compressive loading. By varying the Miura angle of
the underlying Tachi-Miura polyhedron, the response can be tuned to match a range of common

1The work of this chapter was presented at the 7th International Meeting on Origami in Science, Mathematics
and Education (OSME 2018) [31].
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(a) (b)

(c) (d)

Figure 3.1: A) Cutting and folding pattern for the straight-walled honeycomb (blue dashed lines denote a valley
fold, red dash-dot lines denote a mountain fold, and black solid lines denote a cut), B) Cutting and folding pattern,
for Tachi-Miura honeycomb, made replacing straight folds with zig-zag folds, C) Shaped straight-walled kirigami
honeycomb, D) Shaped Tachi-Miura kirigami honeycomb.

engineering foams. I then design a prototype utilizing both the large compliance of the folding
mechanism and the shape control offered by the honeycomb construction: a running shoe sole.
This prototype is then laser cut, folded, and tested.

3.1 Pattern generation

We begin by describing the method of constructing an origami pattern for a Tachi-Miura honey-
comb filling a given volume. The volume to be filled is defined as all points (x, y, z) ∈ R

3 such
that 0 < x < X , 0 < y < Y , and

u(x, y) < z < t(x, y). (3.1)

In other words, the volume is the space bounded by two functions u, t, restricted to a rectangular
region of the x − y plane. For instance, in Figure 3.1c, t and u are taken as linear functions
describing planes.
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(a) (b) (c)

Figure 3.2: A) Parameterized Tachi-Miura unit cell folding pattern, B) Tachi-Miura unit cell three dimensional
geometry. C) The unit cell and its mirror image arranged into a Tachi-Miura polyhedron.

In [160, 32], methods are derived for calculating the shape and positions of the slits in Fig-
ure 3.1a in order to produce the honeycomb shown in Figure 3.1c. These methods use evaluations
of the functions t and u in recursive equations to calculate these parameters. For brevity, we do
not reproduce these derivations here, but refer the reader to these articles for the details of these
calculations.

This method for producing Tachi-Miura honeycombs is a direct adaptation of the method de-
scribed above, motivated by modifying the cutting and folding pattern shown in Figure 3.1. First,
we introduce some nomenclature. We distinguish corrugation folds, the horizontally-running
folds in Figure 3.1a, from strip folds, the vertically-running folds joining adjacent cuts. Then, we
conceptually subdivide the pattern into strips, the regions of material bounded on left and right
by cuts and strip folds. For example, Figure 3.1a is composed of eight strips.

Within each strip, we can replace each corrugation fold line with a zig-zag fold of the same
mountain/valley orientation. As shown in Figure 3.2, these zig-zag folds make an angle of ±α
with the vertical axis and has a period of 2d. Vertical mountain and valley folds are added between
each vertex of the zig-zag as shown to create a Tachi-Miura quarter cylinder [179]. We can apply
this modification to each strip, taking care to adjust the phase of the zig-zag fold pattern so that
adjacent strips align when the strip folds are actuated.

This modification allows Tachi-Miura honeycombs to be produced from one sheet, but to
accurately determine the shape, the rigid foldingmechanism of the Tachi-Miura polyhedronmust
be analyzed. To do this, we can use an angle parameterization, introduced and proven in [137],
given by the equation:

tanα cos β = tan γ (3.2)

where theMiura angle α sets the relationship between the exterior angle of each cell (2γ) and the
dihedral angle of the trapezoidal faces (2β). These angles are shown graphically in Figure 3.3a.

Using these angle definitions, I define variables x, y, z for the spatial extents of a cell in each
coordinate direction, shown in Figure 3.3b, and calculate:

x = 2s sin 2γ y = s+ s cos 2γ z = Nd sin β (3.3)

where N is the number of zig-zag half-periods in our strip. We see that the expressions for x
and y are identical to those of a standard hexagonal honeycomb cell, while the expression for z
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is simply scaled by a factor of sin β. Therefore, to accurately reproduce the shape of functions t
and u, we must scale our generated patterns in the horizontal direction by a factor of 1/ sin β.

We note that for functions t and u with large derivative, the intersection of the folded image
of the zig-zag fold with the top or bottom surface can differ from the function’s value at the base
point of the zig-zag fold. This is illustrated in Figure 3.4, where the image of the zig-zag fold is
shown inmagenta. In this case, we can correct the function values used in the recursive equations
by calculating the actual intersection of the zig-zag fold image with the bounding surfaces.

To do this, we can define the linear segments of the magenta path by vectors v+ and v
−

(shown in Figure 3.4b). Using the angle parameterization of the Tachi-Miura polyhedron and the
parallelogram area interpretation of the cross product, we calculate

v+ = d

[

cotα, cotα− cos β

sin 2γ
, sin β

]

⊺

(3.4)

v
−
= d

[

− cotα,− cotα +
cos β

sin 2γ
, sin β

]

⊺

(3.5)

Thus, to calculate the intersection point we start from a point known to lie between t and u
(shown in Figure 3.4 as the z = 0 plane). We alternatively add v+ and v

−
until we leave the

valid region. At this point, we have bracketed the intersection point by the end points of one
linear segment of the zig-zag fold image path. Hence, we can simply perform a root search (e.g.
binary search) to approximate the intersection point as accurately as is desired. For example, in
Figure 3.4, the intersection point is computed to be approximately v+ + v

−
+ v+ − 1

2
v+ + 1

4
v+

away from the starting point.
Finally, we also note that for functions t and u with large curvature, self-intersections of the

flat folding pattern can occur as a result of the zig-zag phase shift. In practice, these are small,
and for the purposes of the present work, we ignore them. With these corrections and caveats,
our modification of the kirigami honeycomb pattern produces Tachi-Miura honeycombs filling
the same volume.

(a) (b)

Figure 3.3: A) Plan view, defining x, y, and γ, B) Altitude view, defining z and β.
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(a) (b)

Figure 3.4: A) Bounding surfaces t and u shown in reference to the z = 0 plane. B) Calculating the intersection of
the zig-zag fold image curve with the bounding surfaces using binary search.

3.2 Poisson Ratios

To analyze the mechanical behavior of these Tachi-Miura honeycombs, we first calculate their
Poisson ratios (i.e., negative the ratio of strains between coordinate directions during the folding
motion). We start from the expressions derived above for the x, y, and z extents, calculating
the Poisson ratios in terms of α and γ. These expressions are similar to those derived in [212]
but with a parameterization (shown in Figure 3.3) of cell extents that generalizes to volumes of
adjacent cells (instead of applying to single cells).

(a) (b)

Figure 3.5: Poisson ratios of Tachi-Miura honeycomb. A) νxz = −ǫx/ǫz , B) νyz = −ǫy/ǫz .

To derive the poisson ratios of these structures, we must write expressions for the strains
ǫx = dx/x, ǫy = dy/y, and ǫz = dz/z. Towards this end, we take derivatives of the spatial
extents relative to γ:

dx

dγ
= 4s cos 2γ (3.6)
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dy

dγ
= −2s sin 2γ (3.7)

dz

dγ
=

dz

dβ

dβ

dγ
= Nd cos β

dβ

dγ
= Nd

−1

tan β tanα cos2 γ
(3.8)

where the final line follows from implicitly differentiating the governing equation. Now we cal-
culate the strains:

ǫx =
dx

x
=

dx

dγ

dγ

x
=

dγ(1− tan2 γ)

tan γ
(3.9)

ǫy =
dy

y
=

dy

dγ

dγ

y
= −2dγ tan γ (3.10)

ǫz =
dz

z
=

dz

dγ

dγ

z
=

−dγ tan γ

tan2 α cos2 γ − sin2 γ
(3.11)

Figure 3.6: A) Foam sample on test platen, B) Folded sample on test platen, C) Foam sample loaded by platens, D)
Folded sample loaded by platens.

These expressions can be used directly to calculate the Poisson ratios, as the factor of dγ
cancels:

νxz = −ǫx
ǫz

(3.12)

νyz = −ǫy
ǫz

(3.13)
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Figure 3.7: Loading curves of Tachi-Miura polyhedra compared with those of engineering foams

These values are shown in Figure 3.5. We see that the Poisson ratio depends on the choice of
α, but it is independent of d and N . Further, for many choices of α and over much of the fold-
ing range, νxz is approximately zero, while νyz is very sensitive to α over this same range. This
dependence between νyz and α forms the basis of the stiffness control developed in this chapter.
While in this mathematical model the Tachi-Miura honeycomb is free to contract laterally when
compressed vertically, in physical prototypes boundary conditions prevent this. This tension be-
tween boundary conditions and the preferred mechanism of the honeycomb cause elastic energy
to be stored in deformations of the honeycomb facets. This effectively turns the entire structure
into a spring. As the relative amplitude of the lateral contraction with respect to vertical com-
pression is given by νyz , changing this Poisson ratio changes the effective stiffness of the spring.
In the next section, we investigate this behavior.

3.3 Elastic behavior testing

The behavior of Tachi-Miura honeycombs under realistic boundary conditions is a combination
of the rigid mechanism analyzed above and elastic deformations of the underlying material. A
nonzero Poisson ratio means that fixed or frictional boundary conditions effectively resist the
structure’s tendency to follow its rigid mechanism under a compressive load in the z direction
[213]. The larger the magnitude of the Poisson ratio, the more lateral movement is required by
the rigid mechanism, and hence, the more resistance is offered from the boundary condition. As
the average magnitude of the Poisson ratios νxz and νyz increases with α, we expect the effective
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stiffness of Tachi-Miura honeycombs subject to fixed or frictional boundary conditions to also
increase with α.

To confirm this effect, I performed compression testing of Tachi-Miura honeycombs com-
paring the results to those of commercially available engineering foams. Using a constant base
material and sheet thickness, I prepared samples with varying Miura angles. We stitched these
samples to retain the folded state of the strip folds. I applied a load of 100N to the samples over
their full area of 54 cm2, cycling the load six times at a rate of 1mm per minute. I tested commer-
cial foam samples of several materials having similar density to the pleated honeycomb samples
with the same test parameters. The results (graphed in Figure 3.7) show the the pleated hon-
eycombs span a range of average modulus from roughly 140 to 300 kPa, while the commercial
foams range from roughly 170 to 500 kPa.

This shows that by using a single material and simply changing the Miura angle, a similar
range of stiffness can be produced as is exhibited by a range of commercial foams. The conven-
tional foams use a variety of materials and process parameters to achieve this range of stiffness.
Thus, the reduction of material properties to geometry has the potential to simplify the man-
ufacturing supply chains for products using foam-like materials. Further, foams are commonly
made in a heat-induced expansion process, giving no ability to spatially vary material properties.
Tachi-Miura honeycombs can be constructed where Miura angle varies from cell to cell, effec-
tively giving the ability to spatially map stiffness. While polyhedra with differing Miura angle
are not strictly tileable, similar methods as outlined above can work in practice to produce such
honeycombs with only minor gaps between adjacent cells. Quantifying the precise limits to this
approach is an active area of future research.

3.4 Shoe sole prototype

Given that Tachi-Miura honeycombs can exhibit similar compliance as commercial foams while
filling a prescribed shape, I now use the construction to prototype a running shoe sole. The
thermal processes involved in creating a conventional sole are responsible for the majority of the
energy required to manufacture an athletic shoe [39], and so creating a sole using only cutting
and folding processes is an attractive strategy for embodied energy reduction. Further, athletic
soles are conventionally produced in a machined mold, requiring a large number of identical
soles to be produced for economic feasibility. Specifying the sole geometry using the fold pattern
instead of a mold has the potential to enable customized shoes without this overhead.

Figure 7.2 shows the steps of producing this folded running shoe sole. First, the geometry is
digitally designed. In this case, the sole has a thickness of 20mm throughout the heel and tapers
to 10mm through the forefoot. The footprint of cells which are populated with Tachi-Miura
polyhedra are selected to fit inside the shape of common mens size 10 sole outline. The angle α
is 50◦, while the lengths d and s are 2.8mm and 8.8mm, respectively. The top three images at
left of Figure 7.2 show the three-dimensional design and the corresponding folding and cutting
pattern.

This pattern is sent to a laser-cutter, where the outline and slits are through-cut and the
creases are half-cut. The material used is 0.25mm polypropylene, which produces robust creases
with this laser processing technique. This sheet is then folded with the aid of 3D printed creasing
dies of progressively larger fold angles γ. The flat and folded states are shown in the bottom two
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Figure 3.8: A) Plan view of digitally designed geometry for shoe sole, B) Altitude view, C) Cut and fold pattern for
shoe sole, D) Laser cut polypropylene prototype, E) After initial folding, F) Testing the shoe sole at running speed.

images at the left of Figure 7.2. Finally, cotton thread is passed through laser cut holes and pulled
tight in order to keep the strip folds held closed. The finished shoe is shown in Figure 7.2 at right
during a running test.

When loaded by a footstep, the folded shoe sole compresses to levels similar to that of a
conventional foam shoe, absorbing the impact of the foot strike. At this point, the forces arising
from the Poisson effects and boundary conditions balances the force from the foot, and the Tachi-
Miura honeycomb is limited from continuing its flat-folding mechanism. The deformation occurs
chiefly at regions of highest force (for example, under the heel and metatarsal heads), effectively
conforming to the underfoot shape. With a thin neoprene sock liner, the result was comfortable
for a range of test athletes.

3.5 Automating folding

Efficiently automating the folding of Tachi-Miura honeycombs presents many of the same chal-
lenges as other origami patterns due to the bi-axial contraction of the sheet during folding. A
comprehensive literature review of bending operations using in manufacturing such doubly cor-
rugated sheets is given in [163], where the methods are roughly divided into synchronous pro-
cesses, gradual processes, and pre-gathered process. The synchronous processes work in batch
with low production rates with high tooling costs for each pattern, while the pre-gathered pro-
cesses require more material deformation than is desirable to reach the final shape. The gradual
processes occupy an interesting place between these two extremes, where folding takes place
incrementally, minimizing the chances of drawing or tearing the material.

Patterned rollers are often used in these gradual processes [56]. The need for many rollers
with incrementally deepening patterns is often prohibitive, and the interlocking patterns can of-
ten suffer from tooth interference if made with too small a diameter. Flat dies with incrementally
deepening patterns are also used, but they can produce misalignment of the media as it contracts
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Figure 3.9: A) Tachi-Miura corrugation roller concept, B) Incremental forming die for automated folding of creases
using corrugation roller sections, C) Incremental forming of paper with Tachi-Miura pattern, D) Pneumatic press
prototype for incremental forming.

into the form, pulling towards wherever frictional forces are highest. In Figure 3.9, I show a
combination approach, using two patterned plates with a small curvature. These plates can be
thought of as sections of a patterned roller with very large diameter. As the curved plates rock
over each other, the media is patterned, deterministically contracting to the single line of contact
between the plates. Afterwards, the plates are separated, the media is advanced by one pattern
row, and the next iteration deepens the forming pattern. I prototyped a pneumatically actuated
press with electronic control of the rocking motion. This prototype proved the viability of the
approach, but more development was necessary to increase throughput and reliability.

3.6 Conclusions

This chapter showed how existing techniques for producing shaped hexagonal-celled honey-
combs can be adapted to produce shaped honeycombs with Tachi-Miura polyhedra as cells. The
bi-directional flat foldingmechanism of the Tachi-Miura polyhedron endows the resulting honey-
combs with the same flat foldings. In physical prototypes, finite-thickness materials and bound-
ary conditions turn this flat folding into an elastic mechanism, a powerful tool for building robust
structures with compliance.

Motivated by this, I investigated the mechanical properties of Tachi-Miura honeycombs, first
calculating the rigid Poisson ratios. Next, I compared the mechanical behavior of the structures
to common engineering foams, showing it is possible to create a similar range of compliance by
changing the angle α. Finally, I use these findings to design a prototype making use of both the
compliance and the shape control: a running shoe sole.

This work shows how many foams used in engineering can be replaced by architected mate-
rials. Rather than relying on the stochastic structural properties generated through the chemical
or physical blowing process, geometry can be explicitly designed at the cellular level with de-
sired performance in mind. Further, the complex and often toxic supply chains required for foam
production can be simplified, instead using a single recyclable sheet stock to synthesize required
mechanical responses.
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Chapter 4

Resilience

In this chapter, I work to maximize the resilience of an architected material, or its ability to
return energy in an impact event. That is, I build folded architected materials with high modulus
of resilience, storing the maximum amount of strain energy without plastically deforming. To
this end, I develop a design method for architected materials with curved creases, a composite
manufacturing technique to fabricate them, and dynamic impact test equipment to evaluate them,
showing resilience approaching that of state-of-the-art polymer foams.

Graphically, the modulus of resilience is equivalent to the area of the hysteresis curve in a
stress-strain plot subject to cycling loading. For a classical elastic material, the modulus of re-
silience is defined as R = σ2

y/(2E) where σy is yield strength and E is elastic modulus. Because
σy and E usually scale directly, creating materials with high σy and low E is difficult [54] and
amounts to filling an unoccupied region material parameter space. The creation of material prop-
erties not naturally occurring is a well-suited problem for architected materials, but prior work
on this particular problem is sparse. Multi-scale hierarchy has been suggested as key to high
resilience [132], but the metric evaluated was geometric recovery of initial dimensions, not ac-
tually resilience. In that study, despite loading at strain rates of only 10−3s−1, the stress-strain
plots have large hysteresis loops and show a great reduction in stiffness between loading cycles.
Elastic energy storage in monolithic folded sheets has been investigated as a material selection
problem [187], but this work focused on storing energy in hinges instead of the facets and was
restricted to one geometry and used a single material for both facets and hinges.

Figure 4.1: a) Vertically loaded Tachi-Miura honeycomb with strain density visualized (simulation details in Chap-
ter B), b) A curved crease equivalent geometry
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We start our work on this problem by noting that the Tachi-Miura polyhedral cells of Chap-
ter 3 offer comparable resilience as the engineering foams tested for stiffness (shown in Figure 3.7),
but fall far short of state-of-the-art foams designed for maximum energy return. If we examine
sources of energy lost in compressive loading of these Tachi-Miura polyhedra, we can see a ma-
jor source is plastic deformation concentrated at the vertices. Figure 4.1a shows a simulation of
a vertically loaded Tachi-Miura polyhedron section, where strain density is visualized. Details
of this simulation are available in Appendix B. This simulation shows stress concentrations at
the vertices and near zero stress over most of rest of the material. In other words, most of the
material does not contribute to the stiffness, and that which does contribute is strained past its
plastic onset. A more efficient spring can be made by spreading out this strain density, allowing
more of the material to participate and store energy.

To do this, we can convert the faceted Tachi-Miura polyhedron to use curved creases, shown
in Figure 4.1b. The advantages of this are two-fold. First, the high strain density regions described
above are effectively spread over a larger area, lowering the local material strain. Second, the flat
panels of the faceted Tachi-Miura polyhedron are replaced with curved panels, allowing strain
energy to be efficiently stored in a bending mode. While the mechanics of curved crease origami
are far from fully understood [47, 48], we show in Section 4.1 that the required geometry can be
created under a set of simplifying assumptions, allowing effective analysis and design.

Figure 4.2: curved crease by reflection
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4.1 Curved creases of reflection

In this section1, we consider those curved creases which can be formed by a geometric reflection,
shown in Figure 4.2. At top, we see a simply deformed sheet with no creases. We can reflect
part of this sheet about a plane to form a curved crease of reflection, as shown at bottom. Due to
the symmetry involved, this new surface with creases can be folded from a flat sheet [135]. This
creates a continuous analog of a straight crease origami mechanism: the shape of the sheet’s
cross section is now linked to the angle it makes with the reflection plane. To effectively use
such curved crease constructions in folded architected materials, we must derive relationships
between their three-dimensional configurations and their two-dimensional patterns, effectively
calculating their folding mechanisms.

We begin with some background and notation. All developable surfaces in three dimensions
(i.e., those where every point p has a neighborhood isometric to a region in the plane), such as
those created by bending sheets, are ruled. That is, through every point on the surface there is
a line segment which lies in the surface. In curved crease folding patterns, these rule lines can
be considered to define an infinitesimal grid of straight line folds. A curved crease pattern is said

Figure 4.3: Defining t, wγ , and vγ .

1The work in this section comes from a collaboration with Tomohiro Tachi.
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to be rigidly foldable if the ruling (collection of rule lines) does not move on the surface during
a folding motion [47, 48]. This definition derives from the pattern being the infinite limit of a
finite discretization which folds via rigid panels. These patterns are of interest because they can
be realized in stiff physical materials without incurring damage [177].

The constructions considered in this section have curved faces where all rule lines are parallel
to each other. For such geometries, the plane of reflection shown in Figure 4.2 is the osculating
plane of the crease curve, as it is spanned by the curve’s tangent and normal vectors. We define
the fold angle γ of a crease (shown in Figure 4.3b) as the angle between all the rule lines of an
incident face and the osculating plane. Note that this is an equivalent definition to Chapter 3. We
establish a right-hand Cartesian coordinate system where the x− z plane is the osculating plane,
and y points in the direction of folding. We parameterize the surface of the incident faces using
an arc-length variable t measured along a curve perpendicular to the ruling.

At every point in the folding mechanism (which has a corresponding value for γ), we define
wγ(t) to be the x coordinate of the curved crease (shown in Figure 4.3a). When γ = 0, the sheet
is flat, and so the curve (w0(t), t) defines the two-dimensional geometry of the crease. Because
the folding motion is an isometry, we have the right triangle shown in Figure 4.3b, and so

wγ(t) =
w0(t)

cos γ
(4.1)

We define the remaining side of this right triangle to be vγ(t), and so

vγ(t) = wγ(t) sin γ = w0(t) tan γ (4.2)

Figure 4.4: Javascript design tool for calculating two- and three-dimensional geometries.
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Figure 4.5: Inverting a cylinder: a) Folded architected material with cylindrical sections, b) Corresponding flat
pattern with sinusoidal creases

We seek a function z(t), which is the z coordinate of the surface, parameterized by the arc
length variable t. Because t measures along a path perpendicular to the ruling, we have the
infinitesimal relation

dz2 + dv2γ = dt2 (4.3)

Therefore, we have an ordinary differential equation:

dz

dt
=

√

1−
(

dvγ
dt

)2

=

√

1− tan2 γ

(

dw0

dt

)2

(4.4)

This ordinary differential equation can be numerically solved to calculate z(t) from w0(t).
That is, it allows the three dimensional geometry to be calculated from the two dimensional
geometry. This is illustrated in Figure 4.4, where three-dimensional geometry is calculated for
a variety of curves w0 and fold angles γ. In this case, I used a bi-arc parameterization for the
curves (i.e., sequences of consecutively tangent line and arc segments), which is both easy to
calculate function and derivative values and also conveniently interpolates between the faceted
Tachi-Miura polyhedra of Chapter 3 and their curved crease analogs.

We often wish instead to decompose desired three-dimensional geometry for architected ma-
terials into flat patterns which can be efficiently manufactured. In this case, we can invert the
differential equation:

dw0

dt
=

1

tan γ

√

1−
(

dz

dt

)2

(4.5)

Similarly, this equation is easy to solve numerically to calculate the required crease pattern.
In some cases, it can even be analytically solved. For instance (as shown in Figure 4.5), a folded
architected material composed of panels with semi-circular normal cross section requires crease
curve shapes given by sinusoidal curves. For maximizing resilience of a folded architected ma-
terial, however, there are better section shapes to choose. In the next section, we derive a curve
shape based on solid mechanics considerations.
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Figure 4.6: Elastic member under progressively larger end loading, demonstrating the elastica curve.

4.2 Elastica curves

In the previous section, we calculated the folding mechanics of a class of curved crease construc-
tions with the goal of storing strain energy throughout the material. In an architected material
with curved creases, this strain energy is stored in the bending of the incident panels. If the bend-
ing shape prescribed by the crease differs too much from the minimum energy shape of the bent
panel, however, the creases themselves can experience significant stress concentration. To avoid
this, we now calculate the minimum energy shape of the panels.

As the flexural modulus of the panels is approximately constant, we can approximate the
two-dimensional surface by a one-dimensional member. The shape taken by a one-dimensional
elastic member subject to end loading is a classic problem from the calculus of variations, origi-
nally solved by Euler [113]. The resulting shapes are called elastica curves; several are shown in
Figure 4.6, as a thin elastic member is subject to increasing end loading.

We can calculate the shapes taken by this member in the same coordinate system as above,
adapting the analysis of [186]. We start with the exact differential equation of an elastic curve,
which states that the bending moment at all points in the member equals the flexural rigidity
times the curvature:

EI
dθ

dt
= −Pz (4.6)

whereE is the elastic modulus, I is the second area moment of inertia, and P is the loading force.
In this derivation, the angular variable θ is more convenient to work with, but since sin θ = dz

dt
,

we can convert to Cartesian coordinates when necessary. Thus,

EI
d2θ

dt2
= −P sin θ (4.7)

It is worth noting this is the same differential equation as a dynamic pendulum, where the variable
t is taken as time. This is called Kirchoff’s dynamical analogy. If we set k2 = P/EI , multiply
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Figure 4.7: a) Plotting a family of elastica curves for various tip angles θ0

both sides by dθ and integrate, we have:

∫

d2θ

dt2
dθ

dt
dt = −k2

∫

sin θdθ (4.8)

By undoing the chain rule, this is the same as

1

2

∫

d

dt

(

dθ

dt

)2

dt = −k2
∫

sin θdθ (4.9)

and so
1

2

(

dθ

dt

)2

= k2 cos θ + C (4.10)

where C is a constant of integration. We know that the bending moment at t = 0 (the end of the
bent member) is zero, so dθ/dt|t=0 = 0. Hence, C = −k2 cos θ0, where θ0 = θ(0). Taking the
negative root without loss of generality,

dθ

ds
= −k

√

2(cos θ − cos θ0) (4.11)

This is now a first order nonlinear ordinary differential equation, which can be easily solved
numerically, or computed exactly in terms of elliptic integrals. In Figure 4.7a, we show a family
of elastica curves with various values for θ0, the tip angle.

As sin θ = dz
dt
, we can use this differential equation to calculate the required crease curves

so the incident panels take on an elastica shape about an operating angle γ. This equation also
allows us to calculate the stiffness of an architected material made this way, by relating the load
carried by the elastic member to the tip angle θ0. For this, we note that the length l of the member
must satisfy

l =

∫ l

0

ds =

∫ θ0

0

dθ

k
√

2(cos θ − cos θ0)
=

1

2k

∫ θ0

0

dθ
√

sin2 θ0
2
− sin2 θ

2

(4.12)
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Figure 4.8: Elastica load as a function of tip angle for various member thicknesses

That is,

l =
1

k
K(sin (θ0/2)) (4.13)

where K is the complete elliptic integral of the first kind. Substituting the definition of k, we
have an expression for the supported load:

P (θ0) =
EI

l2
K(sin (θ0/2))

2 (4.14)

In Figure 4.8 we plot the load as a function of the free end incidence angle (θ0) for a piece of
carbon fiber reinforced polymer of various thicknesses. We see that such elastic members operate
as nearly constant force springs. These curves approach a fixed value as θ0 → 0, that is, as the
elastic member straightens. This value at θ0 = 0 is the Euler buckling load of the member. As
K(0) = π/2, we have derived the familiar equation for this quantity:

P0 =
π2EI

4l2
(4.15)

In this section, we have derived expressions for calculating the crease curve shapes necessary
for elastica-shaped panels, as well as for the forces experienced by these panels. In the next
section, we develop a composite lamination technique for making high performance architected
materials which implement these calculations.

4.3 Composite lamination process

We now develop a composite lamination technique to implement elastica-shaped folded archi-
tected materials using high performance materials, namely carbon fiber reinforced polymer. For a
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Figure 4.9: a) Cutting prepreg with an oscillating knife to form hinge lines, b) Cured prepreg between polymer
sheets, c) Optically registering and cutting of additional features in the cured laminate

fiber-reinforced laminate to have reasonably isotropic properties, several plies with different fiber
orientation must be combined. Overall thickness can accumulate quickly, limiting the curved
crease folding mechanism. Because of this, we make use of very thin carbon plies, the produc-
tion of which is a surprisingly active area of recent research. The challenge of producing such
plies comes in spreading the carbon fiber tows (i.e., the bundles of thousands of individual fibers
in which carbon is produced) consistently and without damaging the fibers. Generally the tows
pass over rollers under the influence of pneumatic or ultrasonic agitation. This gently spreads the
fibers, andmodern process control can produce consistent webswith average thickness approach-
ing that of a single fiber diameter (roughly 10 µm). The fiber webs are stabilized by impregnating
them with resin and applying a paper liner. The result is a very thin prepreg, a form commonly
used in the composites manufacturing industry. Such thin prepregs have been demonstrated to
produce better material properties in the resulting laminates than conventional thicker plies [4].

To use such laminates in folded architected materials, we need a means to produce accurate
and robust creases. Fiber reinforced laminates are stiff and brittle, so we create a composite
system utilizing a polymer to make compliant hinges, adapting methods frommicrorobotics [90].
In these methods, laser machining is used to pattern the prepregs to cut away thin strips where
a hinge is desired. The patterned prepregs are then sandwiched around a thin polymer film and
cured to form a laminate. Instead of using laser machining, we instead use an oscillating driven
knife to pattern the prepregs, which is faster than laser machining and operates over larger scales
(at the expense of a larger minimum feature size). Hinge cycle lifetimes approaching 107 have
been shown in microrobotics applications with significant angular deflection, and an exponential
relationship between hinge bending length and cycle life has been identified [124]. At larger
scales where hinge lengths can be greater and angular deflections can be smaller, significantly

Figure 4.10: Fabrication of programmable heated vacuum platen. a) Silicone vacuum bag, b) Pad heaters on under-
side of vacuum platen, c) Fiberglass insulation shell with vacuum plumbed and temperature controller.
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Figure 4.11: Making carbon-polymer curved crease architected materials a) Cured laminate with patterned hinges,
b) Laminate cut into strips, c) Strips folded in frames, d) Strips assembled and bonded into volume.

increased lifetimes are expected and indefinite operation may be attained by staying below the
material fatigue limit.

In microrobotics applications, the polymer layer is usually sandwiched between two layers
of fiber reinforcement to minimize its required bending radius. In larger scale applications with
wider hinges, a single layer of fiber reinforcement can be sandwiched by two polymer layers.
The wider hinge maintains safe polymer bending radii, and placing the continuous polymer lay-
ers outside of the fiber reinforcement layer makes the resulting structure more robust to delam-
ination. As resin-impregnated carbon fiber sheets are usually available in substantially thicker
dimensions than polymers like PET, this layer inversion allows for thinner resulting laminates.
Finally, when a polymer is sandwiched by two fiber layers that have been precisely machined,
performance is sensitive to alignment of these layers. With a single machined fiber layer, no
alignment is necessary, simplifying the fabrication process.

This process is illustrated in Figure 4.9. First, five plies of 15 g/m2 prepreg (North Thin Ply
Technology TP402) are layered in a 0◦-90◦-0◦-90◦-0◦ layup schedule, for a combined thickness
of approximately 60 µm. This assembly is sandwiched between paper liner sheets to stabilize
the fibers and the hinges are cut away using a Zünd Systemtechnik large format cutter with an
oscillating knife tool. Additional optical registration features are also cut into the prepreg. The
paper liners are removed and the patterned prepreg is sanwiched between two sheets of 12 µm
PET or polyimide film and thermally cured under vacuum compaction. The cured sheets are then
optically registered on the Zünd cutter and the desired parts are cut out.

To consistently cure these laminates, I built a programmable heated vacuum platen, shown
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Figure 4.12: Dynamic impact test apparatus: a) CAD, showing test mass and frame for adjusting release height. b)
Routed aluminum-polyethylene composite for machine frame, c) 3D printed parts for vertical rails, release mecha-
nism, and hand wheels, d) Machining the test mass for mounting electronics and release mechanism, e) ADXL372
accelerometer mounted on test mass, f) Assembled test apparatus.

in Figure 4.10. I first routed a channel around the edges of an aluminum plate, and applied a
brush-on silicone rubber (Smooth-On EZ-Brush Vac Bag Silicone) to form a reusable vacuum bag
with a sealed bead in the channel. A pair of 360W silicone pad heaters were then bonded to the
back side of the aluminum plate and the entire assembly was enclosed with rigid fiberglass insu-
lation panels. A vacuum line was plumbed into the plate, and a thermocouple and temperature
controller (Controleo3) added.

This composite lamination technique and equipment was used to make folded architected
materials, as shown in Figure 4.11. A carbon-polymer composite sheet is patterned with hinges
as described above, and then cut into strips. The strips are folded according to the curved crease
folding motion and temporarily retained using laser-cut frames. These folded strips are bonded
using Dow Corning 734 flowable RTV silicone, using the laser-cut frames for alignment. After
removing the frames, the resulting honeycombs stay in their curved state, producing a volume
with elastic energy stored in bent fiber-reinforced facets.

4.4 Dynamic test equipment

To evaluate the resilience of these folded architected materials, I developed a dynamic impact
test apparatus. This consists of a known mass, released from a known distance above the sample,
instrumented with a high speed accelerometer to record the impact dynamics. This apparatus is
shown in Figure 4.12. The test mass (of approximately 8 kg) is positioned by a vertical linear axis
for adjusting the release height. A solenoid actuator is used to press a quick-release mechanism
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Figure 4.13: Testing the resilience of carbon-polymer elastica architected materials: a) Test mass approaching, b)
Point of maximal compression.

on the frame, which releases a bushing on the test mass. A granite tile forms an underlay for
the tests, its high density acting to null the effects of outside factors (e.g., the response of the
table on which the testing is performed). The test mass is instrumented with an ADXL372 MEMS
accelerometer, capable of measuring ±200g of acceleration in 3 axes with a bandwidth of 3.2
kHz. The accelerometer is controlled by an ATSAMD21 ARM Cortex M0 processor using an SPI
interface, and data is written to an SD card for later analysis.

4.5 Testing and Comparison

With this infrastructure in place, I tested the resilience of the carbon-polymer elastica archi-
tected materials. I prepared two samples with elastica tip angles of 45◦ and 55◦. To compare the
resilience of these samples with other foams, I also tested an array of commonly used footwear
foams which are designed for high energy return. The test mass was released from a height of
1
2g

≈ 51mm above the samples, so as to impact with a velocity of 1m/s (correponding to an im-
pact energy of 8J ). Figure 4.13 shows two frames from high speed video of the elastica samples
being tested. The left image shows the test mass approaching, while the right image shows the
point of maximal compression.

In Figure 4.14, acceleration of the test mass is plotted versus time. For clarity, the acceleration
values are normalized by the peak value during the first impact. The times of first impact are
synchronized across all samples, so we can measure resilience by the time between the first and
second bounces. That is, a second peak further right implies a higher energy return.

The carbon-polymer elastica architected materials samples are shown in greens. We see that
these samples surpass a range of foams advertised to be “cushioning" and “resilient" (shown in
blues), approaching the resilience of state-of-the-art blown phylon foams (shown in reds).

To check these results, we compare the energy returned as calculated by integrating the ac-
celeration over an impact event (to produce a change in velocity, and in turn kinetic energy),
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Figure 4.14: Graph of normalized acceleration of the test mass versus time. Initial impacts are synchronized, so
more resilient samples have the second impact later (further right).

compared to measuring the timing between impacts (to produce a flight time, and in turn the
peak potential energy of the bounce). In Figure 4.15, we see good agreement between the two
methods.

4.6 Conclusions

In this chapter, I built folded architected materials with high modulus of resilience, developing
a design method for architected materials with curved creases, a composite manufacturing tech-
nique to fabricate them, and dynamic impact test equipment to evaluate them. The composite
curved-crease samples showed increased resilience over initial Tachi-Miura samples and conven-
tional engineering foams at strain rates representative of shoe sole compression (roughly 101s−1).
Their performance approached that of state-of-the-art blown phylon foams, which are the result
of decades-long development efforts by shoe companies. Because this resilience is the result of
prescribed geometry, it can easily be spatially varied, something that is very difficult with con-
ventional polymer foams.

These high-resilience origami architected materials can be applied to shoe soles, using the
net shape techniques in Chapter 2 to directly control shape while also achieving superior ener-
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Figure 4.15: Comparing energy return calculated by integration versus timing.

getic performance. Indeed, the most efficient shoe soles made today incorporate large composite
springs into a foam to store and release energy [89] (shown in Figure 4.16), though the exact
mechanism of biomechanical efficiency increase is complex [14]. Besides shoe soles, other ap-
plications could include reusable cushioned packaging, efficient prosthetics and orthotics, and
non-pneumatic tires with low rolling-resistance.

Figure 4.16: Nike’s Vaporfly running shoe, which incorporates structural elements to improve energy return over
that of foams alone. a) Exploded view, b) Hysteresis curves for several shoes, including the Vaporfly (Images from
[89]).
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Chapter 5

Toughness

The fourth task of this thesis is maximizing energy absorption per unit mass, the opposite chal-
lenge of Chapter 4. In this chapter, I build folded architected materials with high specific modulus
of toughness, that is, an area inside the stress-strain hysteresis curve which is large relative to
the material mass. To this end, I design and fabricate a hierarchical folded architected material
and a machine for its construction, developing an analytical model to predict performance, and
show its specific energy absorption to be twice that of commonly used honeycombs.

This problem is muchmore studied than the reflection problem, as energy absorbing elements
have long been used in passenger vehicles to mitigate the damage caused by a crash. These
elements transform kinetic energy into plastic deformation or brittle fracture with a bounded
reaction force, maximal stroke, and stable failure modes [121]. One of the most famous appli-
cations of energy absorbing elements was in the legs of the Apollo landing module where the
kinetic energy of touchdown was absorbed by a honeycomb instead of damaging the module or
its occupants [45]. These elements worked beautifully but occupied considerable volume and re-
quired telescoping elements to control how forces were transmitted from the feet to the energy
absorbers. In many applications, like vehicular crashboxes, there is great incentive to eliminate
such overhead, as space and mass both come at a high price.

One strategy to make higher performing energy absorbers is to design them around one very
specific load case. These elements often use discrete tubes, rings, cones, spheres (even beer cans
[205]) which are arranged to absorb energy efficiently in response to force from a specific direc-
tion or with a specific distribution. The persistent issue with such absorbers is how sensitive their
performance is to deviations from the expected loads or from the prescribed geometry [121, 185].
Small changes in either one can dramatically reduce performance. Stress-concentrating features
called triggers (for instance chamfers, bevels, grooves, or holes) are often incorporated to stabilize
the failure around the desired mode [98], but their effect is limited and they increase manufac-
turing complexity.

Architected materials like honeycombs and rigid foams are also used as energy absorbers be-
cause they tend to be less sensitive to such variations. Unfortunately these structures also tend
to have considerably lower specific energy absorption. For example, Figure 5.1 shows section
views of thin-walled and thick-walled aluminum honeycombs after being crushed by an impact.
We observe in both cases that the honeycomb buckles with a characteristic wavelength. Plas-
tic work takes place at the hinge lines, while the material between contributes very little to the
absorption. Thus, decreasing this buckling wavelength would seem to increase the material uti-
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Figure 5.1: Section views after crushing of aluminum honeycombs with thin walls (a) and thick walls (b). (Images
from [130])

lization and hence the specific energy absorption. Unfortunately, this wavelength depends on the
honeycomb cell geometry [130, 203], and so cannot be changed without changing other features
of the honeycomb like the average crushing force or the density. The crushed honeycomb also
packs inefficiently, with material stacking up in some places and voids remaining in others. Thus,
even if we could create a very small buckling wavelength, the stroke over which energy can be
absorbed would become limited, lowering the total absorption.

There has been research from the structural origami community on using folded sheets to
make better energy absorbers. Much of this focused on single elements made by folding [116, 117,
68], rather than space-filling architectedmaterials. Of the space-filling approaches, there has been
a considerable amount of work [188, 87, 215, 118, 59] on using the Miura-Ori folding pattern and
its variants to construct energy absorbing foldcores [64] like those shown in Figure 5.2a. These
foldcores can avoid the stackup issuementioned above, but they usually suffer from an even larger
buckling wavelength than honeycombs. Figure 5.2b shows the crushing response of a foldcore,
where induced creases are formed near the medial axis, allowing the rest of the material to remain
largely unstrained. The resulting stress-strain curve is shown in Figure 5.2c, the integral of which
is the energy absorbed per volume. We see the induced creases form an initial peak, but over the
rest of the stroke the stress is very low. As a result, the material utilization, and hence specific
energy absorption, has generally been low in foldcores.
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Figure 5.2: Foldcore energy absorbers, showing induced creases and valley in the stress-strain plot. (Images from
[87])

In contrast, an ideal mechanical response could consist of a traveling hinge line, which se-
quentially extracts mechanical work from the entire material as it is crushed. To induce this
behavior, the buckling load should be considerably higher than the load required for local mate-
rial yield. As a curved shell is much more resistant to buckling than a flat plate, it is natural to
consider curve crease foldcores as a way to accomplish this parameter combination. Simulation
studies have predicted a factor of two improvement over honeycombs in the energy absorption
of honeycombs per volume [70]. Experimental work to validate this prediction has been lacking,
as fabricating these curved crease foldcores has typically used progressive forming of aluminum
sheets. The produced geometries deviate from the ideal shape, and these deviations significantly
reduce the energy absorbing capability by changing the failure mode. The inclusion of triggering
features improved this performance [69], but not to the level predicted theoretically. In the next
section, we attempt to realize this potential by using the carbon-polymer lamination technique
developed in Chapter 4 to produced curved crease foldcores withmuch better geometric accuracy.

5.1 Curved crease foldcores

In this section, I use the carbon-polymer lamination method developed in Chapter 4 to produce
curved crease foldcore energy absorbers. Because the crease curves can be accurately patterned
in the prepreg, this approach offers greater geometric accuracy than the incremental forming
techniques used in [70]. This process can be adapted to use a variety of materials, but because
the use of carbon prepress had already been developed, we continued to use it.
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Figure 5.3: Creating cylinder-section curved crease foldcores. a) Prescribed three-dimensional geometry, b) Com-
pute crease pattern cut from carbon prepreg and cured with PET film, c) Folded samples, bonded to polycarbonate
face plates, d) Samples ready for testing.

We begin by designing the three-dimensional geometry of the energy absorbers with the goal
to increase the buckling resistance as much as possible. The buckling behavior of a shell with one
direction of curvature is analyzed by Timoshenko [186]. Assuming the length parallel to the axis
of curvature is of the same order as the length along the curvature, the critical buckling stress is
given by

σcr =
π2Eh2

3(1− ν2)(rβ)2
+
Eβ2

4π2
(5.1)

where E is the elastic modulus, ν the Poisson ratio, h the shell thickness, β the angle subtended
by the curved shell, and r the radius of curvature. Note that rβ is simply the arc length of the
shell and the first term is the same as that for the critical stress of a flat rectangular shell of length
rβ. Thus, the second term is the contribution of curvature to the buckling resistance. With
a constant arc length, greater curvature implies a greater subtended angle, and hence greater
contribution to buckling resistance. As the buckling resistance of a shell with variable curvature
will be limited by the minimum curvature region, we can expect a constant curvature shell to
have greatest buckling resistance. Therefore, a foldcore with the greatest buckling resistance will
have three-dimensional geometry consisting of cylinder sections.

Using the derivation of Chapter 4, we can calculate the required creases for a foldcore of
cylindrical sections (shown in Figure 5.3a). These creases were cut from carbon fiber prepreg
using a Zünd Systemtechnik large format cutter and cured between sheets of 12µm PET film.
After curing the foldcore samples were trimmed on the Zünd cutter and folded into shape with
the aid of a 3D printed jig. To hold the samples during testing, 3mm polycarbonate face sheets
were engraved to fit the peaks of the foldcore and bonded to the samples.
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Figure 5.4: Crush test viewing apparatus. a) Curved crease sample ready for testing on the polycarbonate window,
b) Crush test viewer on the Instron 5895 test frame, c) View from the camera underneath the window during crush
testing.

In order to analyze the crushing modes of these structure during testing, it is important to
observe the failuremodes of the samples. As the interesting phenomena occur in the center region
of these relatively flat samples, viewing from above or below is ideal. To accomplish this, I made
a load bearing window with a camera and lights underneath and mounted it on the Instron 5895
test frame. To support the window, I turned a cone shape at the viewing angle of the webcam from
a large piece of PVC rod. The camera is a Logitech C920, which enumerates as a USB universal
video class device and has manual controls of focus and exposure. The window itself was routed
from 20mm polycarbonate. This experimental setup is shown in Figure 5.4a-b and the view from
the camera is shown in Figure 5.4c.

Figure 5.5: Results of quasistatic crush testing showing specific load (N/g) versus displacement of aluminum honey-
comb (teal), carbon fiber curved crease foldcore (blue), and carbon fiber curved crease foldcore with triggers (purple).
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The graph in Figure 5.5 shows the results of quasistatic crush testing aluminum honeycombs
(teal) and carbon fiber curved crease foldcore (blue). The samples have the same geometric di-
mensions, and the aluminum honeycomb was selected to have a similar density to the foldcore in
order to be comparable. These tests demonstrated that carbon fiber curved crease foldcores can
surpass the specific energy absorption of aluminum honeycombs, but the achieved value is far
from the simulation-based predictions of [70]. The densification strain is increased over honey-
combs, but the curve still shows the characteristic shape of initial buckling (indicated by a peak
in stress) followed by folding along the induced creases (indicated by the long valley after the
peak). The images from the crush test viewer (shown in Figure 5.4c) confirm this, as the large
buckling wavelength of the failure mode is clearly visible. This implies the hypothesis of [70] that
geometric inaccuracies are responsible for the underperformance of curved crease honeycombs
may not be the full explanation. In the following sections, we investigate methods to improve
the specific energy absorption of this construction by increasing the ratio of buckling load to
crushing load of the curved crease foldcore.

5.2 Triggers for progressive failure

To control this buckling wavelengthwe next implement a common strategy from energy absorber
design in our curved crease foldcores: the use of selectiveweakening to stabilize a crushing failure
mode. This selective weakening is implemented using triggers, parts of the material that have
been removed. Figure 5.6a shows a rendering of a cylinder section with triggering features cut
away. The tapered shape of the trigger initially localizes crushing at the very top of the fold core,
performing work on the material there. After this material has yielded, load is transferred slightly
further down the taper, which is now the weakest part of the foldcore. This front continues
downward, progressively deforming all of the material, until at some point the length parallel to
curvature axis is much smaller than the arc length (shown in Figure 5.6b) and Equation (5.1) no
longer applies. At this point, the buckling resistance is high enough to eliminate the need for
triggering features, and the material continues progressively deforming without them.

The lamination method developed in Chapter 4 easily allows portions of the prepreg to be
cut away before curing to create such triggers. Figure 5.6c shows a sheet of carbon prepreg cut
and cured with 12µm PET film. Tapered triggers were cut away using the Zünd Systemtechnik
large format cutter at the same time as the hinge lines were cut. The shape of these tapers was
designed qualitatively, though the optimal shape could likely be computed using finite element
simulation and an optimization loop. Figure 5.6d shows this sample folded into three dimensions.

Figure 5.6e-g shows views from the crush test viewer during the testing of these samples.
We can see that the triggers are successful in creating a progressive front of crushing, as these
test images closely resemble the rendered ones. The stress strain curve for this test is plotted in
Figure 5.5 in purple. We can see that as the large-scale buckling has been eliminated, the initial
peak is almost completely removed from the curve. This demonstrates that such trigger features
can provide control over the failure mechanism of a folded energy absorber. Unfortunately, in
this implementation, the triggering features also reduce the ratio of active material (carbon fiber)
to hinge material (PET). As the hinge material does not contribute significantly to the energy
absorption, this reduced ratio creates a penalty in the specific energy absorption of the samples
with triggers. We see in the graph that the curved crease foldcore with triggers absorbed less
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Figure 5.6: Curved crease foldcores with triggers. a-b) Render of trigger features and progressive crease crushing
mode, c) Carbon prepreg cut with creases and trigger features, then cured with PET film, d) Folded sample, e-g)
Snapshots from crush test viewer during testing showing progressive front of deformation.

energy per mass than both the honeycomb and the curved crease foldcore without triggers.
This issue could likely be solved by cutting the triggers away from both the active and hinge

materials. I chose not to do this, however, because the folding of prototype scale samples would
be made more difficult. Instead, I turned to investigate an alternative way to increase the ratio of
buckling load to crushing load, described in the next section.

5.3 Foldcores with rule line corrugation

To increase the ratio of buckling load to local crushing load of these foldcores, I now apply a
strategy from the packing industry: corrugation. More than 200 billion square meters of corru-
gated cardboard are produced annually [67]; this widespread adoption is precisely because the
corrugated sandwich construction provides high buckling resistance using a minimal amount of
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Figure 5.7: Instantiating the ruling of a curved crease foldcore. a) Cylinder section curved crease foldcore with
ruling drawn in, b) Sandwiching the foldcore with corrugated layers aligned to the ruling.

material and a low manufacturing complexity.
Recall from Chapter 4 that curved crease patterns are characterized by their rulings (i.e., the

set of line segments contained completely in the surface). Figure 5.7a shows one of our curved
crease foldcores with its ruling drawn in. Curved crease patterns are said to be rigid foldable

if their ruling remains constant during their folding motion [177]. Curved creases of reflection,
like those comprising these foldcores, are rigid foldable. Because they do not shift on the surface
during folding, these rulings can be given physical instantiation. For instance, in Figure 5.7b, we
show a curved crease foldcore sandwiched by corrugated sheets aligned with the ruling.

This is a powerful construction, as it allows additional structure to be attached to a flat sheet
and folded into the prescribed three dimensional geometry of the foldcore. Figure 5.8 shows two
corrugated curved crease foldcores. The corrugation significantly increases the second area mo-
ment of inertia about the crushing direction, while leaving the second area moment of inertia
about the perpendicular direction largely unchanged. The effect is two-fold. First, the corruga-
tion greatly increases the buckling load of the foldcore without significantly increasing the local
material crushing load. Second, the corrugations enforce the curved crease pattern, allowing the
required curved panels to be bent while disallowing other deformations. This limiting of extrane-

Figure 5.8: Corrugated curved crease foldcore variants.
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Figure 5.9: Corrugated curved crease foldcore prototypes in cardboard. a) Flat pattern after cutting crease curves
from the corrugated layer, b) Folded and sandwiched between polycarbonate plates.

ous deformation aids in manufacturing, as a global boundary conditions can more readily enforce
prescribed folding.

In these constructions, the rule lines of the entire sheet lie parallel to each other when the
foldcore is in its flat state. This allows significant reduction in manufacturing complexity because
the corrugated layers can be produced from a single sheet each and bonded to the foldcore layer
while flat. Figure 5.9 shows an example, prototyped in commercially available corrugated card-
board with only one liner sheet (instead of the usual two liners). First, the creases are patterned
into the corrugation layer using a 45◦ bevel knife tool using a Zünd Systemtechnik large for-
mat cutter. This patterned corrugate was then folded and bonded to polycarbonate plates sheets
(shown in Figure 5.9).

To extend this construction to higher performance materials and geometries, I designed and
built a corrugation machine, shown in Figure 5.10. In commercial production, corrugation is per-
formed by machined rollers with interleaved teeth. The design of the profiles of these teeth is
a complex task, involving balancing the desired corrugation shape with the constraints of tooth

Figure 5.10: Corrugating aluminum sheet on our corrugate prototyping machine.
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Figure 5.11: Prototyping corrugated curved crease foldcores in aluminum. a) Microscope image of 2mm pitch
corrugated aluminum sheet. b) Corrugated layer bonded to foldcore layer and patterned with curved creases. c)
Folded corrugated curved crease foldcore, constrained by polycarbonate plates.

interference and frictional interactions between the teeth and corrugation medium. To accelerate
the prototyping cycle, I split the functions performed by the corrugation rollers into two com-
ponents. First, I use a set of 25mm cylindrical steel rollers with adjustable separation to apply
consistent pressure across the width of corrugation. Over these rollers, I use flexural acetal sheets
with machined tooth profiles to perform the corrugation. This separation of functionality allows
the tooth profile to be rapidly iterated, as machining the acetal sheets is much faster and more
cost effective than machining steel rollers. Using this approach, I designed a tooth profile to pro-
duce a corrugation pitch of 2mm, a corrugation angle of 60◦, and equal horizontal and inclined
side lengths.

Using this corrugate prototyping machine, I corrugated aluminum 1100-H19 foils with thick-
nesses of 25µm and 50µm. Figure 5.11a shows a microscope image of one of these corrugated
foils. A thin film of two-part epoxy (Loctite 60HP) was spread on a glass plate and the corrugated
sheet was used to pick up a small amount on each corrugation peak. These corrugated sheets
were then bonded to uncorrugated sheets of the same material, which form the foldcore layer of
the construction. In these tests, a single corrugated layer was used, but the same process can be
used to apply corrugated layers to both sides of the foldcore layer.

After curing, curved creases were patterned in the corrugated layers using the Zünd cutter.
I successfully tested several processes for patterning the corrugate, including bevel cutting, os-

Figure 5.12: ea
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Figure 5.13: Quasistatic crush test results comparing aluminumhoneycomb and aluminum corrugated curved crease
foldcores. The corrugated foldcores achieved specific energy absorptions over twice that of the honeycombs.

cillating knife cutting, creasing, and routing. It is critical to remove or deform the corrugated
layer enough to avoid collisions during folding but leave enough of it intact to accurately set the
geometry of the crease. For prototyping, routing using a chamfer mill proved the most reliable
process, but at production scales creasing would likely be the most efficient option. One of these
patterned corrugates is shown in Figure 5.11b. These patterned corrugates were then folded and
bonded to face sheets to hold them in their folded states, as shown in Figure 5.11c.

Using the process described, I prepared samples using aluminum of 25µm and 50µm thick-
ness and with the angle γ taking values of 60◦ and 70◦. These aluminum corrugated curved
crease energy absorbers were tested on an Instron materials characterization machine to deter-
mine their energy absorption capacity. A platen was used to crush the samples at 1 mm/min and
the crushing load was recorded as a function of displacement. These quantities were converted
to stress and strain and the energy absorbed was calculated as the area under this curve until
the densification strain. Figure 5.13 shows these results. Compared to both aluminum honey-
combs and conventional curved crease foldcores, the corrugated samples exhibited much more
constant loads (i.e., no high peak followed by valley). The corrugated samples also exhibited im-
pressive specific energy absorption capacities (15 J/g), approximately twice that of aluminum
honeycombs (7 J/g).
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Figure 5.14: Overlaying a plasticity model of material behavior on a geometric model of crushing behavior. a)
geometric crushing model, b) plasticity model (Images from [202])

5.4 Plasticity modeling

To verify these results, I now construct a model of the average crushing forces of our samples.
This estimate, together with an estimation of the densification strain allows us to estimate the
energy absorbing capacity of our samples. This problem was studied for honeycomb structures
first by McFarland [128], and later in more rigor by Wierzbicki [202, 203]. If we assume that the
average crushing force of corrugated curved crease foldcores is below the buckling load of the
walls, we can simplify the analysis considerably and adapt the derivation of [202]. In this way,
we exploit the hierarchical nature of these constructions to separate the analysis of the different
scales.

The analysis of [202] begins by considering a characteristic unit of the induced folding mech-
anism of a thin-walled structure, formed by the crushing of an initially straight vertical crease.
After crushing, a unit resembling Figure 5.14a is formed (this also happens to be a unit of the
ubiquitous Miura-Ori folding pattern). With some reasonable assumptions on continuity and
solid mechanical behavior, a more realistic picture of this unit is given by Figure 5.14b. This pic-
ture allows us to analyze sources of mechanical work, classifying it into three types. First, the
surface patch bounded by B1B̄1B̄2B2 can be shown to be a section of a torus. During crushing,
this patch produces an energy dissipation Ė1 that is equivalent to that of drawing a flat sheet over
a torus, a quantity can be calculated analytically. Second, the horizontal hinge lines AB1, B2C ,
ĀB̄1, and B̄2C̄ move vertically during crushing, producing a known dissipation Ė2. Finally, the
inclined hinges running from the top and bottom surfaces to the points B1, B2, B̄1, and B̄2 move
across the surface during crushing, also producing a known dissipation Ė3.

It can be shown that

E1 =

∫

Ė1 = 16M0λ
b

t
I1(ψ0) (5.2)

where t is the material thickness, b is the minor radius of the torus, λ is the half-wavelength of
buckling, M0 is the plastic moment (M0 = 1

4
σ0t

2 where σ0 is the plastic flow stress), and I1 is
a purely geometric integral over the folding motion. This integral can be evaluated using only
the information in Figure 5.14a, namely the initial angle ψ0 between the two plates (See [202] for
formula). Further,

E2 = 2πM0ℓ (5.3)
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where ℓ is the length of segment AB. Finally,

E3 = 4M0I3(ψ0)
λ2

b
(5.4)

where I3 is again a purely geometric integral over the folding motion which depends on ψ0.
Using these expressions for crushing energy dissipation over a distance of 2λ, we can calculate

the average crushing force F , using the energy balance equation

2Fλ = E1 + E2 + E3 (5.5)

Letting A1 = 8I1(ψ0), A2 = π, A3 = 2I3(ψ0), we have

F

M0

= A1
b

t
+ A2

ℓ

λ
+ A3

λ

b
(5.6)

This equation includes the buckling half-wavelength λ and torus minor radius b, two quantities
that we do not know a priori. Assuming that the crushing force (and hence energy) is minimized
with respect to these quantities, we can set ∂λF = 0 and ∂bF = 0 and solve for them as

b =

(

A2A3

A2
1

) 1

3
(

ℓt2
) 1

3 λ =

(

A2
2

A1A3

)
1

3
(

ℓ2t
) 1

3 (5.7)

and hence
F

M0

= 3 (A1A2A3)
1

3

(

ℓ

t

) 1

3

(5.8)

This elegant result implies that buckling wavelength, torus minor radius, and crushing force
can all be computed simply from a geometric description of a characteristic unit of a thin-walled
structure. The same form is valid when we expand the definition of the characteristic unit to
include more structural detail than shown in Figure 5.14, provided we update our definitions of
Ai.

For instance, in the case of a hexagonal honeycomb with double thickness on one third of
the walls (a characteristic of the manufacturing process), we take as a unit cell the region around
a single vertex (which includes two single thickness walls and one double thickness wall). The
deformed configuration includes twomoving vertices contributing toE1, eight horizontal creases
of thickness h and four horizontal creases of thickness 2h which contribute to E2, and eight
inclined hinges which contribute to E3. Assuming a regular hexagonal honeycomb so ψ = 30◦,
this counting argument implies A1 = 16I1(ψ0), A2 = 3π, A3 = 4I3(ψ0), and hence

λhoneycomb ≈ 0.82
3
√
tS2 Fhoneycomb ≈ 8.61σ0t

5/3S1/3 (5.9)

where S is the side length of the hexagon cell shape.
We can perform the same analysis on a unit cell of the corrugated structure, in which we

define the characteristic unit to include half of one corrugation pitch. The deformed configuration
includes two moving vertices, 20 horizontal creases of thickness h, four horizontal creases of
thickness 2h, and eight inclined hinge lines. Therefore A1 = 16I1(ψ0), A2 = 9

2
π, A3 = 4I3(ψ0)

and hence
λcorrugate ≈ 0.94

3
√
tS2 Fcorrugate ≈ 9.86σ0t

5/3S1/3 (5.10)
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Figure 5.15: Observing buckling wavelength of crushed honeycombs and curved corrugates. a-c) Honeycomb
(12.7mm cell width) viewed from below, showing half wavelength λ of approximately 3mm. d-f) Curved corru-
gate (2mm corrugation pitch) viewed from front, showing half wavelength λ of a few hundred microns.

where here S is the side length of the corrugation.
We see that the scaling of both wavelength and crushing force is approximately the same for

the honeycomb and corrugate with respect to t and S. The key difference, however, is because the
corrugate structure has multiple levels of hierarchy, the parameter S can be varied freely, without
affecting the relative density of the architected material. Therefore, we can lower the buckling
wavelength by decreasing S. In contrast, decreasing S in a honeycomb increases relative density
(unless t is also varied, but this is bounded by manufacturing constraints). For instance, the
samples tested in Section 5.3 have nearly the same relative densities, but for the honeycomb S ≈
7mm while for the corrugated samples S ≈ 1mm. This implies that the buckling wavelengths
differ by approximately an order of magnitude:

λhoneycomb ≈ 2.3mm λcorrugate ≈ 0.23mm (5.11)

In Figure 5.15, we observe the buckling wavelength in our experimental samples. Comparing
against the honeycomb cell width of 12.7mm, we estimate λhoneycomb ≈ 3mm. Similarly, com-
paring against the corrugation pitch of 2mm, we estimate λcorrugate at a few hundred microns.
These observations agree well with our theoretical predictions.

Finally, we use this analysis to verify the experimentally measured energy absorption. For
honeycombs, we can integrate the average crushing force estimate over the stroke to estimate
energy absorption. For corrugated curved crease foldcores, we must account for the changing
relationship between crushing stroke measured by the test frame and the crushing stroke in the
axis of the foldcore walls. If Finstron is the force measured by the test frame, γ is the foldcore
apex angle as defined in Chapter 4, h is the initial height, and z is the stroke, some trigonometry
shows

Finstron

F
=

h cos(γ)− z
√

h2 + z2 − 2hz cos (γ)
(5.12)
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Figure 5.16: Comparing measured specific energy absorption of honeycomb and corrugated foldcores with model
predictions. This model confirms the factor of two improvement of the corrugated foldcores over honeycombs.

This equation explains the negative slopes of the load-displacement curves of the corrugated
foldcores shown in Figure 5.13.

Using this equation, we can estimate a force displacement curve for our corrugated curved
crease foldcore samples and integrate the area under it. Further, we can write formulas for the
density for the honeycomb and foldcores by multiplying all side lengths by the thickness and the
material density. Combining all these ingredients in Figure 5.16, we show estimates of specific
energy absorption and compare against the experimentally measured values. We can see that
the analytical model confirms the measured results well, confirming the factor of two increase in
specific energy absorption.

5.5 Conclusions

In this chapter, I built folded architected materials with high specific modulus of toughness, that
is, with high energy absorption per mass. After a review of prior work, I iterated through some
early designs noting the lessons learned. With this experience, I then designed and fabricated a
hierarchical folded architected material and a machine for its construction, developed an analyt-
ical model to predict performance, and showed its specific energy absorption to be twice that of
commonly used honeycombs. These energy absorbers can replace components in vehicles and

72



increase fuel efficiency by eliminating mass, while also increasing factors like crashworthiness,
cabin size, and other measures that are often framed as a trade-off with efficiency. As corrugation
is a scalable process (used at extreme scale in the packaging industry worldwide), such energy
absorbers can be cost-effectively manufactured.

This is an exciting result, and suggests several directions for future work. First, based on
the characterization of failure modes, the demonstrated performance of these energy absorbers
can likely still be improved. Despite the improved material utilization compared to honeycombs,
a significant amount of material is still not full utilized. Particularly, at the end of the stroke,
the apex angle γ has effectively increased so much that a change in the test frame stroke no
longer produces much change in the length of the foldcore wall. Starting with steeper foldcores
can likely minimize this effect without risking the stroke-shortening observed in vertical-walled
honeycombs. Also, moving from single-sided to double-sided corrugate constructions should
further increases buckling resistance and energy absorption.

Next, while all the fabricated samples have a constant thickness, a key advantage of this
approach is the ability to fill complex shapes [81, 107] much like the net shape honeycombs
of Chapter 2. In many cases, the volumes available for energy absorption in vehicles are not
uniformly shaped, and so efficiently packing a foldcore is a useful capability. Relatedly, demon-
strating strategies to create tall volumes by stacking corrugated foldcores while preserving the
crushing response is a useful direction for further research.

Future work should also explore the use of base materials other than aluminum in corrugated
curve crease foldcores. Another key advantage of the folding-base fabrication technique used to
make these foldcores is the significant freedom in material choice. In cost-sensitive and safety
critical applications, like helmets, the use of polymers like PET and polycarbonate is an attractive
option. In these applications, foldcores can displace the use of polystyrene and other foams,
improving performance, reducing use of toxic constituent chemicals, and avoiding the long-lived
waste stream associated with these foams.

In applications where reducing component mass is most important, the use of carbon fiber re-
inforced polymers could provide significantly higher specific energy absorption than that demon-
strated in this chapter. In vehicular applications, carbon energy absorbers have shown nearly five
times the specific energy absorption compared to both aluminum and steel [3], reaching hundreds
of Joules per gram on a raw material basis [121, 82]. The use of carbon fiber is often dismissed
due to high costs, but [155] suggests that material costs for carbon fiber dropped in price by 50%
between 2012 and 2018 (from 30 $/kg to 15 $/kg, within a factor of 3 or 4 of the cost of raw alu-
minum foils). Fifty percent of this material cost currently comes from the precursors (usually
polyacrilonitrile) while the balance comes from the refining these precursors into carbon fiber
[196]. There is considerable work on developing the refining processes to make carbon fiber
from other precursors, including from the abundant natural resource lignin [141]. Besides be-
ing a renewable resource, lignin-based carbon fiber is expected to reduce costs by at least 35%,
according to [172]. Manufacturing costs of carbon components vary considerably depending on
the processes used. According to [155], for standard autoclave processes, manufacturing costs en-
compass roughly 60% of total costs, 55% for resin-transfer molding, but only 17% for compression
molding. The folded constructions described in this chapter are prime candidates for compression
molding, requiring no autoclave or vacuum bagging, and many components can be stacked and
cured in parallel. Because of this, adapting the methods for corrugated curved crease foldcore
energy absorbers to use composite materials is an exciting direction for future research.
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Chapter 6

Active Structures

In this chapter, I build active folded architected materials with embedded actuation to drive defor-
mation modes of the structure. I take as the main test case a hydrodyncamic flow control strategy
where small amplitude traveling waves are driven on the surface of a hydrofoil in the direction
of fluid flow. As described in Section 6.1, reliable implementations of this strategy have been
a longstanding goal in active flow control, as the requirement for distributed, high-bandwidth
actuation has been elusive. In this chapter, I develop several methods of embedding actuation
into folded architected materials, design and build a hydrofoil with an active surface for driving
traveling waves, and evaluate drag reductions in tank testing.

6.1 Background on traveling wave flow control

Research into this mode of fluid-structure interaction dates to early studies of locomotion of
fishes, where a paradoxical discrepancy was observed between the muscular power output of
dolphins and the power required to tow an equivalent rigid body at comparable speeds [78]. It
was suggested that the dolphin’s traveling wave swimming motion was responsible for laminar-
izing the flow, hence reducing the power required for swimming. This model was subsequently
explored in many other studies of efficient swimming [183, 208]. While it is now understood that
dolphins are actually capable of much higher power output than thought at the time [65, 35],
the discrepancy from rigid body analysis spurred significant research into interactions between
fluids and compliant structures with traveling waves. This subject has grown to include rich phe-
nomenology, including collective behavior [182], chaotic bifurcation [214], and inverted drafting
[156], and many biomimetic flow control mechanisms for efficient robotic swimming [15, 184].

In addition to highly compliant fish-like swimming, traveling waves also provide a means
of flow control when driven on the surface of plates, foils, and other rigid structures commonly
used in aerodynamic and hydrodynamic applications. This was investigated in a set of beautiful
experimental studies by Taneda [181, 180] using a “wavemachine" composed of a rubber sheet and
a set of pistons and cams (shown in Figure 6.1). It was observed that boundary layer separation
is eliminated when the wave speed c exceeded the flow speed U . Experimental studies across a
range of Reynolds numbers [190, 210, 40] have confirmed this, noting significant drag reductions
in both water and air, and on both plates and cylinders. Computational work has provided further
support for this flow control strategy [168, 207, 209, 189], showing that the energy saved by
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Figure 6.1: Traveling wave flow control. a) Streamlines as a function of relative wave speed (Image from [181]), b)
Wind tunnel traveling wave apparatus (Image from [210]), c) Smoke study on rubber sheet “wave machine" (Image
from [180])

reducing drag can be significantly greater than that required to drive the traveling waves. In
particular, [189] shows through direction numerical simulation that relatively small amplitude
traveling waves can be used (a = .25λ/(2π), where a is amplitude, and λ is wavelength), and
that net power input is minimized when c/U ≈ 1.2. If used on the trailing edge of a foil or
other streamlined body under nonzero angle of attack, it is hypothesized that separation can be
delayed using traveling waves, significantly reducing turbulent drag, the major contribution of
drag in this regime. For instance, [2] performed large eddy simulations over a NACA18 airfoil at
Re = 50, 000 at an angle of attack of 10◦, showing for optimal wave parameter choice, drag is
decreased by 10% and lift increased by 5%.

Despite these promising results, viable fabrication of embedded devices supporting traveling
waves on operable aerodynamic and hydrodynamic surfaces, rather than experimental appara-
tuses, has remained elusive for several reasons. First, any surface interacting with a fluid must
have a high mechanical stiffness to withstand pressure loads of operation (for instance, those re-
sponsible for the generation of lift), yet be soft enough in the desired deformation mode (a wave
with fixedwavelength λ) to be efficiently actuated. These opposing demands rule out most mono-
lithic materials, but generating such anisotropic mechanical responses is a strength of architected
materials [16]. For instance, such anisotropy has been exploited to actuate torsional modes while
maintaining bending stiffness [103], as well as to actuate in-plane longitudinal waves without sac-
rificing bending stiffness [19, 18, 20, 17]. In this chapter, I leverage this capability of architected
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materials to meet the design requirements for traveling wave flow control.
Second, the space afforded by the trailing edge of an airfoil or hydrofoil to contain the actua-

tion and transmission components for driving a traveling wave is very limited, in contrast to the
relatively bulky experimental apparatuses cited above. To satisfy this constraint, I use the planar
processing of folded architected materials to distribute the actuation and transmission along the
traveling wave surface. This significantly reduces the size and mass of the components needed
to transmit force from a single large actuator to the point of application.

Finally, the prototype must be able to drive waves at speeds exceeding the free stream veloc-
ity in the harsh underwater environment, which places nontrivial demands on the actuation fre-
quency and stroke. For relevant chordwise Reynolds numbers (Re ≈ 105) and wave steepnesses
(2π/λa ≈ 0.3), the required actuation frequencies are approximately 10-100 Hz and actuations
strokes are approximately 100-1000 µm. These requirements immediately exclude a large number
of actuation technologies, including un-amplified piezoelectric, magnetostriction, shape memory
alloy, and thermal expansion actuators [94]. Piezoelectric ceramic and polymer bimorph actu-
ators have been demonstrated to meet these requirements [99, 100, 101], but were discounted
due to fragility and high costs. Instead, in this chapter, I show how cost-effective and robust
electromagnetic actuation can be embedded in an architected material to meet these application
requirements.

Next, I detail the design, fabrication, and characterization of several prototypes for driving
traveling waves on a hydrofoil surface.

6.2 Folded honeycomb with distributed actuation

In this section1, I describe a system for constructing structural airfoils and hydrofoils composed
of a folded honeycomb with embedded electromagnetic actuators for driving high velocity trav-
eling waves. Like the construction described in Chapter 2, this approach allows the specification
of the shape of the honeycomb’s bounding surfaces, but adds features for embedded actuators
and interfaces to the skin of the hydrofoil. A concept drawing is shown in Figure 6.2. Because
the honeycomb is fabricated from a planar substrate, the actuators and electrical signals can be
efficiently placed before folding into three dimensions. I then detail the development of a minia-
turized single-phase linear motor which is compatible with this approach. The predicted and
measured forces produced by these linear motors are compared and trajectories for a 200Hz
driving frequency are measured. Finally, performance characteristics based on hydrodynamic
requirements are specified and compared with those achieved.

6.2.1 Fabrication

In this section, I first adapt the composite-polymer process developed in Chapter 4, to the fabrica-
tion of honeycombs with embedded actuation for driving traveling waves, as shown in Figure 6.3.
In Figure 6.3a, a stack of resin-impregnated carbon fiber layers is cut with an oscillating knife on
a flatbed cutting machine. The stack consists of three layers of unidirectional carbon with a 0-90-
0 layup schedule. This cutting step removes hinge lines with a width of approximately 400µm.

1The work of this section was presented at the 2018 IUTAM Symposium on Critical flow dynamics involving

moving/deformable structures [33] and was published in the Journal of Fluids and Structures [34].
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Figure 6.2: Traveling wave elements included near the 3/4 chord position of a foil. A) Exploded side view, B)
Exploded perspective view, C) Assembled perspective view.

Next in Figure 6.3b, the carbon layer is placed between two sheets of 12µm PET film and cured
under a vacuum bag at 200◦C for two hours. In Figure 6.3c, this cured laminate is optically regis-
tered on the flatbed cutting machine and cut again using an oscillating knife to form registration
features and an outline. The composite strips produced in one cycle are shown in Figure 6.3d. A
scan of a single strip is shown Figure 6.3e and a microscope image of two hinge lines is shown in
Figure 6.3f. For this prototype, the finished thickness of carbon fiber layers was roughly 150um,
while the combined PET hinge layer thickness was 25um.

When assembled, the strip produced in Figure 6.3 will form one layer of a hexagonal-celled
honeycomb with integrated actuators and flexure bearings. The physical example produced here
has a uniform size, and so the resulting honeycomb will have a constant thickness. To produce
honeycombs filling a desired shape, however, we can apply the geometric derivations of Chapter 2
to contour a given shape such as the foil shape shown in Figure 6.2.

To actuate the traveling waves, I now describe the design of a small, single phase linear motor
ideal for embedding in folded structures. Linear motors often use three phases to extend actuation
forces to large strokes, but because the required amplitudes for this application are only on the
order of one millimeter, we use a single phase to simplify driving and wiring requirements and
miniaturize the size of the actuator. As a large number of these actuators are required, I selected an
"E" core shape which can be wound simply and fits inside a hexagonal honeycomb cell efficiently.
Further, this core design can be parameterized easily to include any number N > 2 of electrical
poles, where the force produced scales linearly with the number of poles (assuming the number
of magnetic poles is always N − 1).

Figure 6.4 shows the fabrication of these linear motors. First, in Figure 6.4a, core shapes are
cut from round stock of Vimvar, a relatively inexpensive electrical iron with high permeability
(µr ≈ 10, 000) and high saturation induction (Bs ≈ 2.1T ). Two wire cuts are make at 90 degrees
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Figure 6.3: Fabrication of fiber-reinforced polymer composite laminates. A) Cutting resin-impregnated carbon fiber
using oscillating knife to form hinges, B) Curing resin-impregnated carbon fiber between two sheets of 12 micron
PET film, C) Optically registering and cutting cured laminate using oscillating knife, D) Batch of fiber-reinforced
parts produced, E) Optical scan of part, showing clear hinges void of fiber reinforcement, F) Microscope image of
two incident hinge lines.

from each other, enabling three dimensional features and producing many cores in a single ma-
chining operation. In Figure 6.4b, the produced magnetic cores are parted off and prepared for
winding with 34 AWGmagnet wire. A custom-built precision coil winder head is used to lay two
opposing coils of 90 wraps each. The coil winder uses a Luer-Lok dispensing tip for accurate wire
placement and high packing density, shown in Figure 6.4c. The coil winding head allows the coils
to be placed automatically, requiring operator intervention only when starting or finishing a coil.
This significantly decreases the time required to wind a core and reduces error and inconsisten-
cies in the actuator construction. The coils are heat-set using a hot air gun and the wire ends
are terminated and wrapped around a central winding guide made of paper phenolic, shown in
Figure 6.4d. These terminations can be tinned with a standard soldering iron and connected with
the copper traces used in our construction, shown in Figure 6.4e and Figure 6.4f.

Thesewound cores constitute the stator of our linearmotor. The rotor consists of two neodymium
permanent magnets (N50, 3mm x 3mm x 0.5mm)magnetized through thickness and oriented with
opposite polarity. A wedge of Vimvar acts as a backiron flux return for this magnet pair. When
the phase is energized with current, magnetic flux is directed alternately in and out of the legs of
the magnetic core. This produces a force on the rotor that seeks to align the field of produced by
the permanent magnets with that of the magnetic core. By alternating the direction of current
periodically, the rotor can be made to oscillate at the driving frequency.

To create a functional unit, fiber-reinforced composite substrates and the magnetic compo-
nents of the linear motor are combined in a set of assembly steps, shown in Figure 6.5. In Fig-
ure 6.5a, the wound magnetic cores, magnets, and back-iron components are populated on the
composite substrate while in the flat state. This step is currently performed manually, but can be
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Figure 6.4: A) Electric discharge machining cores from round Vimvar stock, B) Released cores with winding clamp,
C) Core during winding, D) Wound core with terminations (U.S. Quarter coin for scale), E) Wound core placed in
honeycomb scaffolding, F) Wound core soldered for electrical connection.

automated in much the same manner as industrial PCB manufacturing for high production rates.
In Figure 6.5b, a wiring strip is attached using the magnetic cores for alignment, constraining

the corrugation hinges and supplying soldered electrical connection to the motors. The wiring
strips are produced using a simplified flex-PCB manufacturing process, where adhesive-backed
copper foil is kiss-cut and transferred to 125um Garolite G10. The copper traces are optically
registered, and additional features and an outline are cut. Again, while soldering was performed
manually, this is amenable to reflow or wave soldering such as is used in industrial PCB manu-
facturing. At this stage, a skin strip is attached with cyanoacrylate glue, using magnet edges for
registration. This skin strips aremadewith the same fiber-reinforced composite process described
above, but with a overall thickness of roughly 100um.

In Figure 6.5c, the magnets and back-iron components are brought together with the aid of at-
tractive forces, assembling the flexure bearings for the linear motors. This connection is strength-
ened with cyanoacrylate glue, completing the assembly of a full strip unit. Multiple units can be
assembled to create a honeycomb with embedded linear actuators. The stator of one unit align
with the rotor of an adjacent unit, loading the flexure bearings in tension and setting a con-
sistent air gap (roughly 800 um in the prototype shown in Figure 6.5). The skin strips of each
row overlaps slightly with that of the adjacent row. These skins are bonded and covered with
adhesive-backed PET (50um thickness) to create a smooth hydrodynamic surface.
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Figure 6.5: Assembly steps. A) Populate wound cores, magnets, and back-iron components, B) Apply electrical
routing and skin strips to constrain corrugation hinge angles, C) Bring magnets and back-iron components together
to complete flexure bearing, D) Multiple row units are stacked, E) Skin strips lap and are joined into a continuous
aerodynamic skin.

6.2.2 Characterization

This section describes characterization of force and frequencies possible with the framework
described above. We begin evaluating the force produced by the linear motors, comparing finite
element simulation and experimental testing. The simulations were performed using COMSOL
Multiphysics [96]. Figure 6.6 shows one simulation, with flux intensity and direction drawn
for a linear motor in minimum (5a) and maximum (5b) configurations of the stroke when the
phase current is one ampere. In Figure 6.6a, the field of the permanent magnets opposes the
field produced by the coils, and flux seeks alternate paths than the iron core. In Figure 6.6b,
the two flux distributions are aligned, providing a low reluctance magnetic circuit through the
core. To simulate these effects, we assumed a planar flux distribution and ran a two-dimensional
simulation, significantly lowering the computational burden. While the flux distributions are
largely planar, this neglects fringing fields. Thus we expect simulations to slightly overestimate
force produced but roughly preserve dependence on geometric parameters.

I simulated flux distributions and resulting force on the rotor for a range of coil currents,
stroke positions, and core geometries. These studies indicated the size of the back-iron was sig-
nificant in increasing actuator force but also in the moving mass. For these reasons, I designed
the triangular back-iron shown in Figure 5, which limits magnetic saturation while avoiding un-
necessary moving mass.

To compare simulated values with our physical prototypes, I measured force using a materials
characterizationmachine (Instron 4411) with 5 N load cell, shown in Figure 6.7. I used linear slides
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Figure 6.6: Simulated flux intensity (colormap) and direction (arrows) under positive current of 1 amp. A) A negative
most stroke limit, B) At positive most stroke limit.

to precisely position the rotor and stator and transmitted force to the load cell using a Garolite
flexure to avoid off-axis loads.

Figure 6.8 plots force vs. stroke and current for simulated and measured actuators with an
800um air gap. Deviations from a planar flux distribution are responsible for roughly 20% re-
duction in peak force at 1 ampere phase current. We note that 800µm is a conservative air gap,
selected because smaller air gaps deformed rotor flexure under attractive forces. With a stiffer
rotor, smaller air gaps could increase force without significantly increasing moving mass.

Figure 6.7: Test setup for force measurement on material characterization machine. A) Perspective view, showing
5N load cell, flexure for transmitting force, linear stages, and power wiring. B) Side view, showing prescribed gap
between magnetic core and magnets.
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Figure 6.8: A) Two-dimensional simulation and B) measured force with 800um air gap.

6.2.3 Frequency

To characterize the maximum bandwidth of our actuators, I performed simple trials with square
wave drive inputs of varying frequency using a single actuator with no skin attached. In a fully
assembled honeycomb, the rotor travel is limited by the adjacent strip units, but to test variable
travel limits, we implemented physical end stops using aluminum bars in these high frequency
trials. Figure 6.9 shows the results of sending a 200 Hz driving frequency to the actuator with a
current limit of approximately 1 ampere. The resulting trajectorywas recorded using a high speed
video camera (Krontech Chronos 1.4) at 3000 frames per second. I used video tracking software
(Physlets Tracker) to extract the trajectory and plot it in Figure 6.9b. This simple test shows that
our actuator is capable of driving its rotor at 200 Hz with an amplitude of approximately 1.2mm.

6.2.4 Fluid mechanical actuator specifications

In this section, we develope a set of specifications for a distributed actuation system for driving
traveling waves on a hydrodynamic surface. For the characteristics of a desired wave shape, we

Figure 6.9: 200 Hz operation: A) High speed video with motion tracking, B) Extracted trajectory with a sinusoidal
fit.
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reference [168] for Reynolds number Re = Uλ/ν ≈ 104. We use three parameters to specify the
wave shape: the amplitude a, the wavelength λ and the wall motion phase speed c. The actuation
frequency f of the actuators is derived as f = c/λ.

The literature uses the wave number (k = 2π/λ) times the amplitude to specify the wave
steepness. Studies suggest values of ka of the order of 0.2 are appropriate. The wave speed is
similarly prescribed by the dimensionless ratio c/U , where U is the free stream flow velocity.
When this ratio is made greater than 1, separation is eliminated and the wall waves generate a
thrust. At c/U ≈ 1.2, energy optimality has been observed, as the power required to actuate the
wall plus the power saved due to drag reduction is minimal. The choice of the wavelength is a
tradeoff between actuator manufacturing constraints and fluid mechanic considerations.

To satisfy values from the literature and be within the constraints of a feasible actuator to
design, we select an amplitude a = 1mm, a wavelength λ = 20mm, and frequency f = 60Hz,
well within the 200Hz frequency oscillation with 1.2mm amplitude measured above. This gives
a wave steepness of .31 and allocates four actuators per wavelength if each requires 5mm of
chordwise extent. With a freestream velocity U ≈ 1m/s and a chord of 0.15m, this gives c/U ≈
1.2 and chordwise Re ≈ 7.5× 104.

To estimate the force requirements, we consider only force normal to the wall and assume a
worst case estimate of actuating the suction side with maximal acceleration under the maximum
pressure and inertial forces. Assuming a hexagonal packing of actuators with half-cell-span of
5mm as above, each actuator is responsible for a surface patch of area A = 100mm2. Numerical
simulation provides a pressure coefficient of 0.06, leading to 30Pa pressure. A typical hydrody-
namic pressure is around 500Pa. The total force produced by these pressures is around 53mN .

To calculate the inertial forces, wemust consider the actuator inertia and the fluid addedmass.
In general, the added mass in such a case of connected moving walls is not constant. In the case
where the region under consideration has a small chordwise extent relative to λ, the force due to
added mass can be written as F = ρakA(c−U)2. For the parameters identified above, this added
mass force is on the order of 1mN (but increases greatly at larger values of c/U ). Assuming a
moving mass of 100 mg, the total required inertial force to operate at 60Hz is roughly 15mN .
This gives a total force requirement of roughly 70mN , well within the 150mN forces measured
over a significant part of the actuator stroke above.

These estimates of force and frequency requirements demonstrate a safe performance margin
for our prototyped traveling wave actuation system. It is expected that this performance could be
increased further by decreasing the air gap between rotor and stator and by accounting for the ac-
tuator transfer function in the driving waveforms, instead of using a simple voltage square wave.
Despite these encouraging results, the task of scaling this system up to a full hydrofoil prototype
was challenging due to the number of individual components which must be manufactured and
assembled. Given that the traveling wave output requires many fewer degrees of freedom than
the number of actuators in this prototype, we next describe a prototype which leverages this to
simplify the manufacturing.

6.3 Two degree-of-freedom folded transmission

As mentioned above, the number of independent actuators in the previous design was a limiting
factor for scaling. Not only does the assembly time scale with this number, but the failure of
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Figure 6.10: Folded structure using two degrees of freedom to drive a traveling wave. Proceeding from top to bottom
in time, the sequence of peaks and valleys of the top surface (green and blue arrows) moves to the right based on the
actuation of the middle surfaces (red arrows).

any one of these actuators could cause the entire prototype to stop functioning. To fix this issue,
we redesigned the prototype to use just two independent actuators, which we describe in this
section. In this case, we use a folded transmission to convey motion from these actuators to drive
the complex traveling wave motion. Our design is shown in Figure 6.10 at four moments in time,
proceeding from top to bottom. The sequence of peaks and valleys of the top surface (green and
blue arrows) moves to the right based on the actuation of the middle surfaces (red arrows). Note
that only two independent degrees of freedom are required, as all of the front middle surfaces
move together and the rear middle surfaces move together. This can be considered a form of
quadrature, as the 90◦ out-of-phase actuation of these two degrees of freedom sets the direction
of the traveling wave.

6.3.1 System Design

Based on this folded linkage, I designed an actuated system, shown in Figure 6.11 with a NACA18
hydrofoil base. To leverage planar processing, the design is decomposed in layers, each of which
spans the entire extent of the actuated region of the foil. The very top layer is a thin carbon skin
layer to interpolate between the discrete oscillating points. The next outermost layers together
form the linkage in Figure 6.10. The linkage is actuated by a planar Lorentz force actuator; the next
two layers inwards are iron cores with magnets which create a vertically oriented flux between
them. Finally, the innermost two layers are planar electromagnetic coils which produce horizontal
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Figure 6.11: Exploded and assembled views of two degree-of-freedom prototype design.

force in the vertically oriented magnetic field when current is passed through them.

6.3.2 Simulation

Using COMSOL Multiphysics [96], I refined the electromagnetic design for the flat Lorentz force
actuator, subject to the geometric constraints of the design. Figure 6.12a shows a two-dimensional
view looking down the length of the planar coils (rectangles at center), where the iron core and
magnets establish a vertically oriented flux field. Figure 6.12b shows a three-dimensional view,
where the geometric features to keep the magnetic cores separated without causing a collision
with the linkage are visible. Compared to the linear motors of the previous section, these actua-
tors have several nice features. First, the force is nearly constant over the full stroke, simplifying
the dynamics of the system. Second, there is no attraction between the rotor and stator elements,

Figure 6.12: Electromagnetic finite element simulation of the flat Lorentz force actuator for the two degree-of-
freedom prototype, showing magnetic flux density (colormap) and direction (arrows). a) Looking down the length
of the planar coils, b) Three-dimensional view.
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significantly simplifying assembly.
After this design refinement, I set out to fabricate a prototype. The linkage layers can be

fabricated using the carbon-polymer process described in Chapter 4. The iron cores can be cut
from a zinc-plated steel sheet by waterjet abrasive machining. The only component remaining
are the planar coils forming the central two layers of the device. Tomake these layers, I developed
a precision wire plotting technique, described in the next section.

6.3.3 Wire plotting

Electromagnetic coils are usually made by winding insulated wire around a mandrel to build up
layers in both the radial and axial directions [80], as in Section 6.2.1. This approach is best suited
for convex coil geometries where the number of layers in the radial direction is not significantly
larger than the number of layers in the axial direction. Attempting to wind geometries with
significantly more radial than axial layers (i.e., planar geometries) requires complex multi-part
mandrels and usually results in poor wire packing density. Because of this, planar coils are often
made using printed circuit board traces (c.f. [92, 149, 104, 28, 195]), but the constraints on small
trace widths and separations limit the achievable turn density, and hence electromagnetic force.

Due to this lack of a feasible process to make dense, high quality planar coils, I developed a
process for precision plotting of wire onto planar substrate with exposed pressure set adhesive.
This process combines the high density of coil winding with the geometric control of printed cir-
cuit board fabrication. Figure 6.13 shows 40 AWG insulated copper wire (approximately 80 µm
conductor diameter with 5 µm insulation) laid onto a 12 µm polyamide film with a silicone pres-
sure set adhesive. Because the wire is insulated, it can be packed densely to produce a variety of
actuators, sensors, and electrical interconnect. With proper wire management, this process can
operate at speeds exceeding 1000mm/s, allowing high speed fabrication of wire wound compo-
nents. This process can be considered a form of additive electronics manufacturing, but signifi-
cantly better material properties and much lower costs than printed ink electronics (1.6µΩ−cm
at $40/kg for insulated copper wire versus 10µΩ−cm at $1000/kg for silver ink). Compared to
conventional circuit board manufacturing, achievable densities are an order of magnitude greater

Figure 6.13: Process for plotting wire on a planar substrate. a) Spool and custom wire plotting tool on Zünd Sys-
temtechnik large format cutter laying wire onto a substrate with exposed pressure set adhesive. b) Microscope image
of the resulting planar coil, showing 25 turns of 80 µm diameter wire.
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Figure 6.14: Wire plotting components. a) Zünd cutter with wire plotting tools installed, b) Spool holders, wire man-
agement, and application toolheads, c) Sprung suspension, kinematic mount, and micro-adjusting ball end screws,
d) Final wire guide and application roller disassembled, e) Final guide and application roller with 80µm wire.

(2µm and 20µm conductor separation and width versus 75µm and 75µm) and costs scale with
volume of active materials rather than with volume of the device’s bounding box. These capabili-
ties are made possible by leveraging scalable and repeatable upstream wire fabrication processes
in combination with modern motion control technology for high-speed precision plotting.

To do this, I developed custom toolheads for a Zünd Systemtechnik large format cutter, shown
in Figure 6.14. These consist of a spool holder, wire management and tensioning system, and a
precision application head, shown in Figure 6.14a. The spool holder accepts a standard 2.5" wire
spool, one which wires of a variety of base materials, diameters, and coatings are commonly

Figure 6.15: Optical calibration of wire plotting. a) Custom tool with USB microscope and Raspberry Pi single
board computer to wirelessly stream video feed, b) Microscope tool installed in Zünd cutter, c) Measuring 80µm
wire placement from a web browser.
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available at low cost (e.g. $1/km for 40 AWG insulated copper wire). Figure 6.14b shows spools
of insulated copper and nickel-plated steel wires of several sizes. Wire is taken off the spool,
passes through a set of PTFE O-ring guides, between felt tensioners, and over a set of guide
rollers before reaching the application head.

Thewire is applied to a thin polymer film substrate (usually PET or polyamide) with a pressure
set adhesive to hold the wire in place. During plotting, a piece of Bristol board with a reposition-
able adhesive is used underneath the polymer film to provide a firm underlay that still allows the
vacuum hold-down of the Zünd cutter to pass through. After plotting, the substrate and underlay
can be cut out or scored to allow folding the plotted wire into multilayer and nonplanar config-
urations. Finally, the open face of the substrate is covered to permanently hold the wire, usually
with another piece of polymer film or a composite prepreg.

The Zünd cutter uses a rotational axis to align the application toolhead with the direction of
plotting, but to plot accurately the axis of this rotation must be precisely aligned with the point of
wire application on the substrate. To do this, I use a sprung suspension in the application toolhead
to accurately control the application force in spite of dimensional variations in the substrate.
Further, the final wire guide and application roller mount kinematically on a hardened shaft and
a set of ball-ended micro-adjusting screws (Kozak Micro, 3/16"-100). The final guide spacing is set
using precision shim stock to accurately constraint the lateral position of the wire without adding
friction to the system. These features (shown in Figure 6.14c-e) allow the point of application to
be consistently controlled to a precision of approximately 10 µm.

To accurately align the application point with the rotational axis of the tool, I developed an
optical measurement tool, shown in Figure 6.15. It consists of a USBmicroscope (Supereyes B008),
Raspberry Pi single board computer (Pi Zero W), and USB rechargeable battery mounted in a 3D
printed toolholder. The Raspberry Pi acts as a wireless access point, broadcasting the MJPEG
stream from the camera. By plotting a test pattern of wire and measuring the results using this
optical system and the Zünd cutter’s digital read-out, we can adjust the kinematic coupling of the
applicator roller to align it.

6.3.4 Fabrication

Using the wire plotting process described in Section 6.5, I fabricated the planar coils for the
Lorentz force actuators. This process is shown in Figure 6.16. Mirror images of the 25 turn
coils are plotted on 12µm polyamide with silicone adhesive (Caplinq PIT0.5S-UT) and cut out,

Figure 6.16: Wire plotting the planar coils for the Lorentz force actuator to drive traveling waves. a) Mirror images
of the 25 turn coils are plotted and cut out, b) The plotted sections are folded around a piece of carbon prepreg and
cured, c) A microscope section view of the double layered planar coils. d) Microscope image of cured planar coil,
with additional features cut (U.S. penny coin for scale).
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Figure 6.17: Fabricating the layers in the two degree-of-freedom prototype. a) The linkage layers used the carbon-
polymer process developed in Chapter 4, b) The iron cores were waterjet and magnets were bonded on, c) The planar
coils were plotted using the wire plotting process developed in Section 6.5.

keeping the Bristol board underlay in place to aid handling. A central crease is scored during the
cutting process. This part is folded around a piece of carbon prepreg (shown in Figure 6.16b) to
form a double layered construction with the 25 turn coils wired in parallel. A cross section of the
construction is shown in Figure 6.16c. Once cured, these coil layers are taken back to the Zünd
cutter, registered with the microscope tool, and additional features are cut for the traveling wave
prototype, shown in Figure 6.16d.

For the two degree of freedom traveling wave prototype, the linkage layers are fabricated
using the carbon-polymer process described in Chapter 4. One of these layers is shown in Fig-
ure 6.17a. To create the magnetic flux for the Lorentz force actuator, a pair of zinc-plated steel
plates held apart by steel rods forms the magnetic circuit. The plates were waterjet, and the rods
were positioned using a laser-cut acrylic jig plate and bonded to the plates. Neodymium magnets

Figure 6.18: a) Layers in two degree-of-freedom prototype. From outside-in: Carbon-PET linkage layers, the iron
cores and magnets, and the planar coils. b) Layer stack laminated together, c) Stack installed in hydrofoil
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(N52, 5mm x 5mm x .75mm) are applied to the central axis of the plates. Theoretically, a long
skinny plate magnet could perform this job, but these are difficult to source and very fragile. In-
stead, magnets are applied from a 3D printed dispenser to a tape and transfer the magnets and
tape to the steel plates (which have had epoxy applied to them). This magnetic layer is shown in
Figure 6.17b, and the finished planar coil layer is shown in Figure 6.17.

These fabricated layers are shown in Figure 6.18a and assembled in Figure 6.18b. Epoxy is ap-
plied to the linkage layers through a laser cut mask and then the stack is aligned and compressed
using two milled polyethylene plates with dowel pins.

6.3.5 Characterization

To validate the simulations in Section 6.3.2, I measured the force produced by a single layer ac-
tuator as a function of stroke and phase current. To measure the force produced, I clamped the
actuator in the jaws of an Instron 4411 test frame with 500 N load cell. I swept over the full
stroke of 2mmwhile measuring the force. The results are shown in Figure 6.19a, showing nearly
constant force over the stroke. I averaged these force values and plotted them versus current in
Figure 6.19b. These results match very closely with two separate finite element models: the first
using a COMSOL coil element, the second calculating the surface integral over the geometric
envelope of the coil and applying the Lorentz force law. The close match between the simu-

Figure 6.19: Characterizing the planar Lorentz force actuator. a) Plotting force versus stroke for a range of phase
currents, b) Plotting average force over the stroke versus current and comparing against simulated values. c) Tracking
amplitude at 150Hz actuation frequency.
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lated planar Lorentz force actuator and the experimental results demonstrate a key benefit of this
actuator topology: its simplicity to model and drive.

Figure 6.19c shows high speed video tracking results for the planar Lorentz actuator at a
frequency of 150Hz. This achieved frequency is well above the traveling wave bandwidth re-
quirements.

These characterization results demonstrate the viability of this two degree-of-freedom pro-
totype. While the number of independent actuators has been drastically reduced from the first
prototype, the structural complexity is still high. In particular, the layered approach of this design
requires many cut-aways and pass-throughs to function. Slight misalignments in these features
can reduce performance, and the clearance required between coil layers increases the size of the
magnetic air gap, lowering output force. The wire plotting process developed for this prototype
worked better than expected, proving to be a very powerful prototyping workflow for embed-
ded electromagnetic actuation. In the next section, I detail the use of wire plotting directly on a
flexible membrane comprising a third traveling wave prototype.

6.4 Moving membrane traveling wave

In this section, I use the wire plotting developed in Section 6.5 to plot electromagnetic actuation
directly on a membrane interacting with the flow. In Section 6.3, plotted wires in a vertically-
oriented magnetic field experience a horizontal force, and folded linkage layers transmit this
into force vertical oscillations of a traveling wave. Using a horizontally-oriented magnetic field,
the plotted wires can experience a vertically oriented force, creating the traveling wave directly.
Instead of using linkage layers to generate the directional quadrature, I use quadrature in the
driving signals of the plotted coils. Figure 6.20 shows a prototype NACA12 hydrofoil with a wire
plotted skin on its trailing edge. The coil arrangement is much like a linear motor, where three
phases are interleaved and repeated. In Figure 6.20b, we show the terminations of these coils
enabling three phase waveforms, like those used to drive common brushless motors, to be used
to generate traveling waves.

6.4.1 Magnetic design

To obtain the sufficient magnetic field strength in the horizontal direction at the skin, I investi-
gated possible magnet arrangements. Figure 6.21 shows three magnet arrangements: vertically

Figure 6.20: a) Actuated membrane applied to NACA12 hydrofoil, b) Lead connections for three-phase actuation.
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Figure 6.21: Comparing a vertically-magnetized array, Halbach array, and horizontally magnetized array. a-c) Flux
density (colormap) and direction (arrows) for the three arrays, d-f) Horizontal component of magnetic field at three
heights above the array (green is closest, then blue, then red). One vertical division is 0.1 Tesla.

oriented alternating, a linear Halbach array [125], and horizontally oriented alternating. In fact,
the Halbach array can be considered a middle point between the other two arrangements, as it
consists of interleaved alternating vertically and horizontally oriented magnets. The top row of
plots graphs the magnetic flux density (colormap) and direction (arrows). In the bottom row, the
horizontal component of the flux density at three heights above the array is plotted (green is clos-
est, then blue, then red). We see that a vertically alternating array produces the highest peak field
value, but only over a small spatial region. The horizontally alternating array produces a large
spatial region near its maximum field value, but this value is much lower. The Halbach array is
an optimal middle ground between then extremes, showing a maximum field value near that of
the vertically oriented array, but with a much wider spatial distribution. In fact, if we integrate
this field value over a representative volume (where we can imagine placing actuator wires), the
value is roughly 150% that of either of the horizontally or vertically magnitized configurations.

Finally, I simulated the three-dimensional effects on flux density of these Halbach arrays,
shown in Figure 6.22. Using neodymium magnets that were cost-effective to source (N50, 1/8"
wide by 1/16" thick by 1/2" long), I plotted the flux distribution both at the coil center, as well
as at the coil edge, shown in Figure 6.22a-b. Integrating over the envelope of the moving coil, I
obtained an average flux density of roughly 0.12 Tesla.

The favorable magnetic properties of Halbach arrays come with a price, as they are usually
difficult to fabricate because all magnets repel their neighbors. To help with this, I made an
assembly aid which extrudes a Halbach array, shown in Figure 6.23. The extruder draws from
four magnet cartridges, one for each orientation. Array holders are filled, holding magnets in
place while a thin piece of carbon is bonded to their roughened surface with epoxy. After curing,
the Halbach arrays are transferred to the hydrofoil.
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6.4.2 Three phase control

Because controlling the traveling wave shape is important, the drive electronics for our prototype
must allow control over the commutation waveform (e.g., to implement sinusoidal commutation),
rather than being limited to six-step or trapezoidal schemes. Assuming actuation frequencies
of 100Hz and a sine function lookup table with 100 entries, we estimate a 10kHz update rate
for the commutation waveforms. Many brushless motor drivers have pulse-width-modulation
frequencies slower than this rate, and so clearly a high speed three phase driver is required to drive
our prototype. As an added benefit to high-speedmodulation, the inductance of the devices can be
reduced. Drive electronics for brushless motors often rely on the significant inductance of iron-
cored windings or external series inductors to smooth out pulse-width-modulated waveforms.
With high speed modulation, no such inductance is required, and the associate magnetic losses
can be eliminated, increasing efficiency.

To meet these requirements, I designed a circuit board (shown in Figure 6.24) with three N

Figure 6.22: 3D simulation of Halbach magnet arrays. a) Plotting horizontal flux density at the coil center for the
minimum, maximum, and rest heights of the coil, b) Plotting horizontal flux density at the coil edge for the same
three heights, c) 3D view, showing flux density (colormap, units in Tesla) and direction (streamlines).
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Figure 6.23: Halbach assembly aids. a) Halbach extruder draws from four cartridges of magnets, one for each
orientation, b) Cartridges are filled and bonded to a thin piece of carbon, c) Halbach arrays are transferred to the
hydrofoil.

Figure 6.24: High speed three phase driver for implementing space vector modulation. a) Board design, b) Prototype.

MOSFET half-bridges and gate drives capable of 500kHz pulse-width-modulation frequency at
voltages up to 50V (packaged in Texas Instruments’ DRV8332). The commutation waveforms
are generated on an Atmel XMega A4U microcontroller, which also includes an analog-to-digital
convertor for measuring phase currents using low-side sense resistors. USB and serial host inter-
faces allow the device to be controlled and the sensed values to be reported. I implemented space
vector modulation [171] control for the generation of complementary three-phase signals based
on a sine lookup table using hardware timer/counters. This implementation is significantly sim-
plified by using complementary waveforms (i.e., those which sum to zero at all points in time).
As the sum of all nth roots of unity sum to zero for all n, this holds for our sinusoidal waveforms
with 120◦ phase offset (n = 3), as well as generalizations to n > 3.

6.4.3 Characterization

I fabricated many prototypes of the moving membrane design using the three-phase wire plotted
skin and Halbach magnet arrays on a 3D printed NACA12 hydrofoil with 150mm chord length
and 450mm span, shown in Figure 6.25a. The result of this iteration was a functional proto-
type, shown in Figure 6.25b. In this prototype, 80µm (40 AWG) wires were plotted onto 25µm
polyamide film with silicone adhesive (GizmoDorks) and covered with 2µm PET film (DuPont
Mylar C). Each of the three phase windings consists of a four planar wire 25 turn bundles in se-
ries (organized into two coils). These phases are wye-terminated for a phase resistance of 100Ω.
The hydrofoil includes an adjustment mechanism for tensioning the membrane, as well as a path
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Figure 6.25: Characterizing moving membrane prototype. a) Assembled prototype underwater, showing wire plot-
ted membrane and Halbach magnet arrays on a 3D printed NACA12 hydrofoil. b) Taking high speed underwater
video.

to route the three phase leads away from the hydrodynamic surface.
To optimize the design and microcode in operating conditions, I built a small water tank

designed for collecting high speed video, shown in Figure 6.25c. Using the driver described in
Section 6.4.2, I actuated this prototype underwater at f = 50Hz and 36V sinusoid amplitude,
recording video at 2400 frames per second using a Chronos 1.4 high speed camera.

From this video, I measured a traveling wave amplitude of a = ±500µm. For this design, the
wavelength is λ = 19mm, which gives a wave steepness factor of 2πa/λ ≈ 0.15. This value is
the range of values covered by the simulation literature on traveling wave flow control. Char-
acterizing the shape of these traveling waves from video is difficult due to the small amplitude,
so I used dense optical flow analysis between frames to estimate the velocity of movement at
every pixel. I used the Coarse2Fine dense optical flow algorithm [119, 148] between every
five frames (a time interval of 2ms). Figure 6.26 shows a sample frame from the video, along with
three frames separated by 12ms each that have been blended with the calculated optical flow.
Hue denotes direction (purple is upwards, green is downwards) and value denotes magnitude
(brighter is faster). From this analysis, we can clearly see the propagation of wavefronts at the
speed of λf ≈ 1000mm/s.

We can estimate the power required to drive these traveling waves under optimal conditions
with a simple physical model incorporating the distributed actuator moving mass and the added
mass from the fluid interaction. The moving mass is given almost entirely by the mass of the
copper windings, which we can calculate based on the wire diameter and the plotted geometry.
As a pessimal assumption, we assume all the kinetic energy of the moving mass is dissipated
by the fluid. For a mass m undergoing sinusoidal oscillation z(t) = a sin (2πft), its average
magnitude of acceleration is given by 〈|z̈|〉 = 8πaf 2, and hence the average force required to drive
the moving mass is 〈|Fmm|〉 = 8mπaf 2. Because the mass travels a distance of 4a during one
period, the average power required to drive the moving mass is 〈Pmm〉 = 4a〈|F |〉f = 32πma2f 3.
Now, the added mass force from fluid interaction is given by 〈|Fam|〉 = ρ2π

λ
aA(c − U)2, where

ρ is the fluid density, and A is the area under consideration, c is the wave speed, and U is the
flow speed [33]. As before, we calculate the power required to drive this added mass as 〈Pam〉 =
4a〈|Fam|〉f = 8πρ a2

λ2Ac(c−U)2. In Figure 6.27, we use geometric dimensions from the prototype
and plot the average force and mechanical required for driving traveling waves as a function of
the relative speed (c/U ).

Based on this estimate of required force, we can calculate the corresponding Joule heating
loss in the coils of the actuated skin. Because these electromagnetic actuators have no iron core
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Figure 6.26: Wave characterization by high speed video and optical flow analysis. a) Frame from high speed video,
showing spanwise view of flexible hydrofoil skin, b-d) Extracted frames with overlaid optical flow analysis showing
rightward traveling wave fronts. Color value denotes magnitude (brighter is faster), and color hue denotes angle
(purple is upwards, green is downwards).
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Figure 6.27: Plotting mechanical force and power requirements. a) Components of force required per wire bundle
versus speed ratio c/U , b) Components of mechanical power required versus speed ratio c/U .

and the magnetic field is nearly constant in time, we do not expect magnetic hysteresis losses or
eddy current losses to be significant. Assuming a required average mechanical force output of
5mN per wire bundle (safely above the curves in Figure 6.27) and an average horizontal com-
ponent of magnetic field density of 0.1 T over the actuation envelope of the wire bundle (based
on the 3D finite element modeling of Section 6.4.1), we estimate an average required current of
approximately 7mA. Based on the phase resistance, this current draw incurs a 2mW Joule loss
per wire bundle, or a total of 20mW Joule loss over the entire actuated surface. There is also a
loss associated with the energy stored in the magnetic field of each coil when energized, which
discarded twice per period, but the coil inductances are on the order of 100µH , and so the power
dissipated in this way is well below 1mW . Therefore, the Joule loss combined with the mechani-
cal work required gives a best case estimate of approximately 25mW of electrical power to drive
the traveling waves.

6.4.4 Tow tank testing

After demonstrating traveling waves on a hydrofoil surface in a static tank, I moved to testing
in a flow. For this I used the MIT Towing Tank, a hydrodynamic testing facility where models
are towed through the 30 m x 2.5 m x 1.25 m volume of water using an overhead gantry track,
shown in Figure 6.28a. The traveling wave prototype was mounted vertically in a cantilevered
configuration using a hexagonal aluminum extrusion and a matching 5C collet. To measure drag
and lift forces, a six degree-of-freedom waterproof load cell was used (ATI Gamma 15-50). The
mounted prototype is shown with water level lowered in Figure 6.28.

A series of experimental trials were conducted at a flow speed U = 0.5m/s, giving a chord-
wise Reynolds number ofRe ≈ 7.5×104. The trials were conducted across three angles of attack
(3◦, 5◦, 7◦). To precisely control angle of attack, the loadcell assembly was mounted on a rota-
tional axis with a 3D printed globoid worm drive and stepper motor, shown in Figure 6.29a. This
drive can resolve 0.01◦, but more importantly allows the adjustment of angle of attack remotely
to avoid disturbing the water in the tank. The three-phase driver described in Section 6.4.2 was
mounted on the carriage along with a Raspberry Pi single board computer to allow the control
of traveling wave actuation through a local wireless network.

For each angle of attack, I conducted three trials at values of the speed ratio c/U of 0, 0.2,
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Figure 6.28: Tow tank testing setup. a) The author installing traveling wave experiment on tow tank carriage. b)
View down the tow tank with water level lowered, showing loadcell, collet-holder, and traveling wave prototype.

Figure 6.29: Tow tank testing setup. a) 3D printed globoid worm gear and stepper motor for controlling angle of
attack. b) Three phase driver and Raspberry Pi single board computer for wireless control of traveling waves.

0.4, 0.8, 1.0, and 1.2. To establish the zero angle of attack position, we first bracketed the zero
position by finding two small angles of attack which produced lift forces of opposite sign when
towed. I then linearly interpolated between these values to set the zero position, towing at this
setting to confirm a sufficiently small lift force. During each trial, the force was calculated by first
averaging 500 samples at zero flow speed and no actuation to establish a baseline. The sample
is then accelerated to the testing flow speed and the actuation is started. After a delay of a few
seconds, 5000 samples are averaged to calculate the mean forces on the hydrofoil in each axis.

The results of these trials are shown in Figure 6.30, where we plot average drag force versus
speed ratio c/U for the three angles of attack. Across the three angles, we see a consistent drag re-
duction of 5-15%. This is a significant reduction and is of a similarmagnitude as those predicted by
the simulations in [2]. The power saved by this drag reduction isPsaved ≈ (0.5m/s)×(300mN) ≈
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Figure 6.30: Data from tow tank trials. Plotting drag force versus speed ratio c/U for three angles of attack.

Figure 6.31: Data from tow tank trials. Plotting lift-to-drag ratio versus speed ratio c/U for three angles of attack.

150mW , which is significantly higher than our best-case estimate for required driving power of
25mW . In our experimental prototype, however, the driving power for the whole system is on
the order of several Watts, due to the open-loop control strategy and drive inefficiencies.

Figure 6.31 shows the average lift-to-drag ratio during these same trials. We see that in most
cases tested, lift-to-drag ratio remains largely constant with respect to c/U , though in the 3◦

angle of attack case we see a reduction in this ratio. This also aligns with the predictions of [2]
that show if the actuation amplitude is too large, a reduction in lift is caused. In this traveling
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wave prototype, there is no feedback mechanism to precisely control the actuation amplitude,
and so an increased wave amplitude is a possible explanation for the lift reduction.

6.5 Wire plotting applications

Besides the this hydrodynamic use case, the wire plotting process developed in this chapter has
shown considerable potential for a range of other active structures.

As the achievable conductor placement density is an order of magnitude higher than con-
ventional printed circuit board fabrication and the material costs scale with the volume of active
materials rather than with volume of the device’s bounding box, this process is a viable way to
directly write electronic interconnect. Figure 6.32a shows an example of doing just this, where
a netlist of component connections has been converted into a wire plotting path. To streamline
the process, we can calculate a Hamiltonian path through the sites to visit (shown in purple), and
then calculate a cutting path to remove the unwanted traces, or singulate the desired traces. This
singulation path is shown on blue. Figure 6.32b-c show microscope images of prototypes of wire
plotted circuits, where a path visiting each lead of a microcontroller with a TQFP footprint was
plotted and then singulated. The pads were then stripped of their insulation using a fiber laser
and the surface mount component was placed and soldered as in conventional printed circuit
board population.

In addition to circuits, a range of other sensors and actuators can be plotted from wire. I
demonstrated wire plotting of capacitive touch buttons and sliders, as well as inductive sensors
like linear variable differential transformers for precision servo control. Figure 6.33 shows wire
plotting of planar speakers for high performance audio with tailorable frequency response. First
a substrate is populated with small rod magnets, then a membrane is wire plotted and stretched
over the magnetic substrate and a speaker is formed. Figure 6.33c shows a microscope image of
the wire plotting path, which is designed to cut the magnetic field perpendicularly.

Finally, in Figure 6.34, I show a wire plotted brushless motor. Motors without a flux concen-
trating core, like this prototype, are called ironless, and are known for high efficiency and power
density. They are usually expensive due to difficulty manufacturing and cooling the stator wind-
ings, but wire plotting allows both issues to be addressed. Figure 6.34a shows the wire plotted
stator windings, which are folded to accumulate turn density and wrapped around the stator
body Figure 6.34b. The stator and the rotor, which consists of a Halbach array produced using
the methods described in Section 6.4.1, are then joined to form the motor in Figure 6.34c-d. The
stator windings are backed by wire plotted heat pipes, which keep them cool and allow the motor
to operate efficiently, despite the time varying magnetic field which would cause eddy heating in
a monolithic heatsink.

As these examples demonstrate, the achievable density and scaling of wire plotting allows
conventionally distinct manufacturing processes for active structures to be combined into a single
monolithic process. For instance, brushless servo-motors like the one described above can be
made by plotting conductive wires to form electrical phases, soft magnetic wires to guide flux,
thermally conductive wires to manage heat, and additional wire circuits to integrate encoders,
current sensing, and drive electronics. Conventionally, such a motor would require many distinct
processes (each with tooling and infrastructure costs) to produce many distinct components to
be assembled (introducing uncertainty and model mismatch). Monolithic, tool-free construction
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Figure 6.32: Wire plotting circuit boards. a) Board design showing Hamiltonian path routing (purple) and sin-
gulation cut paths (blue), b) Microcontroller with TQFP footprint soldered to wire plotted circuit board after laser
stripping, c) Detail of wire plotted TQFP footprint after stripping and soldering.

Figure 6.33: Wire plotted planar speakers, a) Phenolic substrate populated with rod magnets, b) Wire plotted carbon
membrane stretched over substrate, c) Microscope image of speaker coil.

Figure 6.34: Wire plotted ironless motor. a) Three phase stator windings plotted and terminated, b) Stator folded
to accumulate turn density and wrapped onto stator body, c) Stator and rotor with radial flux Halbach array, d)
Assembled motor, showing wire plotted heat pipes for stator thermal management.
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reduces costs of customization, shortens development cycles, and enables robust computer-aided
optimization. In this way, wire plotting can significantly simply manufacturing active structures,
aiding their incorporation into architected materials.

6.6 Conclusions

In this chapter, I designed and built active folded architected materials with embedded actua-
tion to drive deformation modes of the structure. Our main application was driving traveling
waves on a hydrofoil surface in order to control the flow and reduce drag. I demonstrated several
approaches for embedded actuation meeting the application requirements and tested one such
prototype, demonstrating a significant drag reduction of 5-15%.

This suggests many directions for future work. First, implementing amplitude control in the
traveling wave prototype is a clear next step. This could likely be done by measuring back-emf
waveforms to estimate the relative velocities between wire and magnets (i.e., the same way that
many brushless motor controllers measure rotor position). By controlling for wave amplitude, the
power required to drive the actuated surface should be significantly improved. Second, increasing
the hydrofoil aspect ratio (the ratio of chord length to span length) should not only improve
hydrodynamic performance and drag savings of the prototype by reducing the influence of 3D
flow effects, but also increases the ratio of force-generating wire length to total wire length,
reducing the effect of Joule losses. This work demonstrates manufacturable systems that could
be incorporated into a variety of streamlined aerodynamic and hydrodynamic components, like
airfoils sections, ship hulls, vehicle fairings, automobile panels. If separation is delayed on foils
with nonzero angle of attack, the potential for turbulent drag reduction can be quite large, and
the impact on these applications significant.

The method of plotting fine wire also has many applications in active structures besides the
hydrodynamic test case which was the focus of this chapter. In Section 6.5, I demonstrated plot-
ting wire for high density interconnect of commercial integrated circuits, as well as for con-
structing custom sensors and actuators. This approach to additive manufacturing of electronics
not only provides better material properties and lower costs than conductive ink printing, but
also achieves higher densities than conventional printed circuit board fabrication.
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Chapter 7

Conclusions

I started this thesis by noting the engineering potential of architected materials, the limitations
of additive manufacturing, and the combined manufacturing efficiency and geometric richness
made possible by patterning and folding planar sheets. I then set out to show that while folded
fabrication does not have the geometric universality attributed (somewhat inaccurately) to ad-
ditive manufacturing, the range of geometries producible by patterning and folding flat sheets
spans a rich enough space to scalably solve engineering problems of importance.

Through a set of five case studies I worked to demonstrate this capacity. In Chapter 2, I showed
a mathematical construction and a custom machine for producing shaped structurally-efficient
architected materials from a flat sheet, filling the volume bounded by arbitrary heightmaps using
only cutting and folding operations. In Chapter 3, I demonstrated control over the stiffness of a
folded architected material in addition to its shape, showing the ability to span a similar range as
a wide variety of engineering foams. In Chapter 4, I demonstrated material resilience, develop-
ing a design method for architected materials with curved creases, a composite manufacturing
technique to fabricate them, and dynamic impact test equipment for evaluation. The fabricated
prototypes showed energy return approaching that of state-of-the-art polymer foams, and re-
lied geometry rather than chemistry and thermal processes for achieving this performance. In
Chapter 5, I showed material toughness, designing, fabricating, and testing a folded architected
material with specific energy absorption twice that of commonly used honeycombs. Finally, in
Chapter 6, I developed several methods for building active folded structures, capable of embed-
ding actuation, sensing, and computation within a folded architected material. I demonstrated
this potential by building a hydrofoil capable of driving traveling waves on its surface and mea-
sure its ability to reduce drag using this actuation.

Each of these examples has important engineering applications in its own right, but taken
together, they demonstrate the more general potential of folded architected materials for next-
generationmanufacturing. Not only can geometric design be used to increase performance, but in
many cases, less material can be used to meet design specifications, undesirable materials can be
replaced with more benign ones, and energy-intensive thermal manufacturing processes can be
replaced by efficient isometric operations. The cost of customization can be reduced by avoiding
molds and tooling, and multiple functional parts can be combined to simplify designs and supply
chains. These advantages can be used to solve a host of problems across the engineering and
manufacturing space. To illustrate this, I turn to one of the greatest challenges of our time: the
decarbonization of the global economy.
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Figure 7.1: Sankey diagram of global energy economy, showing transformation steps from primary sources to final services. (Data updated and from Cullen and
Allwood’s diagram of the 2005 energy economy [46])
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Figure 7.1 shows a graphical representation of the 2018 global energy economy, called a
Sankey diagram, tracing the flow of energy from primary sources to final services. The width
of each strand represents the magnitude of the energy flow, tabulated in terms of primary en-
ergy, so that in any vertical slice the sum of strands represents the total flow of 600 exajoules
(EJ) per year. We can see that roughly one third of this energy is used in vehicles, one third in
factories, and one third in buildings. Despite this breakdown, however, most energy efficiency
efforts today focus only on the energy used in vehicles and buildings (e.g., electric vehicles, LED
lighting, etc.). The third of energy used in factories, responsible for the refinement of raw mate-
rials into useful devices, feeds into all of the eight end use sectors and represents an enormous
challenge and opportunity for energy demand reduction.

The work presented in this thesis is aimed at this neglected third of global energy usage, as
increased control over geometry in architected materials can enable greater material efficiency.
For instance in Chapter 2, I showed structurally-efficient net-shape production of honeycombs.
Such shaped structures could be directly incorporated into structural building components, or
into molds for pouring concrete elements. It is estimated that 30-40% of structural beam steel can
be eliminated without any reduction in performance simply by using variable cross section beams
instead of common prismatic beams which are easier to manufacture [36]. Similarly, eliminat-
ing over-design of concrete components (largely due to standardized and geometrically-limited
formwork) has the potential to reduce structural cement use by 20% [167]. Both of these are enor-
mous opportunities for energy demand reduction through material efficiency, as we can see from
Figure 7.1 that steel and concrete are responsible for approximately one third of factory energy
use, and the structural end use category alone requires 85 EJ per year.

In addition to material efficiency, folded architected materials offer reductions in the man-

Figure 7.2: Material and manufacturing energy in footwear production. (Data derived from [39])
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ufacturing energy used to process those materials. For instance, in Chapter 3 and Chapter 4, I
demonstrated the capabilities necessary to replace the use of foams in the production of footwear.
While this application may seem energetically insignificant, it is estimated that 10 billion pairs of
athletic shoes are sold each year [95]. Each pair requires approximately 100 MJ in manufacturing
energy [39], bringing the extended energy requirement to approximately one exajoule! A de-
tailed breakdown of manufacturing energy, as well as materials energy, of footwear is shown in
Figure 7.2. We see that 85% of this manufacturing energy is required to make the midsole, trusstic,
and outsole; most of this goes into the heat required for injection molding, foam blowing, and
compression molding. By replacing the thermal processes used for these components with cold,
isometric processes enabled by folded constructions, we can greatly reduce the energy intensity
of footwear. For instance, reducing the energy intensity of the footwear industry just to that of
molding industry as a whole constitutes a potential savings of hundreds of petajoules [39].

Finally, as thematerial flows of Figure 7.1 touch all eight end-use categories, folded architected
materials offer performance-based energy reductions in addition to the material and manufactur-
ing efficiency benefits described above. In Chapter 6, I demonstrated active structures, including
flow control based on driving traveling waves on a hydrofoil surface. We showed a drag reduc-
tion of 10-15%, and analysis suggests this can be made energetically viable (saving more energy
from drag reduction than is required to drive the waves). If even a 5% gain were realized and
deployed to hulls of ships, the savings could total hundreds of petajoules globally. In Chapter 5,
I showed folded architected materials with specific energy absorption twice that of commonly
used honeycombs. Such energy absorbers could aid widespread adoption of ultralight electric
vehicles, which can replace cars for the 30% of vehicle miles traveled in the U.S. on trips of length
shorter than 10 miles [109] (a 15 EJ electrification opportunity), but are limited by difficulties in
meeting safety requirements without adding significant mass. In other energy absorbing appli-
cations, folded architected materials can replace the use of polystyrene and other foams, not only
improving performance, but also reducing use of toxic constituent chemicals and hydrocarbon
supply chains.

These opportunities for material efficiency, manufacturing efficiency, and performance ef-
ficiency illustrate the tremendous potential of folded architected materials to change the way
things are made. By leveraging the scalability of planar processing and the geometric richness
of origami, we can do explicit geometric design of desired properties, effectively putting infor-
mation into materials. In this way, we not only reveal widespread opportunities to do more with
less, but also enable unprecedented functionalities as we move ourselves and our things, build,
eat, keep clean, warm, connected, and lit.
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Appendix A

Lessons

Following the wonderful example of Ara Knaian [108], I’m including this chapter to document
high-level strategies and low-level tips I’ve picked up during my PhD. Your mileage may vary.

A.1 Strategies

Simplify. There’s no time for anything to bemore complicated than it can be. Especially if you’re
planning to build it.
Bisect problems. Find a working instance and a non-working instance and bring them towards
each other. Once you’ve bracketed, the problem is as good as solved.
Factor tasks. Seek out the minimum set of dependent functions and test them in isolation.
Combining two working pieces is (usually) much easier than developing everything at once.
Close loops early and often. Without feedback, there is no way to evaluate. Evaluation is the
only way to figure out which un-modeled parameters are actually the most important part of a
problem. Test your models by building prototypes. Test your prototypes by building models.
Keep records. Write copious notes. Take a picture or screenshot every day. Use video for process
debugging. Remove barriers to spur-of-the-moment documentation.
Digest and share notes in a timely manner. Packaging knowledge for others is an effective
way to find and fix gaps. Having others react and free-associate is a huge productivity booster.
Create your own datasets. Compiling information from disparate sources dramatically in-
creases its value. Don’t fret over assumptions – just document them.
Grab the right tools. Clean, sharp tools and lots of light go a long way.
Use CAD as a tool, not a crutch. Only model what is necessary. Parameterize everything.
Prioritize interoperability. Use APIs. Write your own.
Manage the toolmaker’s regression. Great results can come frommaking tools to make things
no one else can. Great amounts of time can be wasted making the tool that lets you make the
tool to make a tool. Managing this regression requires working in parallel across dependencies,
instead of stacking them serially. Augment existing tools instead of reinventing them completely.
Copy reference designs. Substitute commercial components where you don’t add value. Cheat
any way you can.
Don’t finish all the fun steps before the end of day. Leave something exciting to get you out
of bed in the morning.
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Be deliberate about supply-side and demand-side timemanagement. Supply-side puts you
in control. Demand-side forces action. Neither are appropriate 100% of the time.
Exercise. Duh.
Care for others and ask for care. Everyone I know well is both stronger and weaker than they
originally appeared. We can help each other flourish.

A.2 Tools and Tips

Atmel XMega A4. This microcontroller will always have a very special place in my heart. Its
performance routinely bests that of others that should be much better, and the certainty of single-
cycle instruction makes sensing and controlling uncertain systems much easier.
Single board computer as wifi access point. Having an operating system in an embedded
device can be really useful but headless nodes can be a pain to network when routers are inac-
cessible or variable. Configuring the device as an access point, rather than a client is easy and
takes all the black boxes out of the equation.
Fast packet radios. Wireless doesn’t have to mean high latency. Packet radios (like nRF24L01
and nRF52832) can send messages in around 100µs round trip.
Magnetic position sensing. Used differentially, Hall effect sensors give a cheap, reliable, and
(when temperature compensated) remarkably accurate way to measure position across relatively
large air gaps. The magnetic fields can also be shaped to give more flexibility.
Tag-Connect pogo-pin cables. Freedom from programming headers means smaller boards and
less soldering.
Kozak micro-adjustment screws. Ball-end screws and bushings with 80 to 500 threads per
inch for just a few dollars. Easy to incorporate for precise calibration.
Belleville washers and flexures around bearings. In prototype machines, I’ve found bearings
are much more likely to fail from assembly forces and misalignments than from the loads of
routine use. Elastic elements like Belleville washers and flexures can almost always be used to
accommodate assembly uncertainty without sacrificing performance in the axes that matter.
Two-part adhesive cartridges with Luer-Lokmixing tips. A range of high performance two-
part adhesives are available in cartridges with mixing tube attachments. This means you only mix
what you need, and usually get a little extra working time. The Luer-Lok connection means a
variety of dispensing needles and tips can be used to size the bead perfectly.
PTFE-coatedfiberglass cloth. This stuff can handle plenty of heat and doesn’t stick to anything.
It comes in permeable and impermeable varieties – both are useful.
Freeze spray for prepreg. The thin prepregs used in this thesis are impossible to handle with-
out carefully controlled temperature gradients. Warming under vacuum consolidates the fibers.
Chilling with freeze spray makes them stick together to remove the liner.
Resin transfer molding. My best molding results have always been using vacuum or pres-
sure assisted resin-transfer processes. Vacuum-assist minimizes plumbing – polyethylene tubing
press-fit into a drilled hole can be self-sealing. Pressure-assist can transfer resin through higher
resistance. Compression fittings can be drilled out so tubing can pass through while maintaining
a robust seal – this can be used to drive resin from a mixing cup inside a pressure chamber.
EDM Two-Cut. Electric discharge machining is an incredibly capable process, but it becomes
about twice as useful when you cut, rotate stock by 90◦ about a horizontal axis, and cut again.
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Appendix B

Nonlinear Simulation Using Bicubic

Hermite Patches

This work develops a simulation model for structural origami by modeling facets as bicubic Her-
mite patches. Using this polynomial form, we express the deformed shape as a function of the
positions and derivatives of the facet at its corners. This parameterization is a convenient way
to describe origami, and hence many relevant boundary conditions are easily implemented. We
derive expressions for the bending and stretching energy densities of the facet in terms of this
parameterization and combine multiple facets along creases to simulate origami patterns. Finally,
we perform experimental tests and compare the results to simulation.

B.1 Introduction

As interest in structural origami and kirigami has grown, there has been a growing need for scal-
able methods for analyzing mechanical properties of folded sheets. Conventionally, this analysis
would be involve decomposing each panel into many smaller elements and performing finite ele-
ment analysis. This approach can quickly become too computationally intensive to be useful for
origami design. Alternatively, several recent approaches including [164] and [62] have shown
that surprisingly accurate solutions can be obtained by creating bar and hinge models of a folded
sheet with with bar lengths on the order of the facet size of the folded sheet. These methods have

Figure B.1: Nonlinear simulation of two origami crease patterns using bicubic Hermite patches, both sections of
Tachi-Miura polyhedra[137]. A) α = 75

◦, B) α = 60
◦. Elastic energy density is visualized over the origami pattern

and the nonlinear force-displacement curves are graphed.
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proven scalable and able to reveal insights about deformation modes that are difficult to see with
finite element analysis [63].

Inspired by these approaches, this research develops a method of analyzing folded sheets
using elements of similar physical size to the facets, but which does not approximate facets us-
ing one-dimensional elements or low-degree two dimensional elements. Instead, we use two-
dimensional bicubic Hermite patches to model each facet. Because the deformation is linear with
respect to bicubic coefficients, we can express quantities like material strain and curvature in
terms of the positions, tangent vectors, and mixed derivatives of the patch at its corners. Thus,
despite having 48 scalar degrees of freedom for each patch, the stiffness equation on Hermite
patches can be solved efficiently. This allows us to frame an elastic energy minimization in terms
of a system of equations which can be solved using iterative methods. We hypothesize the large
number of facet degrees of freedom allows these elements to capture the complex strain fields
which are common in structural origamimore accurately than lower degree elements. This model
captures the geometric nonlinearity [8] which is common in structural origami while being con-
venient to work with, as the quantities being solved for represent positions and tangents of the
vertices of the origami pattern. As the origami pattern directly determines model elements, im-
plementing boundary conditions along edges, hinge constraints between plates, and non-ideal
crease behavior is easier than with subdivided facets. Further, because bicubic patches can have
curved edges, this representation would easily capture curved crease origami, simulating the
structural responses of such structures without the need for subdivision.

In this work, we detail our mathematical approach, starting from physically based equations
for strain energy in a thin plate and deriving a system of equations with variables given by po-
sitions and spatial derivatives of the four vertices of each facet. We then extend these per-facet
equations to a system for the full crease pattern by modifying the equations to attach incident
edges. We also implement common boundary conditions (e.g., a force applied along an edge, or an
edge constrained to move only in certain directions) which are natural to express in this frame-
work. We also compare these methods to physical experiments applying a compressive force to
cellular materials based on Tachi-Miura polyhedra.

B.1.1 Derivation

In this section, we develop the mathematical framework for our model, using bicubic Hermite
patches to represent the deformed state of each origami facet. Such an Hermite patch in R

3 is
given by a bicubic polynomial with vector valued coefficients:

p(v, w) =
3

∑

i=0

3
∑

j=0

ci,jv
iwj (B.1)

where v, w ∈ [0, 1] and ci,j ∈ R
3. We now seek to express the coefficients ci,j in terms of the

positions and derivatives of p at the patch corners, that is, where v, w ∈ {0, 1}. To this end, we
differentiate with respect to v and w:

pv(v, w) =
2

∑

i=0

3
∑

j=0

ci,j(i+ 1)viwj (B.2)
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pw(v, w) =
3

∑

i=0

2
∑

j=0

ci,j(j + 1)viwj (B.3)

and finally with respect to v then w:

pv,w(v, w) =
2

∑

i=0

2
∑

j=0

ci,j(i+ 1)(j + 1)viwj (B.4)

We can evaluate these four equations at each of the corners points (v, w) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
to generate 16 equations in the 16 unknown coefficients. We can write this as
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where the summation equations have been combined into the matrixM .
Using thismatrix expression, we can easily calculate and invert thematrixM using a symbolic

math environment. We include the values in Appendix B.4. If p̃ and c̃ represent the vectors on
the left and right hand side of Equation B.5, we can write

c̃ =M−1p̃ (B.6)

That is, we can write the coefficients of the Hermite patch as linear combinations of the positions
at the plate corners (e.g., p(0, 0)), derivatives at the corners (e.g., pv(0, 0), pw(0, 0) ), and the
mixed partial derivatives at the corners (e.g., pv,w(0, 0) ).

Next, we assume the Hermite patch deforms as a thin plate, and seek to write the bending
and stretching energy densities of the plate in terms of the Hermite coefficients (and hence, in
terms of the positions and derivatives at the corners). The solid mechanics of thin plates and
derivations of energy densities is given in [204]. Assuming Hookean elasticity and plane stress,
if Ub(v, w) and Um(v, w) are the bending and stretching energy densities, respectively, we have

Ub =
D

2

(

(κvv + κww)
2 − 2(1− ν)(κvvκww − κ2vw)

)

(B.7)
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Um =
C

2

(

(ǫvv + ǫww)
2 − 2(1− ν)(ǫvvǫww − ǫ2vw)

)

(B.8)

where κ is local curvature and ǫ is local strain with subscripts defining the directions of mea-
surement. In these equations, D = Et3/(12(1 − ν2)) and C = Et/(1 − ν2), where E is the
material elastic modulus, ν is the material Poisson ratio, and t is the material thickness. With
these energy densities, we can calculate total elastic energy as the integral of the sum of bending
and stretching energies over the area of the patch:

E =

∫ 1

0

∫ 1

0

(Ub + Um) dvdw (B.9)

To calculate these expressions, we need a deformation of the facet from its rest state. Let
p0(v, w) define the flat state, for which we assume total elastic energy is zero. We define the
deformation as u(v, w) = p(v, w) − p0(v, w) and the stacked vector ũ = p̃ − p̃0 as in Equa-
tion B.6. We now use derivatives with respect to v and w to build a local coordinate system for
expressing strain ǫ and curvature κ. We note that technically the local coordinate system should
be orthogonalized, but in many cases of interest the derivatives with respect to v and w are very
nearly orthogonal already. If uv is the deformation in the direction of ∂vp, then uv = u · Tv,
where Tv = ∂vp/|∂vp| is the local unit tangent vector in the v direction. Similarly, we de-
fine uw = u · Tw, where Tw = ∂wp/|∂wp| is the local unit tangent in the w direction and
N = ∂vp× ∂wp/|∂vp× ∂wp| is the local unit normal vector.

This local coordinate system will help us write the energy expressions above in a way that
facilitates their minimization with respect to ũ. In our bicubic deformation, p is linear in ũ, so
we have u = ∂ũp · dũ. The local unit coordinate vectors (Tv, Tw, N), however, are not as simple,
so we do not attempt to write them in a form that can be explicitly solved for ũ. Instead, we
linearize our system by treating the coordinate vectors as constant with respect to ũ. We then
iteratively solve the linear system, line search along the solution direction to minimize energy,
and update the coordinate vectors.

To write the energy density expressions above, we first compute the strain tensor [204]:

ǫij =
1

2

(

∂jui
|∂jp|

+
∂iuj
|∂ip|

)

(B.10)

where i and j range over v and w. The summands have been normalized to create arc-length
parameterizations in the coordinate directions.

ǫvv =
1

|∂vp|
(Tv

⊺∂v∂ũp+ ∂vT
⊺

v∂ũp) dũ (B.11)

ǫww =
1

|∂wp|
(Tw

⊺∂w∂ũp+ ∂wT
⊺

w∂ũp) dũ (B.12)

ǫvw =
1

2

(

Tw
⊺∂v∂ũp+ ∂vT

⊺

w∂ũp

|∂vp|
+

Tv
⊺∂w∂ũp+ ∂wT

⊺

v∂ũp

|∂wp|

)

dũ (B.13)

Similarly, we can calculate the curvature [204]:

κij = − 1

|∂ip||∂jp|
∂2(u ·N)

∂i∂j
= −

(

1

|∂ip||∂jp|
N⊺

∂2

∂ij

∂p

∂ũ

)

dũ (B.14)
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where i and j range over v and w.
The expressions multiplied by dũ in the above can be expressed as matrix functions of the

Hermite patch corner positions and derivatives, as well as the values of the patch parameters v
and w. We use a symbolic math environment to write these expressions and combine them as in
Equation B.7 and Equation B.8. We export executable code because the expressions are quite long.
We then evaluate these expressions at Gaussian quadrature points, numerically integrating over
the patch. The result can be thought of as a tangent stiffness matrix, common in finite element
analysis. This matrix times a vector of displacements in the positions and derivatives at the plate
corners gives us an expression for total elastic energy of the facet. The energy expression itself
is not linear however, as if we move to another deformation, this tangent stiffness changes and
must be recalculated.

At one deformation configuration, we use standard finite element techniques to couple multi-
ple plates along their edges and apply boundary conditions while preserving the symmetry of the
stiffness matrix[25]. A convenient property of the Hermite parameterization is that two plates
are joined along their full edge if and only if their positions and tangent vectors in the direction
of the edge match at the two corners incident to the edge. Similarly, it is natural to express a
boundary condition of an edge held against a flat surface by constraining the incident nodes’
positions to lie on the surface and the incident tangents along the edge not pierce the surface.

The sparse linear system resulting from all the facets in the origami structure can be solved
efficiently, yielding a vector of deformations at the facet corners which points along negative
gradient of the potential energy. We use this solution in a quasi-Newton solver to minimize the
elastic energy and produce a solution for the deformed state. Figure B.1 shows two example
simulations of origami structures. To calculate the loading curve, we gradually apply the natural
boundary condition, plotting displacements of loaded vertices. The colored field is local strain
energy (i.e., Ub + Um).

Besides calculating deformed states, we can also extract reaction forces at nodes and edges.
The nodal reactions are calculated in a straightforward way from the linear system, but edge
reactions are less obvious. To calculate this, consider the patch boundary w = 0 (the other
boundaries are similar). We have

p(v, 0) = p(0, 0) +
∂p

∂v
(0, 0)v (B.15)

+

(

−3p(0, 0) + 3p(1, 0)− 2
∂p

∂v
(0, 0)− ∂p

∂v
(1, 0)

)

v2 (B.16)

+

(

2p(0, 0)− 2p(1, 0) +
∂p

∂v
(0, 0) +

∂p

∂v
(1, 0)

)

v3 (B.17)

To calculate the effect of reactions in the derivative terms on the output degree of freedom, we
consider an equivalent point load at the midpoint, where

p(
1

2
, 0) =

1

2
p(0, 0) +

1

2
p(1, 0) +

1

8

∂p

∂v
(0, 0)− 1

8

∂p

∂v
(1, 0) (B.18)

We attribute nodal reactions at the nodes, so we are interested in the displacement of the
center nodes from derivative terms alone:

p(
1

2
, 0) =

1

8

(

∂p

∂v
(0, 0)− ∂p

∂v
(1, 0)

)

(B.19)
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Conservation of energy implies the generalized forces of the derivative terms can be accounted
for by a force at the midpoint:

Fmidpoint = 8
(

F ∂p

∂v
(0,0) − F ∂p

∂v
(1,0)

)

(B.20)

The generalized forces on the right hand side can be read off directly from the minimal energy
solution vector. This expression is very useful when we want to constrain a plate boundary to lie
in a plane and measure the reaction on the plane.

B.2 Results

To validate the simulations above, we performed a series of experimental tests of origami struc-
tures. The samples under test were arrays of Tachi-Miura polyhedra [137], a tileable pattern with
behavior with an auxetic origami mechanism with respect to compression in the direction of the
cylinder axis. Because of this, the compliance of the samples when loaded in compression by a
flat plate comes from a combination of the origami mechanism and elastic deformation of the
underlying material. For this reason, these patterns were selected as a good target for simulation
with the Hermite element method described above.

The samples were fabricated from .25mm polypropylene using a laser cutter to cut the re-
quired slits and outline, and half-cut the mountain and valley folds. Patterns were designed with
α = 50◦, 55◦, 60◦, 65◦, 70◦, and three samples were constructed of each angle value. The samples
were tested using an Instron 4411 material characterization machine while being held at their
edges and supported from below (shown in Figure B.2a). The load was applied with a rectangular
plate with an area of approximately 8 cm2. The samples were loaded cyclically between 0N and
100 N six times. The last load cycle for each sample is shown in Figure B.2b.

Figure B.2c shows the result of simulating the loading of these samples using our Hermite
patch model. We assume frictional contacts with the lower and upper surfaces, constraining the
lateral displacement of the loaded nodes. We apply a displacement boundary condition to the
loaded nodes in steps and calculate the reaction force at each step to extract the loading curve.
The reaction force is summed over the contributions of all loaded nodes and edges.

For both experimental and simulated loading curves, we extract an estimate of stiffness by
fitting a line to the loading curves and comparing the values across values of α. These values are
plotted in Figure B.2d. While the exact values of these stiffnesses are likely subject to inaccuracies
in experiment and modeling, the orders of magnitude are commensurate.

B.3 Conclusions

In this work, we have derived a model for simulating structural origami using bicubic Hermite
patches to represent facets of our origami pattern. Leveraging the form of the bicubic function,
we expressed the coefficients used to calculate the shape in terms of the positions and derivatives
of the patch at its vertices, a convenient way to describe origami. Assuming the facet behaves
as a thin plate, we expressed the bending and stretching energy densities in a form that can be
evaluated in terms of these positions and derivatives. We implemented this facet formulation
and extended the model to include multiple facets joined along crease lines. Finally, we imposed
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Figure B.2: A) Polypropylene samples folded and held in materials characterization machine, B) Force-displacement
curves for the samples, C) Simulated force-displacement curves for a variety of Miura angles, D) Comparison of
instantaneous stiffness for a variety of Miura angles between simulation and experiment.

boundary conditions and wrote a nonlinear quasi-Newton solver to produce minimum energy
configurations. The results of this simulation are not only visually believable, but show a rough
match with experimental data.

In future work, we plan to more fully test this formulation, comparing it against not only
experimental data, but also other simulation methods. Following the example of [62], this testing
will include both simple models where sources of discrepancy can be analyzed, as well as complex
models where scalability can be evaluated.

Further, we also plan to move much of the computation from a CPU implementation to a GPU
implementation. The majority of the computational burden of this model is not in solving the
linear systems but instead in evaluating functions on the integration grid of the facets, which
can be easily parallelized. Consequently, the GPU implementation would likely be considerably
faster-running than the CPU version.

If this work is successful, this Hermite patch model could become a useful tool for structural
origami analysis and design. Unlike simpler origami models, this approach can capture some
localized deformations. The systems resulting from this model, however, are likely to be smaller
than those from discretized finite element analysis. In this way, the Hermite patch model could
be useful for cases when localize effects are important but finite elements are too expensive.
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B.4 Matrix values

For reference, we include the values for symbolically computed matricesM andM−1 referenced
in Section B.1.1

M =
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 0 1 2 3 0 2 4 6 0 3 6 9
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M−1 =
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

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−3 0 −2 0 0 0 0 0 3 0 −1 0 0 0 0 0
2 0 1 0 0 0 0 0 −2 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 −3 0 −2 0 0 0 0 0 3 0 −1 0 0 0 0
0 2 0 1 0 0 0 0 0 −2 0 1 0 0 0 0
−3 −2 0 0 3 −1 0 0 0 0 0 0 0 0 0 0
0 0 −3 −2 0 0 3 −1 0 0 0 0 0 0 0 0
9 6 6 4 −9 3 −6 2 −9 −6 3 2 9 −3 −3 1
−6 −4 −3 −2 6 −2 3 −1 6 4 −3 −2 −6 2 3 −1
2 1 0 0 −2 1 0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 −2 1 0 0 0 0 0 0 0 0
−6 −3 −4 −2 6 −3 4 −2 6 3 −2 −1 −6 3 2 −1
4 2 2 1 −4 2 −2 1 −4 −2 2 1 4 −2 −2 1
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