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0.1 Abstract

Quantum Computation: Theory and I mplementation
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May 7, 1999

Quantum computation is a new field bridging many disciplines, including theoretical physics,
functiona analysis and group theory, electrical engineering, algorithmic computer science, and
guantum chemistry. The goal of thisthesisisto explore the fundamental knowledge base of
guantum computation, to demonstrate how to extract the necessary design criteriafor a
functioning tabletop quantum computer, and to report on the construction of a portable NMR
spectrometer which can characterize materials and hopefully someday perform quantum
computation. This thesis concentrates on the digital and system-level issues. Preliminary data and
relevant code, schematics, and technology are discussed.
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"Because it's there!" — George Mallory, before dying on Mt. Everest, on why he
wanted to climb it

|. Introduction

Why build a quantum computer? Because it’ s not there, for one thing, and the theory of quantum
computation, which far outstrips the degree of implementation as of today, suggests that a
guantum computer would be a incredible machine to have around. It could factor numbers
exponentially faster than any known agorithm, and it could extract information from unordered
databases in square-root the number of instructions required of aclassical computer. As
computation is a nebulous field, the power of quantum computing to solve problems of traditional
complexity theory is essentially unknown. A quantum computer would aso have profound
applications for pure physics. By their very nature, quantum computers would take exponentially
less space and time than classical computers to simulate real quantum systems, and proposals have
been made for efficiently simulating many-body systems using a quantum computer. A more
exotic application is the creation of new states which do not appear in nature: for example, a
highly entangled state experimentally unrealizable through other means, the 3-qubit Greenberger-
Horne-Zellinger state

|000) +|111),
has been prepared on an NMR quantum computer with only 3 operations, a Y(p/2) pulse followed
by 2 CNOTSs, applied to the spins of trichloroethylene (Laf97). Computational approaches to
NMR are interesting for their own sake: Warren has coupled spins as far as millimeters apart,
taking advantage of the properties of a phenomenon known as zero-quantum coherence to make
very detailed MRI images (War98). Performing fixed-point analyses on iterated schemes for
population inversion can result in very broadband spin-flipping operators — in such a scheme, the
Liouville space of operatorsis contracted towards a fixed point, so that operators that are
imperfect (due to irregularities in the magnetic field, end effects of the stimulating coil, impurities
in the sample, etc.) nevertheless result in near-perfect operations (Tyc85) (Fre79). These smple
uses of nonlinear dynamics and the properties of solution have shed light on certain computational
aspects of nuclear magnetic resonance.

But performing a quantum computation as simple as factoring 15 will involve the creation and
processing of dozens of coherences over extended periods of time. This presents an incredible
engineering challenge, and may open up new understandings on both computation and quantum
mechanics.

Undoubtedly we will someday have quantum computers, if only to maintain progressin
computation. It has been widely speculated that within a few decades, the incredible growth which
characterizes today’ s silicon age will come to a gradual halt, smply because there will be no more
room left at the bottom: memory bits and circuit traces will essentially be single atoms on chips,
the cost of afabrication plant will be “the GNP of the planet,” and there will probably be lots of
interesting problems to solve which require still more computing power. This power will have to
come from elsewhere — that is, by stepping outside of the classical computation paradigm.

Other fields related to quantum computing, which might be said to fall into the newborn field of
‘quantum control,” include quantum teleportation, quantum manipulation, and quantum



cryptography. Quantum teleportation is an appealing way to send quantum states over long
distances, something no amount of classical information can ever do (probably), and has been
realized for distances exceeding 100 kilometers (Bra96). Quantum means of cryptography are
unbreakable according to the laws of physics, and using quantum states to send messages
guarantees that eavesdroppers can be detected (L099).

Furthermore quantum computing joins two of the most abstruse and surprisingly nonintuitive
subjects known to humans. computation and quantum mechanics. Both have the power to shock
the human mind, the former with its strange powers and weaknesses, and the latter with its
nonintuitive picture of nature. Perhaps the conjunction of these two areas will yield new insights
into each. For the novice in thisfield, past overview papers on quantum computing include
(Bar96) (L1095) (Ste97).

There are powerful alternatives to quantum computing which may have more immediate
significance for the computing community. Incremental improvements in silicon fabrication (such
as MEM S-derived insights, low-power and reversible design principles, copper wiring strategies,
intergate trench isolation, and the use of novel dielectrics), reconfigurable computing and field
programmable gate arrays, single-electron transistors, superconducting rapid single-flux quantum
logic, stochastic and defect-tolerant computers, ballistically-transporting conductors, printable and
wearable computers, dynamical systems capable of computation, memory devices consisting of
guantum dots and wells, and many other technologies are vying for the forefront. Any of them, if
lucky and well-engineered, could jump to the forefront and perhaps render the remainder
obsolete, much like the alternatives to silicon in the heyday of Bardeen and Intel. It ismore likely
that these diverse technologies will find a variety of nichesin the world, given the amazing
number of problems that people want to solve nowadays.

This paper begins with a comprehensive critique of much of the knowledge in the quantum
computation community, since that is perhaps fundamental to understanding why and how
guantum computers should be built. Part I.1. covers elementary quantum mechanics, information
theory, and computation theory, which is a prerequisite for what follows. Much of this was
written over the past year to teach the author how all of these pictures can contribute to a
coherent picture of the physics of computation. Part |.1. can aso be thought of an ensemble of
collected material, in preparation for a book which delves into the theories and experiments
behind the physics of computation; it is the opinion of the author that the definitive book on the
physics of computation has not yet been written, and that the world needs one. It is noted that
very little synthesis has been performed on the information here presented; most of the paragraphs
are summaries of various different sources, assembled for easy reference and as an aid to thinking.
Some of these notes were presented at (Bab98).

I.1. Background

I.1.i. Quantum mechanics

The axioms of nonrelativistic quantum mechanics are smple, fewer in number than those of
geometry, but they demand great credulity on the part of the aspiring physicist. It is possible to



cast the axioms in an extremely abstruse form: for example, (Per) starts by stating ten axioms,
beginning with:

1) If asystem yields a definite outcome in a maximal measurement (one whose result
accounts for as much as can possibly be tested at an instant), then all other measurements
have values that occur with definite probabilities.

2) Systems with N states can be prepared such that each outcome of a maximal test occurs
with probability 1/N. We have the least prior knowledge about this state.

3) If &, b are pure states as measured with operators A, B respectively, then the outcome
of measuring b with operator A has the same probability distribution as that of measuring
a with operator B.

4) If asystem can follow severa paths from preparation to measurement, then the
probability of the outcome is not the sum of the probabilities over paths...

and so on. It"s more concise just to say that quantum mechanics behaves like a linear vector space
with complex amplitudes, the squared magnitudes of which correspond to probabilities, and the
time-dynamics of which are determined by the Schrodinger equation and the fundamental
symmetries and statistics of the particles involved. A more precise formulation of this statement,
aswell as experimental and logical justification for these assertions, can be found in (Sak) or in
(Lib). A nice discussion of probabilities, states, measurements, and distinguishability is given in
(Fuc96), which also contains 528 references for the aspiring quantum-information theoretician.

Interestingly, many people have tried to come up with smaller sets of axioms, trying to avoid
artificial-looking requirements like superselection rules (in which, for example, superpositions of
states with different charges or different statistics are forbidden), the phenomenon of
wavefunction collapse (where ultimately a human measurement causes, by some miracle of
consciousness, a superposition of states to assume a deterministic configuration), and the
contrived nature of observables (which require non-dynamical, instantaneous, pseudoclassical
properties, as opposed to a simply flowing dynamical picture of the universe). The “program of
decoherence’ triesto explain all of these things by interactions with the environment:
superselection rules are explained by implicit measurements (e.g., a superposition of different
charge states would interact with, and therefore be *‘measured’ by, all the other chargesin the
universe, according to Maxwell’ s equations), wavefunction collapse is explained by the
entanglement of a system under study with a measuring device of great complexity, and
observables can be constructed directly from quantum states, rather than relying on classica
probabilities and expectation values as the fundamental concepts (Giu). Thisis adelightful area of
nonintuitive and speculative physics, with much room for philosophical and mathematical lines of
logical thought.

We will not consider the remarkable constraints on the behavior of nature that are incurred by
invoking the principle of Lorentz-invariance (Pes). Consistently dealing with special relativity
leads to phenomena such as antiparticles, tachyons, the spin-statistics theorem, quantum
electrodynamics and chromodynamics, and subtle issues concerning renormalization of infinities
and the meaning of observables like the mass of a particle. One can only speculate what a
competent theory of quantum mechanics in curved spacetime might look like! See (Bae) for one



prominent quantum gravity theoretician’ s diary of his explorations in thisfield.

Throughout this document we will denote pure states by | x) , where x indicates the eigenvalue

corresponding to a certain quantum mechanica state, defined with respect to the eigenvector
basis of a Hermitian measurement operator. We define the qubit basisto be |1), |0) , which can
correspond to the up and down states of a spin or an electric dipole, or to any two-state system,

such as an atom being irradiated with radiation at a frequency such that only one transition is
stimulated. The Bell basisis defined to be

[+) = UN2(0)+[1). |-)=1/42(0) - [1)),
and can be thought of as the state of a qubit that has been rotated by 45 degrees. We assume
familiarity with the basic facts of algebra, such as the Spectral Theorem for unitary operators,
which says that one can decompose a unitary U into P'DP where D is diagonal and P unitary. The
elementary vector (0,0, ..., 1, ..., 0, 0, 0) is represented by e, when the 1 isin the 8" slot. The
reader in need of a mathematical review is well advised to spend some time studying (Art) or
(Str).

We assume some familiarity with the spinor, the 2-dimensiona vector (a, b) that represents the
quantum state a|0) +b|1), where a and b are complex numbers whose squared magnitudes sum to

1. Throughout the text of this document we will use the Dirac matrices, s ={I,s,,S,,S ;},
defined so that the spin operators are given by 1 =#%/2s4, |,=1/2s,, and | =7 /2s 3, such that

J_€ W __é -iu__da
1=8 @rS2Té grS3= ¢ g
& g é o] e -1

(By convention, nondeclared matrix entries are assumed to be zero.) These matrices are
sometimes labeled s, Sy, and s, respectively. They are the generators of the Lie algebra of the
3D rotation group, in its spinor representation (Sat). We derive these rotationsin 11.2., for the
benefit of the reader. For NMR quantum computing simulation purposes, Matlab code for the
rotation operatorsis provided in Appendix B, along with some supporting and example code.
Armed with these definitions, we define the raising and lowering operators |* and I,

- S 1) T S
e u u

Note that [Si, Sj] = 1% Sk, where[ , ] denotes the commutator and ijk is an even permutation of
123 (Lib). Also s;?= 1, and
- el u
'r=n’g g
€ u
the *number operator’ for afermionic system. The identity matrix will usually be referred to as 1
or |. The conjugate transpose of a unitary matrix U will be denoted by U™ = U™. For an n-
dimensional Hilbert space, the space of operators on that Hilbert space is a n>-dimensiona space
often called the Liouville space. (To see that it is indeed n*-dimensional, smply note that an
operator on an n-dimensional Hilbert space can aways be written asann ~ n matrix, which has n?
entries.)
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Inspired by the analogous Matlab command, we will often refer to the matrix

D:D> D> D> D> 3\
(e
(oY e el ey a?]

¢a
asdiag([a, b, ..., c]) for shorthand. Also in accordance with Matlab notation, we will occasionally
refer to the matrix

e bu

& dy
as[a, b; ¢, d] or even [a b; c d]. Since we use density matrix models throughout this paper, a
working familiarity with Matlab may not only clarify many of the examples given, it may help the
reader discover new angles on what is presented here. We take the convention that unitary
matrices operate upon a state vector on the left, so that if a product of matrices operates upon a
state vector, the rightmost operator occurs earliest in time. Skewed indices on a product indicate
the order in which matrices are to be written:

J-ZOOE’UJ- =Uuuu,,

so that in this case, as the index variable increases, the matrices appear from left to right. Note
that in this example, the matrix U; operates on the system earliest in time.

The density matrix r isacrucia element in the picture of quantum mechanics that we will adopt.
For a pure state

v)=&qcli)
define the matrix element r; by (y | j)ily )= cic, and the density operator by the projection
operator
r= é cicy 1)1l
1)
Then for any observable A, with projection operator representation
A=a ANl
1)
we have an expression for the expectation value of A, <A> =Tr(Ar), as can be seen by direct

evaluation with the projection operator formsof r and A. Clearly Tr(r) =1, sincer;; = |cf*. For a
pure state, r = r 2, or equivalently, r hasall zero eigenvalues except for one 1 (since for any pure
state, we can transform to a basis where the state in question is one of the basis states, and the
others can be found via Gram-Schmidt orthogonalization). The time evolution of a density matrix,
for a pure state given by the expression for y above, is given by the time-dependent Schrodinger
eguation; the time-evolution equations for the coefficients are

D (G .ﬂri'_o L
Ihﬁ_ajHijCj® Ihﬂ_tj_ak Hikrkj- rikaj® |hﬁ—[H,r]
where the last expression is just the negative of atypica ‘Heisenberg picture’ time evolution

eguation for an operator (the sign difference results from the fact that the operator r isnot an
observable, athough it is Hermitian). If we are given a time-evolution operator

11



U(tl, to) :eiH(tl—to)/h
where H is the Hamiltonian of the quantum system during the period from time t, to time t,, then
the density matrix evolves as

r(t) = Ur (tg)U™,
This equation isin many ways fundamental to our picture of NMR, since rotations of spins about
gpatial axes, interactions via J-coupling, and free precession, the three main processes that happen
to spins, all have very convenient time-evolution operator representations. The resultant picture,
the product operator picture, isdescribed in 1V.1.ii.

If we have a mixed state then we can construct a density matrix as follows. suppose that we have
an ensemble of systems such that asingle system isin state |i) with classical probability w,

aw =1

The states |i) need not be orthonormal. Then in any basis |a) , the density matrix element r o, is
defined to be

= é wi(a|i)i|b)=c,c; ;

where the bar denotes averaging over the ensemble. By inspection it is clear that (A) till is given

by Tr(r A). Note that different mixtures of pure states which have the same density matrix are
completely indistinguishable, since any observable' s expected value can be expressed as a

functional of the density matrix. If the bases |a) and |i) are the same orthonormal basis, then
rij= widi;

the fact that the off-diagonal terms are zero is called the hypothesis of random phases, and is

fundamental to quantum statistical mechanics. It should be clear that ensemble time evolution is

formally identical to pure state time-evolution, as long as components of the ensemble don’t

interact with one another.

Aswe will see, density matrices offer a good notationa system for quantum channels, parts of
entangled states, and bulk guantum computation. For example, consider a pure state y of two
entangled particles, whose orthonormal basis states we will denote as |i), | j), |k), ... and |a),

Ib),|c), ... sothat
v)=&cdia),
which we can write in density matrix form as
r= @ c.c,lia)ib).

ab,i,j
If we have only access to the particle bearing the |i) states, then we must take the partial trace of

the density matrix r , since we can never directly observe any property of the |a> states. The result
isthat the system we see is described by the density matrix
ra=Tra(r) = A (A Calu ) @)D,
a,b k

since
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ras= A (rifr|si)= & c.c, (rkfia)(jb|sk)= & c.c, d,dd . dy = CiCy -
k

i k,a,b,j,i k.,a,b,j,i
Therefore for a pure wavefunction of two particles that cannot be expressed as a direct product,
the individual -particle distributions can look like mixed states! Thisis essentia for a proper
understanding of quantum information theory, and to an understanding of quantum measurement.
In fact, there is an area of quantum information theory concerned with purifications — that is,
given amixed stater o, finding a pure state y o containing a subsystem B such that

Traly o) o =T o
One nice theorem concerning any mixed statesr o, r ; with respective purificationsy o, y 1 is that

|YO|Y1 |£Tr\/ r oy’

(Uhl, quoted in Fuc96), which resembles several results on quantum fidelities that we will discuss
later, in | .2.ii.

For example, the spinor (a, b) can be encoded in 3 entangled qubits as

a(| 000) +|011) +|101) +|110) )+b(|111) +|100) +|010) +|001)).
Since the density operator of any one of the 3 qubits (found by taking the partial trace of the
entangled state over the other two) is |0)(0| +|1)(1|, one cannot find out any information about a

or b by measuring any one qubit! (However, one can rewrite |000) +|011) +|101) +|110) +
(|/112) +|100) +|010) +|001)) as adirect product of 3 Bell states, so this does not suffice for
genera quantum error-correction; see section 1.1.ii. for more information on this.)

Finally, maximizing the von Neumann entropy —Tr(r In(r)) while holding the energy (i.e. the
expected value of the Hamiltonian) constant, and constraining the trace of r to be 1 with a
Lagrange multiplier, we get

r =ez,
the canonical ensemble, which is usualy found by constraining the temperature to be constant and
expanding the probability of astatein a Taylor series. To see that the von Neumann entropy is the
correct measure of disorder of a system, we argue after the master himself (Neu55) as follows.

Consider an ensemble of separate identical systems S with respective states s, al at restin a
closed system, with the ability to exchange energy with each other: this ensembleis formally
equivalent to an ideal gas. We will use such notions as ‘volume' and ‘ number of particles' to
make this equivalence more concrete. Let the density matrix describing the classical distribution of
the systems s, as well as the quantum amplitudes within each s, ber . We will design areversible
transformation that converts this system r into another state r ', and this will then provide us with
ameasure of the entropy difference between these two systems.

First, note that all pure states (with density matrices equal to projection operators P, e.g. Ps = P-
&) have the same entropy. To see this, consider the following reversible method for converting r
=P,intor’ = P,: assume states a, b are orthogonal (if not, we can subtract out the common,
parallel part and leave it alone, manipulating only the orthogonal componenets), and let the states
b, k=1...n,beequa to
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b, = cosf;w—kga+ sin(;”ikgb
e2ng e2ng
where n is some integer. Extend each state by to an orthonormal set { by;}, and let R be an

operator whose set of eigenvectorsis{ by, }. Also notethat (b, |b,.;) = cos(p/2n). Then

measuring P, with Ry, R;, ... R, In successive measurements, results in P, with amplitude
arbitrarily closeto 1, since

H 2n
L|®rg cos(p/2n)~" =1.

Since the processis reversible (we can always perform the measurements in reverse order), al
pure states have the same entropy, say 0, in the thermodynamic limit.

Let us derive the equation H = —Tr(r In(r)), where H is the von Neumann entropy of a quantum
system. Consider an ideal gas of N moleculesin volume V with density matrix

o)
r:aWnPn’
n

where{ P; } isabasis of eigenvectorsin the projection operator representation. Separate the
different components s into different boxes S (using semipermeable membranes that only let one
state of the spectrum through, for example by adjoining an empty container and moving
semipermeable walls through the gas so as to filter just one component at a time into the part of
the empty container terminated by the appropriate walls). The result is a system of separated
gases Py, Py, ... with wiN, wxN, ... molecules respectively. Now isothermally compress each
component i to volume wV, thus increasing the entropy of the environment by

NkQ w, In(w,).

Finally, one can, by the measurement method describe above, reversibly transform al the P,
components into P,— which, as we noted, has zero entropy. It follows that the original entropy
must have been

H= - Nk§ w, In(w,)

whichis precisely =Nk Tr(r In(r)) in abasiswherer isdiagondl. It isinteresting to note that in
the expression for H, the internal w, (or eigenstate of r) comes from the isothermal compression
step, whereas the external w, (or eigenstate of r ) comes from the percentage of the original
composite system which is due to each individual component.

Interestingly, this shows that discarding a component of an entangled pure state is an irreversible
process, since the entropy of the environment goes up in this process. Measurement is similarly a
potentially irreversible process.

This has interesting consequences - for example, a membrane permeable to particlesin state a but
not particlesin state b, can only exist if a and b are orthogonal. To see this, note that if such a
rectangular wall semipermeable to a particles were to isothermally move from the left side of a
box (of volume V) to the middle, leaving the N/2 particles of state a untouched but shifting all N/2
of the b particles to the right side, then heat NKT/2 In(2) would be rejected to the external bath
(since the volume of the N/2 b particlesisisothermally compressed by afactor of 1/2).
Compressing the left side (containing only a) to volume V/4, and expanding the right side to
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volume 3V/4, we rgject an amount of heat NKT/4 In(2) - 3NKT/4 In(3/2) to the reservoir, ending up
with atotal heat-bath entropy increase of 3Nk/4 In(4/3). Comparing this to the change in entropy
of the system of gases, via the density matrix calculation, we find that total entropy is conserved

overal if and only if (a|b) =0 (Neu55).

Finaly we make afew comments on measurements, which are the most arcane and yet the most
elementary operations which can occur in quantum mechanics. M easurements are not
thermodynamically reversible, in general, and indeed in quantum computation this imposes an
additional cost on computation at its most elementary level. On one hand it is a difficult subject to
analyze, leading even people like von Neumann to talk about

“psycho-physical paralelism. . . it must be possible so to describe the extra-

physical process of the subjective perception asif it werein redlity in the physical

world —i.e., to assign to its parts equivalent physical processes in the objective

environment, in ordinary space...no matter how far we calculate, at some time we

must say: and thisis perceived by the observer.” (Neu55, p. 419, English

trandation)
To this day philosophers still debate the connections between consciousness, quantum mechanics,
and measurement, often incorrectly (Cha97). We will not attempt to repeat this mistake here.

|.1.ii. Information theory

Information theory began ostensibly as atool for analyzing losses in telephone networks, but
quickly attained the air of something fundamental (Shad48) (Shad9): anything describable by a
random variable x with probability distribution p(x), can be associated with a single number
describing its importance and uniqueness, H(p), given by

- & p(¥log, p(x) =(log, p(x))

where the base-2 logarithm indicates that our information is being measured in bits (Cov91), and
the symbol <y(x)> represents the mean of y(x) over the probability distribution p(X). It is possible

to show that H(p) © H(p(xy), p(X2), . . . p(X)) isthe only functional of p(x) which isinvariant
under permutations of the x; (as expected for a function whose argument has the structure of a
set), and which satisfies the ‘ objectivity requirement’ that
H(p(x), P(X2), - - - P(Xn)) = H(p(X) + P(X2), - . . P(n)) + (P(X0) + P(2))
p(x,) p(x,)
P(X,) + P(X;)  P(x;) + P(X,)
which says that the information gotten by examining the value of a random variable can be
obtained by first determining whether it isin a certain set of values, then determining what
member of the set it corresponds to (Fuc96). Note that applying the objectivity requirement to an
entropy function of a n-valued probability distribution gives the entropy in terms of (n-1)-valued
probability distributions —in particular, repeatedly applying the objectivity requirement gives H(p)
expressed entirely in terms of the function H(q, 1-g) © f(qg), where g is some real number between
0 and 1, inclusive. Therefore to find the unique functional H(p), al we need to do is solve for f(Q).

Finding f(q) isfairly smple (Dar70): let usintroduce a parameter a that we will later let go to the
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limit of 1, and modify the objectivity requirement to read
Ha(p(x2), P(X2), - - - P(Xn)) = Ha(P(Xe) + PO, - . . PO&)) + (P(X0) + p(x2))*
H(—POw) PO%)
P(x) + p(X;)  p(x) + p(x;)
Then from the permutation rule, Ha(X, y, 1-X-y) = Ha(y, X, 1-x-y), and applying the modified
objectivity requirement gives
fOQ) + (1-)°f(y/(1-x)) = f(y) + (L-y)F(X/(L1-y),
or, if welet q =y/(1-x) = y/p,
f(p) + p*f(q) = f(pa) + (1-pa)*f( (1-p)/(1-pq) ).
With alittle algebra, this last equation can be used to show that F(p, q) = f(p) + (p* + (1-p)?) f(q)
issymmetric in p and g. Setting F(p, 1/2) = F(1/2, p) then gives
f(p) = (2 -1)'(p* + (1-p)* - 1),
where we are taking f(1/2) to be 1, as a normalization. This gives, upon inserting the definition of
f(p) back into the definition of H(p), we find thta

H(p(X) = (2 -1* (@ p*- 1)
i=1
andtakinga ® 1 using L’Hopital’srule instantly gives
H(p) = - & p(x)log, p(x),

as desired. We have now come up with two justifications of the definition of the entropy — one
from quantum mechanics, and one from the smple properties of symmetric functions. The
definitions are, interestingly, identical. The mathematical properties of the entropy function in
various situations are no less profound.

Shannon’ s noiseless coding theorem asserts that if messages a occur with probabilities p(a),

then for long strings of messages, the mean minima number of bits |, needed to represent each
message satisfies H(p) < lmin < H(p) +1. The proof is given in (Cov9l), and is tightly coupled
with two other theorems that appear in that text, namely the Kraft inequality and the asymptotic
equipartition property. We will not discuss these two auxiliary constructs here, but we will give
the proof of the noiseless coding theorem, since we will later want to consider the quantum
version.

The proof is based on the weak law of large numbers (WLLN), which says that for a set of 11D
(independent, identically distributed) random variables x; with finite variance,

" (d,e>0$N" (1> N)P( L4 x - x[>d) <e.
i=1

Thisisafancy way of saying that by taking more and more samples of the probability distribution,
we can make their average arbitrarily close to the exact mean of the distribution. The WLLN can
be proven by representing the probability distribution of the sum of N independent identically
distributed random variables as a convolution of N copies of the individual probability distribution
(Drab7). Taking x; = -log(p(a)), where & are the messages from a source A (which emits message
a with probability p(a)), we find that X equals H(A). We may note that a sequence a of such

messages a;...ay satisfies P(a) = p(a,)...p(ay) , and we define the set of sequences a satisfying
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I_W1|09(P(a))- H(A) Ed.

asthe set of likely sequences. It immediately follows that

2 NHA-d) 3 p(g) s 2 NH )
and therefore the number of likely N-message sequences goes as 2", while the fraction of N-
message sequences that are ‘unlikely sequences goes to zero as N increases. Noting that N(H(A)
+d) bitsis enough to encode all the likely sequences of N messages, we have shown the first part
of the noiseless coding theorem, which is equivalent to the statement that if H(A)+d bits are
available for each message, sufficiently long sequences of messages from A can be coded into
binary with probability of error lessthan e, for any e greater than zero. Conversely if only H(A) -
d bits are available for each message, then for sufficiently long sequences of messages, the
probability of error will be greater than 1-e, for any e greater than zero. One can see this simply
by noting that N(H(A) - d) bits is only enough to encode 2""® -9 sequences, which is afraction
2NH® - o)y INHA) = 2N of the |ikely sequences. This fraction clearly becomes arbitrarily small as
the message length increases.

We can define the relative information, H(x|y), as
& P& p(y[x)1og p(y ),
X y

and itisclear that if H(X,y) describesthe entropy of the joint distribution of x and y, then
H(xy)=H(x)+H(y[x).

The Kullback-Liebler divergence, or relative entropy, measures the cost of assuming that a
variable described by p(x) is actually given by q(x) (Cov9l). This cost is nicely described as that
of “keeping the expert honest” in (Fuc96). It is given by the equation
D(p1d)= & p(Ylog2).
xy a(x)
Note that it is not a metric, since the distance between p and g depends on which order you pass
the arguments to the D function.

The mutual information between probability distributions p(x) and p(y) corresponds to the
information that one random variable contains about another, and is given by

_ 8 p(x,y) _
1(X, y) = V) log—22 Y —p(p(x,
% y) % p(x,y)log 500 b(Y) (p(X, Y P(X) p(Y))

It is symmetric in its arguments, and equals H (x) - H (x| y) . From these smple definitions, the
properties of the logarithmic function, and afew ssimple tricks like Jensen’ s inequality, one can
derive some very interesting properties of information-theoretic function, and learn how to apply
them to models of communication channels, data encryption, data compression, Markov
processes, maximum-rate coding, and coding strategies that are resilient to noise (Cov9l) (Wie).

We briefly comment on methods of telling probability distributions apart, a crucial topic when

considering the final step of any quantum computation: namely, the interpretation of the signal as
a collapsed signature of the quantum state. The first method uses Bayes' rule: consider two
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probability distributions p(x) and g(x) for arandom variable x which takes any one of n distinct
values, and which occur in nature with prior probabilties P and Q respectively. If oneisgiven a
sample, xo, and asked to guess which probability distribution generated it, then one may try to
minimize the probability of guessing wrongly: the resultant best guessis p(x) if P p(x,) > Q
q(x,) , and q(x) otherwise (Dra67) (Opp). For N samplings, we must turn to the Chernoff bound,

which says that the probability of guessing wrongly islessthan | N, where| isthe minimum value
of

a p(x)*a(x)"

i=1
over dl possible al [0,]. The proof, which is quoted in (Fuc96), follows from two simple
observations: (1) Bayes decision rule can be used to express the probability of guessing wrongly
in terms of the minimum of P p(Xx,) p(X,)-..p(Xy) and Qq(x,)a(x,)...a(xy), and (2) the minimum

of two positive numbers c, d satisfies

min(c,d) < c®d"?,
forany al [0]. Thevauel isexpressible asaKL divergence, which can help make the
Chernoff bound more intuitive.

We will also consider the fidelity, which plays a significant role in discussions about quantum
information theory, especially in the context of quantum channels. The classical fidelity, for the
two probability distributions defined above, is given by

F(p(, () = & P(x)a(x,) .

Thislooks alot like adot product magnitude in vector geometry. It is noted (Fuc96) (Jef) that the
arccosine of this quantity is the geodesic distance between p(x)and g(x) in probability-space,
with the Fisher information metric

n 2

ag = § (@)

iz P(%)
as the Riemannian metric for this space. This quantity has been associated with interesting
differential-geometric properties of probability distributions. In particular, the expectation-
maximization agorithm decreases the distance between the true and estimated probability
distributions, when the distance is measured with respect to the Fisher information (Mur). It is not
clear what use these methods have in real life, but they are an interesting formalism which
provides yet another picture of the universe, and one that is especially appealing to the machine-
learning, artificial intelligence, and neurocomputation communities.

I.1.iii. Computability

We begin with classical models of computation. Computation is notorioudly difficult to define; it
gladdened many people when the definitions of Turing, Kleene, Church, and many other early
pioneersin the field were al proven equivalent. This definition is appreciated for its
comprehensibility, aesthetic value, and consistency with all known classical, anthropically
interpretable, physicaly realizable means of computation. We follow Sipser (Sp97). The vast bulk
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of computation theory is arrived at through meditation and debate; many people are now trying to
embed it in amore physical context.

I.1.iii.a. Automata Theory

The smplest interesting computer is afinite state machine (FSM), or finite automaton (FA). All
realizable computers are essentially FAs, although relaxing the constraint of finiteness allows the
discipline of computability to take on deeper meaning. A FA is defined by afinite set of states Q,
one of which is designated the start state o, and a subset of which comprisesfina states F (called
accept states), as well as afinite alphabet S of symbols and atransition functionQ” S® Q
which selects the next state of the machine, given the current state and one symbol from an input
string. FAs are very useful constructs for practical computer architectures; often a significant
portion of the intellectual effort and cost related to a complicated microprocessor (e.g., with
pipelining, branch prediction, reorder buffers, and much more) is used to form very complicated
finite state machines for control (Hen).

Given an input string w of symbolsin S, we say that a FA acceptsw if it reachesa statein Fin
some finite time; the set of states that the FA passes through is called the computation history. A
FA M recognizes alanguage A if A ={w | M accepts w}; such alanguageis called regular. Given
any two languages A, B, we can treat them as sets, and define the union AE B, concatenation
AoB={xy|xl A yl B}, andthestar A" = AcE Ago AcE Ago Ago AGE . . ., where Ay =

AE {€} and e denotes the empty string. Interestingly, the class of regular languages is closed
under these three constructions; the proof of this claim for the union operator is easily done by
constructing a new machine which operates on a set of states which is the Cartesian product of
the sets of states for the FAs which recognize the two component languages. The other two
proofs require a new formalism, nondeter ministic computation. Symmetry arguments suggest one
further observation — the complement of aregular language is always aregular language (just
swap the accept and non-accept states in aDFA), and therefore by DeMorgan’s laws, regular
languages are closed under intersection.

A nondeterministic finite automaton (NFA) can make several choices at each state, depending on
the input, and follow them all in paralel paths; if any path hatsin afina state, the machineis said
to accept. Nondeterminism is key to many important concepts in theoretical computer science,
including the famous definition of NP-completeness (which we discuss later). Formally the only
qualifier we must add to our definition of FA to make it compatible with NFAs is that the
trangition function produces, from Q and aletter, a set of possible next states, called the power set
P(Q) of Q, for reasons that will be clear to anyone who is familiar with set theory. NFA
computation follows each element of this power set in parallel, forming atree structure. We will
call the ordinary FAs DFAs, which stand for deterministic finite automata, for clarity.

Interestingly, every NFA has an equivalent DFA; one simply ssimulates the k states of the NFA
with a DFA with 2* states, each one corresponding to a possible subset of the states of the NFA.
(Note the exponential correspondence between the resources required for deterministic and
nondeterministic computation; this will come back to haunt us again and again, especidly in the
context of quantum computing!) Therefore the set of languages recognized by NFAs s the same
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as the set of regular languages, but we can use this more powerful ideato our advantage. For the
proof of the closure of regular languages under the concatenation operator, suppose that one has
languages A, B which are recognized respectively by NFAs M, N: ssimply connect each final state
of M to the start state of N, with transition functions conditioning on the empty string. For the
proof of closure under the star operator, smply connect the final states of a NFA to its start state,
conditioning on the empty string. These proofs are elegant and smple.

A guantum finite automaton (Amb98) can be considered to be directly analogous to the DFA
which isin asuperposition of states; it is said to recognize alanguage L with probability 1/2+e if
it accepts/rgects all words in/outside L with this probability. We do not discuss these QFAs much
further; although there are some interesting debates over their power, they are abstract and not
terribly useful.

Anyone who has used Unix knows about regular expressions, which essentially are strings
recursively built up of elements of an aphabet S, the empty string e and the empty language f ,
and the 3 symbols E , o, and ". For example, the language of decimal numbers could be written as
{+-6(ZZ E 2zZ.Z EZ.ZZ), where Z =[0..9]. Amazingly, alanguage is regular iff it can be
described by aregular expression! The nonintuitive part of the proof is to show that a regular
language can be described by aregular expression: it is surprisingly simple to convert a DFA into
aregular expression by considering generalized nondeterministic finite automata (GNFA), for
which any regular expression (not just an individual input symbol) can serve as the condition for
the trangition function. One begins with a GNFA which isjust the DFA of interest, then
recursively combining the states of the GNFA until there are only two left (the start and accept
states), which are connected by a single regular expression, which is what we desired. Note the
interesting corollary that any GNFA is equivalent to a GNFA with only two states.

Nonregular languages are very common, for example the set of strings with equal numbers of Os
and 1s. The pumping lemma is a useful tool for proving languages nonregular: for any regular
language A, there exists a number p (a constant for al stringsin A) such that any string swith
length |s| > p can be written as xyz for some substrings x, y, and z, such that xy zT A, y! e, and
| xy [E p (Proof: since DFAs are Markovian, if a state is repeated twice, then the string in between

the repeated states can be replicated arbitrarily many times, and still yield avalid string of the
language; by the pigeonhole principle, it is clear that a state is repeated twice if p > |Q[). Assuming
that a p exists for alanguage A, one can then show A to be nonregular by exhibiting a string s(p)
which cannot be divided into substrings as claimed by the pumping lemma. The pumping lemma
focuses on locality — the fact that in a certain string, the DFA is always confined to monitoring
behavior over a certain little area. Languages that are easily proved to be nonregular using this
result include {0"1"}, {ww | al binary strings w}, and {0™1" | n>m}.

It is possible to convert a DFA into aminimal DFA —that is, the DFA with the least number of
states, that recognizes a particular language — in polynomial time. The agorithm works by
consolidating the DFA into aregular expression, and then systematically writing a DFA that
corresponds to the resultant regular expression. A hierarchy can be constructed based on minimal
DFAs:. for every k, there exists a language recognized by a DFA with k states, but not by one with
k -1 states.
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A more complex language architecture is the context-free grammar (CFG), which possesses a
more recursive flavor than the mere repetition and retracing which characterizes regularity.
Compiler aids like bison and yacc can generate parsers from context-free grammars; indeed,
CFGs are complex enough to describe natural languages like English (Edw87). A CFG consists of
alist of substitution rules Ay ® B;, where A isavariable and B; isa string of variables and
terminals (so called because they cannot be replaced by anything else — e.g., they can’t appear on
the left-hand side of arule). The computation history which lists the substitutions that one makes,
in any computation involving a CFG, is called a derivation, much like proofs are derived in formal
logic: possible derivations are easily pictured using trees. The strings which appear on the final
lines of derivations make up a context-free language, or CFL. Any compiler which hopes to
process a CFG must proceed via analytical recursion. One must often define arbitrary precedence
relations for rules, since rules can be ambiguous — for example, does a+a’ a = a+a’ or 2a?

We say that a CFG isin Chomsky normal form (CNF) if every ruleis of the form A® BC or A® a
(where A, B, C are variables and ais aterminal). Interestingly, every CFL is generated by a CFG
which can be written in CNF; the proof consists of just cleaning up al the rules by introducing
intermediate variables for complicated rules and throwing away trivia rules. A length-n string
requires exactly 2n-1 stepsin a derivation from a CFG in CNF; conversely, if aCFG Ain CNF
contains n variables and A generates a string with a m-step derivation, where m>n, then the CFL
generated by A isinfinite.

Another automaton is the pushdown automaton (PA), which is essentially asmple
nondeterministic stack machine; PAs are equipotent to CFGs. The stack is essentialy an infinite
LIFO device; the stack may have its own aphabet Gand the transition function maps Q" S” Gto
the power set of Q" G. One example of alanguage which a PA can recognize but aNFA cannot is
{a'b’c* |i, j,k>0,(i = j)U(i =k)}; for thislanguage (and many other languages), it is possible
to see that nondeterminism is essential for its recognition (a deterministic pushdown automaton
could not recognize this language). It can be proved that alanguage is a CFL iff it is recognized
by a PA (to convert aCFL Ato aPA, create a nondeterministic PA that forever guesses
derivations for an input string wl A, halting if it ever generates w; to convert aPA Pto aCFG G
that generates strings accepted by P, create G with variables A,q S0 that A,y generates all strings
that take state p to state g, and show that A,, generates x iff x takes P from p to g, using
induction. Whew!). Trivially, we aso find that regular languages are context free, since they are
recognized by DFAs (which are just PAs that ignore the stack). In fact, regular languages and
CFLs share alot of structure: one can prove avariant of the pumping lemma for CFLs; for any
CFL A, there exists anumber p (a constant for all stringsin A) such that any string sl A can be
divided up into 5 substrings uvxyz, such that " i(uv'xy'zT A), |vy[> 0, and | vxy [E p (proof by
finding repeated variable symbols as before, using the pigeonhole principle; the factor 5 comes
very simply from the tree structure; v and y represent the tree branches closest to the main trunk,
which can therefore be repeated ad infinitum). With the pumping lemmafor CFLs, one can for
example prove that {a"b"c" |n >0} isnot a CFL, although the case-by-case analysis for 5

substrings can be tricky. Other languages that are not CFLs include {a'b'c*|i<j<k}, {ww | all
binary stringsw} (to see this, pump using 0°1°0°1P), and {w#x | w a substring of x}. The
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intersection of two CFLsis not always a CFL; therefore the complement of a CFL need not be a
CFL (adthough CFLs are closed under the regular-language operations union, concatenation, and
star). Not surprisingly, the intersection of aregular language and a CFL isaso a CFL. Finaly, we
mention that nondeterministic PAs are strictly more powerful than deterministic PAs—aswe
noted at the beginning of this paragraph.

A note on quantum finite-state and push-down automata: one can define a quantum grammar by
summing over al the derivations of aword to find the amplitude of aword; the standard proofs
carry over dmost identically for a great many formalismsin the theory of computation; see
(Mo097) for adetailed analysis. It is not yet clear how this picture enhances our understanding of
the computationa power of quantum systems.

[.1.iii.b. Turing Machines

What happens if you create a deterministic PA with two stacks? Then locality is not an issue,
since you can join the two stacks at the top into asingle infinite list, and simulate pushing and
popping with a read/write head that moves left or right. The result is a Turing machine (TM), the
most powerful classical automata which can be physically realized, according to the Church-
Turing thesis. A TM is an infinite tape with a read/write head, with a specific finite state machine
controlling the behavior of the R/W head (i.e., moving to the left or right, and reading or writing
to the tape). The transition function therefore maps the current configuration Q° Gto a new one,
Q G {L, R}, i.e. the head reads the tape and then, based on the current state, changes the state
and the tape, and then moves left or right. Some conventions are useful: the symbol ul Gisused
to denote a blank entry on the tape; there are 3 special states in the finite state machine, called
start, accept, and reject. If aTM M halts in the accepting state upon input w, we say that M
accepts w. The set of such wis called the language accepted by M. (The definitions of language,
accepting, rejecting, and so on are al fairly standard throughout computation theory — indeed,
they form the basis for comparing paradigms of different computational power.) A language L is
Turing-recognizable (recursively enumerable) if aTM M recognizesit —e.g., M haltsin the
accept state when the input is an element of L. However, M isnot required to halt at al upon
inputs that are not in L. A language L is decidable (recursive) if aTM M decidesit — e.g., it halts
in the accept state when the input is an element of L, and it halts in the rgject state when the input
isnotin L. L isco-Turing-recognizable if it is the complement of a Turing-recognizable language.
Itisclear that “L isdecidable’” means the same thing as “L is Turing-recognizable and co-Turing-
recognizable.”

Justification for the Church-Turing thesis comes mostly from detailed yet abstract
omphaloskepsis. k-tape Turing machines can be simulated by a 1-tape TM in order n? time, where
n is the number of filled cells on all the tapes at a particular moment in time, and a
nondeterministic Turing machine (NTM) can be ssimulated by a 3-tape (one for input, one for
simulation notes, and one for the actual output) TM in 2" time, where n is the number of stepsin
each branch of the NTM’s computation, and breadth-first search is used for the simulation (so
that every branch of the computation gets some running time, but non-terminating branches don’t
cause the TM to enter an infinite loop). A TM where you can only write on each square of the
tape once, is aso equivaent to an ordinary TM. However, a Turing machine that cannot write on
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the part of the tape containing the input string can only recognize regular languages! Nobody has
ever come up with arealistic computation scheme which could solve a problem that a TM
couldn’t. (The efficiency with which a certain implementation solves a problem, on the other
hand, is a separate issue that we will consider in the next section.)

Certain problems are undecidable. There is no general way to tell whether an exponential
Diophantine equation has an integer root, for example (Hilbert's 10™ problem), although certainly
the language of such equations is recognizable (just start testing roots, and if the equation really is
solvable, then eventually one set will work). It is clear that alanguage is decidable iff it can be
enumerated (e.g., written down in alist) in lexicographic (e.g., aphabetical) order. In particular,
the following languages are decidable (the finite state machine proofs are easily accomplished by
construction of the appropriate TM and applying the pigeonhole principle to repeated states):
{<B, w> | BisaDFA (or NFA) that accepts string W},

{<R, w> | wis generated by the regular expression R},

{<A>|AisaDFA and L(A) is empty},

{<G, w> | wis generated by the CFG G} (check al (2n-1)— step derivations of the
grammar after converting to CNF),

{ <G>| GisaCFG and L(G) isempty} (work backwards from the terminals, marking
the left hand side of an ® equation whenever al the symbols on the right hand has
been marked, until no more progress can be made),

» al CFLs (for each CFL A and input w, just run the ssmulator two lines up on <Ga, W>).
Thisisan impressive list. But there are many undecidable languages, unpredictable dynamical
systems, and unverifiable processes, and thisis fundamental to the theory of computability. Itis
impossible to decide the language Lytv = {<M, w>| TM M accepts string w} ; Lyrw issaid to be
recognized by the universal Turing machine UTM, which smulates the action of an arbitrary TM
on an arbitrary input, and acceptsif the smulated TM accepts. The proof is by diagonalization.
One way to seethisisto simply note that the set of all languages can be put into corresepondence
with the elements of the real line, but the set of TMs s countable, since each can be written down
as a program. Another way to see thisisto exhibit an undecidable program: define a program
D(<M>) which returns the opposite of UTM(<M, <M>>), and obtain a contradiction by
considering the value of D(<D>). Interestingly, given a Turing-recognizable language A,
consisting of descriptions of arbitrary TMs, there exists a decidable language A, containing TMs
equivalent to thosein A;.

VVVY

A\

The primary tool for proving that a problem is undecidable is by reduction: assume that the
problem is solvable, and then show that it solves some other, undecidable problem. For example,
it is easy to see that the decidability of Lynw reducesto {<M, w>| M hadtsonw}, {<M>|M isa
TM and L(M) empty}, and {<M> | M isaTM and L(M) isregular }: in fact, according to Rice's
theorem, testing any property of the Turing-recognizable languages is undecidable — including
whether or not auniversal TM ever enters a certain state, whether or not auniversal TM ever
attempts to move off the tape, and so on. Formally, given any language of programs P such that
the question ‘M| P? can be answered only by knowing the language accepted by M, and such

that P doesn’t contain every TM, P is undecidable.

Another tool for proving undecidability for certain ‘existence problems’ is the method of
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computation histories (CH), or complete records of the intermediate states that the TM passes
through while it computes. An accepting CH is a sequence of configurations C,,...C, where C, is
an accepting configuration and C; follows from Ci.;; aNTM’s CH may look like atree, with one
leaf in an accepting configuration. A linear bounded automaton (LBA) isa TM whose head is
restricted to the part of the tape containing the input string; even if the TM aphabet is larger than
the input string alphabet, the memory of the TM is still required to be linear in the input. The
deciders for DFAs and CFGs are LBAS, for example, and {<M,w> | M isa LBA that accepts w }
isdecidable. To seethislast point: it is clear that if an LBA has q states and g symbols in the tape
alphabet, there are exactly gng” configurations for an input of length n; this shows that all LBASs
are decidable (since the number of configurationsis finite, one smply has to run the LBA for at
most gng"” steps to see if it halts or loops). However, {<M> | M isan LBA and L(M) is empty} is
undecidable (proof by reduction from UTM: one can run a decider for the emptiness of LBAs on
an LBA which checks the CHs for <M,w>, which then solves the halting problem) (Sipnote).

One concept that is familiar from Myhill’ s theorem (Har) is many-one reducibility: for languages
A, B, A<;B if there exists a computable function f such that wi A « f(w)l B. Thatis, the
problem A is many-one reducible to the problem B if there exists a computable function that,
given amethod of solving B, enables us to solve A; thereforeif A <,B, and B isdecidable, A is
decidable; we have often applied the contrapositive of this result in the preceding discussion.
Similarly, if A <,B and A is not Turing-recognizable, then neither is B (setting A to be co-UTM,
the complement of UTM, and therefore a non-Turing-recognizable set, is atypica start of proofs
using this result).

Recursion theory is an even more abstract formalism for dealing with computability theory, and
contains many surprises. We will not go into this very deeply, but there is a nice book (Har) for
those who are interested.

Sdf-printing programs are a curiosity in many languages. For example, aclever examplein Cis
mai n(a){a="mai n(a) {a=%%%; printf(a,34,a,34);}";printf(a, 34,a,34);}

which printsitself on machines which use ASCII. Importantly, there is a computable function f(w)
such that for any string w, f(w) is the description of the Turing machine P,, that prints out w, then
stops. Formally, one can state the recursion theorem: for aTM T that computes t(a,b), there
existssaTM R that computes r(a) so that r(w) = t(<R>,w) —that is, this TM can obtain its own
description, then go on to compute with it; the proof is similar to the self-printing TM proof. This
version of self-reference is almost a diagonal argument in itself, and gives another proof of the
undecidability of UTM.

Also, one can show that MIN ={ <M> | M isaminima TM, e.g. the shortest TM that generates
its particular output } is not Turing-recognizable (proof: by the recursion theorem, assume that a
program A enumerates MIN and runs the enumerated program on an input: eventually a minimal
program longer than A will be generated; but thisis a contradiction, since A would then compute
the output of aminimal program longer than Al) (Cha96). The fixed-point theorem of recursion
theory saysthat for any computable function t(a), there exists some t(<F>) that describes a Turing
machine equivaent to F; the proof istrivia using the recursion theorem (F = *on input w, obtain
own description, compute t(<F>) toget aTM G, run G on W’ —then F simulates G, so <F> and
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t(<F>)=<G> are equivaent), but entirely nonintuitive, in the phraseology of traditional recursion
theory (Sac).

l.1.iv. Complexity

Complexity theory measures the resources that a computation demands. The time complexity of
an agorithm is one of the most common determinants of the success of a computationa strategy,
although occasionally one finds that exorbitant amounts of energy or incredible numbers of
particles can be substituted for along amount of time. For complicated problems with varying
strategies, often the wor st-case and average-case strategies will be vastly different — as anyone
with experience with agorithms such as the Quicksort algorithm can attest. We say that a
program (or Turing machine) with input nisan O(f(n)) program if, to leading order, the time that
the program takes to execute (or for the Turing machine to halt) is asymptotically f(n) or less, up
to a constant factor. Thisimplies that O(n) = O(2n) = O(2n+1550), for example. (The notation
o(f(n)) means asymptotically strictly less than f(n), and sometimes W(f(n)) is used to mean
asymptotically greater than or equal to f(n). Asymptotic equality is denoted by q(f(n)).)

The time complexity class O(t(n)) is the set of languages decided by O(t(n)) Turing machines. For
most problems which are posed in a positive fashion, it is possible to construct a simpler program
which verifies that an input is accepted when a suitable symbolic proof (or certificate) isincluded.
Determining the complexity class of alanguage is difficult because of the negative nature of this
definition: one must show that no one can make a faster program, that decides the same language.
(One can show that determining the complexity class of alanguageis, in general, uncomputable —
see (Chadb) for details.) Also, the asymptotic bound on the complexity of afunction may be
absolutely usdlessin a practica sense, if the program is only to be run on small values; the value
of this categorization to working computer programmers is often not clear.

However, certain classes have proven very useful in theoretical computer science, the most basic
of which isthe class P, the class of programs which run in time polynomial in the input. Simple
examples of class P problems include determining whether there is a path between two nodesin a
directed graph (use breadth-first search), the Euclidean algorithm for integer division, and
deciding any CFL (use dynamic programming, which gives an O(n®) solution). Most simple, well-
defined problem-solving strategies are in P. Significantly, it is believed in some circles that any
classical universal TM can smulate another classical universal TM in polynomial time; thisis
known as the strong Church-Turing thesis. Algorithms which take exponentia time are usually
considered to be intractable; this includes most searches and brute-force algorithms (e.g.,
complex, poorly-defined strategies).

An interesting note is that these results depend on the fact that we encode our problem as a string
on atape, and then run a Turing machine head down the tape. Any search or other computation
involving aglobal property of the string will demand that we visit every cell on the tape at least
once — this gives alower bound on the complexity of the problem. What if we encoded the
problem as a quantum system? It is now known that for some problems, this encoding can make
the problem more readily solvable.
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Some theorems are in order (Hop79): given an n-tape Turing machine (TM) that runsin t(n) time,
there isa single-tape TM that runs the program in O(t(n)?) time. Given a nondeterministic Turing
machine (NTM) that haltsin time t(n), there isa single tape TM that runs the program in 2°¢™
time. (Recall that for an NTM, the halting time is the length of the longest branch of the tree-
representation of the possible paths the program can take. Thisis the reason that nondeterministic
problems, or general inverse/search problems, take exponential time — all possible trees have to be
explored, and the number of nodes in such atreeis exponentia in its depth.)

Thereisaclass of problems known as NP problems, which seem to require exponentia-time
(brute-force-style) algorithms, but nobody has proven that they cannot be solved in polynomial
time. All of these problems can be verified in polynomial-time, and are decided by
nondeterministic polynomia time TMs. Indeed, these two conditions are equivalent, and either is
commonly used as a definition of NP. One can think of the two conditions as inverse criteria,
related by the concept of search, as suggested by the previous paragraph. Well-known NP
problems include determining whether a directed graph contains a path between 2 nodes which
passes through all the nodes (a Hamiltonian path), determining whether a graph contains a
complete subgraph of a specified size (the clique problem), and determining whether a subset of a
given set of numbers adds up to a given integer (the subset/sum problem). It is easy enough to
identify certificates for these problems: for the Hamiltonian path problem, for example, it is
sufficient to create a certificate containing the vertices of the path in the order of traversal. The set
of the complements of the languages in the complexity class NP is called coNP, but due to the
negative-requirement nature of the sets of coNP, it is not known how to find useful verifiers for
these problems — it is not even known whether NP = coNP. (As noted earlier, negative statements
are difficult to satisfy because they often require refutation of an infinite number of possible
statements. Compare this to the fact that negative definition such as compactness, uncountability,
logical completeness, and nonhomeomorphic require complicated, nonconstructive ideas, often
using proofs by contradiction. There are nice parallels between positive and negative statements,
forward and inverse problems, determinism and nondeterminism, construction and proof-by-
contradiction, and assertion and search.) Surprisingly, it has never been proven that NP is
different from P: in other words, no one has ever found a way to replace brute force searching, or
to show that searching is an essential tool, for solving problems that can be verified in polynomial
time.

A useful tool in complexity theory isto construct subclasses of complicated classes. For example,
the existence of a polynomial-time agorithm for any NP-complete language is equivalent to the
amazing statement P = NP. We say that A <pB, or language A is polynomial time reducible to B,
if there exists a function f which executes in polynomial timesuchthatwl A « f(w)l B—i.e, A
can be decided in polynomial timeif B can be decided in polynomial time. Therefore another way
to say that an NP language B is NP-complete isto say that for all Ain NP, A <p B. It israther
amazing at first glance that any NP-complete problems exist; one such problem is SAT, the
problem of determining whether a set of Boolean variables can be assigned such that a certain
well-formed-formulais true. The proof of the fact that SAT is NP-complete, the Cook-Levin
theorem, associates a Boolean formula with each computation deciding whether wi- A, such that
the TM accepts w only if the Boolean formulais satisfiable. Intuitively, thisis not surprising since
adigita computer performs similar operations whenever it ssimulates a Turing machine using its
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logical gates. The proof, however, is intense, detailed, and well-known, so we omit it here. A list
of NP-complete problemsis a useful reference, especially for the aspiring quantum-computation
theoretician seeking to find some subtle property of quantum mechanics that allows NP-complete
problems to be solved in shorter amounts of time. (Indeed, finding an NP-complete problem that
can be solved by a quantum computer in polynomial time is one of the holy grails of quantum
computing research.) Since the polynomial-time reducibility constructions can be very contrived
and tricky, proof strategies are briefly listed in parentheses — the interested reader can refer to
(Sip97), (Hop79), or (Cor90) for details:

» 3SAT, the problem of determining whether aformulain conjunctive normal form with
precisely 3 literals per digunctive block is satisfiable;

» theclique problem (3SAT <p clique);

> the vertex covering problem, the problem of finding the smallest set of nodes of a graph
that collectively touch every edge (3SAT <p vertex-covering);

» the Hamiltonian-path problem (3SAT <p Hamiltonian-path), with directed or undirected
graphs;

» the subset/sum problem (3SAT <p subset/sum);

» the pseudo-halting problem that determines whether a certain NTM acceptsan input in t
steps or less;

» the coloring problem, which determines whether a graph can be colored by 3 colors so
that no two adjacent nodes have the same color (or, whether one can color agraph on m
nodes with b colors, so that no two identically colored vertices are connected by an edge);

> thetraveling salesman problem, which finds the minimum-length path that a salesman
would take to visit al of the cities on a map exactly once.

Other classes exist, and aworking familiarity with their namesis useful for someone trying to
master the field: an NP-hard language A is such that all NP languages are polynomial-time
reducible to A (even though A may not be NP). We later discuss why nonlinear quantum
mechanics (which does not exist, as far as we know, but might emerge from a coherent quantum
theory of a nonrenormalizable force like gravity) implies that NP-complete problems could be
solved in polynomial time (Jac) (Abr98) (Free).

We briefly remark on methods of solving NP-compl ete structured search problems. We can
describe these problems as constraint satisfaction problems (CSPs) in that a set of variables need
to be assigned values while satisfying some set of relations. While a solution may be very hard to
find, it is often easy to find common elements to non-solutions (“nogoods’) —for example,
contradictory logical statementsin a SAT problem. By avoiding these parts of the solution space
one can significantly reduce the complexity of a problem. In short, a good structured search
algorithm will systematically build onto goods while discarding nogoods. For example, take the
vertex-coloring problem on m vertices with b colors, with e congtraints involving k = 2 variables
each (e.g., the edges): thus one immediately starts off with z= eb nogood assignments of the
individua constraints. Empirically, m, b, k, and e determine the difficulty of the CSP (Cer98),
which can be written in terms of a critical parameter b = zZ'm, the average number of constraints
per variable. A phase transition occurs at b, ~ b¥log(b), as noted by several people (Hog) (Kirk).
Small-sized problems and large-sized problems are easy, but when the number of constraints per
variable reaches this phase-transition value, the problem becomes very hard (on average). Thisis
because heuristic searches use local information to forecast global behavior: for large values of b
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(tight coupling), the local information is sufficient to completely define the global behavior
(making the problem easy), and for small values of b (loose coupling), statistics implies some
degree of homogeneity over the problem, so that the local information is representative of the
entire problem. The phase-transition paradigm for heuristic search agorithms has been much
pondered upon by people interested in statistical mechanics and in computation theory.

We have now analyzed time complexity in some detail. It is possible to apply the same
categorization methodology to space requirements as well. (We might care about this much more
for our quantum computer, where we struggle to eke qubits out of NMR samples.) For aTM, we
say that if there is a maximum number of cells f(n) that it scans upon executing with input n, the
language decided by the TM isin class SPACE(f(n)); PSPACE is the class of languages decidable
in polynomial space on a TM. For an NTM, f(n) is defined to be the maximum over al branches
which the computation might take. Many problems which are near-intractable in time have
surprisingly modest space requirements, because a unit of space is a renewable resource, whereas
aunit of time can of course only be used once. For example, Savitch’s theorem says that an NTM
which runsin f(n) space can be simulated by a TM which runs in f(n)? space (the proof isby an
intermediate problem called the yieldability problem), rather than the exponential requirement that
we observed when analyzing time complexity. Thus NPSPACE = PSPACE, a useful result, and
both P and NP are in PSPACE.

It helps also to quantify the amount of ‘ scratch space’ needed to execute a program: L (NL) isthe
class of languages that are decidable on a TM (NTM) using logarithmic scratch space. Thisisa
useful and very natura criterion, since a number n can be represented using log(n) bits, and it
usually happens to be invariant under model/coding strategy changes (just as polynomial timeis
invariant under most TM model changes in the time domain). Savitch’s theorem immediately
gives usthe fact that NL 1 PSPACE. And just as P = NP has not been settled, L = NL has not
been settled. However, one can find NL-compl ete languages, just as one can find NP-complete
languages: a function f(w) is defined to be log-space computable if it is computable by a Turing
machine which needs O(log(n)) scratch space (and as much read-only and write-only tape as it
needs, although it must terminate with f(w) on the write-only tape, given w on the read-only tape).
Wesay A< Bif Aisreducible to B, using alog space computable function f, and NL-
completeness is defined in the obvious way. By this definition, if one can find an NL-complete
languagein L, L = NL, in exact analogy with the time-domain problem. An example of an NL-
complete problem is the problem of determining whether there exists a directed path between two
points of adirected graph (to see that thisis NL-complete, for any Al NL and any input w,
construct a graph that represents the computation of alog-space NTM for <A, w>, so that the
machine accepts wif thereis a path from the ‘start’ configuration to the ‘accept’ configuration).

It is easy to seethat if a Turing machine M is run on input w of length n, and M runsin f(n) space,
and has c states and g tape symbols, then by a counting argument, the total number of
configurations of M (given w) is cnf(n)g™ ~ n2°"™ _ thus, for example, if f(n) > In(n), then the
time complexity of amachineis at most exponentia in its space complexity. Thisis a useful and
intuitiverule: NL I P follows naturally from it. What's interesting is that NL = coNL — the proof
involves showing that the converse of the path problem, that is, the problem of accepting graphs
for which there is no path between two states, gives alanguage in NL as well (the proof proceeds
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by taking full advantage of the nondeterministic nature of the NTM, and counting the number of
nodes that one encounters at various stages in the enumeration).

Finally, some problems are so difficult that they are considered intractable, i.e. exponentia-time
problems. We need more mathematics to deal with these:

A function f(n) > In(n) is space constructible (SC) if the function sending the string of n 1'sto the
binary representation of f(n) is computable, using space O(f(n)). This tricky definition essentially
states that a program whose space requirements are bounded by an SC function can calculate the
amount of scratch space that it requires, within its own scratch space. Thus such a function
indicates a meaningful measure of the useful resources available to a program. In fact, for any SC
function f(n), there exists alanguage A that is decidable in O(f(n)) space but not o(f(n)) space (to
prove this claim, create an agorithm B to decide a contrived language A by a diagonalization
argument: B accepts a Turing machine <M> iff <M,M> halts and rejects within space f(n), and so
B is able to make its output different from M for al M that run in o(f(n)) space; there are afew
tricky details dealing with the asymptotic nature of the o/O bounds (which don’t apply for small
n), which we do not discuss here). Thisis called the hierarchy theorem. We can prove some
simple theorems, using this very important fact:

> " f,9[(f(n)iso(g(n)), g(n)isspace constructible) ® (SPACE(f(n)) 1 SPACE(g(n)))]

> (0£a<b)® SPACE(n*)1 SPACE(n®)

» PSPACE| EXPSPACE.
Similarly, we can define f(n) > n log(n) to be time-constructible (TC) whenever the function
mapping n 1'sto the binary representation of f(n) is computable in time O(t(n)), and we can prove
that for any TC function f(n), there exists alanguage A decidable in O(f(n)) time but not
o(f(n)/log(f(n))). The proof is similar, with an algorithm B running M on itself, and accepting only
those machines which halt and reject in o(f(n)/log(f(n)))time; in the process of this simulation we
get alog(f(n)) factor due to the overhead of the process. The above 3 theorems that resulted from
space considerations generalize directly to the time case. Thisimplies that there do exist
intractable problems, e.g. which require exponential resources. In fact, we can find
EXP{ resource} -complete problems (Sipnote2).

We can modify arecursion-theory construct, namely that of Turing-reducibility, to give the
concept of relativization: we define an oracle Turing machine M* to be one which, in an atomic
instruction, can consult an oracle for A to decide whether a given element isin the language A.
Now, since the SAT problem is NP-complete, NP and coNP are subsets of P**". However, there
exist oracles A, B such that P** NP" and P® = NP?! For example, let B be any PSPACE-complete
problem, and construct oracle A so that al polynomia time oracle machines fail to decide some
language LA (e.g., enumerate A in stages, choosing oracle answers appropriately). Thisimplies
that there is something deeper going on than a mere diagonal argument or simulation argument
(which is a syntactic ssimulation of one Turing machine by another; e.g., since we can find an
oracle for B such that P® = NP®, the diagonalization argument, which is a purely formal syntactic
argument, cannot separate P from NP). A new tool is needed, since these two classes are in the
same ‘degree.’
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For quantum computation, it is useful to consider afew additional classes. The class BPP, which
stands for ‘ bounded-error probabilistic polynomial’ time, includes all languages which can be
recognized in polynomial time with probability at least 2/3. Since iterations can reduce such error
to arbitrarily small amounts, this classis generally regarded to be the class of agorithms which are
“feasiblein practice” (Jos97).

In classica physics, complexity isa universal property — it doesn’t depend on the physical system
running the algorithm, as far as we know. But this may just be alimitation of our imaginations,
and not an inherent property of our universe.

I.1.v. Algorithmic Complexity Theory

Consider the shortest description of a number. e, for example, can be described by the infinite

string 2.71828182845... but it can also be described to arbitrary precision by the short program
whi | e(i ++<N)
a=a+l/i!;

The minimal description d(x) of a string x is the shortest string <M,w> such that TM M halts with
x on its tape, given input w. The length of d(x), often denoted as K(X), is the Kolmogorov
complexity of x (Cov9l). Clearly K(x) < |x]; it's also clear that K(xx) < K(x) + ¢ (where the c extra
bits account for the overhead of the program that prints x twice). One can explicitly construct a
TM such that K(xy) < K(x) + K(y) + ¢, as expected. Turing-completeness implies that K(x) <
Kp(X) + ¢, where the p indicates another description language, and c bits are required to simulate
one Turing machine on the other. An incompressible string is one for which there doesn’t exist
any c such that K(x) < |x| - c. In general, ‘random’ numbers are incompressible, athough
sometimes one can be clever and come up with a shortcut that prints out a number with little
effort. For example, 264338327950288419716939937510...11111 looks rather random, but | can
write down a simple program that ssmply states,

print out the digits of P, starting fromthe 22" digit, until you reach a string of five 1's
and suddenly the description length can be seen to be much shorter. Unfortunately K(x) isan
uncomputable function; who knowsiif it's possible to create a shorter program, without simulating
all possible programs? A certain program may be very short, and take an unpredictably long time
to calculate the value of a certain x, but we must check it to seeif it can generates x. And K(X) is
also a heavily language-dependent number, making its practical use amost nil. Philosophers seem
to like it, though; it ties together the most abstruse parts of computation theory and information
theory in an amusing formalism.

Chaitin (Cha96) has implemented axiomatic systemsin LISP using Mathematica; for what it's
worth, he has calculated some of the constants ¢ that appear in the above paragraph, for a
particular implementation of a Turing machine.

|.1.vi Dynamics and computation

Some dynamical systems are so complex as to be undecidable, or algorithmically random, or
Turing complete, including CAs, PDEs, and neural networks (Moo90) (Omo84) (Min67). (Is
there any real system more powerful than a Turing machine in that a TM cannot smulate it? Not
that we know of, due to anthropic limitations.) Moore showed that in very low dimensionality
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systems, e.g., asingle particlein a 3D well, it is possible to have Turing-universality. The shift
map, for example, which moves digits of elements of the 2D Cantor set (represented as a 2-sided
infinite sequence of 0'sand 1's, e.g. abinary number) one element to the right, is equivalent to
Smale horseshoe doubling —i.e., there is an exponential increase in differences between nearby
points with time, and the initial information needed to account for the system behavior for atimet
islinear in t; thisis a characterization of the unpredictability of the system (but not really the
complexity, because to know the i" digit at time't, one just has to calculate the (i+t)" digit).

A more complicated map, which depends on a parameter a, replaces a finite number of cellson a
linear tape with a sequence G(a), then shifts the whole sequence by F(a), which is represented by
the notation a® s™@(aA G(a)) (M0090). Any such ‘generalized shift’ can be thought of asa
piecewise linear function on the plane, with the tape corresponding to the binary representation of
a coordinate, and shifting equivalent to scaling. It squeezes and rearranges the regions where F, G
are defined. This transform is smooth (discontinuities between blocks can be smoothed, and the
generalized shift action is completely local: this makes it differentiable — unlike CAs which are
continuous but nowhere differentiable). Classifying the behavior of different F'sis very difficult,
but computationa universality is an interesting criterion: questions about the set of sequences on
which a Turing machine will halt are questions about a basin of attraction.

We can replace the parameter a by the state of the head of a Turing machine. In fact, the Turing
machine head state a can be absorbed into the tape t; by placing a right after the decimal point in
the binary representation of the tape, resulting in atape ...t tg.att;... —soif Fand G read,
modify, and shift the tape contents appropriately, then the generalized shift map istrivialy a
Turing machine. Thus in the recursion theory sense, most sets which characterize this system, like
the points which are periodic under the map, or the basin of attraction, are not recursive.
(Equivaently, in the computation theory sense, the languages of points which are periodic, or in
the basin of attraction, are not decidable.) Therefore one cannot even decide whether or not the
system is chaotic — it is much worse than chaotic; indeed, “ At every time scale, new behavior
shows up.” One ssimply must wait and see what happens.

One map which has interesting dynamics, and which we will discussin the context of quantum
computing later, is the Baker’s map (Arn68), which maps the unit square [0, 1] = [0, 1] to itself
asfollows: represent apoint (x, y) in binary as (.$,$Ss..., -SS1S2...) and then write the two
coordinates together asastring ...S,51%.51$Ss. . .; the Baker’s map corresponds to shifting the
decimal point one digit to the right. This corresponds to doubling the x dimension, halving the y
dimension, and placing the right hand side above the left one. The name ‘Baker’s map’ is dueto
the apparent similarity of these operations to a baker flattening dough, then folding it over for
another round of kneading. One nice property of the Baker map is that the Kolmogorov-Sinai
entropy (the incremental amount of information about the initial conditions needed to predict the
behavior of a system to a certain number of iterations, given adesired accuracy) is exactly one bit
per iteration.

One can aso delve into cellular automata (CAS), those eerie discrete beasts that mainpulate grids

full of localy interacting squares. At this point, we will not do more than mention two facts: 1)
attempts have been made to classify and predict the behavior of CAs, arriving at four qualitative

31



classes, and 2) CAs are useful for certain differential equation smulations, in particular
hydrodynamic flow ssimulations (lattice gases). Later we will mention CAs in the context of
guantum computation.

[.2. On Quantum Computation

|.2.i. Fundamentals

A magjor theme of the last few decadesis that information is physical. Various proposals for exotic
computing devices, from vast pools of DNA to nanometer scale cellular automata to cups of
coffee, have seized the popular imagination by suggesting the preponderance of incredibly
powerful computing devices everywhere in nature. Unlike other schemes which gain their power
through sheer volume of parallel processors or exponential quantities of energy, however, the
parallel power of a quantum computer is due to its most fundamenta physical properties: to
completely describe a quantum system of n spins requires on the order of 2" real numbers, which
can be addressed and manipulated in various ways. But quantum information has the unique
property that it is contextual, due to the strange fact that noncommuting operators cannot yield
simultaneous observables (with perfect accuracy). This means that it isimpossible to extract the
entire exponential amount of information encoded in the state of a quantum system: only a
polynomial amount of information can be read out, since a measurement collapses the exponential
enormity of the state into a handful of classical values. Even so, quantum computers can do
certain things better than any known purely classical computational scheme.

The fundamental element of quantum information theory is the qubit, which can be redlized asa
pair of complex numbers describing a coherent superposition of two orthogonal states which are
usualy labeled 0 and 1. Just as a bit is afundamental abstraction which gaveriseto
communication theory, computer science, and information-theoretic models of almost every
discipline ever created, the qubit is the fundamental abstraction of quantum information theory.
Observing a single qubit without any prior knowledge yields only one bit of information, since the
qubit collapsesinto either aclassical 0 or 1 upon observation. Thus a qubit has the form

|a,b) =24/0) +b[2)
where a and b are complex numbers satisfying [af® + |b]* = 1; it takes 3 real numbers to specify a
qubit entirely. A qubit can be thought of as a single field mode, a spin, a suitably processed state
of atherma ensemble of quantum particles, or any other suitable system with two distinct levels
for which superposition is not precluded by any superselection rules. Any computation, or
operation on a set of qubits must be unitary and linear, for otherwise it cannot represent coherent
evolution under a Hamiltonian —i.e., it would be impossible to implement without destroying the
coherence which enables an isolated quantum system to be meaningful. Therefore quantum
computation is of necessity areversible process, which means that classical computations cannot
be implemented as-is. (We discuss the process of making algorithms reversible at alater point.)

Quantum measurement of commuting observables in any set of basis states must be carried out at
some point, because our consciousnessis classical (why it is so, we are not quite certain, but look
at (Ever3) for one well-popularized hypothesis). For bulk NMR quantum computing the
observable is the transverse magnetization of a set of spins asit precessesin a magnetic field; we
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will later discuss how to extract the maximum amount of classical information from an NMR
signd.

This conventional paradigm, where a classical computer sends commands to a quantum computer
in order to keep it under tight control, is called the quantum coprocessor paradigm. A free-
running quantum computer, while interesting and unlimited by classical decidability restraints (see
the next section), is unfortunately incomprehensible.

The nature of quantum parallelism is worth pondering: it is not merely due to interference effects
(often called coherence or superposition in classical mechanics and classical electrodynamics).
One can consider, as a quantum computing model, a cascade of branching processes, for example
the paths taken by photons through a set of parallel diffraction gratings. A photon’s path can be
considered to be equivalent to the execution of a program; thus n programs can be coded by, say,
an array of k gratings with n dots each, perhaps with different phase shifters or other devices
attached to them. Thenn™ is the probability that a particular program of length k is executed, and
we see that each signal bears a concomitant exponential loss in intensity. Thus thereis a hidden
exponentia resource here, namely the amount of energy required to see a constant-intensity result
at the end of any particular photon’s path. So superposition of waves aone is not enough to
overcome classical exponential limits; if so, water waves in a tank, or modeshapes on a string,
would suffice!

For example, Cerny (Cer93) proposed a solution for the traveling salesman problem using a
model of quantum computation similar to the above: consider a TSP on n cities, and a series of
(n-1) diffraction gratings, each with n-1 dlits, for atotal of (n-1)™" possible trajectories. Every
guantum has a finite probability of passing through all the trgjectoriesin polynomial time—but in
order to get at least one quantum in each path, one must have O((n-1)"") photons, an exponential
quantity of energy.

The fundamental observation (Jos97) is that entanglement, not superposition, is the essential
feature that empowers quantum computation, and is what gives other quantum technologies (such
as quantum teleportation) their power. That is why the simple act of sending photons through
dits, described in the last paragraph, falls prey to the exponentia clause of the strong Church-
Turing thesis. superposition must occur not just in space or in time, but in the exponential -
dimensional tensor product space of states of a quantum system. Simple superposition without
the mutual inseparablity of entanglement result in rather boring Cartesian product spaces, with the
equally boring property of lacking computational power. Ironically, since entanglement is so
delicate and easily upset by parasitic interactions with the environment, this also means that
guantum computation is a very delicate thing to implement. On one hand, the quantum computer
programmer must be able to address individua qubits and manipulate them; on the other hand,
this hardware must not measure or otherwise disturb the system when manipulations are not
desired.

We now examine this mysterious phenomenon, entanglement, at some length.
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|.2.ii. Quantum Mechanics and Infor mation

Quantum-mechanical thermodynamics is the heart of thermodynamics, accounting for such
phenomena as spin-statistics, correct Boltzmann counting, and most of the interesting many-body
system characteristics such as superfluidity and Fermi pressure. At its most basic level, to put this
discipline in an information-theoretic context requires generalizing the idea of information.

Because of the intricate correlations that quantum systems can possess, they are difficult to
interpret within the bounds of classical information theory. But a complete theory which accounts
for both the quantum and classical cases has been developed (Cer97b). The von Neumann entropy
for a quantum system, represented by a density matrix r 5, where A is a quantum system or
guantum source,
H(A) =-Trr ,logr ,

isfamiliar to students of statistical mechanics for being a measure of the disorder of a quantum
system (see the explanation in 1.1.1.), but it was recently established that H(A) is the minimum
number of qubits needed to losslessly code an ensemble of quantum states, thus giving
information-theoretic importance to this representation — see the argument later in this section for
asummary of the proof (Sch95). Further, if r » is composed of orthogonal quantum states it
clearly reducesto aclassica Shannon entropy H(A), since we can just diagonadizer » in the
orthogonal basis; we will discuss this fact later in the context of quantum channels. For two
operators A, B, the definitions of joint, conditional, and mutual entropy can be defined as follows,
wherer 5 isthe joint density matrix:

H(AB) =-Tr{r ,,logr ,,}

H(A|B)=- Tr{r A lOgr AIB}

I (A B) :Tr{r plogr A;B}
The definitions of r ag and r 4 g are surprisingly subtle. They are given by
r AB =2°* 1

e n
r. =Iim[r Ar ' r '””]
AB n®¥( A B) AB

respectively, where
sa=1 A [OQur Ag - 10Q:r A8
and
ra=Tre{ras}, re=Traras}.
(Asnoted earlier, Trg means to take the partial trace of the density matrix; e.g.,

(alr &) = Q (ablr |a'b).
b

Thisis where the duality between projection operators and density matrices becomes useful.) The
justification of these choicesis basically by analogy: asr s becomes diagonal, for example, the
guantum conditional entropy convergesto its classical value; aso, r s satisfies the classica
identity I(A,B) = H(A)+H(B) - H(A,B). But r ag and r 4 g are not true density matrices. For
example, r ag may have eigenvalues greater than 1, when s ag has negative eigenvalues — in such
Situations one obtains negative conditional entropies! It has been shown that a separable density
matrix r ag (i.e., one that can be expanded in the form
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and therefore can't be told apart from a classical ensemble containing two completely decoupled
systems) must have positive semidefinite s as and thus positive conditional entropies (Cer97a), but
sufficiently entangled systems can indeed guarantee strange behavior like negative conditional
entropies. And oddly enough, (A, B) can exceed the entropy of each individua set of variables!
The above definitions and generalizations thereof have been applied to quantum teleportation and
superdense coding (i.e., where two classical bits are encoded in one qubit) in the paper (Cer97b).
In this paper the authors treat entangled qubits as virtual conjugate particles e, € (collectively
caled ebits, or entangled qubits), carrying opposite information content ( +1 qubit each), and
suggest that € may be visuaized as e going backwards through time! One can, for example, draw
a Feynman diagram for ultradense coding (consumption of a shared entangled state, plus
transmission of one qubit, is equivaent to transmission of two classical bits). Thus these
‘information quanta’ suddenly have many properties anal ogous to those of virtual particlesin
relativistic quantum field theory — in particular, only through interactions that result in classical
bits may they become visible to the world. Importantly, this formalism alows an intuitive picture
of conserved information flows. Ebits can be created ssmply by transmitting one bit of a Bell pair
while keeping the other, but one cannot create a qubit directly from an ebit (some classical bits are
required). An interesting point is that if the ebit used for teleportation or superdense coding is
only partly entangled, then the transmission will appear noisy.

The Schmidt decomposition, sometimes called the polar decomposition, isaway of representing
an entangled pure state in the form

d
y =acla)Alb)
i=1

where the ¢, are positive real coefficients, and |a; ), |b,) are appropriately chosen orthonormal

states of two subsystems A, B, which may perhaps be located far apart from one another
(Ben95b) (Schob). It is useful to note that local operations cannot increase the number of nonzero
terms in the Schmidt decomposition; i.e., one cannot create entanglement with purely local
operations (although by consuming other entangled bits, one can increase the entanglement of
another subsystem). Local unitary operations on subsystem A can only change the eigenvectors of
A (not the eigenvalues), and cannot affect B’s observations at al. As noted above, in thisbasis

S s IS positive semidefinite. If A makes an observation of his part of the system, thisis equivalent
to him first tracing over the degrees of freedom of B’ s subsystem (which results in an apparent
mixed state of his subsystem, represented by a diagonal density matrix r » in the Schmidt basis),
then making an observation on this reduced density matrix:

d
M :TrB|y ><y | =a Ci2|ai><ai |
i=1
Then the entropy of entanglement is defined to be
d
E=-Trr ,log(r ,)=-Trr zlog(r ;) =-Q ¢’ log(c’).
i=1

Note that it isjust the Shannon entropy of the squared density matrix coefficients in the Schmidt
basis. E = 0 for adirect product, and E = 1 for a Bell state. It can be proven (Pop97) that thisis
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the unique measure of entanglement for pure states. The argument, like Shannon’s definition of
information, is based on two axioms: it isimpossible to increase entanglement purely by loca
operations, and it is possible to reversibly transfer entanglement from some set of shared ebitsto
previously unentangled qubits (leaving the original ebits unentangled) (Ben96c¢). (The last
statement is true asymptotically; one can reversibly transform k systems in one entangled state into
n systemsin pure singlet statesonly in the limit n,k ® ¥ ; in fact n/k is often asymptoticaly an
irrational number, so due to incommensurability such reversible procedures can’t even exist
except in the infinite [imit!) Formally these two statements are akin to the Second Law of
thermodynamics and the statement that all reversible heat engines are equally efficient, so the
derivation of the entropy of entanglement is completely analogous to the derivation of entropy in
thermodynamics! Thus, proceeding as in thermodynamics, we require the degree of entanglement
to be extensive, we can measure the entanglement of an arbitrary state by transforming it into a
set of singlet states (which are defined to have entanglement equal to 1), and so on. Unfortunately
this definition is only good in the quantum analogy to the ‘thermodynamic limit,” meaning access
to infinitely many pure ebits, which rarely occursin red life. Also, nobody has come up with a
measure of entanglement for a mixed state, since no on has exhibited a reversible way to convert a
density matrix into pure states; candidates include the number of singlets that can be packed into a
density matrix, or the number which can be extracted — sometimes these two values can be
different (Ben96d). Therefore many other definitions may be more practical, if appropriately
justified; it is difficult to imagine what physical manifestation this measure of mixed-state
entanglement might take. Indeed, the recent literature indicates that even respectable scientists
occasionally need reprimanding due to the ambiguity of dealing with issues as nonintuitive as
entanglement (Unr).

One interesting manifestation of these resultsis that two people with many partially-entangled
gubits can increase the degree of entanglement of afew qubitsto arbitrary purity, at the expense
of the others. Note that thisis not in contradiction of our above statements, since only the total
entanglement is required to be conserved. For alarge number n of entangled pairs of two-state
particles, each with entropy of entanglement E < 1, the yield of pure singlets goes like nE—
O(log(n)) (compare this to the pure state yield of bulk spin resonance guantum computation,
below). The process of Schmidt projection is as follows. suppose that the initia systemisin the
product state

y = (_5 (C05q|alib]j>+5inQ|aZib2i>)

which has 2" terms, each with one of n + 1 distinct coefficients cos(q)™sin(g)*. We can treat these
states as n + 1 orthogonal subspaces, labed by the power k of sin(q) in the coefficient. A and B
project the state y onto one of these subspaces by making an observation, and obtaining some k;
this collapses the state down into a maximally entangled state, which occupies a 2n!/(n-k)!k!
dimensiona subspace of the origina space; if lucky, one can get even more ebits than one started
with (but the expected entanglement cannot be greater than before). It's analogous to the method
of taking a biased coin, say with probability of heads .3, and getting an unbiased random hit by
flipping the coin and keeping sequences HT = 1 and TH = O (probability .21 each), and discarding
TT and HH (probability .49 and .09, respectively). In our case, measuring a power k symmetrizes
our state by selecting al possible combinations with some equal probability (although we cannot
actively choose that probability) and discarding all the states with probabilities that differ from it.
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One can transform this new state formally into singlets as follows: measure k for each of m
batches, each containing n entangled pairs, getting ki, i = 1..m. Let D, be the product of al the
coefficients n!/k!(n-k)!, i = 1..m, and continue until Dl [2', 2'(1+€)], where e is the desired
maximum error in the entanglement, and | is some integer. Then A and B make a measurement on
the system which projectsit into one of two subspaces, one of dimension 2** (whichisin a
maximally entangled state of two 2-dimensional subsystems) and one of dimension 2(Dy, -2
(which discards all the entanglement). In the former case, we have again effectively symmetrized
the state; in the latter, we lose everything. (Such is the risky nature of quantum engineering.)
Finally, another round of Schmidt decomposition arranges the density matrix into a product of |
singlets.

Quantum channels, over which qubit messages are sent, are a useful abstraction. In classica
information theory, a source A produces messages a with probability p(a), and the fidelity of the
coding system is the probability that the decoded message is the same as the transmitted one; in
guantum information theory a quantum sour ce codes each messages afrom a source A into a

signal state |aM > of asystem M; the ensemble of messages is then representable by a density
matrix
r=Q p@p.,wherep,=|a, )(a, |,

and the fidelity for a channel wherer, isreceived when p, is transmitted is defined to be
f=a p(@Tr(p.r,)

(so that for perfect noiseless channels f = 1) (Sch95). Compare this to our definition of classical
probability fidelity in 1.1.ii.; we will unite these pictures in the next paragraph. Another possible
definition of a quantum channel W, which lends itself more to problems involving noise, isto
consider a channel to be a probability distribution on unitary transformations U which act upon
Hsignal A Henvironment; before reading a quantum channel, one must take a partial trace over
Henvironment, @nd one can define the fidelity as

min  (x\W|x)

al signals x
(Cal96). Note that there are subtleties for the quantum channel which one does not have to
consider in the classical case: for example, one cannot copy an arbitrary quantum signal (the “no-
cloning” theorem (W0082)); the proof follows immediately from the linearity of quantum
mechanics. Only if the signals are orthogonal can they be copied (i.e., measuring a system which is
known to be in an eigenstate is trivial, and yields al the information available about the system).
Fundamental to quantum communication is the idea of transposition, or placing a system Y in the
same state as a system X (perhaps resetting X to a useless state in the process); unitary
tranposition from system X to system Y can occur iff the states in X have the same inner products

as the corresponding statesin Y, e.g. (ax|bx) = (ay|by), which occursiff the Hilbert space of Yis

of dimension no less than the Hilbert space of X, for obvious reasons. If a message is unitarily
transposed from a source A to a system M, which upon transmission is decoded into a message A’
(on an isomorphic quantum system) by the inverse of the unitary coding operator,

A®R M® A
then we say M is the quantum channel for the communication. The question arises, when is the
guantum channel M big enough for a particular quantum source A?
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The von Neumann entropy of an ensemble of quantum messages r equal's the Shannon entropy of
the source A if the |a,, ) are orthogonal, else H(r) < H(A). We define a positive-operator valued

measure (POVM) to be a set of operators{ O;} with exclusively positive eigenvalues which are
complete (e.g., their sum is the identity operator). We can cast the quantum fidelity between two
specific statesrpandr ; as

F(ro.r)=ming J(Tr(r 0)(Tr(r,0,),

which considers all possible interpretations of two specific states (minimizing over the set of al
possible measurements), as opposed to a specific interpretation applied to all possible states (asin
the paragraph above, where we minimized with respect to all possible signals). Although this new
picture is not suitable for evaluating signals traveling through a quantum channel, where we want
to consider many signals and a single measurement, this version of the quantum fidelity does have
avery simple closed form, as shown in (Fuc96):

F(ro,r,)=Tryr%rr’?

which, in the case that r o and r ; correspond to pure states, reduces just to the inner product
between the pure states (Wo00). Fuchs simple proof of this last formula applies the Cauchy-
Schwarz inequality to the sum over the elements of the POV M, then applies the compl eteness
criterion for POVMs to eliminate the arbitrary set { O;} from the equation entirely.

We briefly mention a few more inequalities, without proof, for the interested reader. (Most of the
proofs use variants of classical inequalities for sums and vector spaces, like Holder’ s inequality,
Jensen’s inequality, or Minkowski’s inequality.) Kholevo' s theorem (Kho73) bounds the
information one can get about a quantum channel M by measuring it in the basis of messages of a
guantum source A: suppose the output of the quantum channel is described by a density matrix

r=4 p(mr,

where we label the different message states m with individua density matricesr , to indicate that
they might not be pure states. Then, for any measurement strategy A, the mutual information
obtained from measurements on A and on M satisfies

L(AM)EH(r)- & pmH(r,),

where H(r ) is the entropy of the density matrix for the m" signal state (if the signals are encoded
in pure states, then this entropy is zero) (Sch90, in Zur89). The proof is given in some exquisite
detail in (Fuc96).

This can be used to prove, for example, a conjecture by Everett (Eve73) that for systemsr 4, 1,
with respective observables A, A;,

I(ALA)ES(ry) and I (A,A) £ S(r,).
It might be interesting to see if these results could be proved more easily using the formalism in
(Cer97b) outlined above.
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Another inequality, an information-theoretic version of the Helsenberg uncertainty principle, was
discovered by Maasen and Uffink (Maa88) (Sch90), and states that for observables A, B with
eigenstates g and b; and a state (or message) r,
H(A|r)+H(B|r)? - log(sup|(a [b; ) [*).
1)

Asexplained in (Sch90), since H(A| X) =H(A)- I (X, A), for amessage X embedded in an N-
dimensional Hilbert space, this can be written as
1(X,A)+1(X,B) = H(A)+H(B)- (H(A| X)+H(B| X)) £ 2logN +log(sup | (a [b; ) [').
]

One can derive a noiseless coding theorem for quantum information theory, analogous to the
theorem of the same name in classical information theory (see |.1.ii.), which states that as the
length of a string of messages from a source goes to infinity, the mean number of bits per message
can be brought arbitrarily close to the Shannon entropy of the source, but no less. Similarly, for
the quantum case, the number of qubits per message can be brought arbitrarily close to the von
Neumann entropy of the signal source (Sch95). We model the process as follows: a source A

encodes its message a in a state | ay > of asystem M (which, as an ensemble, we can therefore
describe as

r=a p@p..
in density matrix form) which is then transposed through a channel X, then transposed to a
receiver state M’. We model the channel X with two components, C (channel) and D (discarded).
Discarding a component D can be smulated by taking the partial trace Trp of the system, so that
all information about D islost. Thus the process looks like

M® C+D® C® C+D'® M’
where in the next-to-last step, we must make up some numbers for the state of D’ so that the
decoding algorithm will work properly; adjoining a quantum system in this fashion is done by
taking the tensor product of the origina system with the adjoined system. The message therefore
undergoes the following transformations as it passes through the above communications channel:
pa=|ay (ay | ® UpU'® TrpUpU™® TrpUpU A D’ ® ra° UH(TrpUpU™A D')U

The fidelity, as noted earlier, is equa to

a p@Tr(p,r,),

and gives the probability that the received message matches the transmitted one (under any
possible measurement). Two facts about channels that link dimensionality to channel capacity are
useful: (1) If Cisd-dimensional, and for any projection P onto a d-dimensiona subspace of M,
Tr(r P) < h (or, dternately, that the sum of any d eigenvalues of r islessthan h), then the fidelity
f < h. (Proof: when we arbitarily adjoin a pure state D’ to the message from C and decode to
formr,, the useful information isto be found only on a d-dimensional subspace of M’

ra=%lQ|fi><fi|;

evaluating the expression for f with this expression and recalling b; < 1 in conjunction with the
hypothesis of the lemma, gives the desired answer.) (2) If, in the above scenario, Tr r P > 1-h for
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some projection P, then there exists some communications scheme with f > 1-2h. (Proof outlined
in (Sch95note).)

The quantum noiseless coding theorem states that if H(r )+d qubits are available per M signal
then sufficiently long signal sequences can be transposed using these qubits with fidelity greater
than 1-efor al e between 0 and 1; conversaly if H(r )-d qubits are available, for sufficiently long
sequences the fidelity will be less than e for al e between 0 and 1. Consider a channel C consisting
of k qubits and a message source M" consisting of N copies of some D-dimensional system M
described by

8
r=a p@p,.

a=1
The composite system M" can be thought of as being in a state described by some “message
string” |a,a,...a, ), and the statistics of M" can be described by adensity matrix r ™ which isthe

tensor product of N copies of r. Since the eigenvalues of r formally satisfy a probability
distribution whose Shannon entropy is equal to the von Neumann entropy of r, and the
eigenvalues of r ¥ are just the D™ possible products of N eigenvalues of r , it follows that each
eigenstate of r " corresponds to a message string which occurs with probability equal to the
corresponding eigenvalue of r ™. Having established the connection between Hilbert space
dimension and von Neumann entropy in the two lemmas in the previous paragraph, and having
seen the connection between eigenvalues and classical probabilities, the proof is now obvious,
since the machinery of information theory completes the proof just aswe did earlier in . 1.ii.
Earlier we asked how the entanglement of a pure state might be affected by transmission through
achannel. As noted above, entangled states and quantum message sources are formally identical,
since both can be represented by a density matrix, so the above proofs and theorems carry over
exactly to the entanglement case. The algorithm for performing noiseless coding is given in
explicitly reversible high-level pseudocode in (Cle96), in which it is shown that n-qubit strings can
be encoded in O(n®) time with O(n"?) scratch qubits. The primitivesin Appendix A suffice to
implement much of the Schumacher coding operations.

Finally, one might ask whether it is possible to communicate in the presence of noise, i.e. whether
guantum error correction isfeasible. It was originally believed by many people (including
Landauer) that this was impossible, because one cannot perform regeneration, as one does with a
digital computer by using devices with nonlinear input-output relations. Mere copying, distributed
storage, or redundancy cannot be used to perform error-correction, due to the no-cloning and
demolition-measurement properties of quantum mechanics. One can treat an error as an
interaction with or measurement by an ‘environment’ system; the key insight to preventing
revelation by thisinteraction is therefore to hide the desired bits from the environment. For
example, information must be embedded entirely in the entanglement of various bits (without
respect to the basis, since the environment could be “measuring” with respect to any basis);
furthermore the error must occur in a subspace orthogonal to the space of the coded information
(DiV97b), so that it can be observed and proper action taken.

In the past two years many proposals have been made which develop quantum error correction
and refine it to adiscipline of fault-tolerant quantum computation, starting with (Sho95) and
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(Ste96), in which one qubit is encoded in 9 qubits and 7 qubits, respectively. At least 5 qubits per
encoded qubit are necessary to correct one general error (DiV97b). In its most basic form, error
correction is formally the embedding of k qubitsin a subspace of an n-dimensiona space so that
decoherence of any t qubits doesn't affect the possibility of reconstructing the original k qubits of
information (Cal96).

For example, here is Steane's 7-qubit code, which corresponds to the [7, 4, 3] Hamming code
(Ste96). Consider a codeword v from the set of 16 codewords which are orthogona (mod 2) to
the matrix

é 111 1
_é a
H=g 11 11y
e 1 1 u

Each of these 16 codewordsis a 7-dimensional vector, each coordinate of whichis O or 1. Eight
of the codewords have even Hamming weight (that is, they contain an even number of 1's) and
eight have odd Hamming weight. If bit i of the codeword v flips, giving v + &, then applying H to
the modified codeword gives He,, which uniquely identifies the error and alowsit to be corrected
for, by toggling the i bit. But H reveals no information about which code word was being

corrected. If the qubit a0) + b 1) is affected by an error, but we encode |0) as the equal
superposition of the eight even-Hamming-weight codewords, and |1> as the superposition of the

eight odd ones, then by appending an ancilla qubit (initialized to the state 0), one can apply H to
the combined system to get

H:|[v,0) ® |v,Hv).
Reading the ancilla bit allows amplitude errors to be corrected. Applying the Hadamard matrix
(see section 11.2.) to rotate the phase errors into amplitude space, and repeating the application of
the matrix H, we can correct for a phase error as well, if no amplitude error was found in the first
step. If acode is designed to resist one error, however, and two happen to occur, then using the
above naive method can actually make things worse, since errors can propagate. One can reduce
the probability of error to €, where e is the probability of having a single-bit error, by using two
ancillae, or even more. Picking a code appropriate for the number and type of errorsthat are
expected, is essential for error correction to be meaningful.

Finding such a meaning, however, can be very tricky. A code which has been experimentally
verified (Cor98) is a simple 3-qubit ‘majority code’ (e.g., if two agree and the third is different,
choose the message given by the two which agree) which had been modified for the quantum
regime, but it only corrects some errors: in particular, small random phase fluctuations, due to
local magnetic field inhomogeneity (e.g., diffusion in a B-field gradient).

Some vocabulary from classical coding theory is essential. For binary computers the smplest
codes to consider are those over F, ={0,1}. A linear code of length n over F, isa set of binary
strings of length n, which comprise a vector subspace of F,". The Hamming weight H(w) of a
code word w is the number of 1's in the code word, and the Hamming distance between v; and v,
isH(v1 + v,), which counts the number of places where v; and v, differ. The minimum distance of
acode is the minimum distance between two distinct codewords; for alinear code it is simply the
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minimum nonzero Hamming weight. A linear code is completely specified by its length n,
dimension k (as a subspace of F,"), and minimum distance d; such a codeis called an [n, k, d]
code. It isclear that an [n, k, d] code can correct t® gd - 1)/ 2() errors, since even if two different

codewords were each corrupted with t errors, they could not possibly equal the same string, and
so the corruption must be invertible. The rate of a[n, k, d] codeis k/n, and gives the relative
fraction of each codeword that contains real information. The dual code C* of acode C isthe set
of vectors perpendicular to all the codewords of C —i.e., for any vinC" and win C, the number
of places where v and w are both 1 must be even. A code can be self dual, e.g. the very simple [2,
1, 2] code {11, 00}.

A gquantum error-correcting code Q with rate k/n is a unitary map H® H, of k qubitsto a
subspace of an n-qubit space (Cal96). We can model t errors by applying a random unitary
transform to some space H; A Heny, Hil H,, and then taking the partial trace of the system with
respect to Heny. Explicitly, we can map a[n, k, d] linear code C; into a subspace of H,, say H;. Let
C. be the row space of ak * n matrix M (the generator of C,), and for each win F* define
quantum states |c,,) inH, as

o]

2- k/2 a (_ 1)VMW|VM>
v F¢
Now { |cw> | wi F, /ClA } forms abasis for H;, as one can see by checking dimensions and

linear independence. Thus, if a second m-dimensional linear code C;1 C,; exists, we may define
our quantum codewords to be the codewordsin C, , which are in one-to-one correspondence

with the elementsof C, /C, , and which has arate (k-m)/n. If C; and C, have minimum distance
d, this code correctst =gd - 1)/ 2(j errors.

Why should this be so? The reasoning is that in the qubit basis, t amplitude errors can be
corrected by classical error-correction, and in the Bell basis, where phase errors have been
transformed into amplitude errors, t phase errors can thus corrected as well. Once again the
process has been to take a classical idea, embed it in a quantum framework, and then to show that
the classical intuitions hold. Of course, the proof that this works (given in (Cal96)) requires much
additional logic —for example, they show that the two correcting stages do not interfere with one
another, and also that this classical error-correction does not actually destroy any encoded
information. We will not go through this here, since there are no essential ideas in the proof that
are not contained in the above discussion on Steane’ s 7-qubit code.

One can use supersets of these error-correction ideas to prove the quantum noisy coding
theorem, which like the classical noisy coding theorem of Shannon, indicates the amount of
information which can be transmitted perfectly over anoisy channel, using error correction as
necessary. Schumacher et. a. (Sch96) give an existence proof of this phenomenon: they show that
for appropriate signal sources, there exists a superoperator which can correct the errors induced
by anoisy channdl.
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|.2.iii. Quantum Logic

Models of quantum logic have been proposed by von Neumann and others (Neu55). By quantum
logic | do not mean the system of logical gatesthat | will describe in the following sections, but
the actual formalism associated with a quantum ‘ propositional calculus (Svo94) — alink between
syntactical and semantic constructs which allows symbolic manipulation to revea truths about
guantum mechanics. Thisis an interesting idea, since quantum mechanics currently has no precise
syntax for describing systems so that a machine might be able to parse and decide arbitrary
statements (Rot97). Questions about the decidability of certain statements about quantum
mechanical states may remain unanswered due to the informal treatment usually accorded the
mathematical structure of quantum mechanical axioms. The basic structure of the logical system
comes from formally interpreting the various properties of quantum systems within the
infrastructure of an n-dimensiona Hilbert space H. A contradiction is associated with a O-
dimensiona subspace, and a tautology with the entire space H. Truth valuations are associated
with projection operators P;, and each proposition which has a binary truth valuation is associated
with alinear subspace of the Hilbert space. Logical operators like intersection C, union E, and
negation @ correspond to subspace intersections, subspace direct sums, and orthogonal
subspaces, respectively. As formulated by von Neumann, the DeMorgan laws clearly do not
apply. Kochen and Specker, who are famous for their assertion (and proof) that hidden-variable
theories of quantum-mechanics must be contextua (Gil), went farther than von Neumann by
trying to define incompatible propositions as those which cannot be simultaneously measured.
They defined a commeasurability operator ©, such that ©(P;P,) asserts that propositions P; and
P, are simultaneously measurable. They aso showed that there exist classical tautologies which
are not true according to ‘quantum logic,” which is not surprising given the very different axioms
and rules of derivation which guide classical and ‘quantum logic.” (The shortest known such
tautology is the implication of the digunction of 16 well-formed formulasin 11 letters! Each letter
can be pictured asaray in 3-dimensional space.) It is quite possible that none of thisisinteresting
in aphysical sense, since most physicists rely on their intuition about quantum mechanics to solve
problems, rather than depending upon the precise derivation and enumeration of theorems about
guantum mechanics from a set of axioms — so perhaps quantum logic will be useful only in avery
abstract mathematical sense. Certainly the discovery of a paradox or of atheorem which applies
to al models of a Hilbert space would be very useful. At least one author asserts that quantum
logic isauseful tool for studying Hilbert spaces (Coh89).
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“There are people who live as animals, and people who live as men, and people who try to live as gods.
The romantics among us would say that it boils down to an individual's capacity for passion,

but the realists know that it depends only on one's model of the universe.”

-E

1. Models of Quantum Computation

[1.1. Preliminary models

The most fundamental constraint of quantum algorithm design is that for a completely described
system, any time-evolution operator, and therefore any meaningful quantum computation, is
unitary — and therefore reversible. This statement is equivalent to the fact that for a completely
described quantum mechanical system, the probabilities of all distinct experiment outcomes must
sumto 1 (or, for continuous states, the correspondin probability measure must have integral 1).
Before implementing a quantum agorithm, one must explicitly cast it in areversible form. This
can be done by maintaining ‘ scratch bits' which are then removed by undoing parts of the
computation, a painstaking task (Pre96). Perhaps we should briefly examine classical reversible
computation to gain some intuition for this ‘reversibilization’ process.

The Bennett scheme for embedding an irreversble TM in areversible TM is very smple —amost
astonishingly so, given the number of great minds which historically expressed disbelief at the
possibility of performing such an embedding. Simply make a TM with three tapes, (i nput , hi story,
out put ) — the standard TM tape with the input on it, an ancillary history tape, and an extra output
tape (Ben82). We will perform a computation C using only reversible operations, but ending with
the correct answer on the output tape. Begin the computation in the state (i nput , - , - ), and
perform the computation C, recording the entire history of what occurs, resulting in (out put,
history of C,-). Then copy the output to the extra output tape, giving (out put , history of C,

out put ), and then undo the operations of C in reverse temporal order of their execution as
recorded on the history tape, resulting in (i nput , - , output ). This concludes the embedding of an
arbitrary computation C in areversible framework.

If C already isa 1-1 computation, so that itsinverse C™ exists, then we can do even better: after
completing the last step, swap the input and the output, getting (out put, - , i nput ). Then execute
C*, getting (i nput, history of c*,input). Delete one copy of the input (this step is reversible since
we have two copies of the same information), getting (i nput, history of c?,-), and finally
execute C one more time to get (out put, - , - ). Thusin this case, the reversible computer can
completely emulate the irreversible one — with the expenditure of alinear increase in operation
time and a possibly large increase in the amount of space needed.

Almost al quantum computations which are based on implementing irreversible calculations
proceed by using some variation of book-keeping and undoing. The quantum Turing machine
(QTM) model has been suggested as away of examining unitary execution of a quantum
algorithm. One way to construct the QTM is to quantize the ordinary universal Turing machine,
and replace the finite state machine in the TM head by a unitary (and therefore reversible) version
(Svo94). A universal QTM U with an infinite qubit tape and with state vector y  can be defined
by three types of operators, corresponding to the three components of a classical Turing machine



configuration: the tape position operator X, the memory operator 1}, which measures the state
of the i™ tape qubit, and the head operator P, which measures the state of the head (where the
Hilbert spaces of the head operator and of each tape memory operator are finite-dimensional). It
followsthat |y , ) isavector in the Hilbert space of computational basis states

[X) Alp)Alm),
where x, p, and m are the eigenstates of their respective operators. The amplitude of minly )

indicates the program to be executed by the universal QTM, as well as the input, and therefore
specifies a unitary operator which operates on the state of the head. Curiously, the tape position
operator can be ‘anywhere’, but it still islimited to moving one cell to the left or to the right!
Benioff (Ben97b) has proposed a cogent model of QTM dynamicsin terms of the unitary step
operator T that advances a computation by one step. T expresses the head-tape coupling (with
appropriate locality constraints). There are many choices of T' s locality property, the time extent
over which T operates, the possible decompositions of T into elementary step operators, the
relationship between T and the Hamiltonian of the QTM, the properties that T should have in
order to guarantee certain properties of the path that the QTM takes through Hilbert space, and
so on. The art of QTMs (as with classical TMs) lies greatly in the art of picking the correct
definitions for the model. We will not discuss QTMs further in this document, since although they
are extremely interesting quantum mechanical systems, they are not very practical for considering
how to design and implement computational agorithms.

[1.2. Quantum Gate Arrays

In aclassical computer, signals represented by voltages pass through logical gates and are relayed
via metallization wires across a silicon chip. High voltages represent 1's, and low voltages
represent 0's; storing a bit is accomplished by charging a capacitor with the appropriate polarity.
In a quantum gate array, however, the qubits (various spins on a strand of a polymer, ionsin an
ion trap, photons in a pure state) stand still, and logical gates (selective radiofrequency pulses,
coherent laser radiation, beamsplitters and phase-shift media) are applied, thus changing the states
of individual qubits and modulating their interactions with one another. Readout of the result of a
computation is accomplished at the end of the experiment, by performing a measurement
(recording radiofrequency emissions, stimulating fluorescence via quantum-jump methods,
interferometrically determining the phase of a photon) on the quantum system.

Thisisavery practica architecture for quantum computation: all that is required for implementing
guantum computation on a particular physical system isto determine the most easily implemented
guantum mechanical operations (the elementary gates) for that system, and then to compile the
desired algorithm down to those gates. The computation can be executed in afinite amount of
time and often is readily analyzable. Furthermore, this paradigm can be generalized to encompass
the entire art of performing computation on natural materials, as exemplified by the tag project
(discussed briefly in V1.2.1.).

The Toffoli gate (athree-bit reversible gate, which flips the third bit if the first two are both 1) is
universal for quantum computation, in the sense that appropriate applications of the Toffoli gate,
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combined with single-qubit rotations, suffice to implement any quantum computation (Deu89).
Over aperiod of several years, it was shown that two-qubit gates were universa (that is, any
unitary matrix can be decomposed into a product of unitary transformations that operate in 2D
subspaces of C"), that there existed afinite set of two-qubit gates that was universal, that there
existed a single two-qubit gate that was universal (Bar95) (Bar95b), and finally that *almost any’
two-bit gate is universal (L1094) (Deu95). The proof of the last claim can be accomplished by
appealing to theorems about Lie algebras, or by explicitly showing via matrix dimensionality
arguments that the set of non-universal gates has measure zero. To be explicit, any two-qubit gate
which is specified by Euler angles which are not rational multiples of p is sufficient to approximate
any gate with arbitrary accuracy, merely by iterating the gate and using single-qubit phase
rotations to introduce new information into the quantum system as appropriate. Note that thereis
no direct analogy to this universality result in classical logic.

In the quantum gate array coprocessor paradigm, one constructs gates using a classical computer,
and then applies them to the qubits using appropriate hardware. Although it has been shown that
almost any gate is universal, for convenience we will take as our elementary operations the CNOT
gate and the set of single-qubit rotations. The CNOT ,, gate flips qubit b if qubit ais 1, and leaves
b doneif ais0. The subscripts indicate the qubits operated upon by a multi-bit operation: indices
before the comma specify qubits to be conditioned upon (if any), and indices after the comma
specify qubits to be operated upon. The conditional form of a gate U is denoted as CU,;,, and can
be formally defined as (1 - AA) + (A'A)U,,, where A" and A are, respectively, the raising and
lowering operators for spin a. When we refer to operators in matrix form, we will order the states
in lexicographic order for smplicity; thisis anatural ordering since we often consider a set of
gubits as a‘register’ holding a binary representation of a number. For example, going across or
down an operator matrix or a density matrix in a 3-qubit space, we encounter the states in the
sequence 000, 001, 010, 011, 100, 101, 110, 111 —just as we would count in binary. The
Kronecker-tensor product command krqn (Appendix A) assists with the necessary lexicographic
bookkeeping. In this lexicographic matrix notation, for example, the NOT gate can be expressed
smply as

é 1
NOT =s,= g
81

o

andthe CNOT ,, gate takes the form

D:D D D D &
[ —
oooooc

1

One useful gate derived from the CNOT gate is the SWAP,, gate, which completely swaps two
qubits, transposing their quantum states. Thisis especialy useful for CAs or quantum computers
that possess only nearest-neighbor interactions, such that we need to bring together information
from remote places, let them interact, and then restore them to their original locations. SWAPy, is
simply equal to

CNOT,, CNOT,, . CNOT ,, (Bar95c).
A useful gate is the generalized Toffoli gate C"NOT .., which flips qubit n if qubitsa, b, . . . k
areall 1.
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Since we are using spins, names for commonly used SU, matrices can be very convenient,

especialy in the context of NMR experimentation. Code for these operatorsis provided in Matlab

form, along with supporting and example code, in Appendix B. We define the SO, single-qubit

rotation

écosg snqu

R@=¢a . 0

& SNg  Coqy

Applied to aqubit in the state (a, b) = a|0) +b|1), the resultant state is
(acosg + b sing)|0) +(-a sing + b cosa)|1) .

We aso define the single-qubit global phase shift,

o & U
PO=d'=¢ a0
e gl
e u

which is not directly observable, but which isauseful notational construct for making more
complicated gates. In particular, a conditiona global phase shift is observable, and is an essential
component of many guantum computations.

In terms of the Dirac matrices, sy, Sy, and s, (defined in section 1.1.i.), we define specific rotations
by q about the x, y, and z axes, which correspond to expressions of the form €2, Let us denote
these respective rotations by X(q), Y(q), and Z(q). In the SU, (spinor) representation, using the
definition of the matrix exponential immediately provides these operators with the explicit forms

écos(q/2) isn(q/2)u

X)) =g . Q

dsin(q/2) coslq/2)

(gcos(q /12) sn(q /2)@

Y(q) = R(g/2) = g_ sn(g/2) cos(g /Z)H,

AAIC /2 u
Z(q) = S e—iq/zg'
(Note that arotation by 2p does not restore a spin-1/2 particle to its original condition; a4p
rotation is required to do this. In general, a spin-n particle is invariant under rotations by 2p/n;
this mysterious phenomenon is discussed in any good quantum mechanics textbook (Lib) (Sak).)
Equivalent to the Z(q) operator, up to a global unobservable phase P(g/2), is the relative phase
shift gate,

él u
V@)= g 0= ZP@2).
e u

It is clear that CP,(q) = Va(Q). The relative phase shift gate is mostly useful for constructing the
conditional relative phase shift,

[ —

CVap(Q) =
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which phase-shifts qubit b if qubit aisin the 1 state. The conditional relative phase shift is an very
natural gate for implementing quantum computation on alinear ion trap (although it is less useful
as aprimitive in NMR quantum computation). For NMR quantum computation, the fundamental
two-qubit computational gate is the J-coupling operator, which is the state-evolution operator
corresponding to the scalar coupling of two spins for some period of time. The scalar coupling is
due to the IS, term of the Hamiltonian (see 1V .1.ii.): denoted ZZ, this operator takes the form

AAIC /2

-iq/2
ZZ.4(0) = ©

-igq/2

D D> D> D> 8
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iq/2 2
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where q is the effective angle that each spin rotates during the coupling period. If the J-coupling
frequency is 2f; Hertz, then ZZ,,(q) corresponds to the time-evolution operator that describes the
passage of g/(2pf;) seconds. In particular, g = p/2, or the passage of 1/4f; seconds, is sufficient to
perform a CNOT operation. Some decompositions of CNOT,, into single-qubit rotations, J-
coupling operators, and other primitives follow: CNOT 5=
Yo(-p/2) Za(-p/2) Zo(-p/2) ZZar(p/2) Yu(p/2) =
Ya(P/2)Xa(-p/2) Ya(-p/2) Xo(-p/2) Yo(-p/2) ZZar(p/2) Yo(p/2) =
Yo(-Pp/2) CVap(P) Yo(-p/2)
By applying the rules of commutation for SU, matrices, many other equivalent pul se sequences
can be designed. For some quantum computation experiments, a particular sequence may be
preferred.

The Walsh-Hadamard matrix
H= iél 1 l;'
28 -1
isavery useful matrix: it allows us to change bases between the qubit and Bell bases, and it dso is
acommon first step in a quantum computation, since it lets us prepare homogeneously-weighted
states from a pure state. In general, the 2" 2" Hadamard matrix H" has matrix entries
an,y — 2—n/2 (_ 1) P ,
where X, y are vectors corresponding to the digits of x, y written in binary. For example, the
entry in the 3%row and 5™ column of H’ is
2712 (- 1)0000011 0000101 — o712
Useful variants on the Walsh-Hadamard matrix include the matrix
= L& i=Ye)
2&1 1
which has the nice property that it can be implemented with asingle NMR pulse. (We remark
upon one notational caveat: the letter U often is used in the rest of this paper as a variable which
represents an arbitrary gate; the meaning of U will always be apparent from the context.) From
these primitives we will be able to build up a great many useful gates.

Many useful relations hold between these matrices, which may ssimplify the compilation of certain
pulse sequences into forms natural for NMR quantum computation: for example,
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X(a) = Z(p/2)Y(a)Z(-p/2)
H = Y(p/4)X(p)Y(-p/4) = Y(p/2)X(p) = UX(p)
Z(a) = Y(p/2)X(q) Y(-p/2) = X(-p/2)Y(Q)X(p/2)
Thelast formulais especialy useful, since Z pulses can't be directly applied by a transverse coil,
and if one just waits for the spin to precess about the z-axis, the other spins change state during
that time as well. It is much better to apply three quick deterministic pulsesto effect the Z
rotation. As suggested by these formulas, using conjugate representations is often a useful trick
for designing pulse sequences: it can help to subtly modify the operation performed by a certain
matrix, cause the action of an operator to be applied along a different axis, reduce the complexity
of a pulse sequence at the expense of introducing some (irrelevant) globa phase factors, or cancel
other pulsesin a sequence. Here are some examples of formulas inspired by conjugate
representations, which might be instructive and useful:
HaHbCNOTa’b HaHb = CNOTb’a
Sy = Z(p/2)Y(2p)Z(p/2)s«
S.=Y(p)sx

For adightly more complicated example of how one might represent a complicated computation
in terms of these elementary gates, consider the in-place Fourier transform on an L-qubit ‘ register’
X, consisting of the physical qubitsi;...i. (so that the register provides the binary representation of
an integer, or superpositions of such integers):

- 1 2:’_1 2pixy / 2"
FT|X>_2L/2 ac |y>
y=0
We can write this useful operation in terms of the gates U and CV,, as follows (Pre96):
S\ A L-1 AL &P o
FT||1,...In> = J-ZOO (UJ k:jﬂO Cvjkgwa

which takes only L%2+L/2 gates: L one-qubit gates and L(L-1)/2 two-qubit gates. This
implementation unfortunately results in the qubits of the answer lying in reverse order within the
register x, but this just requires mental relabeling of the qubits (see V.1.i. for a discussion of
labeling and keeping track of information in quantum ‘registers’). Using this Fourier transform,
we now propose an operation which adds 1 (mod 2") to an L-qubit ‘register’ x of qubits. Perform
FT on the register x. Then, for each qubit in the register (humbered in increasing order, k=0, ...,
L - 1, from right to left), apply the operator Z(exp(2“*"pi)) to the K" qubit. After performing
these L single-qubit operations, perform the inverse Fourier transform on the register x. The result
is modulo-2"- addition on the register x, ADD,(1); aquick proof can be found in (Chu98a). We
will make use of this function later.

We often want to make a unconditional particular operator into a conditional one, sincethisisa
natural way to implement multiplexing, selecting, and enable functions, as commonly used in
digital logic design. In general, any unitary operator Uy, can be made into a conditional operator
CU,p, e.g. an operator that only actsif qubit ais 1, by constructing the operator

CU,,=(1- A"A+A'AU,
since A"A, the ‘number operator’ (as defined in 1.i.i.), returns 1 when a equals |1) and zero when
aequas |O> . The following notation for conditional gates, invented by Feynman, denotes on the
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left a conditional gate C*NOT 4y, and on the right a conditional gate C3NOT 4, (the O subscript
indicates that this gate flips ¢ if a and b are both |0) ):

a

b

OO

c

Three-bit gates are historically interesting, and are also important for understanding iterative
methods for decomposing higher-order gates into CNOTs and single-qubit rotations. Empirically,
(DiV94) found that numerically most 3-bit gates seemed to be approximatable with 6 two-qubit
gates; in (Chadb) it was shown that the three-qubit Fredkin gate (a classical gate interesting to the
reversible computation community), expressed in terms of single-qubit raising and lowering
operators as
F.. =1 +a'a(b’c+c’b- b'b- c'c+2b"bcc),

could be represented in terms of two-body operators as

CNOT,NOT Pap, (p/2) Q. cS,cQa,cS [NOT.CNOT

where Q, performs the operation s, on c when ais 1, S, performs the operation (sy + s,)/ V2
oncwhen bis 1, and Py, performsaconditional global phase shift, and therefore doesn’t act on
any specific qubit athough it does condition on the qubits a and b. With alittle extra work, one
can reduce this expression to six two-qubit gates since severa of the terms can be combined. The
Toffoli gate C*NOT 4., also known as the doubly controlled NOT, can be implemented with 5
gates as

Pab(sp/ Z)Qa,csb,cQa,ch,c
where the P operation can be neglected (since the overall phase doesn’t matter). Converting the
Toffoli gate fully to CNOTSs and single-qubit rotations takes a bit more work. If welet S, be the
two-qubit gate that operates on ¢ with (cos(l /2)s,+ sin(l /2)s,) when b is 1, then the above
expression gives

ds y

é i u
& cosl +ignls, g

and in this spirit, many more complicated gates can made (Cha95). If we can ignore the relative
phases of certain qubits, we can derive more efficient gate decompositions, although the resultant
networks may not have strictly the same behavior as the specified computation. Nevertheless,
such decompositions may be useful if a certain phase relation is not observable, or if we can
follow the pseudogate by another suitably chosen one so that any net phase errors are cancelled.
For example, we can construct a pseudo-Toffoli gate using only CNOTs and single-qubit
rotations, as

Yo(p/4)CNOT, Yo(p/4)CNOT . . Yo(-p/4)CNOT . Ye(-p/4)
which results in the matrix
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which differs from the real Toffoli gate only in the sign of one matrix element. This analysis may
currently seem somewhat contrived and ad hoc, so we will reconsider three-bit networks after
formalizing some of our observations.

At this point we will begin a discussion of higher-order gates, in an attempt to determine some
systematic ways of analyzing them. The C‘NOT .« operation (which flips qubit n if the k qubits
a, ..., kareal equa to 1), for example, can be generalized to the C*U operation,
u

a

a

a

a
Uyp Uy
u10 ull H
which applies operator U to the last qubit if the k conditioned qubits are al 1. In the next few
paragraphs we will show how to systematically reduce al such ‘complicated’, multi-qubit
operations to operations on just a few qubits.

@D> D D> D> D> D> g
H

We will first make some genera statements about matrices in the 2-dimensional unitary group Us.
Firgt, note that any matrix in U, can be expressed as
P(d)Z(a)Y(q)Z(b),
with d = 0 if the matrix isin SU, (this discussion follows (Bar95), an excellent reference for
understanding how to break down complex gatesinto smpler ones). Thisimplies that every
matrix U in SU, can be expressed as As,BsC where ABC = 1 (proof: set A = Z(a)Y(q/2), B = Y(-
a/2)Z(-(a + b)/2), C = Z((b — a)/2), and evauate these products directly). In particular, since sy
equals the gate NOT, thisimplies that the conditional gate CU,,, can be written as
A,CNOT,,B,CNOT,,,Cy,
where As,Bs,C = U. (This generalizes; the C'U, ., gate can be written as
CAC'NOT . nCBnC*NOT 4 nCCin,
and we will show how to implement C‘NOT in O(k) elementary operations. Therefore
implementing C*U also requires only O(K) elementary operations.) Since any conditional SU, gate
can be implemented using 5 elementary operations, and a conditional phase shift can be expressed
as an unconditional relative phase shift (which in turn is equivalent to a Z rotation), it follows that
any unitary conditional gate CU,;, can be expressed as the product of no more than 6 elementary
operations.
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Some specia cases are included in the useful reference (Bar95). We summarize them here for
their usefulness in interpreting and constructing NMR pulse sequences. In particular, we consider
unitary operations which can be expressed as products of rotations through Euler angles, since
those are very common. Occasionally it can be useful to use quaternion notation to evaluate the
composite product of many rotations; this method is explained in (Blu85). For the SU, matrix
U =Z(a)Y(a)Z(a),
CU,, can be written as
A,CNOT,,B,CNOT 4
where
A=Z7Z(a)Y(q/2), B = Y(-0/2)Z(-a),
and for
U =Z(a)Y(a)Z(a)sx,
CU,,, can be written smply as
A,CNOT ,,Bp.

For C'NOT gates, smplification is possible if extra scratch qubits (which are completely restored
to their original states after the computation finishes) are available: for k < g/ 2(}, a C*NOT gate

can be simulated using 4(k - 2) C?NOT gates. If our qubitsarelabeled 1, 2, ..., k, ..., n, then the
decompositionis

D C’NOT1 2 niwz D C*NOT 10D C*NOT1 2, iz D C°NOT 1
where Dis,

CZNOTS n-k+2, n-k+3...CZNOTk-2 n-3, n-ZCZNOTk-l n-2,n-1-

The first part of the sequence negates the i" bit if the firsti - (n - m) bits are 1, and the second
part reverses all the transformations except for the possible negation of bit n. Note that no special
preparation or postprocessing is necessary for the ancilla spins—the bitsk + 1, ..., n—1 can have
any value, and are returned to that value at the end of the computation.

Some other useful results, which are useful in specific cases (Bar95), are listed below for
reference:
» Form<k-1, withqubitslabeled 1, 2, ..., k, ..., k+ 2 (that is, using one extra scratch
bit),
CNOT 1. iz = C ™ NOT i s 1,62C™NOT 1 mpes1 C™ NOT s ks 142C™NOT 1
Due to cancellations and repeated operations, many of these suboperations need only
be conducted modulo phase shifts, resulting in the fact that in this construction takes at
most 48k - 108 elementary gates. As noted previoudly, a C"Ua__jk,n gate can be written
as
CAC*NOT . nCBnC"NOT 4 nCCin,
where A, B, and C are appropriately calculated from U.
> If one has no spare bits, then the best one can do is express C*U in O(48k?) operations,
via the decomposition
C'U1xke1 = CWVe1e1sr1CINOT 111k CV g1 CINOT 11 CVike
where V2= U — the proof is clear by the methods suggested above.
The number of 2-qubit gates required to simulate a general n-qubit gate can be found by
dimension counting, suggesting alower bound of O(4"). This means that most unitary quantum
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computations are intractable for implementation on an NMR quantum computer. (Of course, most
guantum computations don’t do anything.) Interestingly, one can approximate a unitary operator
C*U by O(k log(1/€)) operations, where e is the Euclidean norm of the vector difference between
the real result and the actual result of a unitary computation (Cop94). The proof relies on the fact
that in the two recursive methods described above, wherein recursion stage i +1, Vis.?= Vi, the
phasesin step i are proportional to 1/2', and therefore can be neglected after O(log(1/€)) steps.

[1.3. Inter preting the Quantum computer

[1.3.i. Proposals for quantum computers

There have been many proposals for systems capable of quantum computation. Svozil proposed a
system which uses the phases of photons to encode qubits (Svo94). He demonstrates how the
standard “toolbox” of laboratory optical devices gives a complete set of quantum computing
primitives —i.e., beam splitters and partially-transmitting media can effect single-bit unitary
transformations, phase shifters can change the phase of quantum states, and parametric up- and
down- conversion can be used to create or consolidate multiple quanta. Unfortunately the
simultaneity required to do multiple-photon manipulation is fairly sophisticated, and thus this
proposal is rather ineffective for computation (although for transmission of quantum systems, as
in quantum teleportation, optical techniques are becoming increasingly mature).

One proposal of Cirac and Zoller isthe use of alinear harmonic ion trap to perform quantum
computation (Cir95). It consists of a collection of localized ions in an ultrahigh vacuum, each with
aground state and multiple excited states. Due to their isolation, each excited ion state is
relatively stable. The advantage of such adeviceisthat thereisa‘global register’ in contact with
al the ions — namely, the normal modes of the trap due to Coulomb repulsion between the ions —
which alows the entire lattice to be excited when a single ion absorbs or emits a photon, much
like a discrete version of the Mossbauer effect in acrystal. This means, for example, that
localization of ionsis not a limiting factor in the types of operations which can be performed
(Pre96). For example, a C‘NOT operation (discussed in the above section) can be performed in a
mere 2k+3 laser pulses, by using the lowest trap phonon mode as a transference register. By
comparison, NMR has no such global register, and a C‘NOT is very expensive in terms of the
natural primitives of NMR computation. Unfortunately linear ion traps are very difficult to
construct and maintain, and to this day no significant progress has been made in constructing a
feasible quantum computer with one.

Another proposal, which may have better scaling properties than even NMR, is that of using
guantum dots — (DiV97b) has proposed that electronic spins in quantum dots (which are
commonly called ‘artificial atoms’) could be used as qubits, although this technology is ill in its
infancy, and nobody has shown demonstrated how to control interactions between different
guantum states in this paradigm. Common buzzwords amongst people in this camp include ‘spin
valve,’ ‘single electron transistor,” ‘ballistic transport,” and ‘ superconducting’ — certainly there are
many viable technologies out there, but none with experimenta capabilities along the lines of
guantum computation.
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One very specific proposal that is appealing is the use of isolated phosphorus spins in isotopically
pure silicon (Kan). A single such spin has an excited-state lifetime that could approach the age of
the universe, since there is no lattice of spinswith which to couple and relax (the most common
isotope of silicon, like that of carbon, possesses a spin-zero nucleus). Certain gates could be
turned on and off, allowing nearby spins to interact by lowering an effective energy barrier. Like
the above proposals, thisis highly speculative, athough potentially highly scalable.

But asfor liquid-phase NMR — it works. Nothing else has come close. NMR is not a perfect
substrate for quantum computation, but it gets the job done. And it has lots of applications to
chemistry, biology, material science, and other disciplines. So that’s why we're in the NMR
business.

I1.3.ii. Beyond the coprocessor paradigm

One interesting architecture for a quantum computer has been suggested by Benioff, that of
guantum robots (Ben97). A quantum robot might be formed by separating a quantum Turing
machine’ s processor module from its tape, and calling the former the ‘robot’ and the latter its
‘environment’. The ‘robot’ would perhaps have its own ancillary memory and output system (i.e.
an onboard Turing machine), and it could both affect its environment (say, by flipping spinson a
lattice) and be affected by it (e.g., by collecting quantum data). A simple action-response
mechanism is outlined by Benioff in his paper, although it is uncertain whether such a quantum
robot could do anything useful or meaningful to human beings. One suggestion that he makesis
that, since all physics experiments are essentially quantum-mechanical, such arobot could explore
the language (in the computability-theory sense) of al physically meaningful experiments. It ismy
opinion that scientists will have plenty of time to think about the uses of such machines before
they actually become available.

More modestly and perhaps even redlistically, it has been proposed that a quantum computer
could execute a quantum program with afairly classical-looking architecture; however this
possihility is fraught with difficulty in that it is not clear where or when human observation could
occur. Following the discussion in (Nie97), assume that a quantum computer capable of universal
computation starts in the state
[d)A[P),

with program P running on data d. Suppose that on each clock tick the fixed operator G (which
one might think of as a universal Turing machine operator) is applied to the computer, mapping,
sy,

G:|d)A[R) ® U[d)A[R)
where the next state of the program Py' does not depend on d. Although such a mapping isfairly
easy to implement for a classical computer (as anyone who has written microcode will
acknowledge), it can be shown that for the quantum case, it isimpossible to execute every
possible program U, given any particular operator G — in other words, the quantum equivalent of
the universal Turing machine can't be implemented in amodel this simple. In fact, for an N-
dimensional Hilbert space, only N distinct programs U can be implemented. The proof isin the
same spirit as the no-cloning theorem: suppose that operators U, U, are encoded in program



registers | P, ) and |P, ) , respectively, and apply G to these two states of the computer, starting

with the same arbitrary data d in each case. Taking the inner product of these results gives
(R|Py) =(Ry|R) (dU4 U, [d),

which implies for nonzero (P[P, "), that (d|U,'U ,|d) has no d-dependence. Therefore Uy U,

must be the identity, and so U, and U, must be identical (up to aglobal phase). Thisisa

contradiction, so (P,'|P,") must be zero, and thus the programs must be orthogonal.

The authors of (Nie97) suggest a probabilistic way to implement such a universal gate array, but
the probability of an arbitrary computation succeeding is 2", where m s the number of data bits,
and so there is no gain associated with using such a quantum computer.

Finally, a curious note on diagonalization arguments and quantum computation: asit turns out,
the diagonalization procedure used to prove the undecidability of the halting problem does not
directly apply to quantum computers, which operate in a superposition of bit states. A
diagonalization argument like that given in part 1.1.iii.b. —which effectively swaps0 and 1 —hasa
solution in Hilbert space, namely the fixed-point of whichever unitary operator is being used in the
diagonalization argument (Svo94). For example, [0 1; 1 0], the 1-qubit NOT operator, hasa
fixed point, the symmetric Bell state. Of course, any irreversible measurement collapses the fixed
point state, thus giving back classical undecidability, since the measurement results in a definite
value and |eaves the quantum system in an eigenstate of the measurement operator, which is
vulnerable to diagonalization arguments. But as long as you don’t 1ook, the undecidability of the
halting problem is not provable in quantum recursion theory, as far as we know. However, you
might have to have a quantum-mechanical consciousness to understand the answer. We will halt
this discussion now before we enter a superposition state of fruitlessness and idiocy.

1.4 Quantum Cédlular Automata

Creating large systems of quantum particles with controllable interactions which are isolated from
their environment is a difficult challenge, especially when one considers the equipment needed to
address the various quantum components. One suggestion for avoiding this situation isto create
guantum cellular automata — lattices of identical spins (or small groups of spins) which interact
with their neighbors, allowing computation to take place. In 11.1.i. we examine aparadigm in
which thisis directly applicable to a quantum computation, namely that of simulating a lattice gas
of particles with quantum nature.

A cellular automaton, as defined by John von Neumann and explored to great detail by Wolfram
(Wol94), Boghosian (Bog97), and a great many other people in the last few decades, is a lattice
of sitestogether with an operator f which maps the current lattice state L and the current time to
anew state L’. One common subset of cellular automata is that of local additive cellular
automata, in which
fa(= 8wt x+ef (x+e)
e E(t,x)

where E is some set of ‘neighbor’ lattice vectors (Mey96) — usually taken to be d orthogonal
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vectorsin R If E, waretime-invariant and E is also trandation-invariant, we say that the cellular
automata is homogeneous. If the weights w make up a doubly stochastic matrix, then f, (x) can

be interpreted as the probability of a system being in state x at time t. If wis unitary and the state
value is complex, then the CA is caled scalar unitary. An amazing fact is that homogeneous
scalar unitary CAs can only evolve by constant trangdlation along the lattice, or by a change of
phase. The proof, in brief, is based on the observation that the unitary evolution operator for a
|attice with nearby-neighbor interactions is band-diagonal, and the only band-diagonal solution to
the unitarity requirement UU = 1 is atrandation matrix with an arbitrary overall phase. Simply
put, homogeneity is avery boring restriction; restricting the evolution matrix to be invariant only
under some subgroup of the lattice vectors is a much more modest restriction. Additional essays
on quantum cellular automata are given in (Mey96) (Mey96c¢).

A practical use of quantum cellular automata for quantum computation was suggested by (L1093).
In reality, it is much easier to create long polymers with identical repeated subunits than to create
along molecule with completely distinct spins along the length of the molecule. Especialy for
NMR quantum computation, where the atoms neighboring a certain spin determine the ease of
performing computation on that spin, addressing many distinct spins with dightly different
chemical shifts may be difficult or impossible; having along chain of identical spins would make
addressing a great many qubits easier, albeit at a cost due to the possibly more complicated spin
manipulations. In light of this observation, consider a chain of species A’BCABCABC... where
the Larmor frequencies for A, B, and C are different, and where nearest-neighbor interactions are
given by the J-couplings Jag, Jac, and Jsc. Thefirst A is different because thereisno C to itsleft,
which isimportant because otherwise there would be no unambiguous way to read out
information from the quantum spin system. One can program the ensemble by, say, applying a soft
pulse p(wo:?), which rotates spin B by 180° only if spin A isin state 0 and C isin state 1. Compare
thiswith aclassical CA rule (see the above definition or Wol94): in each case, many identica
spins change state depending on the states of their neighbors. To execute CNOT ¢ g, which flips
each B if the adjacent C isin the 1 state, Ssmply execute p(Wo;:") p(wWa1°) — two soft pulses are
required so that B is flipped regardless of the state of A. To swap the state of all the B’sand all
the C's, we can use the decomposition noted in 11.2. to write SWAPg c as

P(Wor) P(W11%) P(Wao®) P(Wa1°) P(Wos®) p(Was®).
By addressing the A’ spin, we can load a quantum bit into the polymer, assuming that itisin a
known state. We can then swap A’ and B, then B and C, then C and A, and so on, until the
loaded data is where we want it to be. We then can load the next bit into A’, and perform more
operationsto locate it in its proper place. Of course, now we have lost the original bit that we
loaded into A" in the first place — properly using the quantum CA/SIMD processor takes some
care.

We briefly note that it is possible to perform a Grover’s search on n qubits (2" strings in the
database) without |osing the square-root speedup offered by Grover’s algorithm, if the n qubits
arein the CA form A’BCABCABC... The processis as follows: use four Hadamard transforms
(A’, A, B, C) totilt each spin into the Bell basis, and then iterate 22 times the operation CD (as
described in I11.1.1ii.), appropriately decomposed into single-qubit rotations and CNOTS (as
described in 11.2.). Whenever a single-qubit rotation on a spin is required, perform SWAPs until
that spin state is located on the nucleus A’, then execute the rotation on A’, and finally reverse the
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order of the SWAPs until that state has been restored to its original location. Whenever a CNOT
between two spinsis required, move one spin state onto A’ and the other into the first B, execute
aCNOT, and then reverse al the SWAPs which were used for relocation. It istrivia to see that
this ssimple procedure, which requires no bookkeeping for locating any of the information in the
CA, can carry out Grover’s algorithm with at most a logarithmic increase in the number of
execution steps, since the overhead for using a CA model is merely a polynomia function in the
number of qubits n.

[1.5. Quantum chaos and dynamics

Proposals have been made to study ‘chaotic structures' using quantum mechanics. One can
guantize the Baker’s map (mentioned in 1.i.vi.), for example, and study the dynamics of the
resultant system as follows (Bru98). Define position and momentum operators p, g such that [p,
g] = 2pi/N, where N = 2" isthe dimension of the Hilbert space, and so that each of p and g has
eigenvalues /N, ..., (N-1)/N. The discrete Fourier transform FT (see |1.2.) transforms from the
momentum basis to the position basis, and vice versa. As we have done many timesin the past by
this point, we can associate with a basis state

gas) = Ala)
abinary number gs = 0.a,...a;. The quantum Baker’s map can then be defined as
B = I:TO..n-l(In A FTO..n-l)y
which equates to first performing the Fourier transform on the least significant n - 1 qubits

(leaving the most significant qubit alone), then performing the inverse Fourier transform on the
entire set of qubits.

By comparing
FTo*Ala) and (I A FTons)*Ala),

one can see that Bly ) does have some properties of a shift operator, which we will not discuss

here. An NMR pulse sequence for implementing the quantum Baker’s map on trichloroethyleneis
givenin (Bru98). The pulse sequenceis as yet too long to perform on areal NMR spectrometer.

It has been hypothesized that a constant Kolmogorov-Sinai entropy (that is, the additional
information about the initial condition of a dynamical system required to forecast the behavior of
the system for an additional unit of time) amidst decoherence is a sign of quantum chaos (Zur94)
(Ali96). The classical Baker’s map, which shifts each bit down one level of significance after each
iteration, has a Kolmogorov-Sinai entropy of 1 bit. For NMR, since different bits are encoded on
different qubits, this means that different spins must decohere at different rates to simulate the
increased effects of noise on less significant bits (e.g., the spins must have radicaly different T,'s).
(If this were not the case, then less significant bits would not redlly be ‘less significant’, since they
could decohere less rapidly than the more significant bits!) Under the action of the quantum
Baker’s map, this process has been numerically simulated, showing that the von Neumann entropy
of the system quickly converges to its maximum (Bru98). Unfortunately due to the fact that
information is transferred back and forth between species with different T,'s in the process of the
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computation, and the fact that the T,'s are actually quite similar, the trichloroethylene simulation
proves to be rather nonchaotic. (However, hypersensitivity to perturbations, another characteristic
of chaos, was suggested by the simulationsin (Bru98).)
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“What is power? It is the power to do, to change, to be, to understand,
to freezein fire, to hide behind glass, to scream in silence...”
-E

[11. Power of Quantum Computation

[11.1. Problems at which Quantum Computing is Good

[11.1.i. Simulating Quantum Systems

Feynman’ s observation that classical computers require exponential investments of both space and
time to simulate quantum systems was perhaps the first indication of the potential of quantum
computation (Feyn82). Indeed, except for Shor’ s factoring algorithm, no other interesting
algorithm is known to benefit from a speedup of exponential magnitude. It has been shown how a
set of qubits might be used to smulate the time-evolution of an arbitrary many-body quantum
system (Abr97). For example, to smulate a Fermion system of n particles, each of which can take
m states, it sufficesto use n log,(m) qubits of a quantum computer, as opposed to O(2") classical
bits. The system, which is assumed to start in the second-quantized state

00...0),

can be prepared in amost any interesting natural state (atoms on a lattice, thermal states, weakly
interacting particles, etc.) in polynomial time. By applying an appropriately coded loca unitary
operator corresponding to the desired time-evolution operator, the system’s evolution under a
Hamiltonian can be simulated, although certain aspects of the Hamiltonian may require clever
programming of ‘scratch’ qubits to maintain ancillary information. Readout takes place with
respect to the orthogonal basis of some suitable observable; clearly it isimpossible to see the
actual wavefunction, so al information must be accumulated in terms of observed statistics.
However, performing k experiments reduces the error in estimating a probability by a factor of

1/Jk , sothe accuracy of an experiment is polynomial in the number of trials: thus, the entire
procedure can be accomplished in polynomial time.

An antisymmetric (first-quantized) Fermi system simulator is also described in (Abr97); in this
paper, the authors also present a detailed analysis of the Hubbard model of electrons on alattice,
and show how a simulation might be implemented on a first-quantized system in O(n*(In m)?)
operations.

One model which isinteresting to physics-of-computation speciaistsis the lattice gas, a discrete
system which replicates some fairly complicated fluid behavior. Many attempts have been made to
derive all of physics from such discrete systems, due to the aesthetic qualities of such smple
models. A lattice gas comprises 3 components. aregular lattice of N sites, a finite number of
particles with well-defined interactions, and a clock. Every execution of the clock causes the
particles to propagate so as to conserve momentum (or some other quantity); if the particles
collide on a vertex of asquare grid of a momentum-conserving lattice gas, for example, they will
exit the vertex so asto conserve momentum. The d-dimensional quantum lattice gas (QLG) is
similar, except that at each of the N sites there exist 2d qubits, each of which describes a
guantum-mechanical amplitude moving forwards or backwards along one of the d lattice vectors
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(Bog97). The clock update then causes the complex amplitudes to stream according to their
associated velocity vectors, and then @22~ 2% unitary operator is applied to the 2d qubits at
each lattice site. This causes entanglement and makes the problem exponentially hard to simulate
on aclassica computer.

For example, a 1-D lattice gas might be such that qubits can move left or right, with two qubits at
each lattice site, and with a symmetry-preserving collision operator

§1 u
é 1
T:é q P u
¢ pg u
e u
é fa

applied to each site. Note that in order to insure the unitarity of T, the entries must satisfy |f | =1,

pg +pq=0, | p|2 + |q|2 =1. Considering the one-dimensiona subspace containing only one
particle moving right or left, we can write down equations of motion fory , (x), y ,(X) so that

y (xt+D=ay  (x- Lt)+py,(x+1t)

y (xt+)=aqy, (x+1t)+py, (x- L1)

y () =(p+a) ' (xt) +y  (x1))

It can then be shown that in the continuum limit — e.g., taking the space increment x to go like e
and the time increment t to go like € —that y (x,t) satisfies the free-particle Schrodinger equation
for massm = ip/g. (The massisreal, due to the unitarity constraints.)

Due to the discrete nature of the QL G, in order to model particlesin an external potential one
smply multiplies each qubit by
€l u

U= S RO H
Simulations show that with even very few (~10) lattice sites, one can easily replicate the
eigenstates of ssimple potentias like that of the ssimple harmonic oscillator. The speed with which a
classical computer can simulate a d-dimensional QLG system with L lattice sites in each direction
and n particlesis of order L°™?(2d)"/n!, while a quantum computer could accomplish this task in
order (2D)L**® steps (Bog97).

A detailed study of QLGsis given in (Mey96b, Mey96d, Mey97). We will not go into this topic
further here.

[11.1.ii. Factoring

We very briefly outline Shor’ s factoring algorithm (Sho96). The idea behind factoring nisto find,
given any integer x, the least integer r such that

X" ©1(modn).
Thisis equivalent to solving for the period of the modular exponentiation function. If such a
number could be found, then

60



(X2 - 1)(x"? +1) = x" - 1° O(modn)
and afactor of n has therefore also been found — unlessr isodd or x''? © - 1(modn). Itis

elegantly proven in (Sho96) that these |atter aberrant cases only occur with probability 24, where
k isthe number of distinct, odd, prime factors of n.

The agorithm works by setting up a first quantum register in the uniform superposition of al
integersr (represented of course as binary strings), then performing modular exponentiation of a
classical number x with an exponent equal to the quantum number stored in the first register. The
answer is stored in a second register, which is therefore in a superposition of X' (mod n) for al r.
Performing a Fourier transform (which can be done in time polynomia in the number of qubits, on
a quantum computer) then determines the period of the modular exponentiation function. The
readout step, which is somewhat subtle and contains some very pretty number theory, is
explicated beautifully in Shor’s paper. No attempt to summarize the method is given here, given
the difficult of improving upon the conciseness of his argument.

[11.1.iii. Searching

Grover (Gro96) has discovered a search strategy which finds one of Sitemsfrom N unsorted
possibilitiesin O(vN/S) steps, while aclassical search strategy would be expected to take
O(N/S) steps. This has been proven optimal — that is, quantum computation offers precisely a
square-root speedup, and no more (Ben96b), for general unstructured search. Many people have
tried to accomplish better results for structured searches (Hog97) (Hog98), but just as with their
classical counterparts, the results are often ambiguous and the success of an algorithm heavily
depends upon the specifics of a particular instance of the problem.

We treat our n-qubit system, which allows us to search for one of N = 2" items, as being in a state
described by a binary string (or superposition of binary strings, as the case may be). We require a
unitary search operator C which operates on the n qubits and rotates the phase of a string by 180°
if the string is the desired binary string S, and leaves the string alone otherwise. The algorithm is
asfollows: starting with the ground state, tip each qubit into the state

(0) +[1)) /42
using n applications of the single-qubit Walsh-Hadamard transform H (see I1.2.), and then repeat

the following sequence 22 times: first apply the operator C to the system, then apply the
‘inversion about the mean’ operator D, also known as the diffusion matrix:

é& 1+2/N 2/N 2/IN U
é u
<~ 2/N -1+2/N ... p
D=¢ U=H RH,
e .. 2/N U
é u
g 2/N 2/N -1+2/Ng

where Risthe matrix diag([1, -1, -1, ..., -1]). (You can prove that D indeed equas H,RH,, by
splitting the matrix Rinto -1 + diag([2, O, O, ..., 0]) and writing out the explicit equations for each
matrix element of D, viadirect calculation using the definition of H,.) Finaly, read out the answer
by measuring the state with respect to the qubit basis.
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Grover’s search agorithm works in the following way: the iterated loop redistributes the
amplitudes of each basis vector so that the amplitude of the desired string increases by ~N™"? after
each cycle through the loop, and the amplitudes of all the other strings decrease by the
appropriate amount. The matrix D acts so as to reflect the amplitude of each state over the mean
amplitude m of all the states, so that a state with amplitude m — a ends up with amplitude m + a.
To seethis, define P as (D + 1)/2, so that P; = 1/N, and note that Pv replaces each component
amplitude of the state v with the mean of all the components amplitudes. It immediately follows
that Dv = -v+2Pv = Pv + (Pv —V), which precisely fits the intuitive picture of the process of
inverting about the mean. Since C sends S to -S, while all the other binary vectors amplitudes
are preserved by C, during each iteration of the loop the amplitude of S therefore goes up by
about twice the average (~ N2 and all the other amplitudes decrease slightly. A more formal

proof that the amplitude increases by at least 1/2+/N in each application of D can be proved by
simple arithmetic.

To see that one can not do better than V\,(\/W ) steps, one can prove a theorem which shows that

any iterated quantum oracle algorithm that runs for t steps can depend on at most t* qubits
(Ben97b) (Boy96) (Zal98). The argument is as follows: if the algorithm runs for less than t steps,
then there exists an oracle C that returns results that cannot be statistically told apart from those
of the null oracle Cy (i.e., the identity matrix which doesn’t change the phase of any string). One
can see this fact by writing out the difference f - f o between the statescomputed by the two
oracles, in terms of the difference C — C, of the two oracle matrices, then summing the amplitude
of this difference over al N strings that could have been selected by the oracle C. The final step of
the proof is showing that this sum, which provides a measure of the distinguishability of the two
resultant distributions, is at most proportional to the number of time steps squared. Thisimplies
that in less than O(t) steps, not enough amplitude concentration occurs for two oracles to be told
apart with any statistical significance, and the search must of necessity fail.

The algorithm has been extended to sorted databases of N entries, or analogously a database
which can answer many questions in paralld: in the classical case, logx(N) stages are required
(e.g., by searching using the binary-chop method), whereas only a single query (e.g., execution of
an oracle operator) is needed for the quantum case (Gro97). There is a catch, however: O(N
log(N)) identical subsystems, as well as a proportional number of preparation and postprocessing
steps, are required to prepare for the (single) rather complicated query. One can aso extend
Grover’s search agorithm to arbitrary initial amplitudes — or at least one can exactly calculate the
errors incurred by performing Grover’s search on states with arbitrary initial amplitudes (Bir98).

An operator C which, when applied to an initial state results in afinite probability of arriving at a
certain target state, can be assisted by a Grover-like amplitude enhancement algorithm. In generd,
Grover’s search architecture can be adapted to make any such iterative computation converge to
the target state, with the probability of a successful measurement growing quadratically in the
number of iterations. This shows how to attain the famous square-root speedup in other situations
which might be amenable to an amplitude-enhancement algorithm. This framework has been
instantiated, for example, for the purpose of finding the mean (m) and the median (M) of
numerical data distributions encoded in the amplitudes of a set of qubit strings (Gro97c).
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Classicaly, to find the mor M of adataset to a precision e requires \We ) sampling operations,
wheress the anal ogous quantum mechanical method takes only We ™) operations, a square root
improvement in the amount of time required to achieve a certain error. The main point of the
general amplitude enhancement architecture is that one can replace the Walsh-Hadamard
transform by any unitary transformation U, as follows: define the operator V, as | — 2e.e,' where
e, isthe vector with coefficient 1 in the slot represented by the binary string a, so that V,j; =-1if i
=j=4a,1ifi=) 1 g and 0 otherwise. Then if a quantum system startsin state sand it is desired
to perform a computation that ends with the system in state t, applying the operator
-VU VU

preserves the vector space spanned by e;and U e, and after h iterations of this procedure, the
state e; evolves to

cos(2h|Uy|) & + sin(2h|Uy) Ue,
where Us = (t|U|s). This amplitude is closest to the state U™'e, when h = p/4|U.; asingle
additional application of -V.U VU then resultsin precisely the state &. Replacing U by H, gives
the standard search agorithm described at the beginning of this section, but there are many other
possibilities. As an example of what can be done with this architecture, suppose you want to

create an associative memory where words that differ by k bits are mapped to the same word.
Then smply set U equal to

Ae\/l kin  vkin U

26 Vkin - +1-king
and iterate this operation ~ 1/|Uyy| ~ (n/k-1)“4(1-k/n)"? times to get the associative match.
Designing the U operation is often tricky, though; one might need to use calculus to optimize the

entries of the U matrix with respect to the structure of the problem at hand, so that Usisaslarge
as possible, and so that Uisconnects al the desired initial and final states with nonzero probability.

Attempts have been made to develop structured search algorithms on quantum systems (Gro98)
(Far97) (Hog97). Brute-force search is amost never the right way to solve a problem — usually
there is some regularizer, criterion, smoothness, or other knowledge about a problem which
suggests some heuristics which can make the problem much easier. NP-complete problems often
offer the possibility of building up complete solutions using partial solutions, depending on the
parameters of the problem. Structured algorithms, being problem-dependent, exhibit a‘ phase
trangition’ between small and large problems, as noted earlier in this document (Kir94). The basic
process for structured quantum search is to take the Grover algorithm, but to add one more step
to each iteration, which performs a structure-based operation, changing the phases as necessary
(e.g., leaving the amplitude of a string alone if it appears to be anogood or an obviousy
nonoptimal good string, and inverting the phase if the string looks good) so as to move amplitude
to the best good strings. Empirical simulation has shown that these methods exhibit the classical
‘phase transition’” and often fare better than unstructured quantum search, athough asin the
classical case, these claims remain theoretically unjustified (Hog97).

A specific proposition for accomplishing structured quantum search is nested quantum search

(Cer98). This reduces the time complexity of the algorithm to N*? where a is some constant
depending on the tree structure of the problem, and N is the number of strings to be searched
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over. A simple classical structured search algorithm, in which one tests the extensions of agiven
set of partial solutions (say, of a certain length), terminating obvious nogoods in the process, can
be generalized to a guantum algorithm. Of course, one must choose when to stop the breadth-first
generation of partial solutions (at some level i), and begin the depth-first search which eliminates
wrong answers (from level i of the tree downwards to level log(N)). An explicit strategy which
accomplishes thisis to use unstructured search to construct a state in a superposition of all
possible solutions down to some level i of the solution tree, then performing unstructured
guantum searches in each of the resultant (log(N) —i)-dimensional solution subspaces
simultaneoudly.

[11.1.iv. Other Problems

Deutsch’s problem asks whether afunction f is ‘constant’ or ‘balanced’. For example, there are
four possible f’swhich take in one bit as input and return one bit as input: f can return O or 1 upon
al possible inputs (a constant function), or it can return different values on different inputs
(identity, NOT) (balanced). Determining the nature of f is equivalent to finding XOR(f(0), f(1)).
Finding this exclusive or returns only one bit, but f must be evaluated twice — a most unsatisfying
state of affairs. However, if one starts in the state
0)+[HAJ0)-[1),

then applying a unitary version of f only once immediately gives the result

(-2'?|0)+(-D'®[HA[0)- [,
and checking the relative phase of the first register (e.g., by finding the polarization) immediately
gives the answer. This problem has been realized experimentally, for the two-qubit case (Jon98),
and was the first algorithm ever to be executed on an NMR quantum computer, using cytosinein
heavy water (D,0).

One speculative paper (Abr98) explains how if there were nonlinearities in quantum mechanics,
NP complete problems and #P problems (e.g., problems with an oracle, in which the number of
solutions must be established) would be solvable in polynomial time. One can think of thisasa
nonlinear form of Grover's search; the crucial element is a nonlinear operation with positive
Lyapunov exponent over some finite region (say, asolid angle a of the SU, sphere). Suppose f(x)
returns either O or 1, given any particular n-bit input; the goal isto determine whether or not there
exists an x for which f(x) returns 1. For n + 1 qubits, the process is as follows: rotate the first n
gubits from the ground state into the state

using single-qubit p/2 rotations, leaving the (n + 1)* bit in the state 0. Then, apply an oracle f to
this superposition state, storing the result in the (n + 1)* qubit as f(i). Then rotate the first n qubits
back with -p/2 rotations. Some reasoning about the distribution of pure state amplitudes shows
that measuring the first n qubits will give the ground state with probability at least 1/4, and that if
this occurs, the system will end up in the state

2"/§2°" - 2" m+ 27 |0) A (- 2 "m)[0) + 2 "m[1)),




where there are m solutions to f(i)=1. One can then apply the nonlinear operation a polynomial
number of times to separate these states until they are visibly distinguishable: the algorithm will
require O((p/a)?) operations, where a is defined above. Since quantum mechanics is linear,
however, this result has little bearing on redlity, although it operates at an interesting crossroads
between nonlinear dynamics, speculation on the reality of quantum mechanics, and computational
complexity theory (Wei89).

[11.2. Fault-tolerant computation

One important aspect of computation in atraditiona system, like asilicon chip, is regeneration:
through nonlinear gain and digital discrimination, one can amplify and correct signals
continuoudly. Thisisimpossible on a quantum computer, where one has a continuous variable
which cannot be identically cloned, according to the axioms of quantum mechanics. Nevertheless,
paradigms for fault-tolerant quantum computation have arisen over time, and some of these have
developed into fairly sophisticated systems for implementing the error-correction discussed earlier
in terms of an active computational system.

What fault-tolerance is necessary for classical computers? von Neumann (Neu52) and Gacs
(Gac83) suggested means for stochastic analysis of computation with noisy gates and noisy
cellular automata, respectively, but silicon computers usually do not need any error-correction
whatsoever (or at least such errors are tolerated by the user). The physicsisjust good enough that
we need not worry about active correction. Kitaev (Kit97) has suggested a 2-D anyon-based
system for inherently fault-tolerant hardware, but thisis very farfetched from an experimental
point of view.

Using error correcting codes is not enough to insure the integrity of a quantum computation: how
do you know that your ancillae and error-checking routines don’t have errors in them as well?
How can you perform quantum operations on information that has been abstrusely encoded in the
entanglement of the qubits?

To first order, at-step quantum computation can tolerate errors of O(1/t) per operation, before
the probability of getting the correct answer becomes uselessly low. Shor (Sho96b) showed that
with error-correction, one could increase the tolerable error per operation to O(log(t)™), an
exponential improvement over the straightforward method. The essential observation isto use an
error-correcting code (e.g., a[n, k, d] code as described in 1.2.ii.) to encode all the qubits into an
error resistant form, then performing computations on the encoded qubits, and finally reading out
the results. In order to accomplish the latter two steps, one must aternate specially transformed
gates (which have been modified to operate on the encoded states, using Clifford group operators
and a complicated version of the Toffoli gate, or by using group-theoretic aspects of code
stabilizers) with error correction steps (which correct the amplitudes and phases). Excellent
speculations on how these operations might be implemented are to be found in (Sho96b) (Got97),
and certainly the result that fault-tolerant quantum computation is even theoretically possible
provides fascinating insight into quantum mechanics. It is not clear, however, given the many
required extra qubits, and the many extra computational steps required to implement fault-tolerant
guantum computation, that this will be experimentally useful anytime in the near future.
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Finally, we note that if we know the nature of the errors that need to be corrected — for example,
in an NMR system we might predict that dephasing due to magnetic field inhomogeneity or
inaccurate p pulses might be the dominant causes of error —we can devise specific remedies that
might be more effective and less wasteful of qubits than the methods described above. In (Tyc85)
and (Fre79) are descriptions of pulse sequence design principles that cause such errors to vanish,
by taking advantage of the symmetry properties of the Liouville space of operators, and using
iterative schemes to cause successive errors to cancel one another.
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“Mein Gott! I'm full of spins.”
— E (upon seeing an MRI of his head)

V. Nuclear Magnetic Resonance

V.. NMR Theory

IV.1.i. Noninteracting spins
Nuclear magnetic resonance has proven, since its discovery in the mid-1940s, to be one of the
most useful methods for substance characterization and for probing fundamental aspects of
chemical and physical behavior. Many models, ranging from the classica to the abstrusely
guantum-mechanical, exist for interpreting the phenomenon. The Bloch equations
d_M:g(M ’ é)_ M.}.%z
dt T, N
describe the time evolution of aclassical bulk magnetization M under amagnetic field B.. T, isthe
spin-lattice relaxation constant, and describes the rate at which the bulk magnetization aligns with
abiasfield B aligned along the z-axis; T, is the spin-spin relaxation constant, which describes the
rate at which any transverse magnetization in the xy-plane decays, due to individual spins
dephasing with respect to one another.

A single spin-1/2 particle can be imagined as a ssimple magnetic dipole in amagnetic field, with
Hamiltonian

H =- mxB,
where m, the magnetic moment, can be expressed in terms of the spin operator | as gl . The
guantityg is called the gyromagnetic ratio, and is a characteristic frequency of a nuclear species,
almost without exception, it must be determined from experiment. The gyromagnetic ratio
determines the size of the nuclear Zeeman energy splittings; if we take the magnetic field B to be
equal to Bz, then the Hamiltonian for a single spin becomes

H =-gBl,,
and the alowed energy levels are E= - gaBm, where m can take any of the 21 + 1 values—, -
+1, ..., +l. The energy difference between adjacent energy levels, DE = ¢iB, corresponds to the
Larmor frequency gB . If one applies radiofrequency energy at the Larmor frequency with a

certain phase and for controlled periods of time, one can effect controlled changes in the state of a
spin. This observation is key to implementing single-qubit phase shifts, which comprise a
significant portion of our vocabulary of elementary gates.

For a proton at room temperature in al Tesla (= 10,000 Gauss) field, about 50,000 times the
magnetic field of the Earth, the difference between the population of the ground state and the
population of the excited state is about a part in amillion; for less sensitive nucle, it is much
smaller. To seethis, note that the density matrix of atherma ensemble,

r = ez,
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can be expanded in a power series in the argument bH, using the definition of the operator
exponential (Art). If the Zeeman energy of aspin is significantly lessthan kT, asit is at room
temperature, we can ignore all but the linear term in this power series:

_ 1. ne
r 5 @+ T I, +...)
Summing over the states in the Zeeman manifold, one findsthat Z ~ 21 + 1. If this magnetization
istipped into the transverse plane so that it is visible, one sees a precessing bulk magnetization M
= cB/my. Using the above formula, one can calculate a nuclear susceptibility that follows a

version of Curie’'slaw, for spins at finite temperature (S190):
myng °7#°1 (I +1)

3KT
where n is the number of nuclei per unit volume, and M = |M | is the amplitude of the bulk sample
magnetization. This equation is particularly useful for evaluating the strength of signalsas seenin
real NMR experiments at room temperature, since it relates the amplitude of the observed
magnetization, M, to the strength of the applied magnetic field, B, and to fundamental parameters
of the experiment like the temperature and the gyromagnetic ratio.

c=mM/B=

In the classical picture, we smply consider the magnetic field B as applying a torque to the spin,
causing a change in its angular momentum J = 7l according to the equation

LRy

dt
where we may substitute M= gJ in order to get an equation solely in terms of the magnetic
moment. Thisisthe first term of the Bloch equation — that is, the Hamiltonian dynamics of a
magnet in afield, ignoring T, and T, relaxation. From the geometry of classical mechanics we
know that the equation of motion for avector J rotating with constant angular velocity Wcan be
written as

YW 3
dt

Therefore we may consider a rotating frame in which the coordinate system rotates at velocity

W, and combine the above two classical equations to derive the equation of motion of aspinin
this rotating frame,

dm s
—=m +W).
The term in parentheses can be thought of as an effective magnetic field. When Wis precisaly -gB,
the effect of the magnetic field vanishes in the rotating frame, and the spin appears stationary in

this frame; thisis the resonance condition. This has profound consequences for an RF
(radiofrequency) magnetic field, say I§l= B.cos(wt) X, which can be written as

él :%(eiwt +e iwt)
If we judiciously choose arotating frame rotating at w, then the RF field looks like

é;:%(ﬂ e,
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Note that the component which was originaly moving at +w now appears stationary to an
observer in the rotating frame, while the component at -w now seems to be rotating twice as fast
(and can therefore be neglected). Thus in the rotating frame at resonance, the sample

magnetization rotates about the apparently stationary magnetization I§1' at therate of gB, radians
per second. The result is that we have very precise spin control, and can use RF pulses to change
the state of a spin to virtually any state we wish. For example, we may transform longitudinal
magneti zation into transverse magnetization smply by applying a short pulse for whichgB, = p/2;
we will call thisap/2 pulse. In our earlier notation this corresponds to either an X(p/2) or a Y(p/2)
pulse, for example. Thinking about the rotating frame in three dimensions will persuade you that
the only difference between an X(p/2) pulse and a Y(p/2) pulseis that the phase of the Y(p/2)
sinusoidal oscillation starts p/2 radians beyond the phase of the X(p/2) pulse, so that our vector

I::$l isaligned along the y-axisin the rotating frame, as opposed to being aligned along the x-axis
in the rotating frame. After being tipped into the xy-plane, the spin rotates at the Larmor
frequency.

Spin-spin and spin-lattice interactions cause the population of spins to decay to their thermal
Boltzmann distribution. As aresult of the first effect, spin-spin relaxation, the transverse
magnetization of a spin after a single p/2 pulse exhibits a sinusoida signa with a decay envelope
proportional to € '™ . Thisis called a free induction decay (FID), and is due to the dephasing of
spins throughout the sample because of environmental and quantum-mechanical reasons, including
the presence of bias magnetic field inhomogeneities in the sample, local intermolecular and
intramolecular magnetic interactions, and the diffusion of molecules to areas with different
magnetic fields: the result of these magnetic effects is that spins radiate energy at dightly different
frequencies, and as the phases begin to appear random with respect to one another, their sum
converges to zero. A p pulse, on the other hand, rotates a spin initialy aligned with the z-axis by
180°, from the up into the down position, and thus no transverse signal appears. The spin relaxes
back to its upward position with a time constant T; this processis called spin-lattice relaxation. It
results from interactions with a spin and a thermal bath of magnetic dipoles, an electromagnetic
field, or any other quantum system with which the spins might become entangled through
interactions. T, and T, effects are explicitly included in the Bloch equations which appeared at the
beginning of this section. It is simple to see that spontaneous relaxation (due to coupling to the
vacuum modes) has an insignificant influence upon nuclear magnetic relaxation processes. By
considering the density of radiative modes in a vacuum of volume V, it follows that the energy
density goes as the frequency cubed,

2
D(u) = &;n ® EQ)pun®
and so at RF frequencies (in our case, 10-50 MHz), the relaxation through vacuum mode coupling
isamost completely negligible, since the magnetic field energy density of the vacuum modesis so
small. It follows that stimulated emission (exposure to energy at the Larmor frequency), and
random interactions (which cause spins to become entangled with other systems) arethe only T,
pathways which a nucleus might take in order to relax.

Some specific pathways have been evaluated as likely contributors to the fluctuating magnetic
field responsible for spin-lattice relaxation, including dipole-dipole interactions, quadrupole
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relaxations, spin rotation, and scalar relaxation. In dipole-dipole coupling, the dipoles interact via
mmy/r® terms in the spin Hamiltonian; a moving dipole creates randomly varying magnetic fields
asit tumbles by. Introduction of even afew paramagnetic ionsinto the system causes strong
dipole-dipole couplings — indeed, even the presence of dissolved oxygen from the air is known to
decrease T, by afactor of 2 in water at 300 K. Quadrupole relaxation occurs when an asymmetric
charge distribution interacts with an electric field gradient; if a nucleus with a quadrupole moment
rotates or vibrates in such an environment, this effect can be significant. lonic structures,
polarized bonds, and crystals all possess significant electric field gradients at the nucleus; but since
'H, for example, possesses no quadrupole moment, it isinsensitive to its electrical environment.
Spin rotation results when nuclei and electrons create currents via their random tumbling, which
eguate to creating randomly varying magnetic fields. Spin rotation is a very important relaxation
pathway for small molecules like water. Scalar relaxation occurs when neigboring spinsin asingle
molecule interact, or ‘cross-polarize,” and is afairly subtle effect, since it requires the creation of
higher quantum coherences. Most |attice energies, like those of trandation and rotation modes,
fall into the low IR range and thus are not particularly effective at stimulating relaxation at
frequencies as low as 10-50 MHz. Indeed, the T, of anuclear spin can be as long as severa hours
for a cool sample of pure water; few quantum systems demonstrate such robustness in ordinary
environments. The nucleus is a well-isolated and highly stable environment.

In the quantum picture, the time-evolution operators for the Hamiltonian H = - ¢iBI, cause the
Heisenberg time-evol ution equations to become
d,

d. i
v =Ly, =21, and
at  nt o> ’ ot

which, upon taking the expectation value, and taking m= gl , instantly gives the Ehrenfest
eguation

=0

d(rm) -
_ = m
G \m e
which isidentical to the classica picture, as expected. The Hamiltonian corresponding to a bias
fidd B, = B,2 plusarotating RF field B, = B, cos(wt) X,

H () =-gi|Byl, + B/l coswt) + | sin(wt))| = - gi[ By, + B ™!=1 "]
suggests that we create the analogue of the rotating frame by redefining Y =e ™"=Y". Taking
Y "and substituting it into the Schrodinger equation, we get

hdy' :

Tdt =[a(w +gB)l, +giB 1, ]Y
which is the quantum-mechanica analogue to the rotating frame equation; the time-dependence of
the Hamiltonian has been removed by working in the interaction picture, and the equation of
motion is now that of aspinin astatic field. Using the time-evolution equation,

Y’ ()= e™"Y"(0),

and converting back into the lab frame gives the formal solution to the quantum mechanical
problem,

Y(t)=¢€ Wi, o (W) 12 +&Bul ) (0)
Cdlculating the expected magnetizations in the lab frame proceeds directly by considering the
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commutators of I, and I, which are givenin I 1.i.. For example, (Y"|m]Y ) immediately gives

the expected value

(mi(1)) = (m.(0)) cos(gByt),
and indeed the entire classical picture applies, justifying the above ‘vector’ modd of pulsed NMR
for a single noninteracting spin.

Before adding interactions to the picture, we consider some simple phenomena of single-spin
NMR. For example, if ap/2 pulseis applied to asample at time t = 0, a free-induction decay
signal appears. If ap pulseisthen applied at timet = t, the signal will increase until it reappears
fully at time 2t , with an exponentially increasing envelopefromt to 2t . Thisiscalled aspin
echo, and isdepicted in Figure 1.

radiofre quency bursts

decay anvelope = Spin Echo
r,.-’ ep (4;12 ) (ot shways prasant)

Free nduction Decay [ FID)

Figure 1: Spin-echo (Kir95)

If one works through this process using the classical picture described at the beginning of this
section, thisis not surprising; the spin-spin relaxation that leads to the T, decay is aresult of the
spins magnetizations becoming out of phase with one another, and is a completely reversible
process (up to the order of diffusion effects and thermal relaxation), since the information needed
to restore the spins to their original state is encoded in the local magnetic field. It is easy to
understand via the following vector-diagram, which is a common tool in elementary pulse NMR:

7 T T

SERseds=dceds

Figure 2: The vector picture of the spin-echo (Ger97a)

In the first frame of Figure 2 we have a bulk magnetization pointing upwards. We apply a 90°
pulse about the y axis, immediately tipping the spins over to get the state in the second frame. The
magnetization precesses for atime t, bringing us to the third frame (where the spin-spin dephasing
is depicted by a small deviation in the various magnetization vectors). Now we apply a 180° pulse
about the y axis, which flips the spins (bringing us to frame four). Now all of the spins are
precessing in adirection opposite to the one they were just heading in; in particular, spins that
were diverging at a certain rate in the first part of the spin-echo experiment are now moving just
as quickly in the opposite direction in the second part. At atime 2t we see afull signal again (as
shown in the final frame), since the spins are now all in phase with one another again, and their
signals are again mutually coherent.
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IV.L1.ii. Interacting spins

So far we have considered the interactions of a magnetic field with single spins. All of the
computational effects and analytical boons of NMR, however, are due to the interactions of spins
with each other. This makes NMR incredibly complex; for our purposes, we will only consider
scalar couplings between different spin-1/2 particles on the same molecule. These couplings,
often called J-couplings, don’t depend on the absol ute orientation of the molecule with respect to
the bias magnetic field. The Hamiltonian of a spin system with scalar couplingsis given by

H= é - gihBOIiz + é 2p"]ijhlizI jz
i=1 i<j
where J; describes the coupling, in Hertz, between spinsi and j. The form of this coupling is
somewhat abstruse —why should it be proportional only to the z-component of each spin? The
answer is that actual Hamiltonian term corresponding to the interaction between spinsi and j is of
course a complicated dipole-dipole coupling term, which in classical electrodynamicsis described

by

mxm  3(mx)(m x)
P re ’
wherer = |f| is the distance between the nuclei. In the high magnetic field B 2 limit, this becomes
g.9,7*(1- 3cos’q)
4r®
where q is the angle between 1 and the z-axis, we can ignore other energy terms that correspond
to processes or frequencies that occur far from the Larmor resonance condition for flipping each
spin. To simplify this further, one can invoke arguments based on the properties of a room-
temperature liquid ensemble in the high-field limit, using the method of moments, to conclude that
the coupling can be written smply as
g.9,7*(1- 3cos’q) N
r3 iz" jz
which is simple enough make tractable the prediction of the time-evolution of a spin system. The
logical flow behind this series of smplifications is well-explained in (Si90). From now on, we will
take the scalar J-coupling model to be factual, and will not delve into the physics below thislevel,
although it is quite possible that in the future, when unconventional cooling techniques, far
weaker or far stronger magnetic fields, or long pul se sequences become commonplace, the J-
coupling model will cease to be sufficient for predicting the outcome of an NMR pulse sequence.

@Byl - 1,X)

izI jz

Asnotedin|.1.i., if we are given atime-evolution operator
U(tl, to) = gH - to)/
where H is the Hamiltonian of the quantum system during the period from time t, to time t,, then
the density matrix evolves as
r(t) = Ur (tg)U™,
We often begin experiments at to = 0 with the thermal density matrix
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1 3 hg,B
r(O) = E(1+Ia:lWIIZ +)
The only time-evolution operators of interest will be the single-qubit rotations (q © gBit),
Xi(g) = e
Yi(g) = >
and Z(q) = ¥

(the last of which shares its functional form with the free evolution of a spin in the biasing
magnetic field), and the J-coupling operator between two spins,

77,(q) = e—inJijtliZ|jZ .
Since the single-qubit rotations result from strong, short pulses of radiofrequency energy, we
often assume them to take no time at al, which lets us ignore the concurrent free evolution as
insignificant.

The key observation which allows us to simplify the computation of the time-evolution of a

multiparticle spin system is that we can express the density matrix itself in a Liouville-space basis
consisting of operators. At first glance, thisis not surprising, since the density matrix is indeed an
operator in the 2*™-dimensional Liouville space. The basis that we choose is the basis of operators

A
R b
2O
J

where b; is 1 for k of the n terms in the product and O for the other n — k terms, and a; is one of X,
y, and zfor each i. Thisbasisis complete, since it contains precisaly 4" terms (for each i between
1 and n, aterm of the product can take one of four possibilities—it can be X, y, z, or absent), and
all the resultant matrices are linearly independent (Ern90).

For example, consider the following deviation density matrix for two spins, labeled 1 and 2, with
respective chemical shifts w; and w; in a particular rotating frame:
r= Ilz + IZZa
This density matrix could be, for example, an unnormalized thermal density matrix with the
unobservable identity term subtracted off. Let’s say we apply a pulse which rotates spin 1 90°
about the x-axis, and then let the system evolve for t = 1/J;, seconds. The result of the first
operation is adensity matrix in the state
xl(plz)(llz + IZZ)Xl('p/Z) = eip/2|1x Ilze_ip/2|1x + IZZa
where we have noted that all operators which purely refer to spin i commute with those that refer
solely to spinj (in particular, rotating 1 has no immediate effect on spin 2). For a spin-1/2 particle,
for which 1,7 = 1,° = I,7 = 1/4, we can miraculously expand the operator X,(q) as
Xi@) = g

=1+iql, +(iql, )?/ 2+(iql, )%/ 3+...

=1+iql, - (q/2)%/2-2il, (q/2)°/3+...

=cos(q/2) + 2il,,.Sn(q /2)
and now it istrivia to evaluate the result of the first pulse, smply by using the commutator
equations for the spin operators givenin 1.1.i. Theresult is

Ily + IZZ
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as one might expect from the single-spin vector picture given in the last section. Now for the

time-evolution, which lasts a duration 1/J;,: each spin undergoes a free evolution for 1/J;,

seconds, along with a J-coupling interaction during the same period of time. Thefina stateis
Zl(Wlt )Zz(Wzt ) Zle(Zp)(I wyt | 22)2212(-2p)22(-W2t )Zl(-Wlt )

One might wonder in what order to apply the three time-evolution operators, but as it turns out

they all commute, so it doesn’t matter. The following table, which is derived using the same

‘miracle’ we used in the derivation of Xi(q), is useful for evaluating such products (S190):

u l1, ® I 1x 1y 1,
X(q) |1 |1y cos(q) — |1, SN(Q) l1,cos(q) + l1y SiN(Q)
Y(a) l1,co8(q) + I1, SiN(Q) |1y l1,€08(q) — l1x Sin(Q)
Z(9) | 1,cos(q) — 11y SiN(Q) 1y cos(q) + I Sin(Q) |1
ZZ(q) l1x cos(q) + 24,15, SN(Q/2) | 11y cos(q) - 2112, SN(0/2) 1,

Using thistable it istrivia to see that the end result of time-evolution for 1/J;, seconds is
'|1yCOS(W1t) — 1 gn(Wlt) + 15,

The observable magnetization at timet =t corresponds to Tr(17r); to evaluate this, the matrix

representation of the SU, group, givenin 1.1.i., might be useful.

We briefly list some pointers to further topicsin NMR theory, an incredibly vast and beautiful
subject. In (Ern90) are presented many pictures of NMR, including many different flavors of
Liouville operator spaces and superoperator spaces; Ernst (who won the Nobel Prize for hiswork
in NMR) aso has cast quantum computing explicitly in terms of Liouville space, a useful tool for
interpreting the Tycko-Guckenheimer-Pines iterated pulses which correct their own errors, for
example (Ern98) (Tyc85). Ernst also delves into many interesting aspects of NMR theory,
including stochastic-reponse aspects of spin systems, methods of recursively expanding pulse
sequences, aspects of multiple-quantum coherences (an n-quantum coherence decays at the
exaggerated exponential rate € ™'™ for example), and methods of understanding multipletsin
spectra of molecules with complex interactions.

IV.1.iii. Spin phenomenology

In arecent paper (Lloy), the nature of the spin-echo is discussed in terms of algorithmic
complexity theory. During the period between the start of a spin-echo experiment and the time t
when ap pulseis applied, the entropy of the spins increases; the entropy of the spins then
decreases until the time 2t when the spins have returned to their original state. Since the phase of
a spin with respect to the other spinsin the ensemble can be recreated from knowledge of the
local Larmor frequency and the elapsed time since the start of the experiment, and the local
Larmor frequency is encoded in the local magnetic field (assumed to be a constant over the course
of the experiment), the only information which an observer must possess in order to observe the
spin-echo signal is how long atime t to wait after the p pulse occurred: the algorithmic
complexity thusis proportional to log(t), since that’s how many bits it takes to store the numerical
value of the waiting time (up to any chosen coarse-graining of time). The reason that thisvaueis
important is because observing a spin-echo could be used to extract energy or information from
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the system, and so we must consider all possible costs of being able to extract this energy, in
order to properly judge the entropy of the system.

The experiment proceeds as follows: as the spins become correlated to the magnetic field, the
entropy of the spinsincreases, and the mutual information between the spins and the field
increases,; as the spins decorrelate from the magnetic field in the second part of the spin-echo
experiment, the entropy of the spins and the mutua information between the spins and the field
both decrease to their original values, requiring only the log(t) bits of information that an observer
needs in order to see the spin-echo. Lloyd and Zurek present a QED justification, using
radiofrequency fields in a coherent state (e.g.,

Y =e‘az’2§ @'/n)ny,
a (a'/m)n)

agood model for areal-life macroscopic RF field, since subtracting a photon from the field leaves
the state unchanged: the coherent state is an eigenstate of the lowering operator) to show that the
spins do not contribute entropy to the RF field during the second half of the spin echo experiment,
and that the final spin state isindeed a pure state at time 2t, as expected. The total entropy (fine-
grained, and evaluated according to traditional statistical mechanics) is constant, just as one
would expect for a non-dissipative system, such as one describable by a Hamiltonian.

The moral of the story is that “a device must have an algorithmically exact description of the form
in which energy is distributed” in a system under observation, and that “since the algorithmic
complexity of Hamiltonian systems increases as log(t) over time, more energy is required to get
work out of such systems, even though the fine-grained statistical entropy remains constant”

(Lloy).

Using NMR, a quantum-mechanical Maxwell’s demon (QMMD) could be constructed (L1096);
for example, whenever a spin in athermal ensembleisin an excited state, a p pulse could be used
to extract its energy, and convert heat into work. Of course, Landauer’ s result, which says that
erasing a bit increases the entropy of the environment by at least S = kin2, shows that the Second
Law is not violated; rather, the QMMD operates as a heat engine. Since quantum measurement
generates more information (via collapse of a possibly intricate wavefunction) than classical
measurement, a quantum system is even more inefficient at extracting energy than a classical one.
For example, suppose a measurement

rer'

takes place, wherer’ isapure state if the measurement is with respect to some orthogonal basis,
asis often the case; the information generated is equa to the change in the von Neumann entropy,
DS=-Trr'logr '+Trr logr =Trr logr
and thus intrinsically quantum information is generated, which is superfluous and possibly
unrelated to the classical information that we extracted from the system. A quantum heat engine
must waste more than a classical one (L1096). The CNOT operation can be used to extract
information from a spin as follows: perform CNOT, , (which flips 2 if 1 is excited), then CNOT,;
(which flips 1 if 2 is excited); if the dipole moment of 1 isbigger than that of 2, energy 2(m-n)B
istransferred to the field from the spins; if the spins are biased by a magnetic field and exposed to
separate thermal reservoirs, letting them reach thermal equilibrium will result in the completion of
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a Carnot cycle. But the cost is great: when the spins are in contact with their respective reservoirs,
they decohere (and are ‘measured’) by T, processes, and lose their phases (or mutual
information), while becoming entangled with their environment.

Certainly a method of predicting the density matrix’s entropy and degree of entanglement, and
how it changes with respect to T, and T, processes over time, is crucial for understanding how
one should arrange information in athermal ensemble so as to make quantum computation
efficient and long-lived. In part V.1.iii. we will discuss what practical implications might result
from this observation, so as to make quantum computation and materials characterization
practical on real molecules and polymers.

IV.2. Bulk Spin Resonance Quantum Computation

Several proposals for bulk NMR computation have been suggested, including logical labeling,
gpatia averaging, and tempora averaging; al three methods have been experimentaly readized. In
general, the themeisthat a set of operationsis applied to alarge ensemble of spins which
comprises part of an effective pure state, resulting in a step of a computation. The bulk stateis
then read out, thus measuring the expectation value of a certain observable over the ensemble. In
practical implementations, often several experiments must be run probabilistically (logica
labeling), sequentially (tempora averaging), or in paralle (spatial averaging) — the results are then
selectively processed, mathematically added together, or physically added together, respectively,
so asto effectively synthesize a computation on a pure state.

A therma ensemble of spinsin abias magnetic field has a density matrix

1, & ngB
5 @+ g T 1, +...)
which can be separated into two parts, a homogeneous background component (1/Z) due to the
high temperature of the sample, and a perturbation component, called the deviation density
matrix,
_ n_ g hg,B

ro=r-Tr(r)/2"=1Z .a:1 T I,
whose magnitude is roughly 10° times smaller than the background component, and which isa
manifestation of the spin polarization due to the magnetic field. This perturbation component is
the basis for al the manipulations used in nuclear magnetic resonance, and we will completely
neglect the rest of the density matrix since it is never observable. From this deviation density
matrix we can extract an effective pure state (e.g., a state which to an observer looks pure) for
guantum computation. One nice image is that of a“‘soloist’ standing out from a‘choir’ of

background spins (Chu98a) (Ger97a).

One can use logical 1abeling to generate an effective pure state from a deviation density matrix
by using certain spins as labels (Chu98a). Consider preparing the density matrix r (neglecting the
homogeneous background component, of course) with an operator P, as

P(r)=a|kik|Ar,.
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where |k)(k|, k=0,1, ... arethe possible states of a particular ancilla spin (or register of spins),
whose state, when measured, indicates the contents of the rest of the density matrix. We can
preparer o as an effective pure state, |f ,)(f |, and treat all the other r as junk states. If we define

aconditional readout step R as
R(P(r)) = (0)(0| A 1)P(r)(0)O|A 1),

then one way to implement a computation C so that it operates upon an effective pure state is

C'(r) =R((lc A C)(P(r))) =[0)(0] A CIf ,)(f o],
where | onc IS the identity over the ancilla (label) states, since the true computation C operates only
upon the r . Therefore if we condition on the ancilla spins, and accept the answer only if the
ancillabit isin the O state, we get an effective pure state. Of course, if we observe that our ancilla
bit isin a state other than 0, we must discard the experiment, since it is therefore the result of a
computation performed on one of the junk states. This situation may seem contrived, but it
actually occurs very naturally when CNOTSs are used to redistribute quantum populations — after
each CNOT, the density matrix is very naturally left in a conditiona state. A specific agorithm for
accomplishing such aredistribution with logical labeling is given in (Chu98a).

Spatial labels can be devised by applying unitary preparation operators, such as gradient RF
pulses, which prepare spinsin a manner dependent upon their position within abulk sample
(Cor97). The preparation operators are designed so that the transformed density matrix, which
one then uses for computation, has the properties of an effective pure state (as discussed above) —
the only difference is that the various experiments occur in paralel, in different parts of the
sample, rather than in series or in a probabilistic manner. Due to the hardware complexity of
implementing precise gradient pulses, we do not discuss this result further at this point.

In temporal |abeling, one runs a series of experiments which start with different unitary
preparation operators, and then averages the experimental results so that the resultant r appears
to have been in a pure state. Tempora averaging is avery practical proposal for a small number of
qubits, since no qubit has to be reserved for conditioning (as was required for logical abeling)
(Kni97): the most basic and obvious method is exhasutive averaging: if one runs 3 experiments
on *CHCI;, for example, starting with deviation density matrices

él o él o é v
& ué u e v
¢ © ae - 0andé 1 a
e -.6 ue -1 u e 6 u
& ué u e v
é 15 e 60 & - 60

then averaging the 3 experimental results gives the same result asif one had performed an
experiment starting with a state equal to the average of the 3 initial density matrices,

MD: (D> D> (D> D> ﬁ
o
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which happens to be a pure state. In general, for n qubits one must perform 2"-1 experiments,
applying each permutation in the cyclic group C,,  so asto eliminate the 2"-1 useless state

amplitudes in the density matrix. The signal-to-noise ratios (SNRs) that result from temporal
averaging are fairly good due to the high number of experiments, as long as errors are not induced
by spectrometer drift or other nonidealities. However, the exponential investment required to
perform tempora averaging can be prohibitive for large numbers of qubits. A more frugal method
isthe algorithm called flip-and-swap in (Kni97): since for any state w, the density matrix entries
for the populationsin wand w (the state with the spins of w flipped) satisfy

M 7. =1/271
one can average the results of two experiments, the first with no preparation, and the second
prepared by first inverting all the qubits and then switching the states |0) and |2" - 1> (eg., the

ground and highest-excited states); the resultant signal is asif the experiment were performed on
theinitial state

a/2"(|0)(0|-|2" - 1)(2" - 1)),
where a is the average gyromagnetic ratio of al the spins, multiplied by nB/KT. The polarization
in the all-1 state can be dispersed by mapping this polarization to a randomly chosen state after
the flip-swap operation, and then averaging. If one has an ancilla qubit, for atotal of n + 1 qubits,
one can use it asalogical label, with alittle bit of pre- and postprocessing: the ideais that if the
ancillais 0, the other n qubits are in an effective pure state with ‘soloist’ |0) ; if 1, then the other n

gubits are in a state with soloist

2" - 1> . The pre- and postprocessing steps are given in (Kni97),

where it is suggested that |abelled flip-and-swap is one of the most efficient preparations in terms
of expected SNR and minimal waste of qubits.

Another temporal averaging strategy is to randomize over groups of unitary operators, by
choosing preparation operators P from some distribution on a group { P} ; the minimum

reguirement for a procedure of this sort is that (PrP*)  be an effective pure state. Such

strategies effectively result in a state of the form
(roo-P) [0)O[+ P,
so that the expectation value of a measurement sy after acomputation C is
F =Tr(CPrP*C's,) = Tr(PrP'C"s,C) = (r oo - p)Tr(C|0)(0| C'sy),
which is proportional to the result expected of a pure state computation. Due to the statistical

nature of this form of temporal averaging, the number of experiments required to determine 1 to
within afraction e with probability c is -log(c)/(€’SNR?).

Several historical experiments with conventional NMR spectrometers have performed, including
state tomography (Chu98a), error correction (Cor98), and a Grover’s search on 2 qubits
(Chu98b) (Jon98b). Experiments have also been performed on quantum error correction (Cor98),
in which it was found to be possible to correct phase errors due to T, effects on aliquid NMR

sample. (We briefly mentioned this experiment in |.2.ii.) A state |a,a,a,) can undergo arandom
change to
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e aa,),

for example, where q is a vector of random phases. According to this error model, to first order a
qubit encoded as

al++4)+b|- - o)
would be transformed into the state
a|+++>+b|- - > iql(a|- ++>+b|+- ->)- iqz(a|+- +>+b|- +->)- iqs(a|++->+b|- - +>)
Note that we are assuming that the error is common to all three qubits — this works nicely for
errors that result from, say, inhomogeneities in the magnetic field. One can diagnose the error
without destroying the quantum coherences because the errors map the encoded state onto
orthogonal subspaces. One can simulate T, effects by setting up afield gradient B, / §zand

letting the molecules diffuse for atimet and distance dz, resulting in a random phase
ptgdz9B, / Yz, for a p-quantum coherence (see I'V.1.ii.). (Note that zero-quantum coherences

don’'t experience T, effects at al.) In the (Cor98) experiment, Cory et. a. started with the intial
state 11,(1/2+1,,)(1/2+13;) (one upwards-pointing spin containing the signal, plus two ground-state
ancillag), and applied the encoding pul se sequence

CNOT12CNOT13Y1(p/2) Y2(p/2) Y2(p/2),
giving (s + lox + la+4l 1l 4l 3), whose first and third-order coherences exponentially decays with
time constants T, T,/3, respectively. The experimenters then corrected this decay with the inverse
encoding sequence, followed by a Toffoli gate that flipped the first spin in proportion to the
amplitude of the two ancillae. Their experiment showed that they could reduce the initial decay
slope by afactor of 5.

Since polarization in NMR systemsis rather low (1 part in amillion), the exponential 10sses
associated with signal declines do not yet justify the addition of ancilla qubits, and so for now
error-correction is mostly a curiosity, athough with the development of advanced polarization
techniques (like optical pumping) perhaps this will someday be useful. For n weakly-interacting
particles, pulsed-NMR manipulations can improve the polarization of a particular qubit only by a
factor of O(n”?); therefore ‘ computational cooling’ cannot offset the exponential decay in signa
that one obtains by adding additional qubits. We begin the next section by quantifying the
relationship between the NMR signal strength and the number of qubits.

IV.3. Coherence, Signals, and NMR Computing

The maximum possible signal obtainiable from an NMR experiment is approximated by the largest
eigenvalue of the density matrix (Chu98a); for the lowest energy state this eigenvalue is
g 7 Bn/(2™KT),

giving atransverse magnetization of

ng % (g 7 Bn/(2"7KT)).
Thus there is a hidden exponentia cost — the signal exponentially decreases with the number of
qubits! Thisis not a condemnation of bulk quantum computing, only of thermal quantum
computing, since the procedure of creating the initial polarization through thermal relaxationin a
biasfield results in most of the state amplitudes being homogenized. Even worse, it has been
proven that no NMR quantum computation experiment (up to the current day) has ever created
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any real entanglement, in the sense that all of the resultant density matrices are completely
separable (Bra98). Their proof is constructive, in that separations are specified for all density
matrices in a neighborhood of the maximum-entropy density matrix, for bulk thermal quantum
computations involving fewer than 14 qubits, at room temperature in magnetic fields of O(1
Teda). (It is conceivable, but not guaranteed, that performing bulk thermal quantum computation
on more than 14 qubits could result in entangled states.)

Nevertheless, NMR gquantum computation is interesting from the perspective of creating useful
computations for the purpose of efficiently interrogating and characterizing natural materials.
Therefore we will persist with an analysis of NMR signals at the level of interest of the NMR
spectrometer engineer. For conceptual smplicity, we will consider thisissue at two levels — that
of the physics, and that of the instrumentation. The signal, asnoted in IV.1.i., isavoltagein an N-
turn coil (inductor) of area A, volume V., and quality Q , which according to Faraday’s Law,
gives
dl M, d .

V=L m mNAQ m o oM, bdVv
where b is, by the principle of reciprocity, the magnetic field generated by a current of 1 A going
through the coil. The Q of acail is equa to wL/R, where L = b?V,q/m is the inductance, w is the
frequency of interest, and R is the resistance of the coil wire (Hay96). Defining the fill fraction
h = Vampie/ Veail, @nd substituting in for My using the Bloch equations, we can write down the
following equation for the NMR signal seen by along solenoidal coil (Gre98):

_ chB [T, &V, QR
2 \TLg m o
where c isthe Curi€’ s-law susceptibility defined in 1V.1.i. In order to compute the total signal-to-

noise ratio (SNR), we can compute the Johnson noise of the inductor as (Rei65)
V. = ,/4KTRDfF

where Df is the bandwidth of the system and F © 10" is the characteristic noise of the amplifier. F
is defined to be the ratio of the input SNR to the output SNR, and NF is the noise figure,
measured in dB and often provided by amplifier manufacturers as a measure of an amplifier's
performance. The total SNR is V/V,, roughly 100,000 for atypica spectrometer at 1 T. (Our
spectrometer easily attains atotal SNR of 10,000,000 —see V1.1.i.)

A more sophisticated model, which takes into account the skin depth of the coil, as well asthe
fact that different sections of the coil receive signals out of phase from one another, resultsin the
following equation for the SNR (Hou76):

bcV pr  a&w/ 91 "

SNR = x
2.37gm, \| FKTIxDf gnm)r o

where r isthe radius of the wire, | the length of the wire, mthe permeability of the wire metal, r
itsresigitivity, and x afactor (usually taken to be about 3) which specifies the destructive effects
of intracoil interference. Note that the SNR goes like B”*, since w,. = gB.
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This suggests several optimizations that might be possible for NMR quantum computers, which
ordinary NMR spectrometer manufacturers cannot utilize (Ger): for example, increased sample
sizeis possible since we are not analyzing rare materias, nor are we working at such a high field
that the homogeneous volume is constrained to be very small; thisresultsin an increase in the
cross-sectiona area of the coil. For example, increasing the linear dimension of the sample by 10
would therefore result in a 100-fold increase in signal strength. Another possible optimization is
that we can use soft pulses for very precise narrowband excitation, and address only afew spins
with known chemical shifts — this suggests that we could make the Q of our coil extremely large,
another win in terms of signal strength. One notable area where we are working contrary to the
majority of spectrometer designersisin the strength of the field: while My is proportional to B, the
strength of the bias field, we are purposefully choosing to use lower fields for ease of
implementation (at low frequencies, we can take advantage of software-radio style designs), ease
of fabrication (we can use small permanent magnets, as opposed to large superconducting
magnets), and ease of operation (the NMR spectrometer can fit on atabletop, rather than
requiring an entire gymnasium). In terms of signal-to-noise ratios, the effort required to raise the
field by a small factor seems better spent on designing other parts of the spectrometer. Asit turns
out, at the current moment the dominant problem in our homebuilt NMR spectrometer is the large
inhomogeneity of our biasing magnetic field; thisis discussed in V1.1.ii., aswell as one possible
solution to the problem, as implemented by the author.

Not al of the signal-to-noise improvements in quantum computing have to do with the mode of
detection. One can also try to prepare the state in different ways, such that less of the already-rare
thermal polarization islost through pure-state averaging.

One can take advantage of the fact that the gyromagnetic ratio of the electron is three orders of
magnitude larger than that of any nucleus: g/g, ~ 1000. It is possible to perform a pulse sequence
called INEPT, which transfers the relatively vast polarization of the electron to the nucleus, but
this takes specia microwave hardware, since the electrons have a Larmor frequency that is
correspondingly three orders of magnitude greater than that of the nucleus. Putting INEPT stages
in both the preparation and readout stages of a quantum computation results in a 10°-fold increase
in signa strength (Chu98a).

Another interesting idea which might be feasible is the use of optical pumping to put electrons
into highly polarized states, followed by the transfer of the resultant polarization to the nuclei via
fine-structure coupling. The canonical optical pumping experiment requires a three-state manifold
{A, B, C}, where A and C are low-energy states and B is a high energy state, and transitions
between A and C are forbidden due to selection rules. If aparticlein state A isirradiated at the
resonant frequency wig for the A « B transition, then it will undergo atransition to state B, then
back to A, and so on. Occasionally, however, the excited state B will spontaneously decay into
the low-energy state C, and the system will remain in that state, since there is no stimulated
excitation to pump it back up to state B, and since the direct transition to state A is forbidden.
Thus any ensemble of such 3-state systems, if suitably irradiated for a sufficient length of time,
will eventually end up in the state C!
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Although it has never been done before, it might be possible to perform spin-specific optical
pumping on computationally interesting molecules, in which case it would be easy to extend an
NMR guantum computer to many qubits, since the exponential decrease in signal due to the
thermal constraints on qubit number could be obliterated by performing optical prepolarization. A
simple optical pumping experiment has been demonstrated by Pines, who dissolved
hyperpolarized ***Xe (which in turn had been polarized through spin-spin interactions with
optically pumped rubidium vapor) in water, causing hydrogen nuclel to become polarized due to
the nuclear Overhauser effect (Pin96); polarizations of O(1/2) were achieved in this fashion.
(Interestingly, thisideais now being prototyped for use as an MRI contrast agent in humans.) A
macroscopic version of thisidea, which is perhaps more amusing than practical, is to use a Stern-
Gerlach apparatus to iteratively separate polarized spins, perhaps by using mechanical means to
partition differently polarized parts of the flowing fluid (Ger).
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“Beware of bugsin the above code; | have only proved it correct, not tried it.”
— Donald Knuth

V. The Art of Quantum Computer Programming: System Design

V.1. A Quantum Computer Language

V.1l.i. High-level language: a case study

A few defintions are in order. A register is a collection of spins, which we can treat as a binary
number — or, in general, a superposition of binary numbers. In order to shorten programs, we may
occasionally use pulse sequences which compute correctly, but scatter the answer
deterministically about the quantum system: for example, after performing one particular version
of the Fourier transform, we might find that the digits of the answer, expressed as a binary number
(or superposition thereof), are in reversed order (compared to the original labeling of qubits
within the register). Rather than waste precious pulses swapping the qubits into the correct order,
we can just relabel the spins, and continue the computation under the new labeling. It may be
helpful to refer to a collection of qubits as a semantic register, which is independent of the actual
spins upon which the quantum information happens to reside at any particular point in the
computation. We refer to the list of spins on which a semantic register resides as the chemical
indices. Throughout a computation, the semantic register retains its integrity, but the chemical
indices might change as lazy computations operate upon the qubits, moving the information in a
semantic register from particle to particle. This abstraction layer isimportant for understanding
the model compiler code given in Appendix A.

Several people have constructed simple sets of commands that suffice to do certain computations
on particular quantum hardware platforms. One relatively complete example is Preskill et. a.’s
instantiation of Shor’s factoring algorithm, implemented on alinear ion trap (Pre96). This team
developed an agorithm that allowed the factoring of a K-bit number in O(K®) time, using 5K+1
qubits. They focused on the problem of creating a simple implementation of modular
exponentiation on a quantum computer, since that is the bottleneck of Shor’s agorithm; their
method uses about 72K? quantum gates (equalling 396K? laser pulses) to implement. For a 130-
digit number (i.e., the best that current classical computers can handle in early 1999) this amounts
to over 10™ laser pulses.

This team designed pul se sequences that implement a full adder of a quantum number to a
classical number, with severa variations involving various control qubits upon which the adder
can condition. Using these adders, they implemented multiplication of quantum numbers by
classical numbers, also utilizing operators that condition on control qubits. With these modulesin
hand, they constructed a pul se sequence for modular exponentiation of a classical number to a
power specified by a quantum number, using repeated squaring. The effective construction is an
assembly-language version of Shor’s factoring algorithm. Matlab code which compiles several of
these operations down to elementary operationsis given in Appendix A; with sight modification
and the addition of a simple parser, the ssimulation code in Appendix B could be used to construct
afull quantum computer simulator. Some people have created very complex C/C++ based
compilers (Tuc98) and ssimulation environments (Opn), and it is likely that due to the relative

83



simplicity of simulation compared to implementation, this will be a popular avenue of exploration
for many.

V.1.ii. System architecture and low-level control: QOS

To understand the system architecture, and therefore the low-level machine language of the
guantum computer, it isimportant to have a working knowledge of the hardware of the Mark |
guantum computer, as described in VI1.1. We will mention only the barest overview of the
hardware in this section, because we want to motivate the hardware design choices properly in
part VI. Therefore one reasonable partition is to consider the digital infrastructure and system
architecture now, since that is essential to understanding how QOS (the quantum operating
system) works, and to go over the analog issues later, in part VI.

The core of the hardware comprises two Hewlett-Packard modules, the HPE1437 (a 20-MHz,
23-bit (raw data, 32-bit if processed), 110 dB SFDR A/D converter with 8 MB RAM, equipped
with software-selectable center frequencies, filtering capabilities, data types, triggering modes,
and data acquisition strategies) and the HPE1445 (a 40-MHz, 13-bit, arbitrary waveform
generator with 3.25 MB RAM, equipped with software-programmable waveform choreography,
triggering modes, and filtering options) (HP). The HPE1445 module generates a 40 MHz clock
that is divided down to provide clocks for the HPE1437 and for two continuous-wave (CW)
generators that are used to mix the software radio components up to the Larmor frequencies for
spinsat 1 T; this clock synchronization is essential for providing phase coherence throughout each
NMR experiment. Both HP modules rest within a VXI mainframe that has an ISA interface to a
PC, which we use for al high-level control, compilation, and signal processing.

The basic signal path is as follows: the output waveform from the HPE1445 module is split into
two parts, one for each of the two species of interest, *H and **C. Each channel is then mixed up
to that species’ particular Larmor frequency, using each of the two CW generators. The two
channels are then mixed together before being amplified and sent to a coil surrounding a sample in
an electromagnet. After the transmit signal terminates, a pin diode switch changes state, so that
the coil is connected to the receive signal chain, instead of the transmit signa chain: if the transmit
and receive chains were ever smultaneously connected, the sensitive front end of the receive
chain would be instantly destroyed by the tens of watts of power emerging from the transmitter.
The return signa is amplified, then split into separate channels for downmixing, then filtered and
recombined for digitization by the HPE1437. The output level of each NMR species’ transmit
channel, as well as the state of the pin diode switch, is digitally controlled by a Hitachi SH-1
microprocessor board. Details of the Mark | quantum computer analog signal chain
implementation are given in (Mag), the Master’ s thesis of the designer of the analog signal chain,
aswell as briefly described in VI.1.i.

Programs written in the q programming language, designed by the author to be Matlab-
compatible (in the event that time alowed for the construction of a simulator of the system), are
parsed by QOS (running on a PC) into waveforms that are sent to the HPE1445, at the beginning
of each experiment. QOS also converts the g program into a series of timed digital transitions for
execution by the Hitachi microcontroller, so that changes in the transmit switch and pin diode
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switch states are synchronous with the waveform transitions in the HPE1445. QOS a so sets the
values for the currents flowing through any available shim coils in the system, as well as a plethora
of other parameters which determine the system’ s behavior. In this section we will briefly discuss
the instruction set and the program architecture; the g instruction set is elaborated upon in great
detail in Appendix D, and QOS itself is examined in Appendix E.

An artificia g program designed to use every aspect of the g programming language is explored in
the following paragraph, with detailed comments explaining what each instruction means. (The g
files that perform Grover’s algorithm, with tempora averaging and state tomography, are given in
Appendix D, to clarify the constructs of the g language in a practical example.) QOS performs a
round of parsing on the g program, then sends all system parameters to the appropriate modules
(shim boards, HPE1437, HPE1445, Hitachi microcontroller). QOS then runs the parsed q pulse
sequence through three rounds of elaboration — one to calculate the start, end, and duration of
each pulse, a second one to actually synthesize voltage values and load them into HPE1445
segments, which are then arranged into waveform sequences, and a third to create the switch/pin
diode transitions for the Hitachi microcontroller. Perhaps at this point it is best to go through a
sample q program:

Comments.

%

% Thi s denotes a comrent, just like in MATLAB.

% Artificial q program does nothing really.

% (C) Copyright blah, blah, blah. Wo cares if you steal the code — you don't have a quantum
% conputer to run it on anyway. Like it’'s going to do you any good.

%

Beginning of the program.
Qbegi n()

Name of the program, sample, and version — for convenience of the human quantum computer

operator.

Qrane(' g2| 11>cd')
sanpl e(' 13CHCA 3')
Quersion('1.0 esb')

Decoupling style to use, during J-coupling and waiting periods.

Qdecouplingstyle('m nimal")

General hardware and software modes of operation.
Qmode(verbose, nosimul, notcontinuous, triggered, arnmed, neitherinstantreplay,
speci fyduration, speci fyJti mes)

Which hardware modules to use and which to disable, for the current experiment.
Qmodul es(nol437, 1445, hitachi, noshins)

Attenuation settings for the two channels.
Q fsettings(2048,0)

Timing parameters for microcontroller synchronization.
Ghack(2e-6, le-6, 5e-6)

Digitization parameters for specifying HPE1437 behavior.
Qdigitize( 0.37, 5, 9, 2048, nodeci mate)
Qdat at ype(conpl ex, 32, fft)

Shimming parameters.
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Gshi nms(4, 0. 01, 0. 005, 0. 003, -0.01)

Number of spin species, and relevant spin properties.

Munmgbs(2)

species(1,'1H , 26.7510e7, 42647100.0, 46299000, 1, 0.00002)
species(2,'13C, 6.7263e7, 10723000.0, 12700000, 0.0159, 0.0005)
Qicoupl ings([0 215; 215 0])

Pulse sequences.

(1, 147, square)

Qv (2, 140, square)

Qnai t (500e-6, dec, 0)

(1, 90, gaussian, .25, .3, 0.00005)

(1, 90, halfgau55|an, .25, .3, 0.00005)

(1, 40, arbfreq, 0, 100000, 1)

Q(1, 50, 0, 45000000, 1, square)

Q(1, 50, 0, 41299000, 1, gaussian, .25, .3, 0.00005)
Q(1, 50, 0, 41299000, 1, hal fgaussian, .25, .3, 0.00005)
Q(1, 50, 0, 41299000, 1, arbfreq, 0, 42299000, 1)
synch(l eftjustified)

(2, 10, hal fgaussian, .25, .3, 0.00005)

(1, 10, hal fgaussian, .25, .3, 0.00005)

Qendsynch()

synch(rightjustified)

(2, 10, hal fgaussian, .25, .3, 0.00005)
(1, 10, hal fgaussian, .25, .3, 0.00005)

Qendsynch()

synch(cent ered)

(1, 100, hal fgaussian, .25, .3, 0.00005)

(2, 10, hal fgaussian, .25, .3, 0.00005)
Qendsynch()
Q(1, 50, 0, 41299000, 1, gaussian, .25, .3, 0.00005)

Data acquisition command.
Q ead(100e- 6, dec, 0)

End of program.
Qend()

We will say no more on QOS at this point. Again, for the interested reader the actual commands
of the g programming language are described in some detail in Appendix D, and some of the
routines that make QOS operate are detailed in Appendix E.

V.1.ii. Control structuresfor QOS: an implementation, ROS
The following appealing scenarios have a common method of solution:

» A child inserts her hand into alittle coil which sends harmless pulses of radiofrequency
energy through her finger. It noninvasively extracts her blood oxygen content, glucose
levels, and perhaps even scans her tissues for particular antigens, contaminants, or
signal proteins (Fan) (Gru) (Nic). She leaves the doctor’ s office shortly afterwards,
having only spent afew minutes before being given a clean bill of health.

> A food sample, inserted into alittle coil, is scanned using multidimensional NMR
techniques combined with nonlinear search methods. Grover’ s search algorithm on
four qubits is compiled and optimized with respect to the various coupling and
relaxation parameters, and in no time at all, we are performing a quantum computation
on apiece of broccoli (Kno).
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An eventua goa might be to embed QOS in a machine learning environment suitable for
extracting the Hamiltonian of a spin system automatically, with very little prior knowledge. For
example, one might begin such an experiment by scanning through the known Larmor frequencies
of various spins, detecting what species were present. One might then run a multidimensiona
NMR experiment like COSY, extracting the various J-couplings between spins, as well as any
other interactions that might be apparent. Thisis avery difficult task, requiring excellent hardware
and software, since most real molecules in natural environments are difficult to differentiate from
their surroundings. Much of the field of state-of-the-art NMR spectroscopy lies in interpreting the
myriad peaks from a multidimensional experiment on extremely pure samples, as well as designing
better pulse sequences (e.g., quantum computations) to extract detailed information about the
structure of the molecular spin system. Performing useful NMR on natural samplesis difficult to
do, but the promise of noninvasive fast diagnostic and characterization techniques is immensely
interesting to people in many disciplines.

More modest goals lend themselves to being automated. For example, shimming, while difficult to
solve analytically, can be computationally approached with nonlinear search techniques. Finding
the exact Larmor frequency of a given spin, or the exact duration of a p/2 pulse that maximizes
the amplitude of the resultant transverse magnetization, can similarly be accomplished through
automatic means. The envelope for a soft pulse, or the ideal structure of an iterated self-
compensating sequence of pulses, can be designed ssmply by experimentation and nonlinear
search.

| wrote a program, ROS, which does these kinds of optimizations. (It's called ROS simply
because it was written one program later than QOS. | was hoping never to have to write SOS...)
ROS can take a q program, and apply a certain method (Powell’ s direction set method, the
downhill simplex method, brute-force search, conjugate gradient descent, cluster weighted
modeling, etc.) so asto achieve a certain goal (maximum signal-to-noise, maximum T,, maximum
sharpness of a certain peak, etc.). Not al goals are compatible with all methods, of course. At the
time of thiswriting, the available goals and methods were:

Godl: browse

Method: easy

Just browse through a range of parameters, saving the acquired NMR data for later use. The
syntax for sweeping a variable through a particular range is best exemplified by a sample program.
The following ROS script sweeps the angle a of an X(a) pulse from 1° to 100° in 0.5-degree
steps, saving the data in separate files. For each value of a, a g program is synthesized and QOS
isrun on that g program. The value of a isthen incremented, and the process is repeated.

Rgoal (‘ browse’)
Rnet hod(‘ easy’)
% anyt hing framed by Rprotobegin() and Rprotoend() is just copied into the g program
Rpr ot obegi n()

Qrane(‘ expt’)

Qanpl e(* CHA 3')

Qspecies(1,'1H, 26.7510e7, 42574931.880108, 35000000, 1, 0.001, 5)
Rpr ot oend()
% anyt hing framed by Rsweepbegi n() and Rsweepend() is swept through
Rsweepbegi n( ALPHA, 1, 100, 0.5)

( 1, ALPHA, square)
Rsweepend()
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Sweeps can be nested. This makes, for example, a COSY program completely trivia to implement
in ROS.

Goal: maxq

Method: si npl ex, powel I, conj grad

The maxq goal indicates the desire to maximize the sharpness, or Q (using an analogy from the

language of resonators in electrical engineering), of a certain peak; in the geometry of an NMR

spectrum, this corresponds to the height of a peak divided by the FWHM (full width at half

maximum). This roughly corresponds to maximizing the T, of a spin, and is a useful criterion for

shimming. To compute the Q of a spin, given certain spectrometer parameters (shim currents,

Larmor frequency, etc.), we do the following (code for this procedure is given in the Quality (Q

function) section of Appendix F):

1) Synthesize ap/2 pulse program with specific values for the parameters being optimized.

2) Run QOS on the pulse program, and collect the data from the NMR spectrometer.

3) Perform acomplex FFT on the collected data, and compute the power spectrum.

4) Linearly estimate the center frequency and the width of the peak of interest.

5) Perform Levenberg-Marquardt function-fitting, using a Lorentzian model, asis appropriate
for the spin model discussed in V. 1.i.

6) Calculate the value of Q from the parameters of the Lorentzian, as the center frequency
divided by the width parameter.

The Nelder-Mead downhill smplex method, Powell’ s direction set method, and the conjugate
gradient methods of optimization are all explained in (Pre), aswell asin the Optimization

M ethods section of Appendix F. The Q function to be maximized is very expensive (e.g., every
function iteration requires a complete NMR experiment, plus lots of data anaysis), and these
three different strategies may offer different degrees of performance in different situations.

Also, the Q function, being a physical measurement followed by lots of data anaysis, isn't a
symbolically differentiable function — so for the conjugate gradient method (conj grad) we use
polynomia extrapolation from a series of experiments to compute a numerical derivative. Asit
turns out, this method is competitive with the other two methods listed in this section, due to the
smooth search space often encountered when optimizing ssmple physical systems. The downhill
simplex method and Powell’ s method largely ignore the local, differential information which
characterizes a smooth search space.

A sample optimizing ROS script is shown below, for the purposes of shimming the main
electromagnet. The goal isto tune four shim currents until the Q is maximized. In this version, the

conjugate gradient algorithm is used.
Rgoal ( maxq)

Rnet hod( conj gr ad)

Rt ol erance(0. 01)

Rver bose(on)

% rel evant directory paths used by RCS

Rgospat h(' C:\users\nnr\ gos2\ qos2___W n32_Debug\ qos2. exe')

Rdat apat h(' C:\users\nnr\qos2\data')

% the delay, in mlliseconds, between experinments — inportant to let the transients die out
Rdel ay(500)

Rpr ot obegi n()
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Qane(' shintest')

anpl e(' gl yceri')
% nodul es, nmodes, digitize, etc. (onmtted for clarity)

Munmgbs(2)

Qspecies(1,'1H, 26.7510e7, 42647100.0, 49299000, 1, 0.00002)

Qspecies(2,'13C, 6.7263e7, 10723000.0, 12700000, 0.0159, 0.0005)
Rpr ot oend()

Rrangebegi n(SH ML, -0.02, 0.02)
Rrangebegi n(SH M2, -0.02, 0.02)
Rrangebegi n(SH M3, -0.02, 0.02)
Rrangebegi n(SH M4, -0.02, 0.02)
Qshims(4, SH ML, SH M2, SHI M3, SHI M4)
Rrangeend()
Rrangeend()
Rrangeend()
Rrangeend()

Rpr ot obegi n()

(1, 147, square)

Q ead(500e- 6, dec, 0)
Rpr ot oend()

God: extract

Method: cwm phascorr

Cluster-weighted modeling (Ger98) might serve as away to very precisely extract the frequencies
and T,'s of the various peaks in a spectrum; however, ssimple Levenberg-Marquardt function
fitting with a sum of multiple Lorentzians seemsto work just fine, and is just as (if not more)
realistic, since the signal actualy is a sum of multiple Lorentzians. Therefore the cwm module was
purposefully not completed. However, different parameter extraction and modeling problems,
which require a proper probabilistic technique for appropriately interpreting the data, might arise
in the future.

Phase correction is a useful procedure which removes nonidedlities in the signal chain and in the
synchronization of various modules. Due to delays and irregularitiesin an NMR system, signals at
afrequency w will often emerge with an added phase f = aw + b, which isundesirable. The net
result isadistortion of the signal A sin(wt), which becomes A sin(wt + aw + b). Applying alinear
fit (e.g., using the pseudoinverse method (Pre)) to the remnant phase can yield the coefficients a
and b, and thus the artifactual phase can be deleted. Phase correction permits averaging the results
from different experiments, as well as comparing phase-sensitive experimenta results—e.g.,
telling apart the effects of X and Y pulsesin two different experiments. The phase correction
algorithm is described in more detail in the Extraction M ethods section of Appendix F.

Here is a complete ROS script that uses the phascorr method to make asignal with initialy
unknown phase into a pure sinusoid (f = 0). Note that QOS is only called once in the execution of
this script.

Rgoal (extract)

Rnet hod( phascorr, real)

%if we want to use known values of a and b, we can specify themusing the relative

% phase correction method:

% Rmet hod( phascorr, rel at, 0. 393185, -5. 68556e- 007)

% Al this does is subtract off the phase 0.393185 — 5.67556e-7 * w fromthe signal conponent
% at frequency w. This is useful for conparing different experinents, for exanple.

Rt ol erance(0. 01)

Rver bose(on)

Rpr ot obegi n()

Qane(' shintest')
sanpl e(' gl yceri')
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Quersion('2.0 esb')
Qdecouplingstyle(' m nimal")
Qmode(verbose, sinul, notcontinuous, nottriggered, arnmed, notinstantreplay, specifyduration,
speci fyJti nmes)
Qmodul es(1437, 1445, hitachi, noshins)
Q fsettings(2048,0)
Ghack(2e-6, le-6, 5e-6)
Qdigitize( 0.2125, 5, 9, 2048, nodeci nate)
Qdat at ype(conpl ex, 32, tinedonain)
Munmgbs(2)
Qspecies(1,'1H, 26.7510e7, 42647100.0, 49299000, 1, 0.00002)
Qspecies(2,'13C, 6.7263e7, 10723000.0, 12700000, 0.0159, 0.0005)
Qicoupl ings([0 215; 215 0])
(1, 147, square)
Q ead(500e- 6, dec, 0)
Rpr ot oend()

V.2. Compiling for the NMR Quantum Computer

What we have described above is, in a sense, not compilation. It is the design of a straightforward
and modular assembly language, with some support software to automate common experimental
tasks. It is possible that as these paradigms mature, and quantum algorithm designers and
hardware designers start to converge on useful primitives for understanding quantum
computation, a high-level language which makes accessible the power of the hardware might
evolve. It isimportant to remember that familiar languages like C and Java were not written right
after the transistor was invented; a great many technological choices, architectural biases, and
aesthetic decisions resulted in the programming languages we use today. It would be stupid to
impose too much intellectual infrastructure on the frothing sea of free-ranging exploration which
dominates all parts of the field of quantum computing at the present moment.

Neverthelessit’s interesting to speculate on what practical quantum programming languages
might look like. One interpretation, which is akin to that outlined in the previous section, is that
guantum compilation is the process by which a known agorithm, like Grover’s search on six
qubits, or the ssimulation of a certain system of fermions, is broken down into the appropriate
gates (and then pulse sequences) for operation on a particular quantum substrate. This
interpretation is substantiated by Appendix A of this document, in which code is given which
compiles various arithmetic logic units (multiplexed half- and full-adders, with and without enable
bits), comparators, Fourier transform operators, and conditional gates, down to elementary
operations. Theideais to take humanly-comprehensible operations, like adding, multiplying,
searching, and comparing, and to break them down into elementary operations which are like
machine language for a particular quantum system. For example, here is the Matlab code that
outputs the elementary operations for a full adder, which adds the classical bit cbit to qubit

i nput bi t and stores the result in qubit out put bi t With the carry in qubit carrybit (See Appendix A
for explanations of the subroutines called in the following code):

Matlab declaration of the program

function program = fa(chit, inputbit, carrybit, outputbit)

The case of adding aclassical 1 hit
if (chit)

Create a program string

program = cnot (carrybit, outputbit);

Concatenate the next term of the program to the program string

program = str2mat (program nnot(carrybit));
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program = str2mat (program cknot (2, [inputbit carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));

The case of adding aclassical 0 hit

el se
program = cknot (2, [inputbit carrybit], outputbit);
program = str2mat (program cnot(inputbit, carrybit));
end;

Another interpretation is that compilation is the process by which an arbitrary unitary matrix is
decomposed into elementary operations. One proposal for doing thisisto use the CS
decomposition theorem, which states that given a2N ~ 2N unitary matrix U, one can express U as

U :§J00 UOllzlzé‘O l;'éDOO DOll‘;@RO l;'

ngO UllH g L1£D10 Dll% RlH

where Doy = D13 = diag([Cy, Cs, ..., Cn]), Dor = -Dio = diag([S1, S, ..., Su]), and G + S* = 1 for
each i. In particular, D;; contains the singular values of Uj;. The algorithm proceeds as follows: in
each iteration, apply CS decomposition to the L; and R; from the previous step, resulting in unitary
matrices that operate on smaller-dimensional spaces, until only complex numbers and D-matrices
are left. The problem now reduces to decomposing the remaining D matrices into elementary
operations, which can be done using a series of painstaking theorems described in (Tuc98). A
freely available C++ program, Qubiter, has been implemented which performs this kind of
guantum compilation (Tuc98b).

Thereisaflaw in this model, however, which isthat in order to perform this decomposition, or
any decomposition like it, one must initially store the matrix U, which takes up space exponential
in the number of qubits upon which it is designed to operate, in aclassical computer’s memory.
This defeats the entire purpose of the quantum computer. A better model is that tools like the CS
decomposition are primarily vauable for prototyping small unitary building-blocks, to aid in the
intuition for and design of more complicated unitary operations.

V.3. Simulating

Simulating quantum computers gives researchers a taste of what power may lie ahead, allows
people to evaluate proven algorithms and test new ones, and offers the possibility of probing the
dynamics of quantum systems. For would-be quantum computer programmers, simulation offers
new methods of developing algorithms, such as genetically evolving new guantum algorithms and
optimizing compiled sequences of quantum gates, using search methods. Given the current state
of quantum computers, simulators are probably essential for progress to be made on
understanding the computational power of complicated quantum systems.

In Appendix B are Matlab listings for alarge number of quantum computation primitives and
some sample code which takes advantage of them. The primitives include single-bit rotations
about the x, y, and z axes, two-qubit scalar J-coupling, the C‘NOT gate, and a function which
takes any gate U, and returns the conditional gate CU,, which performs operation U on register
b if the bitsin register a are all 1. Also amongst the primitivesis a Kronecker tensor function
which takes any n-qubit gate U, , and embeds it in an N-qubit gate U’ o n, such that U’ operates
on qubitsa, . .. njust like U does, and operates on al the other qubits with the identity operator.
Thisisuseful if oneis representing a quantum system by a large density matrix labeled by
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lexicographically ordered states (see I1.2. for examples), and wishes to apply some operators
(usualy small, few-qubit operators) to certain subsystems within the large density matrix, or if one
wants to check the decomposition of alarge complicated operator into smaller, Ssimpler ones.
Severa examples are given in this appendix, including verifications of NMR pulse representations
for CNOT gates, Toffoli gates, and Hadamard transforms, and thorough simulations of Grover’'s
algorithm and of temporal averaging. For clarity, we will go through Grover’s agorithm
(111.1.ii.) here, using the primitives declared in Appendix B. Note how «r gn, the Kronecker
tensor product, is used to embed single-qubit operations into operators on the complete two-qubit
density matrix, for convenience in numerical evauation.

Make a Walsh-Hadamard transform (up to a global phase)

H = krqn(2,1,Y(pi/2)*X(pi)) * krqn(2,2,Y(pi/2)*X(pi));

Let's say we want the function used in the Grover’ s search to return the fourth term —that is, C =
diag([111-1]) (up to aglobal phase)

C=krqn(2, 1, Y(pi/2)*X(-pi/2)*Y(-pil2)) * krqn(2,2, Y(pi/2)*X(-pi/2)*Y(-pil2)) * zZ(pil2);
Inverting about the average uses the operator D = WPW where P = diag([1-1-1-1]) (uptoa
global phase)

P = kran(2, 1, Y(pi/2)*X(pi/2)*Y(-pi/2)) * krqn(2,2, Y(pi/2)*X(pi/2)*Y(-pi/2)) * ZZ(pil2);

The operators for the Grover’s search:
D=W* P* W
U=D* C

Running the Grover’s search on starting input [ 1000]:
% Grover's algorithm as inplenented in (Chu98b):
U* W* [ 1000]";

The output is[0 0 0 1], which is of course the correct answer. Many people have written similar
product-operator packages for their personal use, or for sharing within the NMR community; one
of the “most retyped pieces of NMR code in recent years’ isthe POMA package, which includes
most of the product operator formalism in the Mathematica language. It can be downloaded at
(Bmrl), and the original paper can be found in (Gun).

In addition to the quantum computer simulators being developed by the OpenQubit group (Opn),
thereis at least one paper in existence on Monte Carlo simulation of quantum computers, using
techniques devised for stochastic smulation of many-body systems (Cer97).

Finally, we note that there exists a comprehensive platform for simulating many aspects of NMR
experiments, including dephasing and dissipation models, solid-state NMR behavior, Redfield
theory, magic angle spinning, and many other arcane or difficultly visualized parts of the discipline
of nuclear magnetic resonance. While product operator methods are fine for visualizing the logic
of gate and pulse sequences, other relevant problems like modeling error correction, studying the
decay of information encoded in multiple-quantum coherences, understanding the best distribution
of information across qubits of different T,’s and coupling strengths, comprehending soft pulses
and multiplet manipulations, understanding electron interactions and liquid-motional effects, and
gaining insight into subtle points of ensemble computing, require more sophisticated models. The
package, called GAMMA, iswritten as a set of C++ libraries, and most likely has a somewhat
steep learning curve (as suggested by the author’ s brief exploration of its power), but is versatile
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enough to, say, serve as a set of primitives for aforward model used by a machine-learning
program that performs adaptive quantum compilation (see V.1.iii.). See (Smi) and (Gam) for
more information on this program.
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“Actually making something work can be the intellectual equivalent

of going to war: becoming stronger, chauvinistic, with arequisite

sense of destiny and patriotism —without all that, it istoo easy just to give up...”
-E

V1. Hardware Implementation of the NMR Quantum Computer

VI.1. Hardware Overview, Mark |

V1.1.i. Spectrometer

Spectrometers capable of quantum computation have traditionally (in their short tradition!) used
samples like alanine, **C choloroform, and freon; standard NMR preparations typically use
submolar samples dissolved in acetone or some other solvent, often with heavy water for
frequency-locking purposes. Most existant spectometers are incredibly complicated, with
hardware schematics that go on for hundreds of pages, with millions of individua parts that
contribute to a incredible amalgamation of hardware for radiofrequency synthesis, broadband
amplification, ultrastable power generation, and computational interpretation of the signals (Var).

A spectrometer capable of performing quantum computation must have precise frequency
resolution, a magnetic field homogeneous enough for a T, sufficiently long to accomplish the
computation at hand, and a sufficient diversity of spins such that control and readout is feasible.
Precise care must be taken to shut out every possible source of noise, inhomogeneity, vibration,
and fluctuation. An earlier attempt at a quantum computer, which is somewhat amusing given
what we now know is required of a powerful spectrometer architecture, is given in (Cho95) (see
also Appendix Z).

L et us begin with the selection of a chemical sample for the quantum computer. The datain the
following table is taken from (BMRL 96):

Species H e F ¥p
spin ¥ ¥ ¥ ¥
m(in my) 2.79284 0.70241 2.6887 1.13160
gyromagnetic ratio 26.7510e7 6.7263e7 25.1665e7 10.8289¢7
g(rad T's?
isotopic abundance (%) 99.99 1.10 100 100
sensitivity (rel. to 'H) 1 0.016 0.83 0.0663

Most other spins have tiny sengitivities, or have very small J-couplings, or require special-isotope
compositions. (The sensitivity is proportional to ¢l (1 + 1), which is proportional to the strength
of the signa seen by acoil, as stated in 1'V.3.ii.) The desire to create long polymeric chains for
easily addressed molecular architectures suggests that the backbone must be that of an organic
compound. Finally, we require the sample to be aliquid: although solid NMR quantum computing
is being considered in many different paradigms (Kan) (DiV) (Cor), it will be omitted in this
discussion. In apractical sense, this restricts us to four main species: 'H, **C, *F, and *'P.
Chloroform, **CHCls, for example, has a J-coupling between H and *3C of 215 Hz, afairly large
value as J-couplings go, and therefore the peaks are easy to tell apart; the interaction time
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required for a J-coupling operation is also sufficiently short that a complete quantum computation
can be accomplished within the coherence time of an NMR system. Fluorine compounds have
many appealing properties — including large J-couplings and enormous sensitivities: it is likely that
fluorine-and-carbon polymers will be the molecules of choice for some time to come. Hydrogen,
while having the highest sengitivity of any atom, tends to have very weak J-couplings with other
hydrogen atoms, due to the poor symmetry breaking afforded by different hydrogen locations.
Findly, *'P has amoderately large gyromagnetic ratio and very strong J-couplings — often greater
than a kilohertz — with nearby *°F atoms.

Some browsing through the figures in the reference (Ann) suggest the following insights: anything
that restricts atomic motion or orientation, or varies the density of electrons near a nucleus, or
constricts the conformational states (gauche, trans, etc.) of amolecule, will have an effect on the
spectrum, of at least afew Hertz. Steric hindrance, electronegativity, and reduced shielding can
contribute to higher chemical shifts. trans atoms tend to have much higher J-couplings than cis
atoms, when considering molecules with carbon-carbon double bonds. Often there will be many J-
couplings, some small and some large; all must of course be taken into account when considering
how to allocate qubits for a quantum computation.

Much insight can be gained by studying the influences of ring configuration, the presence of
nucleophiles, the concentration of relevant spins, and the symmetry and stereochemistry upon the
J-couplings between different atomsin a molecule. In Figure 3 below are some sample molecules,
along with their J-coupling values (Ann).

F>—<CHHF F>—<C:{Hy F>—< Fa
| F HyCx F Fs CFy..
F-F J-coupling ~ 150 Hz F-F J-coupling~ 120 Hz F-F J-couplings:
12 16.9 Hz
1-3 2598 He
. . 1.4 5.6 Hz
! e 1 . 2-3 1116 Hz
>—< 24 40.0 Hz
3-4 546 H=
g B, s Ha
1-3 J-coupling: 1 2 Hz 3-4 J-coupling: 73 Hz
1-4 T-coupling: 132 Hz 1-3 J-coupling: 71 Hz

Figure 3: A few molecules and their J-couplings (Ann)

One can picture a carbon backbone with fluorine and hydrogen atoms located trans across each
double bond, as a possible starting structure for making a quantum cellular automaton.
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For the purposes of our simple experiments, we used carbon-13 chloroform. Asit turns out, this
molecule has arather short relaxation time, due to the strong coupling of the Cl spinswith the H
and **C spins, and so a better choice for a computationally interesting molecule might have been
freon (or some other fluorine compound) — but time constraints prevailed, and only channels for
3C and "H were constructed for the Mark | quantum computer (Mag).

The design of an NMR spectrometer begins by the choice of a method for detecting the spins.
There are basically three strategies: detecting the radiofrequency energy emitted by a precessing
spin (by using a coil, waveguide, or cavity), using a SQUID or force-feedback magnetometer to
measure the actual amplitude of the magnetic field, and using optical interrogation methods to
read out the nuclear state by observing the fine structure of the electronic spectrum. The first
method is by far the easiest to implement and analyze, although the second has shown some
promise: SQUIDs are by far the most sensitive magnetic-field detectors available, with resolutions
of femtoTesla per (Hz)”? and near-infinite bandwidth (which could, in principle, allow concurrent
observation of electron-spin resonance (ESR) and NMR). A SQUID, or superconducting
guantum interference device, comprises a superconducting interferometric ring with either one
(“RF”) or two (“DC”) Josephson junctions along the circumference. By considering the quantum-
mechanical interference of e ectronic supercurrents circling the loop, it can be seen that the output
of aSQUID isavoltage V(F) which depends on the total magnetic flux F through the loop, and
that Visperiodicin F, with period equa to the magnetic flux quantum F. © p7/e. Sincea
SQUID can therefore measure DC magnetic fields, it can pick up the slowly-relaxing M,
component in an NMR experiment — something a coil cannot do. Typically, the noisein a SQUID
is due to the Johnson noise of the ohmic current component flowing through the Josephson
junctions, as well as the 1/f noises of defect trapping and flux vortex hopping; it has been
estimated that SQUIDs offer SNR superior to that of a conventional NMR spectrometer at fields
lower than 0.64 T (Gre98). The comprehensive review paper (Gred8) by Greenberg quantifies the
reasoning behind these assertions, as well as some of the details of practica SQUID
magnetometers. We avoid SQUIDs in the current design because they seem to violate the spirit of
atabletop, low-maintenance NMR spectrometer, and because there are enormous technical
problems inherent in the implementation of a SQUID-based NMR spectrometer.

Even something as ssimple as a coil can be suprisingly subtle. For example, one can construct a
coil setup which consists of two subcoilsin series, one winding clockwise and the other winding
counterclockwise, with the sample wholly contained in one of the subcoils, so that when a
transmitter broadcasts energy to the spins, any residua excitation energy has less of an effect on
the spins' output signal. Also, half the power emitted by a transmitting coil is completely wasted
(sinceit’s at twice the Larmor frequency, in the spin’s rotating frame) — one can ameliorate this
waste by using slotted quadrature coils which cleverly cance this component of the
radiofrequency radiation (Che89).

The analog signal chain, which was hurriedly described in section V. 1.ii., isdepicted in Figure 4.
The implementation of the mixing and amplification chain, as well as the PIN diode switches and
the machined structural parts, isdue to Y ael Maguire (Mag). We will go into the hardware in
some detail in this section. The Pentium PC, running QOS, synthesizes waveforms and sends the
digital data representing the voltages to the HPE1445 in avery long ASCII string. Since the
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HPE1445 clock runs at 40 MHz, it isredlisticaly only useful for synthesizing frequencies below
10 MHz (which puts us safely within the Nyquist limit for digital synthesis). Therefore QOS
synthesizes waveforms for **C and 'H at the rather arbitrary frequencies of 2 MHz and 7 MHz,
respectively, and the HPE1445 must broadcast the sum of the two signals, since it has only one
output channel. Asit turns out, having only one arbitrary waveform generator output channel
causes most of the hardware headaches that we encountered throughout the design and
construction of the Mark | quantum computer, and this motivates our use of a drastically different
and simpler design for the Mark 11 quantum computer, whose design is given in the next section.

The HPE1445 output is first run through a DS-113 splitter-combiner (M/A-COM, 0.25 dB
insertion loss, 400 kHz-400 MHz two way power divider), which divides the signal into two equal
parts, one of which becomes the **C channel, and the other of which becomes the *H channel. The
3C channel is run through a bandpass filter at 2 MHz, andthe *H channel is run through a
bandpass filter at 7 MHz, thus selecting the appropriate signals for each channel. The outputs of
two continuous-wave generators (in our case aHP8647 running at 12.705 MHz, providing an
intermediate frequency (IF) for the **C channdl, and a HP83712 running at 49.576 MHz providing
an |F for the 'H channel) are mixed into the appropriate channels using two SRA-3MH mixers
(Mini-Circuits, 4.77 dB conversion loss, 25 kHz-200 MHz, +9 dBm output). Each channel then is
followed by a bandpass filter at the appropriate Larmor frequency — 10.7 MHz for **C and 42.6
MHz for *H — thus removing the useless mixing sidebands.

After passing through the bandpass filters, the signals are then ready for to be broadcast to the
spins viathe coils. Before entering the amplifier stage, each channel’s signal passes through a
digitaly tunable RF2420 attenuator (RF Micro-Devices, DC-950 MHz, +17 dBm input), which
can be set from 0 to 44 dB of attenuation according to the value of a 5-bit digital word. Each
signd finally passes through an amplifier, a PIN diode switch, and into the coil surrounding the
sample of interest.

The amplifiers include a 75-watt Amplifier Research RF amplifier, for the relatively insensitive **C
spins, and a 4-watt Mini-Circuits amplifier, for the relatively strongly-responding *H spins. The
PIN diode switch is necessary to switch the coil from the transmitter chain to the receiver chain:
both the transmitter and the receiver need to be connected to the coil at certain times during the
experiment, but if they were ever connected at the same time, the incredible power coming out of
the transmit chain would destroy the sensitive receiver front-end. Most solid-state 1 ns GaAs
absorptive switches can switch at most a few watts, but PIN diodes can switch hundreds of watts
with similarly fast switching times. A PIN (positive intrinsic negative) diode has the special
property that to microwave frequencies, it looks like a variable resistor. The resistance is
controlled by a DC current flowing through the PIN diode: for example, when a biasing controller
changes the DC current through the HPND-4165 PIN diode from 1 mA to 1 mA, the resistance
of the PIN diode to RF energy changes from 2000 Wto 10 W (HPRF). The PIN diode switch
design is detailed in Hewlett-Packard RF and Microwave Application Note 1048, with additional
detailsin AP922 and AP1049 (HPRF). The biasing currents for the PIN diodes are provided by
Impellimax PIN diode drivers, which are described in (Imp).
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The receive chain begins with its own set of PIN diode switches, connected to the coils for each
channel, **C and *H. The front end amplifier for the receive chain is the UTC-101 (Avantek, 27.5
dB gain, 1.7 dB noise figure, 5-120 MHz, +16 dBm output), an extraordinarily low-noise (and
therefore high-expense) broadband amplifier. Each channel then enters a bandpass filter at the
appropriate Larmor frequency, and then goes through two amplification stages and a downmixing
stage (viathe RF2612, a monoalithic integrated IF amplifier/mixer). The signal then passes through
alow-noise op-amp (the CLC425, by National Semiconductor), which frames the signal for the
expected HPE1437 digitizing ranges. Finaly, the two channels are combines using another DS-
113 gplitter-combiner, since we have only one analog-to-digital converter.

We used a Hitachi SH7032 microcontroller (as part of the SH-1 Low-Cost Evauation Board,
available from Hitachi) for multifarious digital control purposes: triggering the HPE1445
waveform generation process and the HPE1437 acquition process, adjusting the 5-bit digital
attenuation settings, switching the continuous-wave generators from transmit-chain mixersto
receive-chain mixers during the different parts of the experiment, and switching the coil from the
transmit chain to the receive chain viathe PIN diode switches. At the beginning of each QOS run,
the PC would provide the Hitachi SH-1 with timing and state data for the various digital control
elements, and then turn control over to the microcontroller, which would run the experiment until
the data was ready to be read in to QOS at the end of the experiment. Code for salient parts of
QOS s provided in Appendix E. A schematic of the Mark | quantum computer follows.
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Figure4: Mark | quantum computer block-schematic
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Below is a photograph which gives a general overview of the quantum computer: visibleisthe
electromagnet, the two CW generators, the controlling PC, and much of our test equipment. Not
visible isthe VXI Mainframe with the two HP modules, the custom-built RF hardware (Mag), the
power electronics (including a cooling-water-interlocked 5 kilowatt power supply from Danfysik),
and the chilled-water cooling pumps (from Bay Voltex and MagneTek).

e

Figure5: A photograph of the Mark | quantum computer

The magnet is a GMW associates custom-built electromagnet (model 3473-70), weighing 610 kg
and dissipating 70 A across 60 V when running at a magnetic field strength of 2 T (and being
cooled with 6 liters/minute of chilled 18°C water). At afield strength of 0.5 T, it has a magnetic
field homogeneity of roughly one part per 100,000 across a 3 mm sample tube. Thisis not good
enough for quantum compuation, but alows some interesting NMR experiments to be performed.
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Preliminary data suggests that the entire system functions very well: the signal-to-noise ratio of
the 'H (after applying asingle p/2 pulse) is over 6 million, as can be seen from the following
diagram (taken from a sample Visual Basic application that was modified to interact with QOS to
assist with data acquisition and display). Some preliminary results suggest that the system can tell
apart solutions of water with varying concentrations of glucose, and is sensitive enough to see the
Jcoupling in **CHCls.
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Figure 6: The signal-to-noiseratio for *H

One can perform state tomography to examine the state created by a certain sequence of pulsesin
an NMR experiment. By applying different pulse programs after completing the execution of a
guantum computation, one can tip each element of the density matrix into an observable
transverse magnetization signal, and then calculate the areas under the real and imaginary
components of the peaks in the resultant frequency spectra. These amplitudes and phases can then
be normalized in order to find the populations of the density matrix. With standard spectrometer
technology, one can perform state tomography with ~5% error (Chu98a). We give code for
performing state tomography in the context of Grover’s agorithm in Appendix B. We have not
yet tried to perform state tomography on our quantum computer, because the magnetic field
homogeneity is not yet good enough for performing a full quantum computation. The next
important step in improving the NMR spectrometer is the design of a shimming system. We
discuss this very important issue in the next section.

V1.1.ii. Shimming
The *ancient and honorable art of shimming,” as one expert practitioner calsit (Chm90), is
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essential for quantum computation due to the fact that nonidealities in the magnetic field can
greatly reduce the lifetime of quantum coherences and blur features in the NMR spectrum.
Shimming, or the modification of the magnetic field by precisely controlled electromagnets (or, in
some cases, permanent magnets, mu-metal, or chunks of stedl), can increase the homogeneity of
magnets from one part in amillion to one part in a billion, a 3-order-of-magnitude improvement
over what precise machining and construction of a single magnet can provide.

The signal emitted by an NMR sample is proportiona to the integral, over the sample volume, of
the transverse magnetization density ny:

M, = @ W, (X)d*x

If w.(X) isn't uniform, then the observed signal will be a sum of the signals of many different
isochromats, or collections of spins at the same frequency. A broadening of awaveform in the
frequency-domain is associated with a shrinking of the length of the signal in the time-domain,
since as the signal components at various frequencies dephase and become random with respect to
one another, their sum tends towards zero. As discussed in (Lloy), thisisa T, effect, caused by
relative dephasing of an ensemble of spins, as the mutual information between the spins and the
magnetic field increases, and the ensemble of spins acquires entropy. Since

wi(%) =g |B(x),
this means that maintaining a homogeneous magnetic field is of paramount importance. In
particular, in order for a quantum computation to be possible, the dephasing time T, must be at

least as long as the computation time — so in order to even see J-coupling, we must insure that T,
ison the order of 1/J.

In aregion without currents, a magnetic field obeys Laplace's equation, N?B ~ N?B =0, which
can be solved in terms of spherical harmonics. (We ignore the x- and y-components of the
magnetic field, and consider only the z-component, which we refer to as B, in the following
discussion.) Spherical harmonics are enumerated by indices (I, m), which are called the order and
the degree respectively (just like the quantum numbers of the electron in a hydrogen atom). For m
= 0, the zonal harmonics, one has cylindrical symmetry (i.e., the polar coordinate f isirrelevant),
which is appropriate for many magnets, where the dominant inhomogeneity is due to cylindrical
end effects. The equation for B is then of the form

B(r,a) =@ C,(r/a)"P,(cosq)
where P, isthe n" Legendre polynomial, and C, and a are parameters (Jack). (Setting q to zero
gives all the C, as coefficients of an expansion in the variable z, sincez=r cosq =r cos(0) =r.

Thisisauseful fact, aswe will shortly see.) In general, the complete solution for al (I, m)
(including the tesseral terms, for which m* 0) is

B=8 & Cun(r /@) Ry(cosa) cos(m(t -y )

1=0 m=0
where Py, is called the associated Legendre polynomial, and the last f -dependent cosine term
sinusoidally modulates the magnetic field as one traces a circle in the xy-plane (Chm90). All the
harmonics except for | = m = 0 contribute to the inhomogeneities, since a homogeneous field, by
definition, has a magnitude which does not depend on any coordinates. Since the higher-order
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terms rapidly decrease in amplitude (for most solutions of Laplace' s equation), adjusting afew
terms should suffice to remove most inhomogeneities: thisis the motivation for including between
10 and 30 shim coils with every modern NMR spectrometer. The value of the transverse angle y i
complicates matters; this spherical harmonic phase can be interpreted as the orientation of the
magnetic field due to the (I, m)™ shim cail; in redlity it is often specified using the ratio of currents
flowing through two quadrature shim coils—that is, identical (I, m) coils, with one rotated 90°
about the z axis with respect to the other; the ratio of currentsin the two coils then sets the
transverse angle, just as a sinusoid with arbitary phase can be synthesized by adding together a
proper combination of sines and cosines.

To make this picture concrete: one can setup a gradient with the (1, 0) shim, also known as the z
shim because in Cartesian coordinates the magnetic field is smply proportiona to the z-axis
coordinate (as discussed above). Since the magnetic field changes linearly with distance, the
Larmor frequency changes linearly with z-coordinate as well; this allows ssimple imaging to be
performed, since by specifying the currents flowing through the (1, 0), (1, 1), and (1, 1') shims,
one specifies the Larmor frequency of the spins at alocation given by z, x, and y respectively.
Listening at a certain frequency is therefore equivaent to interrogating the spinsin a certain area
of space. Thisideais the basis of MRI. (The (1, 1') shimisjust like the (1, 1) shim but with a 90°
rotation in the xy plane; together these two coils provide a quadrature representation of thel = 1,
m = 1 spherical harmonic component of the magnetic field.)

To experimentally detect which spherical harmonics of a magnet are present, one can probe it
with atiny NMR sample at different values of the coordinates, and watch for changesin the
Larmor frequency of the spin. This produces a map of the magnetic field, but this techniqueis
very difficult, due to the extreme mechanical sensitivity needed and the time required to scan the
entire volume with sufficient precision. A smpler but more technical way is to image the magnetic
fields by using the lineshapes of the spins of interest in the NMR spectrometer.

Spherical harmonics are orthogonal, so in theory one should be able to tune each coil once and be
done with the business; in actuality they are not precisely orthogonal, and oneis required to
perform a Tower-of-Hanoi like algorithm, where one must adjust all lower-order-shims dightly
whenever a particular shim current is changed. For a spectrometer with 10 shim coils, for
example, one must conduct a search over a 10-dimensiona space of current variables, trying to
maximize the height and narrowness of the peaks in the spectrum. One can aso try and minimize
the presence of unexpected beatsin an FID; avariety of extracted features can be used to make
shimming automatic. Since there are nonidealities in the interactions between cails, thisisa
difficult problem, even for a computer, due to the number of possible local extremain such ahigh-
dimensiona space. In fact, asmall displacement of the sample from the center of the shim coils
can introduce significant coupling terms between shim coils of different order, due to the fact that
the NMR magnetization signal and the shim magnetic field are trandated relative to one another,
which somewhat obliterates the orthogonality of the spherica harmonics: a trandation which
seemstrivia in Cartesian coordinates can result in very complicated changes in the spherical
harmonics.
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We summarize some human-appropriate strategies for shimming in (Shimnote). Shimming tessera
harmonics is difficult to accomplish without spinning the sample (Shimnote) or using field
gradients, which pick out geometrically separated components of the sample (Chi). We don’t
want to spin our sample, and at this point we don’t want to construct the hardware necessary to
create gradients, so our design must be simpler and more powerful — and above al, more
automated. Also, if we discard with the requirement that our shim coils be humanly tunable, and
instead use a nonlinear search strategy to solve for the shim currents, then the nonlinearities
inherent in nonorthogonal coils won’t matter as much.

We propose aradical idea— to use planar coils, and to do the inversion completely in software,
using nonlinear search techniques. Planar coils are extremely easy to fabricate, as opposed to the
expensive machining and adjustment required to create spherical harmonic shim cails.

Schematics for some prototype planar coils are shown below. Their fabrication processis

described in Appendix G, since planar coils are useful for many things (making tag readers for
smart tabletops, making flat antennas or inductors for various purposes, etc.).
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Figure 7: Prototype planar coilsfor shimming

The field created at the point i = (r, g, f) by aplanar ring of radius a centered at the origin of the
Xy plane, carrying a current |, is described by the magnetic vector potential (Jack)

m 4la (2- k?)K(K) - 2E(K)
A(r)=— 5
4 \Ja® +r? +2arsin(q) k

dar sin(q)
a®+r?+2arsn(q)
and where K(K) = F(p/2, k) and E(k) = E(p/2, k) are the eliptic integrals defined by
b

wherek = \/
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b
E(b,k) = ¢/1- ksinq
0

Fast methods for numerically calculating these integrals exist (Pre), which suggests that it might
be possible to perform a search on a forward planar-coil model to solve for the currents which
correct for a certain inhomogeneous magnetic field. Given N planar coils of radius a centered at
Cartesian coordinates C, in space, each expressing the magnetic vector potential A(%- C ) atthe
point X = (r sin(g)cos(f ), r an(q)sin(f), r cos(q)), we can derive the tota field I:IS dueto al the
shim coils, using

H,=N"§ Ax-¢c).

where the components of the vector A are written in Cartesian coordinates for the purposes of
computing this sum. The effect on the NMR signal, as expressed in the beginning of this section,

isvery complicated: let us denote the net magnetic field due to the shim coils as I:IS , and the bias

field as the sum of the constant vector H,, and an error field H . For a sample of spin-1/2

particles of density r in asample volume V, and neglecting T»/T; decay and other higher-order

effects, the magnetization signal picked up by the cail is proportiona to

s(t) = ¢pi°xr g7h|H. + Ho + g
v aKT

Thisisavery complicated nonlinear functional of an aready complicated nonlinear function, and a
completely anaytical method of solution would seem to be impossible. It is not clear how to find
the error field, much less how to create a suitable distribution of shimming currents so as to cancel
it.

cos(g|H , +H, + H,Jt).

Fortunately there is away to solve the shimming problem with no further analytical work: just use
nonlinear search methods. Given that an inhomogeneous field blurs the sharpness of a peak in the
1-D NMR spectrum, we can try to vary the shim currentsin a given set of coils until the peak is as
sharp as possible. This method is described briefly in section V.1.iii., and the implementation is
discussed at some length in Appendix F. At this point, we merely describe the shim hardware.

The goal of any active shimming hardware is to specify, with great accuracy, the currents flowing
through a set of small electromagnets. Since our large electromagnet is capable of creatingal T
magnetic field with part-per-100,000 homogeneity, we need to be able to create small magnetic
fields on the order of 0.1 Gauss, and in order to get part-per-billion homogeneity, the error in
these small fields must be on the order of 10” Gauss, roughly 10,000 times smaller than the
Earth’s magnetic field. We attempt to solve this demanding problem by using for each coil a 16-
bit DAC, the AD420, capable of outputting between 0 and 20 mA of current, so that the least
significant bit corresponds to 305 nA of current. A SPDT switch made of two electromechanical
relaysis used to select the polarity of the current flowing through each coil. For a 25-turn coil of
diameter 5 cm, this creates a magnetic field with magnitude ~ 0.1 G (1 cm away from the coil
center), so that the least significant bit corresponding to about 10° G. Thus the chosen hardware
is (at least in theory) capable of creating the necessary fields. The actual performance depends on
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many things, including the stability of the shimming system’s power supply, the susceptibility of
the electronics to external noise, and unavoidable noise imposed by the laws of thermodynamics.

The final shim board, designed to be digitally controlled from a single PIC16F84 microcontroller
for ease of use, is shown in Figure 8, at roughly half-scale. The PIC controls all 32 relaysusing a
serial-to-parallel shift register with latching outputs, the 74F673A (the narrow 24-pin DIP on the
left side of the board, made by Fairchild Semiconductor). The PIC sends the 16-bit word
describing the output current to all 16 AD420s, each of which reads in the word through a serial-
to-parallel shift register — but only one AD420, selected viathe MM 74HC4514 4-to-16 line
demultiplexer (the wide 24-pin DIP in the lower |eft corner of the board, also made by Fairchild),
receives a rising-edge pulse which latches the word into the DAC. This permits full control of the
entire board using a single PIC microcontroller, and vastly simplifies programming, layout, and
assembly costs. The PIC code which performs the addressing and control is given in Appendix

T % commy x“'
r ‘“"—"ly"|L_ 11 : E X,
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Figure 8: The shim board

At this stage in development, the shim board has been verified to operate, but no actua
experiments have been completed. The software methods described in V. 1.iii. have been shown to
successfully shim orthogonal coils by (Mag) in collaboration with Issac Chuang at IBM Almaden;
it remains to be seen how successful these computational methods are in the shimming of
nonorthogonal coils.
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VI.2. Hardware Overview, Mark |1

VI1.2.i. Testbed for the FPGA: the nanoTag reader

To minimize the necessary amount of control logic, | chose to implement the second-generation
NMR spectrometer control system directly in digital gates. Using field-programmable gate arrays
allows extremely precise alocation of digital resources down to the gate level, offers inherent
parallelism and hundreds of pins of 1/0 for interaction with the outside world, lets the user
precisaly time synchronous events down to fractions of a nanosecond, is much cheaper than
designing an ASIC (if needed, one can add a serial EEPROM containing configuration
information to the FPGA, alowing it to bootstrap itself, or one can even take a wafer with a gate
array imprinted on it, and smply perform a metallization step which indicates the appropriate
connectivity), and allows many levels of description appropriate to the different parts of a
complicated system.

An FPGA is achip with combinatorial logic, lookup tables, wires, and flipflopsin a 2-dimensiona
array. Each element has some control structure associated with it, telling that element how it isto
be connected to the rest of the system, what its default states are, and so on. Some elements can
be designated as local RAM, others can be treated as input pins, and still others can be combined
into registers, accumulators, multiplexers, and other standard logical elements. When the FPGA is
turned on, one must load a configuration string into it, in order to program the gates.

FPGAs can be programmed in many different languages, including the industry-standard ones for
specifying digital circuitry, Verilog (Xil) (Arn) and VHDL (Arm). These hardware description
languages alow the same logic (down to the register, wire, and gate level) to be represented
independently of the underlying FPGA hardware (with its combinatorial logic blocks, ratsnests,
longlines, pinwires, and other odd constructs). (AMS-HDL, which stands for analog and mixed
signa hardware description language, will hopefully soon allow this power to be extended to
analog circuitry aswell (Sen).) | can write a DDS (direct digital synthesis) module in Verilog, and
synthesize it for the Xilinx XC4010XL, PC84 package, speed grade —03, and then take the same
Verilog code and implement it on a different brand of FPGA, using the synthesis tools for that
chip. Many FPGAs also have schematic and finite-state-machine tools that allow logic to be
designed in an intuitive way; for example, one might want to specify low-level pipelined
mathematics hardware using register-transfer languages (RTL) and functiona forms, while using
the finite-state-machine tools for designing the computer’s microcontroller.

A swept tag reader must display some of the same functionality as an NMR spectrometer. The
idea behind a swept tag reader is that certain high-Q structures can absorb a significant amount of
energy from atransmitter, and either thermally dissipate it or reradiate it isotropically. The
transmitter (or equivalently, an adjacent receiver antenna) sees this effect as loading. If one
sweeps through arange of frequencies, and notes what frequencies show significant loading, then
one can identify the tagsin the area (Tag). Tagged objects can thus be observed and/or tracked,
and no power or computationa structure on the tag itself is actually required — al of the
sophisticated hardware is located on the tag reader.

| designed a tag reader using the XESS Xilinx Evaluation Board (Xes), which comprises a 950-
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logic cell, 10,000-gate Xilinx X C4010XL-PC84-03 FPGA, a 12-MHz clock, an Intel 8031
microcontroller, and some onboard RAM. Only the FPGA was used for this project; the
microcontroller and RAM were disabled for simplicity. Eight pins of the FPGA were linked to the
digita inputs of an 8-bit DAC, the AD7228, and 12 pins of the FPGA were linked to the digital
outputs of a 12-bit ADC, the AD1671 (Ana). The unipolar DAC output was filtered with a 3-pole
Butterworth filter with a cutoff frequency of 100 kHz, then converted to an amplified bipolar
signal (using AD712/AD713 op-amps). This signal was amplified to 0.5 W using a crossover-
distortion compensated push-pull amplifier (Hor) comprising two power transistors (the Motorola
TIP31 and TIP32), and then routed into a hand-wound transmitter coil (40 nH) made out of
copper wire. A receiver coil (converted from an old shim board!) was placed just under the
transmitter coil, and the output of this coil was amplified to fit the + 5V frame imposed by the
input of the AD1671. Pictures of this assembly (no schematic or PCB layout was created) can be
found below. The XESS board provided connectors linking the FPGA outputs to a VGA monitor
and to a 7-segment LED display, as well asaparallel port connector for downloading the FPGA
configuration bits from a PC.

Hereis a picture of the nanoTag reader, seen from above. The red finned pieces are heat sinks for
the power transistors, and the yellow rectangle is the FR4 epoxy supporting the receiver coil
(which used to be ashim coil, see V1.1.ii.)

Figure9: The nanoTag reader

| wrote Verilog code for adirect-digital synthesis (DDS) module, and implemented it for the
Xilinx FPGA on the XESS board. (Asit turns out, the Xilinx Core Generator tool, combined with
the Xilinx Logiblox tool and the Xilinx Capture Schematic tool (Xil) reduce this code-writing
effort to afew trivial mouse clicks.) A DDS contains four simple digital constructs: a clock, a
frequency word, a phase accumulator, and an output amplitude (see the datasheet for the AD9850
(Ana) for more detail). At each clock tick, the phase accumulator is incremented by the value of
the frequency word, and the top few bits of the phase accumulator are then converted to a
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sinusoidal output amplitude via alookup table. The result is a sinusoidal output with a precisely
tunable output frequency, appropriate for performing a network analyzer task like sweeping
through frequencies, or for performing a communication task like FSK modulation.

Verilog code is structurally like C, with functions, modules, and loops that are executed when
certain registers (like the CLOCK) change (Xil). In Verilog code, a DDS might look something
like the following (complete functional code for the nanoTag reader is given in Appendix C):

Given an externa clock, divide it down to various multiples for convenience.
al ways begin

@ posedge CLCI:K)

CLOCK_DI V65536 = 0,

epe
288
oo
SS

CLOCK_DI V16 =

CLOCK_| NTERNAL _ COUNTER = 0;
forever begi n

@ posedge CLOCK)

CLOCK_| NTERNAL _ COJNTER = CLOCK_| NTERNAL_COUNTER + 1,
CLOCK_DI V65536 = CLOCK_| NTERNAL_COUNTER] 15] ;

CLOCK_DI V64 = CLOCK_| NTERNAL_COUNTER] 5] ;

CLOCK Dl V32 = CLOCK | NTERNAL _COUNTER] 4] ;
CLOCK_DI V16 = CLOCK_I NTERNAL _COUNTER] 3] ;
end
end

Latch the current output amplitude into an external DAC.
al ways begin
forever begin
@ posedge CLOCK_ DI V32);
DAC_LATCH = 0;
@ posedge CLOCK_ DI V32);
DAC_LATCH = 1,
end
end

If sweeping, increment the frequency word to increase the frequency.
al ways begin
@ posedge CLOCK_ DI V65536)
freg_freq_word = 32' h70A07F;
freg_word = 32' h15D867C;
forever begin
@ posedge CLOCK_ DI V65536)
freg_word = freq_word + freq_freq_word;
end
end

Increment the phase by the frequency word, and look up the corresponding sinewave amplitude.
al ways begin
@ posedge CLOCK_ DI V64)
phas_accum = 32' hO;
DACword = 8'd127;
forever begin
@ posedge CLOCK_ DI V64)
phas_accum = phas_accum + freq_word;
case (phas_ accurr{ 31:24])

8' h0: DACword = 8' h7f;

8' hl: DACword = 8' h82;

8' h2: DACword = 8' h85;
8' h3: DACword = 8' h88;
8' h4: DACword = 8' h8b;
8' hf b: DACword = 8' h6f;
8' hf c: DACword = 8' h72;
8' hf d: DACword = 8' h75;
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8' hf e: DACwor d
8' hf f : DACwor d
endcase
end
end

8' h78
8' h7b;

Note the key features: each al ways block runsin parallel with al the others, each @posedge
cLock_x) waits until that particular clock has arising edge, and different blocks can run under
different clocks to allow very complicated synchronous events to occur. This architecture is very
simple, with no overarching finite state machine control structure or microcontroller.

The nanoTag reader exhibited some loading behavior when a 53 kHz magnetostrictive tag was
placed inside the cail, but there was insufficient room on the FPGA for performing the frequency-
space localization. Some simple ways to increase the amount of computational power include:
» placing the phase-to-amplitude lookup table in externa DRAM, SRAM, or
ROM/EEPROM
» storing only one quadrant of the sinewave, from g = 0 to p/2, and using alittle bit of
logic to compute amplitudes in the other three quadrants
» doing some of the computation in ageneral purpose microcontroller, DSP, or
computer attached to the FPGA, relegating the FPGA mainly to the realms of fast
digita control, interfacing, and reactive performance.
Aswe will seein the next section, all three of these ideas |ook very promising and very powerful.

V1.2.i. A reconfigur able softwar e radio portable NMR spectrometer: nanoNMR

We combine these digital design ideas with an analog design inspired by that of the Mark |
spectrometer, resulting in the “nanoNMR” spectrometer.

Vi.2.ii.a. High-speed digital and analog design

High-speed digital and analog design are both mysterious fields, due to their great complexity.
Analyzing spatially-distributed circuitry in indefinite surroundings is an intractable task, and the
wisdom of the good high-speed engineer is hidden in cryptic rules-of-thumb, which require
intuition and time to understand, but which usually make sense in hindsight. These rules-of-thumb
connect the straightforward world of macro-models and transfer functions with the nonideal
world of noisy power supplies, crosstalk between different lines on a board, 1/f noise from the
environment, coupling between signals on different chips, temperature-dependent parameters, and
incalculable but estimable parasitic resistances, capacitances, and inductances. For example, it
usually makes sense to insert afew tunable elements in each stage of the design, for the practical
reason that optimal behavior may not be exactly forecastable, given the tolerances of the parts
used. Some of the rules which are worth keeping in mind are summarized in aworthy series of
application notes by Analog Devices (AN342) (AN202).

A block-diagram schematic for the nanoNMR spectrometer is shown below. We briefly describe
the four boards which comprise the nanoNMR system.

BrightStar Board (Bri)

Thisisacommercially available board which contains a M otorola PowerPC MPC823 chip,
running a specia version of Linux which fitsinto 2 MB of Intel BootBlock Flash RAM. The
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board comes with 16 MB of DRAM, has a 10BaseT port and multiple ports for serial, video, and
USB data, and most importantly, contains a 16,000-gate Altera EPF6016 FPGA with 82 pins of
1/0O. Also on board is 128KB of SRAM which is mapped to certain pins of the FPGA.

Auxiliary board

The auxiliary board contains a 125 MHz oscillator which serves as the primary clock for the
FPGA. The FPGA synthesizes digital representations of waveforms at the Larmor frequency of
the spin of interest, aswell as at the Larmor frequency minus 455 kHz (for the receiver board).

Transmitter board

The transmitter board receives digital data from the FPGA on the BrightStar board, synthesizes it
into an analog waveform at the Larmor frequency using a 125 MHz 14-bit DAC (the AD9754),
which then passes through a series of amplification and filtering stages. The final moduleisa
CA2832C 1 watt power amplifier, which fits directly on the board; the output then passes through
aPIN diode switch into a cail, just asin the Mark | qguantum computer case.

Receiver board

The receiver board consists of the same low-noise front end as the Mark | quantum computer, but
terminated with an AD9260 (16-bit, 2.5 MHZz) ADC. We mix down using a digitally synthesized
signal at the Larmor frequency minus 455 kHz, so that the final digitized signal is expected at a
center frequency of 455 kHz. This avoids the 1/f noise associated with mixing down to baseband,
while staying comfortably below the Nyquist limit for digital sampling.

Figur e 10 shows the interrel ations between these various modules, for a clearer picture of their
functions.
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Figure 10: the nanoNM R block-schematic

Asof May 7, 1999, only the transmitter board has been laid out in PCB form; the schematics and

PCB photomasks for the transmitter board are included in Appendix C.
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“There is afine line between prognostication and lying...”
-E

VII. Conclusion
...and | would hesitate to do either, especially when writing something for an ostensible posterity.

Certainly the construction of a portable NMR spectrometer is a useful goal. And | would hazard
to guess that quantum computation is bound to play an important role in many futuristic
technologies.

| hope that this document has proven enlightening to the reader.
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Appendix A: High-Level Compilation

Thisis Matlab code which compiles the various modules of Preskill code (Pre96), down to
elementary logical gates. Since we stop the compilation at the CNOT stage, these modules are
therefore appropriate for NMR quantum computing as well. An exception is the Fourier
Transform module, which uses the CV and H gates, where CV isgivenin 11.2.

C'NOT:

i ndi ces, outdice, naxorder, tenp)
CLLLLL

%cknot.m

% apply Barenco's identity ...m],x = Fn],x (...mM,FJFn],x (...M,F
% | npl ements control | edknot

% Edwar d Boyden, e@redia.mt.edu

% | NPUT

% indices colum vector of indices on which to operate
% outdi ce out put i ndex

9 CL: CLLL

L = lengt h(| ndi ces), % contract L = orde

h ( 1

r
he k is greater than all owed

—h
——

nargi n>3) & (maxorder<order) ) %
if ( (maxorder--l) & (order==2)
program = sprintf (' CKNOT%, %', sprintf(' %', indices), outdice);
el se %just do ordinary deconp
program = cknot (L-1, indices(1:(L-1)), tenp, maxorder, outdice);
i f( (maxorder==1)
prog2 = cknot (2, [tenp indices(L)], outdice);

el se
prog2 = cknot (2, [tenp indices(L)], outdice);
end
program = str2mat (program prog2, program prog2);
end
el se % maxor der >= or der
if (1==L) % reached a CNOT
program = cnot (i ndi ces(1), outdice);
el se
program = sprintf (' CKNOT%, %', sprintf(' %', indices), outdice);
end;
end;
CNOT:

% cknot . m
% | npl ements control | edknot
% Edwar d Boyden, e@redia.mt.edu

% | NPUT
% indices colum vector of indices on which to operate
% outdice out put i ndex

%We do not corrplle the CNOT further because that's a job for the lower-level stuff.
UL LLLLLLLL

%ecall C|; j :UJ"( 1) \fj

U
Y%program = sprintf('Unv %', j);
%pr ogram = str2nat (program sprlntf( Vod %, i, j));
%rogram = str2nmat (program sprintf('U %' ]));
program = sprintf('CNOT %, %', i, j);
Not:

% not . m

% Edwar d Boyden, e@redia.mt.edu
program = sprintf('NOT %', i);

Fourier Transform:




% ft.m

% | npl ements fourier transform
% Edwar d Boyden, e@redia.mt.edu
% | NPUT

% indices colum vector of indices on which to operate

L = l engt h(i ndi ces);

program- sprintf('# Fourier transformon qubits %', sprintf('% ', indices) );
for i = L -1:1,

for j = L:-1:(i+1),

program:sterat(program sprintf('CV % % %', indices(i), indices(j), pi/27(j-i)));
end;
program = str2mat (program sprintf('H %', indices(i)));

end;

Full Adder:

functlon progra = fa(cbit, inputbit, carrybit, outputhbit)

BBNABBBRNELRBBBNLRB88,

% EdV\ard Boyden, e@redia.mt.edu

%add cblt to the value in the semantic inputindex to get the senmantic outputindex
8 BRNBBBBNELBBBRNELB88,

if (cblt) %addlngalblt

program = cnot (carrybit, outputbit);

program = str2mat (program nnot(carrybit));

program = str2mat (program cknot(2, [inputbit carrybit], outputbit));

program = str2mat (program cnot(inputbit, carrybit));

el se % adding a 0 bit

program = cknot (2, [inputbit carrybit], outputbit);
program = str2mat (program cnot(inputbit, carrybit));
end;

Multiplexed Full Adder:

function program = nuxfa(cbitifO, chitifl, selindex, inputbit, carrybit, outputbit)

% Edwar d Boyden, e@redia.mt.edu

% if selindex is 1, add cbltlfl else add cbitif0O, to inputbhit with carrybit to get outputhit.

if ( (cbitifo ==10) & (cbltlfl O)) % both cases are 0, so selindex doesn't matter
program = fa(0, inputhit, carrybit, outputbit);

elseif ( (cbitifOoO == 1) & (chitifl==1))

program = fa(l, inputhit, carrybit, outputbit);

elseif ( (chbitifO == 0) & (chitifl==1)) %-->add 0 or 1

program = cknot (2, [selindex carrybit], outputbit);
program = str2mat (program cnot(selindex, carrybit));
program = str2mat (program cknot (2, [inputbit, carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));
elseif ( (cbitifO == 1) & (chitifl==0))
program = nnot (sel i ndex) ;
program = str2mat (program cknot (2, [selindex carrybit], outputbit));
program = str2mat (program cnot(selindex, carrybit));
program = str2mat (program cknot(2,[inputbit, carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));
program = str2mat (program nnot(selindex));
end;

Multiplexed Full Adder with an array of Enable Bits:

function program = nuxfal (cbitifO, chitifl, enabi ndex, selindex, inputbit, carrybit, outputbit)
% Edwar d Boyden, e@redia.mt.edu

%if enabindex is 1, act |ike nuxfa, else add zero.

% Uses cknots no higher than two greater than the nunber of qubits in enabindex.

L

engt h( enabi ndex)

if ( (cbitifO == 0) & (chitifl==0)) %both cases are 0, so selindex doesn't matter
program = cknot (2, [inputbit carrybit], outputbit);

program = str2mat (program cnot(inputbit, carrybit));

elseif ( (cbitifoO == 1) & (chitifl==1)) % 1

program = cknot (L+1, [enabindex carrybit], outputbit);

program = str2mat (program cknot (L, enabindex, carrybit));
program = str2mat (program cknot(2, [inputbit carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));
elseif ( (chitifO == 0) & (chitifl==1)) %-->add 0 or 1
program = cknot (L+2, [enabindex selindex carrybit], outputbit);
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program = str2mat (program cknot(L+1, [enabindex selindex], carrybit));
program = str2mat (program cknot (2, [inputbit, carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));

elseif ( (cbitifO == 1) & (chitifl==0))
program = nnot (sel i ndex) ;
program = str2mat (program cknot (L+2, [enabindex selindex carrybit], outputbit));
program = str2mat (program cknot(L+1, [enabi ndex selindex], carrybit));
program = str2mat (program cknot(2,[inputbit, carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));
program = str2mat (program nnot(selindex));

end;

Multiplexed Full Adder with an array of Enable Bits, Compiling down to C:NOTs or lower:
function program = nuxfall (cbitifO, cbitifl, enabi ndex, selindex, inputbit, carrybit, outputbit)
% Edwar d Boyden, e@redia.mt.edu

%if enabindex is 1, act |ike nuxfa, else add zero.

% Uses cknots no higher than two. WHILE M NI M ZI NG SPACE.

% | dentity:

% C...m],x =CFn,xd...mM,FCFn],x d...mM,F

WERBBBANELBBBNNEBBBNEA 8 CLLLL

L = | engt h( enabi ndex) ;

if ( (cbitifO ==0) & (chitifl==0)) % both cases are 0, so selindex doesn't matter

program = cknot (2, [inputbit carrybit], outputbit);
program = str2mat (program cnot(inputbit, carrybit));
elseif ( (cbitifoO == 1) & (chitifl==1)) % 1

program = cknot (L+1, [enabindex carrybit], outputbit, 2, inputbit);
program = str2mat (program cknot (L, enabindex, carrybit, 2, inputbit));
program = str2mat (program cknot (2, [inputbit carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));
elseif ( (chbitifO == 0) & (chitifl==1)) %-->add 0 or 1
program = cknot (L+2, [enabindex selindex carrybit], outputbit, 2, inputbit);
program = str2mat (program cknot(L+1, [enabindex selindex], carrybit, 2, inputbit));
program = str2mat (program cknot (2, [inputbit, carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));
elseif ( (cbitifOoO == 1) & (chitif1==0))
program = nnot (sel i ndex) ;
program = str2mat (program cknot(L+2, [enabindex selindex carrybit], outputbit,?2, inputbhit));
program = str2mat (program cknot (L+1, [enabindex selindex], carrybit, 2, inputbit));
program = str2mat (program cknot(2,[inputbit, carrybit], outputbit));
program = str2mat (program cnot(inputbit, carrybit));
program = str2mat (program nnot(selindex));
end;

Multiplexed Half Adder with an Array of Enable Bits:
function program = nuxhal (cbitifO, chitifl, enabindex, selindex, inputbit, carrybit)
% Edwar d Boyden, e@redia.mt.edu
% if enabindex is 1, performa half-added nuxed half add with select to see if big or snall, else
add zero. Changes the carrybit only.
% Uses cknots no higher than two greater than the nunber of qubits in enabindex.
CLLLLLL

L = | engt h( enabi ndex) ;

if ( (cbitifO ==0) & (chitifl==0)) % both cases are 0, so selindex doesn't matter
program = cnot (i nputbit, carrybit);

elseif ( (cbitifoO == 1) & (chitifl==1)) % 1

program = cknot (L, [enabindex], carrybit);
program = str2mat (program cnot(inputbit, carrybit));
elseif ( (chitifO == 0) & (chitifl==1)) %-->add 0 or 1
program = cknot (L+1, [enabi ndex selindex], carrybit);
program = str2mat (program cnot(inputbit, carrybit));
elseif ( (cbitifO == 1) & (chitifl==0))

program = nnot (sel i ndex) ;

program = str2mat (program cknot(L+1, [enabi ndex selindex], carrybit));
program = str2mat (program cnot(inputbit, carrybit));
program = str2mat (program nnot(selindex));

end;

Multiplexed Half Adder with an array of Enable Bits, Compiling down to C*NOTSs or lower:
function program = nuxhal | (cbitifO, chitifl, enabindex, selindex, inputbit, carrybit)

% Edwar d Boyden, e@redia.mt.edu

% if enabindex is 1, performa half-added nuxed half add with select ><, else add zero.

% Uses cknots no hi gher than two.
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|f ( (chitif =0) & (cbitifl::O)) % both cases are 0, so selindex doesn't matter
program = cnot(inputbit, carrybit);

elseif ( (cbitifOoO == 1) & (chitifl==1)) % 1

program = cknot (L, [enabindex], carrybit, 2, inputbit);

program = str2mat (program cnot(inputbit, carrybit));

elseif ( (chbitifO == 0) & (chitifl==1)) %-->add 0 or 1

program = cknot (L+1, [enabindex selindex], carrybit, 2, inputbit);
program = str2mat (program cnot(inputbit, carrybit));

elseif ( (cbitifO == 1) & (chitifl==0))

program = nnot (sel i ndex) ;

program = str2mat (program cknot(L+1, [enabi ndex selindex], carrybit, 2, inputbit));
program = str2mat (program cnot(inputbit, carrybit));
program = str2mat (program nnot(selindex));

end;

Multiplexed Add:

function program = nadd(cnum f0, cnum f1, enabindex, selindex, inputbits, outputbits,
Bw_l ovm sI eft) % out put b| ts MJST be zeros

% madd. m

% | npl ement s addi ng a cl assi cal nunber to a quantum nunber, nod 2~L.

%I1f Nis the thing we want to factor, then selindex says whether N-cnumis |less than or
% greater than B: N-cnunpb --> add cnum else N-cnunmkb --> add cnum- N + 2~L

% Enabi ndex nmust all be 1, else choose the classical addend to be zero.

% Edwar d Boyden, e@redia.mt.edu

% | NPUT

% cnum cl assi cal nunmber to be added

% indices colum vector of indices on which to operate
% carryindex carry qubit that you're using
t‘t‘tt‘ttt‘ttt‘ttt‘t‘tt‘ttt‘t‘t‘ttttt‘tt‘ttt‘ttt‘t‘tt‘t‘t"

L = l ength(out puthits); %t's an L-bit adder: contains L-1 MJUXFAs and 1 MJUXHA
if (LI =l engt h(i nputbits)) YAKE SURE OF THI S!

program = ' Sonmething''s wong."';

return;

end;

cbitsifO = binarize(cnunif0); % Bl NARI ZE!

cbhitsifl = binarize(cnunmf1l);
cL = length(cbitsif0);

if (cL>L)

chitsifO = chitsifO((cL-L+1):cL); % nod 2°L
el se

cbhitsifO = [zeros(L-cL) chitsifO0];

end; % pad with zeros

cL = length(cbitsifl);

if (cL>L)

chitsifl = chitsif1((cL-L+1):cL); % nod 2°L
el se

cbhitsifl = [zeros(L-cL) chitsifl];

end; % pad with zeros

chitsifO = reverse(chitsif0); %reverse the chitsifx variables to put low left
chitsifl = reverse(chitsifl);

i f(BOOLI owi sl eft) %ow S left YREORDER! Because we will go in small-to-Ilarge
order.

di sp 'Reversing classical bits...'
el se %ow IS right

di sp ' Reversing qubits...'
inputbits = reverse(inputbhits);
outputhits = reverse(outputhits);

end;
program = sprintf('# Adding %d or % + [ %] -->[ %], sel %', cnum fO0, cnumf1,
sprintf('% ', inputbits), sprintf('% ', outputbits), selindex);

for i=1:(L-1)

program = str2mat (program nuxfal (cbitsifO(i), cbitsifl(i), enabindex, selindex, inputhits(i),
outputhits(i+1), outputbits(i)));
end;
program = str2mat (program nuxhal (cbitsifO(L), cbitsifl(L), enabindex, selindex, inputhits(L),
outputhits(L)));

Less than:
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function program = ltqgc(cnum qunum scratch, selindex, BOOLI ow sl eft)
% scratch, selindex MUST be zero % assunme |ow | eft
% Edwar d Boyden, e@redia.mt.edu
% Conpare a cnunber and a qununber -- if qubit<cnunber, selindex = 1,
% el se if qubit>=cnunber, selindex = 0.
gt h(qunum ;
engt h(scratch);
if(SH=L-1)

di sp ' Not enough scratch space...'
end;
cbits = binarize(cnum;
cL = length(chits);

wr
|

if (cL>L)

chits = chits((cL-L+1):cL); % nmod 2°L

el se

cbits = [zeros(L-cL) chits];

end; % pad with zeros

% cbits = reverse(chits); % DO NOT reverse the chits!!

i f(BOOLI owi sl eft)
di sp ' Reversing quantumbits...'
qunum = reverse(qunum ;
el se %ow IS left
disp 'Not reversing anything.'
end;
if (chits(1)==0)
program = nnot (qunun(1));

program = str2mat (program cnot(qunun(1l), scratch(1l)));
el se
program = str2mat (program cnot(qunun(1l), scratch(1l)));

program = str2mat (program nnot(qunum(1)));
program = str2mat (program cnot(qunun(1l), selindex));
end;
for i=2:(L-1)
if (cbhits(i)==0)
program = str2mat (program nnot (qunum(i)));
program = str2mat (program cknot(2,[scratch(i-1) qunum(i)], scratch(i)));
el se
program = str2mat (program cknot(2,[scratch(i-1) qunum(i)], scratch(i)));
program = str2mat (program nnot (qunum(i)));
program = str2mat (program cknot(2,[scratch(i-1) qunum(i)], selindex));
end;
end;
if(cbits(L)==1)
program = str2mat (program nnot(qunum(L)));
program = str2mat (program cknot (2, [scratch(L-1), qunum(L)], selindex));
end;

Auxiliary programs:

function s=binarize(d, n)
) )

|
7

a binary string.

= 1;
[f,e]l=log2(max(d)); % How many digits do we need to represent the nunbers?
s=ren(fl oor (d*pow2(1-nax(n,e):0)), 2);
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Appendix B: Simulation Code, with Examples

This code helps ssmulate NMR quantum computing operations, using the product operator
formalism. Severa examples are given at the end. The core procedure, which builds up global
simulations from two-qubit operations, is the function kr qn, which does a generalized tensor
product so as to embed a smple, few-qubit operation into afull density-matrix operator.

At the time of this writing, there is no Matlab parser to take the code generated by the Appendix
A compiler and convert them to a computational representation that would be usable in the
following architecture.

Rotation by g around the x-axis:

function matrix = X(theta)
% X(theta) returns the matrix
% [ cos(theta/2) i * sin(thetal/2) ]

% [

% [ i * sin(theta/2) cos(thetal/2) ]

%

matrix = [ cos(theta/2) i*sin(theta/2); i*sin(theta/2) cos(theta/2) ];

Rotation by q around the y-axis.

function matrix = Y(theta)
L% ®

% Y(theta) returns the matrix

% [ cos(thetal?2) sin(thetal/2) ]

% [

% [ -sin(thetal?2) cos(thetal/2) ]

%

matrix = [ cos(theta/2) sin(theta/2); -sin(theta/2) cos(theta/2) ];

Rotation by g around the z-axis:

function matrix
L%

%
% Z(theta) returns the matrix

% [ exp(i*thetal?2) 0 ]
% [
% [ O exp(-i*thetal2) ]

%
matrix = [ exp(i*theta/2) 0; O exp(-i*thetal/2)];

J-coupling between two qubits

function matrix
® LT

SN
SN
S~
S
S
S&

% ZZ(theta) returns the matrix exp(-i*theta/2 * 2*|z*Sz)
theta2 = theta;%/2; %renove this if it doesn't work
matrix = diag([exp(i*theta2/2) exp(-i*theta2/2) exp(-i*theta2/2) exp(i*theta2/2)]);

C'NOT:

% cknot . m

% Matri x of cknot.

% Edwar d Boyden, e@redia.mt.edu
% | NPUT

% k order of cknot

% n index to be changed

m = eye(2"k, 2"k);

% nust swap the |11.... 0 ... 1> and |11.... 1 ... 1> indices
i = 2"k-27(k-n);

j = 27k;

rr(l iy =1
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nj,i) =1
mi,i) =0;
mij.j) =0;

Conditional operator:

function bigop

i ndices, outdices, littleop)
CLLLLL

% condit. m

% | npl ements conditional form littleop_[indices],index

% Edwar d Boyden, e@redia.mt.edu

% | NPUT

% nunmBs the nunber of qubits in the whole system

% indices the qubit nunmbers that littleop conditions on

% outdices the qubits that littl eop works on

% littleop a few qubit operator

M = | engt h(out di ces);

L = l engt h(i ndi ces) +M

twot ot heL = 2°L;

t wot ot heM = 2"M

% assenbl e an operator that operates conditionally

%It's just an identity matrix with the lower right corner set to the littleop.
% the krqn procedure will automatically take care of the reordering!!!!!

operat = eye(twotothel);

operat( (twototheL - twototheM + 1):twotothelL, (twototheL - twototheM + 1):twotothel)
bi gop = krgn(numBs, [indices outdices], operat);

Kronecker tensor product (for lexicographically-ordered qubit operations):
function bigop = qun( nunQ35 i ndi ces, I | ttleop)

R BBBBER

% krgn. m

% | npl ement s quant um kronecker tensor product

% Edwar d Boyden, e@redia.mt.edu

% | NPUT

% nunmBs the nunber of qubits in the whole system
% indices the qubit nunmbers that littleop works on
% I ength(indices) = size(littleop)

% Iittleopafew-qublt operator

(1]
its!'); return; end;

% easy case
if ((L==1)&(indices(1l)==numPBs))
bi gop = kron(eye(bigsize/2, bigsize/2), littleop);
return;
% slightly harder case: still one qubit littleop
el seif (L==1)
for i=1:(indices(1)-1),
bi gop = kron(bi gop, eye(2,2));
end;
bi gop = kron(bigop, littleop);
for i=(indices(1l)+1): nunmPBs,
bi gop = kron(bi gop, eye(2,2));
end;
return;
% nore than one qubit littleop, but all the indices are consecutive
el sei f ((sun(indices==[indices(1l): (indices(1l)+L-1)]))==L) %gotta |l ove matl ab
for i=1:(indices(1)-1),
bi gop = kron(bi gop, eye(2,2));
end;
bi gop = kron(bigop,littleop);
for i=(indices(1l)+L): nunmPBs,
bi gop = kron(bigop, eye(2,2));
end;
% et urn;
Y% arbitrary qubit littleop, arbitrary indices
el se
bi gop = eye(2*numBs, 2"nuniPBs);
i nd2=2. *(nunBs- i ndi ces) ;
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for i=1:(2"(nunBs))
for j = 1:(2*(numXPBs))
ii=i-1 jj=-1
%find ii,jj's 2%a and 2”b conponents.
iix = bitand(ii,ind2);
jix = bitand(jj,ind2);
if ((ii-sun(iix))==(jj-sunm(jjx)))
iix = (iix>0).*2.7((L-1):-1:0);
jix = (jjx>0).*2.~((L-1):-1:0);

bigop(i,j) = littleop(l+sum(iix), 1+sun(jjx));
el se
bi gop(i,j) = 0;
end;
end;
end;
end;

Sample code: declarations:

si gmal [0 1; 10]

si gma2 [0 -i; i O]

si gma3 [10; 0 -1]

Ix = 1/ 2*si gnal

= 1/ 2*si gma2

= 1/ 2*si gma3

1/sqrt(2) * [1 1; 1 -1]

1/sqrt(2) * [1 1; -1 1]

[10; 0-1]

[10; 01]

CV=[1000;, 0100, 0010; 000 -1]
NOT = [0 1; 1 0]

CNOT = condit (2,1, 2, NOT)

CNOT_2 = condit (2,2, 1, NOrT)
CONCT = [0100; 1000; 0010; 000 1]
swap = CNOT * CNOT_2 * CNOT

'U<CI;;

Sample code: smple examples:

krgn(3, [2 3], CNOT) % shoul d return C2NOT
condit(3, [1 2], 3, NOT) %also returns C2NOT
condit(3, 1, [2 3], CNOT) % al so returns C2NOT

Decomposing CNOT:

condit(7, [1 2 3 4 6], 7, NOI); % same thing as al*a2*a3*a4, which are defined as:
al= condit(7, [1 2 3 4], 5, NOT);

a2= condit(7, [5 6], 7, NOI);

a3= condit(7, [1 2 3 4], 5, NOT);

ad= condit(7, [5 6], 7, NOI);

% Conpare to cknot(5,[1 2 3 4 6], 7, 4, 5), in the conmpiling section.

Decomposing the Toffoli gate:

bl = krgn(3, [2 3], condit(2,[1],[2],1/sqrt(2)*(sigm2+signa3)) ) % same as "Va, b"

b2 = krgn(3, [1 3], condit(2,[1],[2],sigm2) ) % same as Ua, b

% bl*b2*b1*b2 is conditional phase shift by pi/2 — let’'s erase the phase shift that arises
b3 = condit(3, [1 2], [3], exp(i*pi/2)*P) % sanme as CPab, (3pi/2)
b4 = b3*bl*b2*bl*b2 % equal s C2NOTab, c

Implementing Hadamard in NMR operations:
cl

c2 z F;:é:;(cl/ 2), sin(cl/2); -sin(cl/2) cos(cl/2)] % Y(pil4)

22 z FI();)S(CS/ 2), i*sin(c3/2); i*sin(c3/2) cos(c3/2)] % X(pi)

gg z iglo{s?cfﬂ 2), sin(c5/2); -sin(c5/2) cos(c5/2)] % Y(pi/4)
c2*c4*c6 %-->H

The other Hadamard Gate:

g; z Flcéi;(cl/ 2), sin(cl/2); -sin(cl/2) cos(cl/2)] %= Y(pi/2) --> U

An abbreviated CNOT gate and EPR gate (Chu98a):
dl = krqn(2, 2, Y(pi/2)) * ZZ(pi/2) * krqn(2, 2, X(pi/2))
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Neilsmatrix = [ (-1)~(1/4) 0 0 0; O -(-1)"~(3/4) 00 ; 000 (-1)™(1/4); 00 (-1)~(3/4) 0]
sun(sum(abs(d1l-Neilsmatrix))) % = 0, of course
krgn(2,2,Y(pi/2)) * ZZ(pi/2) * krgn(2,1, X(pi/2)) * krgn(2,2, X(pi/2)) % the EPR matrix

Two ways to get z-rotations from x-rotations and y-rotations only:
thetaX = pi/2

thetaY = .37
Xtheta = [ cos(thetaX/2) i * sin(thetaX/ 2); i*sin(thetaX 2) cos(thetaX 2)]
Ytheta = [ cos(thetaY/2) sin(thetaY/2); -sin(thetaY/2) cos(thetaY/ 2) ]

inv(Xtheta) * Ytheta * Xtheta

thetaX = .37

thetaY = pi/2

Xtheta = [ cos(thetaX/2) i * sin(thetaX/ 2); i*sin(thetaX 2) cos(thetaX 2)]
Ytheta = [ cos(thetaY/2) sin(thetaY/2); -sin(thetaY/2) cos(thetaY/ 2) ]
Ytheta * Xtheta * inv(Ytheta)

Ways toi mplement the full CNOT:

CNOT12 = krqgn(2,2,Y(-pi/2)) * krgn(2,1,Z(-pi/2)) * krgn(2,2,2Z(-pi/2)) * ZZ(pil2) *

krgn(2, 2 Y(pi/2))

CNOT12 = krqn(2,1,Y(pi/2)*X(-pil2)*Y(-pi/2)) * krqn(2,2, X(-pi/2)*Y(-pil2)) * ZZ(pil/2) *
krgn(2, 2, Y(pi/2)) % only one J-coupling tine

CNOT12 = krqn(2,2, X(-pi/2)*Y(-pi/2)) * krgn(2,1, Y(pi/2)*X(-pi/2)*Y(-pil2)) * ZZ(pil2) *
krgn(2, 2, Y(pi/2))

CNOT21 = krqn(2,1, X(-pi/2)*Y(-pi/2)) * krgn(2,2,Y(pi/2)*X(-pi/2)*Y(-pil2)) * ZZ(pil2) *
krgn(2,1, Y(pi/2))

CNOT12 = krqn(2,2,Y(pi/4)*X(pi)*Y(-pi/4)) * diag([1 1 1 -1]) * krgn(2,2,Y(pi/4)*X(pi)*Y(-pi/4))

% can we nake the conditional phase shift any shorter?

Grover’s algorithm, as implemented in (Chu98b):
% Three ways to nake a WAl sh-Hadamard transform (up to phase):
%W =W =W = -H

WL = krqn(2,1, X(pi)*Y(-pi/2)) * krgn(2,2,X(pi)*Y(-pi/2))

W2 = krqn(2,1,Y(pi/4)*X(pi)*Y(-pild)) * krgn(2,2,Y(pi/l4)*X(pi)*Y(-pi/4))
WB = krqn(2,1,Y(pi/2)*X(pi)) * krqn(2,2,Y(pi/2)*X(pi))

% our function — let’'s say we want the fourth term

Cl =diag([1 11 -1])
Y%witten in a practical form C2 is Cl*exp(-i*pi/2)
C2 = krgn(2,1,Y(pi/2)*X(-pi/2)*Y(-pi/2)) * krgn(2,2,Y(pi/2)*X(-pi/2)*Y(-pil2)) * ZZ(pil?2)

% next invert about the average, D = WPWwhere P = diag([1 -1 -1 -1])

P1 = diag([1 -1 -1 -1])

Ywitten in a practical form P2 = P1 * exp(i*3*pi/4)

P2 = krgn(2,1,Y(pi/2)*X(pi/2)*Y(-pi/2)) * krgn(2,2, Y(pi/2)*X(pi/2)*Y(-pil2)) * ZZ(pil?2)

% t he operators thensel ves

DL = WB * P2 * \\B

UL =Dl * C

% anot her way to make the U-operator, still for the case of the function Cl given above

U2 = krgn(2,1, X(-pi/2)*Y(-pi/2)) * krgn(2,2,X(-pi/2)*Y(-pi/2)) * ZZ(pil2) * krgn(2,1, X(pi/2)*
Y(-pi/2)) * krgn(2,2, X(pi/2)*Y(-pil2)) * ZZ(pil?2)

% S| MULATI ON
UL * WB* [ 1000]" %results in[0O0O0 1]', giving the correct answer

%for other functions — one that recognizes the first database entry, say
Us = krgn(2,1, X(-pi/2)*Y(-pi/2)) * krqn(2,2,X(-pi/2)*Y(-pil2)) * ZZ(pil2) * krgn(2,1, X(-
p|/2)*Y( p|/2)) * qun(2 2, X( p|/2)*Y( pi/2)) * ZZ(pil?2)

*W * [1 00 0] %[ - 0 0]

% for other functions — the second term say

U3 = krgn(2,1, X(-pi/2)*Y(-pi/2)) * krgn(2,2,X(-pi/2)*Y(-pi/2)) * ZZ(pi/2) * krgn(2,1, X(pi/2)*
Y(-pi/2)) * krgn(2,2, X(-pi/2)*Y(-pil2)) * ZZ(pil?2)

U3 * WB*[1000]'" %returns [0 -10 0]’

%for other functions — the third term say
U4 = krgn(2,1, X(-pi/2)*Y(-pi/2)) * krqn(2,2,X(-pi/2)*Y(-pil2)) * ZZ(pil2) * krgn(2,1, X(-
p|/2)*Y( p|/2)) * qun(2 2, X(pil2)*Y(-pil2)) * Z2Z(pil?2)

U *wW*[1000]" %returns [ 00 -1 0]"'

Temporal averaging:

% start with typical deviation density matrix
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rho = diag([1 .6 -.6 -1]);

% first experinment - use unnodified result

Pr1 = eye(4)

% second experinent - pernmute 01 -> 10 -> 11 -> 01, using Pr2
Pr2=[1000, 0010, 0001, 010 0]

%realistic way to make Pr2:

Pr2 = CNOT12 * SWAP

% third experinment - inverse the pernutation, using transpose of the previous operation
Pr3 = Pr2

%realistic way to make Pr3:

Pr3 = SWAP * CNOT12

Pr3 = CNOT12 * CNOT21

Pr1 * rho * Pr1' + Pr2 * rho * Pr2' + Pr3 * rho * Pr3

% ® the final result is diag([3 -1 -1 -1]), an effective pure state for bul k quantum
conput at i on!
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Appendix C: nanoTag and nanoNMR

nanoT ag code
The tag reader is described in some detail in VI1.2.i.

Hereisthe Verilog code that drives the tagreader. Note that the frequency word is 32 bits long,
asis the phase accumulator, but we only take the top 8 bits for conversion to the sinewave
amplitude. Only part of the lookup table is shown, for brevity.

//DDS 1.0, eboyden3
nodul e kam( CLOCK, DACword, RAM CS, RAM OE, | NTEL_RST, DAC_LATCH, ADCword, ADCencode, LED);

/I Decl ar ati ons

i nput CLOCK;

out put [7:0] DACword;
reg [7:0] DACword;
out put RAM CS, RAM COE, | NTEL_RST, DAC_LATCH;
reg DAC_LATCH;

i nput [11: 0] ADCwor d;
out put ADCencode;

reg ADCencode;

out put [6:0] LED;

reg [6: 0] LED,

reg [11:0] signal;

reg [31:0] signal _accum
reg CLOCK_DI V1048576;
reg CLOCK_DI V65536;

reg CLOCK_DI V64;

reg CLOCK_DI V32;

reg CLOCK_DI V16;

reg [19: 0] CLOCK_ | NTERNAL_COUNTER; //20-bit counter
reg [31:0] freqg_word;

reg [31:0] freq_freq_word;

reg [31:0] phas_accum

//disable the RAM and 8031 by pulling CS, OE, and RST high.
assign RAM CS = 1;

assign RAM CE = 1;

assign | NTEL_RST = 1;

/1 Divide the clock down
al ways begin
@ posedge CLOCK)
CLOCK_DI V1048576 = 0;
CLOCK_DI V64 = 0;
CLOCK_DI V32 = 0;
CLOCK_DI V16 = 0;
CLOCK_| NTERNAL_COUNTER = 0;

forever begin

@ posedge CLOCK)

CLOCK_| NTERNAL_COUNTER = CLOCK_I| NTERNAL_COUNTER + 1;

CLOCK_DI V1048576 = CLOCK_| NTERNAL_COUNTER[ 19]; //divi de by 2720 = 1048576
CLOCK_DlI V65536 = CLOCK_| NTERNAL_COUNTER[ 15]; //divi de by 65536

CLOCK_DI V64 = CLOCK_| NTERNAL_COUNTER[ 5]; //e.g. divide by 64
CLOCK DI V32 = CLOCK | NTERNAL_COUNTER[ 4]; //e.g., divide by 32
CLOCK DI V16 = CLOCK | NTERNAL_COUNTER[ 3]; //e.g., divide by 16
end
end

al ways begin //use only one clock per always block, or get multiple wait states
forever begin

@ posedge CLOCK DI V32); //posedge CLOCK_ DI V32

DAC_LATCH = 0; /' happens __|
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@ posedge CLOCK DI V32); //posedge CLOCK DI V32
DAC_LATCH = 1; /lhappens __|--]__|
end
end

al ways begin

@ posedge CLOCK_ DI V65536)

/115D867C = 1 kHz, 51EB8510 = 60 kHz, 6D3A06D4 = 80 kHz

/1 (freq_word_nax - fregq_word_min) / 2732 * (65536 / 12e6) * (12e6/64) = 322.21875 Hz per step
/1322.21875 Hz per step = 70A07F, using freq_word/2732*12e6/64 = frequency

freg_freq_word = 32' h70A07F; //to sweep in one second, do it in 12000000 / 65536 = 183.1 steps
freg_word = 32' h15D867C; /' happens __|

forever begin
@ posedge CLOCK_ DI V65536)
freg_word = freq_word + freq_freq_word;
end
end

al ways begin
@ posedge CLOCK_ DI V64)
phas_accum = 32' hO;
DACword = 8'd127;

forever begin /1 at each clockstep, in parallel, increnent the phase accunul at or
@ posedge CLOCK_ DI V64) /| posedge CLOCK DI V32 - one sanple every 187500
phas_accum = phas_accum + freq_word; //happens __|--]|__|
case (phas_accuni 31: 24])

8' h0: DACword = 8' h7f;
8' hl: DACword = 8' h82;
8' h2: DACword = 8' h85;
8' h3: DACword = 8' h88;
8' h4: DACword = 8' h8b;
8' h5: DACword = 8' h8e;
8' h6: DACword = 8' h91;
8' h7: DACword = 8' h94;
8' h8: DACword = 8' h97;
8' h9: DACword = 8' h9a;
8' ha: DACword = 8' h9d;

/1 this part is generated by a C program and is just a 8-to-8 phase | ookup table
/1 see below for the code that generates this |ookup table

8' hf 9: DACword = 8' h69;
8' hf a: DACword = 8' héc;
8' hf b: DACword = 8' h6f;
8' hfc: DACword = 8' h72;
8' hf d: DACword = 8' h75;
8' hf e: DACword = 8' h78;
8' hff: DACword = 8' h7b;
endcase

end //end forever
end //end al ways

/I now we need the concept of a sweep.

/I whenever the frequency is increnented, display detect_accum (top four bits) and set

detect _accumto O

/I whenever a 12 bit read cones in, and a 8 bit goes out, multiply themand add to the accunul at or
al ways begin

@ posedge CLOCK_ DI V16)

signal = 0;

ADCencode = 1,

@ posedge CLOCK_ DI V16)

ADCencode = O0;

forever begin /1 at each clockstep, in parallel, increnent the phase accumnul at or
signal = ADCwor d; /1 grab whatever was nade at the last tine
@ posedge CLOCK_DI V16) /| posedge CLOCK DI V16 - 750000 sanpl es per second
ADCencode = 1,
@ posedge CLOCK DI V16) //so there ends up being one per
ADCencode = O0;
end
end //end al ways

al ways begin
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@ posedge CLOCK_ DI V64)
signal _accum = 268435456; //1024 zeroes, zero = 262144

/leach frequency is used for 65536/ CLOCK seconds - thus CLOCK 64 ticks 1024 tines
//for each frequency. Therefore each tick needs to be 1023/1024 * old + 1/1024 * new
/'l =old - 1/1024 * old + 1/1024 * new = old - old >> 10 + new >> 10

/] scale up to 1024 times that, so that we don't |ose

any bits

/! =old - old >> 10 + new //therefore each time, we discard about 1/1000 and add anot her,
or when old ~ 1000 tinmes new, which is

/] which reaches a steady state when new = old >> 10,
/1 what we want.

/1 12 bits per signal, 8 for DAC, 2710 entries -> 30 b
forever begin

@ posedge CLOCK_DI V64)

/12048 = zero for signal, 128 = zero for DACword

si gnal _accum = si gnal _accum - (signal _accum >> 10) +

(DACword << 11) - (signal << 7) + 2621

end //end forever
end //end al ways

al ways begin //update the display 11.4 tines a second, wi th CLOCK DI V1048576

@ posedge CLOCK DI V1048576) begin

case (signal _accuni30:27])
4'b0001 : LED = 7' b1111001; /11
4' b0010 : LED = 7' b0100100; /12
4'b0011 : LED = 7' b0110000; /13
4' 0100 : LED = 7' b0011001; /14
4'b0101 : LED = 7' b0010010; /15
4'b0110 : LED = 7' b0000010; /16
4'b0111 : LED = 7' b1111000; 117
4'b1000 : LED = 7' b000000O; /18
4'b1001 : LED = 7' b0010000; /19
4'b1010 : LED = 7' b0001000; /1A
4'b1011 : LED = 7' b0000011; /b
4'b1100 : LED = 7' b1000110; /1C
4'b1101 : LED = 7' b0100001; /1d
4'b1110 : LED = 7' b0000110; /I1E
4'b1111 : LED = 7' b0001110; /1F
default : LED = 7' b1000000; /10

endcase

/1 signal _accum= 0
end //end @
end //end al ways

endnodul e

its total

(signal *
44);

Below is the code that generates the sinusoidal lookup table.

/* ROMGEN.c rom generator for FPGA (Verilog code) E. Bo
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <math. h>

#define Pl 3.141592653589793

int main() {
int i;
float val;
int inbits,innumoutbits, outnum
FILE*ronfile;
char ronfil enane[]="output_verilog_romtxt";
inbits = 8;
innum = pow(2,inbits);
outbhits = 8;
out num = pow 2, out bits-1)-1;
ronfile = fopen(ronfil enane, "wW');
fprintf(ronfile," case (phas_accunf31:24])\n");
for(i=0;i<innunmi++) {
val = sin(2*Pl*i/innum;
val *= out num
val += out num

fprintf(ronfile, " %' h%: DACword = 9%d' h%«;\n",

}
fprintf(ronfile,
fclose(ronfile);

endcase\ n");
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nanoNMR transmitter schematics
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Figure 11: nanoNMR transmitter board schematic
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Appendix D: The g language and the ROS scripting language

The following lines describe the commands of the g language and the ROS scripting language,
along with the relevant system parameters and modes of behavior. g and ROS should be thought
of as experiment description languages.

Also included in this appendix is an extended example detailing the 27 programs needed to
perform Grover’s algorithm with temporal averaging and state tomography. Appendix E contains
some of the code from the actual QOS program, and Appendix F contains some of the code from
ROS, for reference in understanding the following g programs and ROS scripts, as well as
understanding the operation of the quantum computer.

Deimiters between symbol strings.  ,;[[{}’ \t\n\r
D{target} denotesasymbol string that must be found within the target string (e.g., if the
target string is “hemisphere’ then *hemisp’ will be just fine, but ‘ nothemisphere’ or
‘hemispheree’ or ‘azxvtt’ will cause the parser to assume a default state).

Delimiters between name strings. ‘\n()
s n] denotes that the first n characters of the name string are directly copied into a
variable in memory, for later use.

These delimiters are designed to match that of the Matlab parser, so that they can be interpreted
as Matlab commands. Due to the very dynamic state of the g language, however, it was never
deemed worthwhile to actually write Matlab simulation programs for these commands.

The g commands

Qoegi n()
Qend()

Do nothing. Used to frame the program.

Qrane( S,[ 8] )
Quersion(S[8])
Qsanpl e(S[ 8])

For human debugging and record-keeping. These are used to labdl files and appear in the QOS
logging system amongst many other parameters of each QOS program execution.

Qdecouplingstyle( D{‘mnimal’, ‘maximl’'} )

Indicates what kind of decoupling is used, during waiting periods. Only ni ni el iS currently
supported, meaning no decoupling, since we have only two spinsin our current system. Default
state is minimal.

Qmode( D{‘verbose’},
Print (and log) al the behaviors of QOS. Default state is no printing.

D{‘'sinmulateonly’},

Simulate actions only. Don’t send any commands to the hardware. Default state is not simulating.

D{‘ continuous’},
Continuously stream the waveform from the HPE1445 and acquire a stream of data from the
HPE1437. Does not save any data, and is not interruptable without losing the state of the system
—thismode is only useful for debugging 1445 outputs on the oscilloscope. Default state isto
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send, and acquire, in discrete events.
D{'triggered'},

If enabled, the 1437 acquisition must be triggered by an external pulse (e.g., from the Hitachi

microcontroller). Default state is instantaneous triggering.
D{'arned},

If enabled, the 1445 waveform generation must be armed by an external pulse (from the Hitachi).
Default state is instantaneous arming.

D{'instantreplay’, ‘notinstantreplay’},
Mode ‘instantreplay’ means to keep repeating the program that follows — all parts of the
waveform, triggering, acquisition, and so on. This mode is to be contrasted with * continuous',
which simply causes the HP modules to loop forever, with no switching, triggering, etc.
‘notinstantreplay’ means to terminate after one execution of the q program. Default state isto
give a prompt, at which the user chooses one of these two states.

D{'specifytesla, ‘specifyduration'},
Mode ‘ specifyteda means to specify the exact strength of the magnetic field induced by the RF
pulse — a difficult thing to do. ‘ specifyduration’ means to specify the length of a p/2 pulse. Default
state isto display an error message and exit QOS — that is, one of these two choices must be
specified in the g program.

D{‘specifyJtines', ‘specifylJcouplings’} )
Mode * specifyJtimes means to specify the desired J-coupling times between each pair of spinsfor
each individua wait command, while ‘ specifyJcouplings means to specify al the J-coupling
strengths in a matrix, then pass angles into each wait command. Default state isto display an error
message and exit QOS.

Qmdul es(D{* 1437’ },

‘1437 indicates that the 1437 isto be active. Default state is to not send commands to the 1437.
D{‘ 1445},

‘1445’ indicates that the 1445 is to be active. Default state is to not send commands to the 1445.
D{‘ hitachi’},

‘hitachi’ indicates that the Hitachi microcontroller isto be active. Default state is to not send

commands to the Hitachi microcontroller.
D{‘ shin}

‘shim’ indicates that the shimming system isto be active. Default state is to not send commands to
the shimming system.

(Note: If any module is specified as used, and is broken or off, then QOS has undefined behavior.
If any module is specified as omitted, then its physical performance has no bearing on the
operation of QOS. Therefore the grodul es command is good for debugging the behavior of
specific hardware modules.)

Qfsettings( int, int)
Two parameters, each comprising 10 bits, set the level of the RF2420 digital attenuators for the
13C and *H sections of the transmitter board.

Ghack( fl oat,

A delay which accounts for the fact that 1445 signal generation doesn’t begin immediately when
armed. The Hitachi waits this amount of time (in seconds) before starting its parallel sequence of
gating commands.

float,
This parameter tells the Hitachi how wide the framing of each pulse should be. The ideais that the
gating commands should close the switches before each pulse begins, and open the switches after
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each one ends, so that no transmit signal is lost — one can think of this as a margin-of-error

parameter. The value is specified in seconds.
float)

A ringdown delay. Thistells the pin diode switch and 1437 not to switch into acquisition mode
until the coil has had a chance to radiate away any residual transmitter energy. The valueis
specified in seconds.

Qi gitize(float,
The center frequency at which the 1437 reports its data, expressed as a fraction of 20 MHz —e.g.,
using 0.1 would make the center frequency 2 MHz. The 1437 digitally performs the frequency
shift, returning a complex time series.

int,
An integer s specifying the signal bandwidth of the 1437. The bandwidth is roughly f4(2.56 ~ 2°),
where fsis 20 MHz (or 10 MHz, if decimation is on). The sample rateis fJ/2°*, except when sis
zero, in which caseit isfs. The parameter s can be between 0 and 24.

int,
An integer v specifying the full-scale voltage range of the 1437, whichis £ 0.02 ~ 2.

int,
The blocksize for the 1437. This specifies the number of bytes that an acquisition takes up in

memory.
D{'decimate’} )

Whether to decimate or not. This affects the parameter fs. Default is no decimation.

Qungbs( int )
Number of qubits numgbs in the current sample.

speci es( int,
The identity of the current qubit, expressed as a decimal integer. Can takethevalues 1, 2, . ..

numgbs.
S8l

The name of the current species. For human interpretation of the program.

float,

Gyromagnetic ratio, inrad T s™.

float,

Larmor frequency in Hz, Larmor.

float,
Frequency CWireq of the CW generator which is feeding into the mixer. The 1445 therefore
synthesizes pulses for this particular species at the frequency Larmor — C\Wireq.

float,

Senditivity, relative to *H. Not used in this implementation of QOS.

float )
If arode argument 7 is ‘ specifyduration’, thisis the length of a p/2 pulse for the current species. If
Qrode argument 7 is ‘ specifyTeda, then this parameter is the radiofrequency magnetic field per
unit voltage from the 1445. Using ‘ specifyTeda is not recommended due to the difficulty of
estimating this dependence.

Qdatatype( D{‘'complex’, ‘real’},
Default isrea data, from the 1437.
int,
32 or 16 bits. Default is 16.
D{‘' powerspectrum, ‘fft’, ‘timedonmain’} )

Default is FFT.
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Ghins( int,
The number of shim cails.

float, float, float, . . . }
The current that passes through each one. The sign determines the direction of the current, and
therefore the orientation of the magnetic field. In the current implementation of the shim
hardware, this direction is controlled by the state of an electromechanical relay.

(..

Q(int,

The species to be addressed.
float,

The angle that the spin isto be tipped about the x- or y-axis.
D{‘'square’, ‘gaussian’, ‘halfgaussian’, ‘arbfreq'}

The type of pulse.

® For a‘sguare’ pulse, there are no further parameters. The o« or ¢/ pulse simply tips the
indicated species about the x or y axis, respectively, by the indicated angle.

® For a‘gaussian’ pulse, there are three more parameters, detailing the Gaussian envelope which
is applied (in time-domain) to the pulse:

float,
The time at which the Gaussian envelope is at its maximum, expressed as a fraction of the
pulse length. For example, if the pulse is 0.012 seconds long and this parameter is 0.4, then
the envelope will be at its maximum 0.0048 seconds into the pulse.

float,
The width (standard deviation) of the pulse, expressed as a fraction of the pulse length. The

width can be much greater than 1, if agentle envelope is desired.
float )

The amplitude of the Gaussian envelope.
® For a‘halfgaussian’ pulse, there are three more parameters, detailing the half-Gaussian
envelope which is applied (in time-domain) to the pulse:

fl oat
The time at which the Gaussian envelope is at its maximum, expressed as a fraction of the
pulse length. For example, if the pulse is 0.012 seconds long and this parameter is 0.4, then
the envelope will be at its maximum 0.0048 seconds into the pulse. The sign of this value
determines whether the half-Gaussian falls of to the right (e.g., the envelope is zero to the left
of the maximum) or the left (e.g., the envelope is zero to the right of the maximum).

f1 oat
The width (standard deviation) of the pulse, expressed as a fraction of the pulse length. The

width can be much greater than 1, if agentle envelope is desired.
float )

The amplitude of the Gaussian envelope.
® For an ‘arbfreq’ pulse, there are three more parameters, detailing the modulation which isto be
applied to the pulse. The pulseis multiplied by A Sin(Wagst + ).

float,

f, the phase of the modulation.

float,
fars = Wars/(2p), the frequency of the modulation. Note that the 1445 will generate the
modulation signal at the frequency (CWAreq - fars), Since the digitally-synthesized 1445 signal
will be mixed with the CW frequency in the analog hardware. Also note that due to the

bandpass filters in the analog hardware, fars cannot be too far off from the Larmor frequency.
float )
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A, the amplitude of the modulation.

Qo(int,

The species to be addressed. The @ pulseisan arbitrary sinusoid, B sin(wpt + F), applied to the
indicated species.
float,
The duration of the @ pulse, in Larmor periods of the indicated spin.
float,
The phase of the pulse, F.
float,
The frequency of the pulse, fo = wp/(2p).
float,
The amplitude of the waveform, B.
D{‘'square’, ‘gaussian’, ‘halfgaussian’, ‘arbfreq'},

The type of pulse.

® For a‘sguare’ pulse, there are no further parameters. The @ pulse smply tips the indicated
species about the indicated arbitrary axis for the indicated time.

® For a‘gaussian’ pulse, there are three more parameters, detailing the Gaussian envelope which
is applied (in time-domain) to the pulse:

float,
The time at which the Gaussian envelope is at its maximum, expressed as a fraction of the
pulse length. For example, if the pulse is 0.012 seconds long and this parameter is 0.4, then
the envelope will be at its maximum 0.0048 seconds into the pulse.

float,

The width (standard deviation) of the pulse, expressed as a fraction of the pulse length. The

width can be much greater than 1, if agentle envelope is desired.
float )

The amplitude of the Gaussian envelope.
® For a‘hafgaussian’ pulse, there are three more parameters, detailing the half-Gaussian
envelope which is applied (in time-domain) to the pulse:

fl oat
The time at which the Gaussian envelopeis at its maximum, expressed as a fraction of the
pulse length. For example, if the pulse is 0.012 seconds long and this parameter is 0.4, then
the envelope will be at its maximum 0.0048 seconds into the pulse. The sign of this value
determines whether the half-Gaussian falls of to the right (e.g., the envelope is zero to the left
of the maximum) or the left (e.g., the envelope is zero to the right of the maximum).

f1 oat

The width (standard deviation) of the pulse, expressed as a fraction of the pulse length. The

width can be much greater than 1, if agentle envelope is desired.
float )

The amplitude of the Gaussian envelope.

® For an ‘arbfreq’ pulse, there are three more parameters, detailing the modulation which isto be
applied to the pulse. Note that this is the modulation of one arbitrarily chosen frequency by
another; these parameters can be switched with the appropriate ones at the beginning of the
command if desired. The pulseis multiplied by A Sin(wagst + ).

float,

f, the phase of the modulation.

float,
fars, the frequency of the modulation. Note that the 1445 will generate the modulation signal
at the frequency (CWIreq - fars), Since the digitally-synthesized signal will be mixed with the
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CW freguency. Also note that due to the bandpass filters in the analog hardware, fars cannot

be too far off the Larmor frequency.
float )

A, the amplitude of the modulation.

Qunai t ( fl oat,

The time to wait, in seconds.
D{ ‘decouple’},

If this parameter is ‘decoupl€e’, then the next parameter indicates the number of spinsto decouple,
and the remaining parameters list the spins to be decoupled. If this parameter is anything else, then
the next parameter indicates the number of spins not to decouple, and the remaining parameters
list the spins not to be decoupled. If using the option ni ni mal N Qdecoupl e, then it is recommended
that this parameter be ‘ decoupl€’, that the next parameter be 0, and that the remaining parameters
be omitted.

int,

The number of spinsto decouple (or, as noted in the previous paragraph, not to decouple).
)

int, int . . .

The spins to be decoupled (or, as noted in the above paragraph, not to be decoupled).

Q ead( float,

The time to read, in seconds. This length of time is constrained by the blocksize indicated in
arartd ZDe{‘ decoupl e’ },

If this parameter is ‘decoupl€e’, then the next parameter indicates the number of spins to decouple,
and the remaining parameters list the spins to be decoupled. If this parameter is anything else, then
the next parameter indicates the number of spins not to decouple, and the remaining parameters
list the spins not to be decoupled. If using the option ni ni mal N Qdecoupl e, then it is recommended
that this parameter be ‘ decoupl€’, that the next parameter be 0, and that the remaining parameters
be omitted.

int,

The number of spinsto decouple (or, as noted in the previous paragraph, not to decouple).
)

int, int, int . .

The spins to be decoupled (or, as noted in the above paragraph, not to be decoupled).

ynch( D{‘leftjustified , ‘rightjustified , ‘centered } )
Qendsynch()
These commands, when placed around lists of o, @/, and @ pulsesthat target different spin

species, can be used to synchronize the various pulses with respect to one another. The option
‘leftjustified’ meansthat al the framed pulses start at the same time (possibly ending at different
times). The option ‘rightjustified’ insures that all the framed pulses end at the same time. The
option ‘centered’ insures that the framed pulses centers all coincide.

g programsthat perform Grover’salgorithm

Here are the 27 programs that perform Grover’ s algorithm on two qubits, recognizing the
state|11> (e.g., the fourth state, in the lexicographic ordering). The molecule is *CHCI;,

chloroform.

As detailed in the section on temporal averaging, as well as in the simulation section, temporal
averaging requires three different perparations (labeled a-c below). Also, to retrieve dl the
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information from the density matrix requires nine different readout steps (labeled A-1 below).

Hence the 27 programs, which are represented below.

g code for the three different preparationsis as follows:
a - No preparation. Thus no code needed.

b-Permute(01® 10® 11 ® 01), see Appendix B for justification.

% code to acconplish preparation b
Qv (2,90, squar e)

Qnai t (0.002325581395349, dec, 0)
Q(1,-90, square)

(1, -90, square)

Qv (1,90, square)

Q(2,-90, square)

(2, -90, square)

Qv (1,90, squar e)
Qnai t (0. 002325581395349, dec, 0)
Q(2,-90, square)
(2, -90, square)
Qv (2,90, squar e)
Q(1,-90, square)
(1, -90, square)

c-Permute(01® 11® 10® 01).
% code to acconplish preparation c
Qv (1,90, squar e)

Qnai t (0. 002325581395349, dec, 0)
Q(2, -90, square)
(2, -90, square)
Q (2, 90, square)
Q(1,-90, square)
(1,-90, square)

Q (2,90, square)
Qnai t (0.002325581395349, dec, 0)
Q(1,-90, square)
(1, -90, square)
Qv (1,90, square)
Q(2,-90, square)
(2, -90, square)

g code for the nine different readout stepsis given below.

A - No rotation. Hence no code.

B - Rotate 1 by Y (p/2).
Q(1, 90, square)

C - Rotate 2 by Y (p/2).
Q (2, 90, square)

D - Rotate 1 by X(p/2).

etc.

E - Rotate 2 by X(p/2).

F - Rotate 1 and 2 each by X(p/2).

G - Rotate 1 and 2 each by Y (p/2).

H - Rotate 1 and 2 by X(p/2) and Y (p/2), respectively.
| - Rotate 1 and 2 by Y (p/2) and X(p/2), respectively.

The 27 programs therefore al look like this:

Qane(' g2| 11>ad')
anpl e(' 13CHCA 3')
Quersion('1.0 esb')
Qdecouplingstyle(' m nimal")

Munmgbs(2)
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species(1,'1H, 26.7510e7, 42574931.880108, 35000000, 1, 0.001, 5)
species(2,'13C, 6.7263e7, 10705040.871934, 8000000, 0.0159, 0.001, 5)

% insert appropriate preparation — one of a, b, or ¢

(1, 180, square)
Qv (1,90, squar e)
(2, 180, square)
Qv (2,90, squar e)

% Run the U = DC operation.
Qnai t (0. 002325581395349, dec, 0)
Q(2,-90, square)

(2,90, squar e)

Q(1,-90, square)

(1,90, squar e)

Qnai t (0. 002325581395349, dec, 0)
Q(2,-90, square)

(2, -90, square)

Q(1,-90, square)

(1, -90, square)

% insert appropriate readout step — one of A, B, C, D, E, F, G H or |

The ROS scripting language commands

The ROS scripting language is smple: it merely comprises commands telling ROS how to treat
certain lines of q code. That's all. There are three types of q code: prototype code, sweep code,
and search-range code. Thefirst type of codeisjust copied into the g file, and usualy includes
things like instrument settings, titles and filenames, etc. — athough these things can also be
searched/swept over, if so desired. Sweep code is used for brute-force searches, and for
extracting lots of data. COSY and other multidimensional experiments, for example, are easy to
implement using sweeps. Search-range code is for optimizing certain elements, and is useful for
shimming and adjusting Larmor frequencies/p-pulse lengths.

Rbegi n()
Rend()

Does nothing. Used to frame the ROS script.

Rver bose(on)
If verbose, the optimizing routines display al intermediate results, and other parts of the program
are generaly more verbose.

Rdel ay( int )
Wait a certain time (in milliseconds) after each QOS call, before continuing with the experiment.
This lets the spins relax back to thermal equilibrium and lets the electronics settle.

Rgospat h( Si[ 256] )

Location of the QOS program.
Rdat apat h( Sy 256] )

Where to put any acquired data. (In the examplesin Appendix F, these paths are explicitly
hardcoded in the program code, for clarity.)

Rpr ot obegi n()
Rpr ot oend()

These commands frame any g code which is to be copied in verbatim.
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Rrangebegin( S[8], float, float )
Rrangeend()

These commands declare a search variable specified by a character string up to 8 characters long,
with upper and lower bounds. Any use of the character string will be replaced by the appropriate
value of the search variable at each point in the search procedure.

Rsweepbegi n(S[ 8], float, float, float )
Rrangeend()

These commands declare a sweep variable specified by a character string up to 8 characters long,
with upper and lower bounds. The last parameter to rsweepbegi n IS the stepsize. Any use of the
character string will be replaced by the appropriate value of the sweep variable at each point in the
sweep procedure.

Rgoal ( D{ browse, nmxqg, extract } )
Rnet hod( D{ easy, sinplex, powell, conjgrad, phascorr, cwn} )

See V .1.ii. for descriptions of these commands.

Rt ol erance( float )

For search/optimization ROS scripts, this sets the fractional tolerance for determining
convergence.
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Appendix E: QOS, algorithms and selected code sequences

QOSflow

QOS loads the indicated q file, parsesit, and sends various initialization parameters to the 1445,
1437, Hitachi, and shim modules. QOS then calculates the durations and start-times for each
operation (synchronizing if necessary), synthesizes the voltage waveforms (normalizing to the
output voltage of the 1445), and sends the waveform data to the 1445. Then QOS converts the
pulse sequence into state-transition information to be used by the Hitachi microcontroller, which
gates the output of the *H and *3C transmit channels, as well as the pin diode switch state,
throughout the NMR experiment. Finally, QOS arms all the modules and starts the computation,
reading in the data at the end.

QOS comprises over 5000 lines of code, written in Visual Basic, C, and assembly. It runson a
PC, a Hitachi SH-1 microcontroller, and two HP VXI modules. Therefore athough it is
customary to present one’'s code in appendices to one' s thesis, thisis not done here. The code
would take up about 70 pages in 8-point Courier font! However, we give some salient examples
of the code in QOS in this section, enough to give aflavor of the program, and indicate some of
the structure behind q.

Parsing

The heart of QOS isthe parser. There exist tools like flex and bison, which generate code for
lexical scanning and parsing respectively, but the g language is ssimple enough that writing the
parser in straight C sufficed. Below is alarge chunk of the parser code; it gives aflavor of the
complexity that QOS acquired as g and the Mark | quantum computer matured. Code has been
modified to make it more instructive; also, code that is inessentia for understanding the structure
(or which has some function, but which is peripheral) has been omitted.

Theincludefile, par se. h:
/* PARSE.H esb */

#i f ndef PARSE_| NCLUDED
#defi ne PARSE_| NCLUDED

/* TYPES */

#defi ne PROTX 0

#defi ne PROTY 1
#define PWAIT 2

#defi ne PREAD 3

#def i ne PSEPA 4

#defi ne PROTP 5

#defi ne TSQUARE 0
#define TEBURP 1
#defi ne THALFGAU 2
#define TGAU 3

#defi ne TDECOUPLE 4
#defi ne TNODECOUPLE 5
#defi ne TARBFREQ 6
#define DM NI MAL O
#defi ne DVAXI VAL 1
#def i ne DSOFT 2
#define TSOLI TUDE 0
#define TLEFTJUSTIFIED 1
#defi ne TCENTERED 2
#define TRI GHTJUSTI FI ED 3
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typedef struct _Op {

struct _Op *prev;

struct _Op *next;

int nunber;

int operation;

int type;

doubl e fparani15];

doubl e tinme;

int iparan] MAXNUMQBS+1] ;

int typesynch;

int issegment;

struct _Segnent *segnent;

char command[ LI NESI ZE] ;
} Op;

typedef struct _Segnent {
struct _Segnent *prev,
struct _Segnent *next;
int nunber;
struct _Op *op;
int length;
char nare[ 11];
Vi Real 64 *volts;

} Segment;

typedef struct _Species {
struct _Species *prev;
struct _Species *next;
int nunber;
char nane[ 8] ;
doubl e gyronmag;
doubl e Larnor;
doubl e cw,
doubl e sensitivity;
doubl e scal e;
doubl e maxvol t;
doubl e durati on;
doubl e T1;
doubl e T2;

} Speci es;

/* PROCEDURES */

int LoadProgran(FlILE *progranfile);

int CreateSegnentsFromOps();

int CreateSequenceFronmSegnment sAndOps() ;

int GetLine(FILE *fileptr, char * line, int |ength);
Speci es * Get Speci e( Speci es * thespecies, int nunber);
doubl e AngMbd360(doubl e A);

#endi f

And for the main parsing program, par se. c:
/* NVRQC parser. */

/* | NCLUDES */

#i ncl ude "essence. h"

#i ncl ude "qgos. h"

#i ncl ude "drivel437. h"

#i ncl ude "drivel445. h"

#i ncl ude "hitachi.h"

#i ncl ude "parse.h"

/* VARI ABLES */

int Qmxvolt = 5.00;
char Qnane[ 8] ;

char Qsanpl e[ 8] ;

char Quersion[8];

int Qungbs = 0;

int Qdecouplingstyle = DM NI MAL;
Speci es * TheSpeci es;
Speci es * curspeci es;
doubl e **QJcoupl i ngs;
Op * TheOps;

O * curop;

Segnent * TheSegnents;
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Segment * cursegment;

char * segnentstring;

char * dwellstring;

Vi Real 64 * TheVolts;

Vi Real 64 * synchel enent ;

Vi Real 64 * TheWitVolts;

int numops = 0;

int nuntransitions = 0;

int nunsegnents = O;

doubl e curtime = 0;

doubl e franesize = 0, delayl1445 = 0, ringdowndel ay = 5e-6;
int nod1437 = 1, ext1437=0, npd1445 = 1, nodhitachi = 1, nmpdshinms = 0;
char nmessage[ 256] ;

char Tsquare[] = "square";

char Teburp[] = "eburp";

char Tgaussian[] = "gaussian";
char Thal fgau[] = "hal fgaussian";
char Tdecoupl e[] = "decouple";
char Tarbfreq[] = "arbfreq";

char coment[]="%;

char Dmnimal[] = "mniml";

char Dmaximal [] = "maximl";

char Mcont[] = "continuous";

char Mrig[] "triggered";

char Marn{] = "armed";

char Msimul [] = "sinmul ateonly";
char Mverb[] = "verbose";

char Mnstant[] = "instantreplay";
char Miotinstant[] = "notinstantreplay";
char ML437[]="1437";

char Mext1437[] = "ext1437";

char ML445[] ="1445";

char Mitachi[] = "hitachi";

char Mshins[] = "shins";

char Mlecimate[] = "deci mate";

char Mspecifytesla[] = "specifytesla";

char Mspecifyduration[] = "specifyduration";
char Mspeci fyJtines[] = "specifyJtines";

char Mspeci fyJcouplings[] = "specifyJcouplings";
char Mconpl ex[] = "conpl ex";

char Meal[] = "real";

char Moowerspectrun]{] = "powerspectrun';

char Minedomain[] = "timedonain";

char Mft[] = "fft";

char Meftjustified[] = "leftjustified";

char Mightjustified[] = "rightjustified";
char Mcentered[] = "centered";

#def i ne MPOAERSPECTRUM 1
#def i ne MIl MEDOVAI N 2

#defi ne MFFT 3
int dataform
int iM;

Vi Real 32 * thedata;

doubl e readdurati on;

I ong total nenory, readmenory, enptycel |l nenory, waittine, readnenory_bytes;
Real 64 centerfreq;

Int16 signal bandwi dth = 0;

Int16 voltrange = 9;

Int16 deci mat eon;

I nt 32 bl ocksi ze;

int Mlurationinsteadoftesla = 1;
int MlcouplingsinsteadofJtinmes = 0;
Vil nt16 dtype;

Vil nt16 resol ution;

int nunshinms = 4;

doubl e *shi ncurrents;

<

Vi
Vi
Vi
Vi

/* PROCEDURES */

int LoadProgran(FILE *progranfile) {
char 1ine[ Ll NESI ZE] ;
char whol el i ne[ LI NESI ZE] ;
int curlinenum
char delimters[] =" ,;(O)[]{} \t\n\r";
char stringdelimters[] = ""\n()";
char *token;

140



int i,j;

i nt gl obal synchst at e=0;
extern int Meplay;
extern int attenl, atten2;

logprint("Beginning to load program..\n");

logprint("Allocating menory...\n");
NewLi st (TheOps, Op);

Newli st (TheSegnents, Segnent);

NewLi st (TheSpeci es, Speci es);

curop = TheOps;

cursegnment = TheSegnents;

curspeci es = TheSpeci es;

logprint("Parsing program..\n");
i f(Merbose) {
I ogprint("Verbose: printing out program\n");
oo o A o) (R \n");
}
curlinenum = 0;
while (GetLine(progranfile, wholeline, LINESIZE-1)) {
if(Merbose) { sprintf(nessage, "| %", wholeline); logprint(nessage); }
strcpy(line, whol eline);
curl i nenumt+;
if(!(token = strtok(line, delimters)))

continue;

if(!(strcmp(token, "Qoegin")) || !(strcnmp(token, "Qend"))) {
continue;

} else if (token[0]==commrent[0]) ({
continue;

} else if (!(strcnp(token, "Qname"))) {
if(!(token = strtok(NULL, stringdelimters)))
| ogexit(-9);
strncpy( Qnane, token, 8);
continue;
} else if (!(strcnp(token, "Qsample"))) {
if(!(token = strtok(NULL, stringdelimters)))
| ogexit(-9);
strncpy( Qsanple, token, 8);
continue;
} else if (!(strcnp(token, "Quersion"))) {
if(!(token = strtok(NULL, stringdelimters)))
| ogexit(-9);
strncpy( Quersion, token, 8);
continue;
} else if (!(strcnp(token, "Qdecouplingstyle"))) {
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
if(strstr(Dmnimal, token)==Dm niml) ({
Qdecoupl i ngstyl e = DM NI MAL;
} else if(strstr(Dmaxi mal, token)==Dmaxinmal) {
Qdecoupl i ngstyl e = DMAXI MAL;

} else {
logprint("This decoupling style is not yet inplenmented.\n");
| ogexit(-10);

}

conti nue;

} else if (!(strcnp(token, "Qmde"))) {
if(!(token=strtok(NULL, delimters)))
| ogexit(-9);
if (strstr(Merb,token)==Mrerb) {
Mver bose = 1;
} else {
Mver bose = 0;

}

if(!(token=strtok(NULL, delimters)))
| ogexit(-9);

if (strstr(Msinmul,token)==Msimul) {
Msi nul ate = 1;

} else {
Msi nul at e= 0;

}
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[ more node settings ]

} else if (!(strcnp(token, "Qrumgbs"))) ({

if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);

sscanf( token, "9%d", &Qnungbs);

MakeTypeMat ri x( Qcoupl i ngs, double, Qnungbs, Qaungbs);

continue;

} else if (!(strcnp(token, "Qcouplings"))) {

for(i=0;i<Qungbs;i++)
for(j=0;j <ungbs;j++) {

if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9%f", & Qcouplings[ill[j]) );
}
continue;
} else if (!(strcnp(token, "Qspecies"))) {

if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);

sscanf( token, "9%@", &(curspecies->nunber));

i f(curspeci es->prev & (curspeci es->nunber <= curspeci es->prev->nunber) ) {
sprintf(nessage, "Nonnmonotonic nurmbers on line %.\n", curlinenum;
| ogprint (message) ;
| ogexit(-5);

}

i f (curspeci es->nunber > Qnungbs) {
sprintf(nessage, "Number too large on line %.\n", curlinenun);
| ogprint (message) ;
logexit(-7);

}
if(!(token = strtok(NULL, stringdelimters)))
| ogexit(-9);
strncpy(curspeci es->nane, token, 8);
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curspecies->gyroneg));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curspecies->Larnor));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curspecies->cw));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", & curspecies->sensitivity));
i f (Mdurationi nsteadoftesla) {
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curspecies->duration));
cur speci es->maxvolt = Qmaxvolt;
} else {
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curspecies->scale));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curspecies->maxvolt));

Ext endLi st (cur speci es, Speci es);
continue;
} else if (!(strcnp(token, "Qshins")))

if(!(token = strtok(NULL, delimters)))

| ogexit(-9);
sscanf( token, "9%d", &nunshins);
shincurrents = MakeTypeVect or (nunmshi nms, doubl e);
for(i=0;i<nunshins;i++) {

if(!(token = strtok(NULL, delimters)))

| ogexit(-9);
sscanf( token, "9%f", &(shincurrents[i]));

}

} else if (!(strcnmp(token, "@x"))) {
nunmops++;
cur op- >nunber = nunops;
curop->i ssegnent = 1;
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strncpy(curop->conmand, whol eline, LINESIZE);
curop- >operati on = PROTX;
curop- >t ypesynch = gl obal synchst at e;
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9%d", &(curop->iparani0]));
i f(curop->iparanf0] > Qnungbs) ({
sprintf(nessage, "Undefined number on line %.\n", curlinenun);
| ogprint (message) ;
| ogexit(-8);

}
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparani0]));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
if(strstr(Tsquare, token)==Tsquare) {
curop->type = TSQUARE;
} else if (strstr(Teburp, token)==Teburp) {
cur op->type = TEBURP;
logprint("Not inplemented.\n");
| ogexit(-50);
} else if (strstr(Tgaussi an, token)==Tgaussian) {
curop->type = TGAU,
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparan{5]));
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparan{6]));
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9f", &curop->fparani7]));
} else if (strstr(Thal fgau, token)==Thal fgau) ({
curop->type = THALFGAU;
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparan{5]));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparan{6]));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparani7]));
} else if (strstr(Tarbfreq,token)==Tarbfreq) {
cur op->type = TARBFREQ
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparan{5]));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparan{6]));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9f", &(curop->fparani7]));
} else {
sprintf(nessage, "Pul setype unknown on line %l.\n", curlinenun;
| ogprint (message) ;
cur op->type = TSQUARE;

}
Ext endLi st (curop, Op);
continue;

} else .

[ similar cases for comands Qy, Q ]

} else if(!(strcnp(token, "Qnait"))) {
nunmops++;
cur op- >nunber = nunops;
curop- >i ssegnent = 1;
strncpy(curop->conmand, whol eline, LINESIZE);
curop->operation = PWAIT;
if(!(token = strtok(NULL, delimiters)))
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| ogexit(-9);
sscanf( token, "9%f", &(curop->fparani0]));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
if(strstr(Tdecoupl e, token)==Tdecouple) {
cur op- >t ype = TDECOUPLE;
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%d", &(curop->iparani0]));
for(i=1;i<=curop->iparanf0];i++) {
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9%d", &(curop->iparanfi]));

} else {

cur op->type = TNODECOUPLE;
if(!(token = strtok(NULL, delimiters)))

| ogexit(-9);
sscanf( token, "9%d", &(curop->iparani0]));
for(i=1;i<=curop->iparanf0];i++) {

if(!(token = strtok(NULL, delimiters)))

| ogexit(-9);
sscanf( token, "9%d", &(curop->iparanfi]));

}
}
Ext endLi st (curop, Op);
conti nue;
} else if(!(strcnp(token, "Qead"))) {
NUNDPS++;

cur op- >nunber = nunops;
curop- >i ssegnent = 0;
strncpy(curop->conmand, whol eline, LINESIZE);
cur op- >operati on = PREAD,
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
sscanf( token, "9%f", &(curop->fparani0]));
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
if(strstr(Tdecoupl e, token)==Tdecouple) {
cur op->type = TDECOUPLE;
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%d", &(curop->iparani0]));
for(i=1;i<=curop->iparanf0];i++) {
if(!(token = strtok(NULL, delimters)))
| ogexit(-9);
sscanf( token, "9%d", &(curop->iparanfi]));

} else {

cur op->type = TNODECOUPLE;
if(!(token = strtok(NULL, delimiters)))

| ogexit(-9);
sscanf( token, "9%d", &(curop->iparani0]));
for(i=1;i<=curop->iparanf0];i++) {

if(!(token = strtok(NULL, delimters)))

| ogexit(-9);

sscanf( token, "9%d", &(curop->iparanfi]));

}

}
Ext endLi st (curop, Op);
continue;
} else if(!(strcmp(token, "Qynch"))) {
i f (gl obal synchstate) {
logprint("Can't nest synchronous sequences.\n");
| ogexi t (-150);

}
if(!(token = strtok(NULL, delimiters)))
| ogexit(-9);
if (strstr(Meftjustified, token)==Meftjustified) {
gl obal synchstate = TLEFTJUSTI FI ED;
} else if (strstr(Mentered, token)==Mentered) {
gl obal synchst ate = TCENTERED,;
} else if (strstr(Mightjustified, token)==Mightjustified) {
gl obal synchstate = TRI GHTJUSTI FI ED;
} else {



logprint("l don't understand your synchronicity argunment.\n");
| ogexi t (-155);
}
conti nue;
} else if(!(strcnp(token, "Qendsynch"))) {
i f(!global synchstate) {
logprint("Not in a synchronous sequence.\n");
| ogexit(-151);
}
if( (curop->prev->operation == PROTX) || (curop->prev->operation == PROTY)
|| (curop->prev->operati on == PROTP) ) ({
cur op- >prev- >t ypesynch*=-1;

}
gl obal synchst at e=TSOLI TUDE;
continue;
} else {
sprintf(nessage, "Unknown operand on line %.\n", curlinenum;
| ogprint (message) ;
| ogexit(-4);
}

}

i f(Merbose) {
oo ol o) A R \n");
I ogprint("Verbose: end of program\n");

sprintf(nessage, "Total %l instructions in program[%] [%] [%].\n", nunops,
rane, (sanple, Quersion);

| ogprint (message) ;

return O;

}

int CreateSegnmentsFromOps() {
Speci es * curspeci e;
int i,curtick,curindex, newsegnent,waitinitialized = 0, prevsegstart=0;
doubl e duration, freql445, mu, si gm, startsynch, | engt hsynch;
I ong nunticks;
char cursegstring[11];
int transindex,insynch=0;
Op * opsynchstart;
int synchstarttick, synchendtick, curstarti ndex;

logprint("Scheduling tines for the various operations, and adjusting phases...\n");
curtime = 0;
i f(Merbose) {
oo o o R e e R \n");
I ogprint ("Verbose: beginning scheduling.\n");
}
total menory = O;
nunt ransi ti ons=0;
for(curop = TheOps; curop->next; curop = curop->next) {
if(Merbose) { sprintf(nessage, "| %", curop->comand); |ogprint(nmessage); }
swi t ch(curop->operation) {
case PROTX
case PROTY:
case PROTP:
curspeci e = Get Speci e( TheSpeci es, curop->iparanf{0]);
i f(curop->operation ! = PROTP) ({
i f (AngMbd360( cur op- >f paran{ 0] ) >180) {
cur op- >f par anf 0] AngMbd360( cur op- >f parani 0] ) - 180;
cur op- >f par anf 2] (double) PI;
} else {
cur op- >f par anf 0]
cur op- >f par anf 2]

AngMbd360( cur op- >f parani 0] ) ;
0;

i f (Mdurationi nsteadoftesla) {
duration = curop->fparani0] *RAD_PER DEG*( cur speci e- >
duration / (PI/2) );

} else {
duration = curop->fparan0] *RAD_PER DEG (curspeci e->
scal e*cur speci e- >maxvol t *cur speci e- >gyr ormag) ;

} else {
duration = curop->fparan{0] * (1/curspecie->Larnor);

}
i f( curop->typesynch ) {
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i f (0==i nsynch) {
opsynchstart = curop;
i nsynch=1;
startsynch = curtinme;
| engt hsynch = durati on;

}
if (1==insynch) {
i f(duration>l engt hsynch)
| engt hsynch=dur ati on;
if( curop->typesynch < 0) {
i nsynch=2;
curop=opsynchstart->prev;
}

br eak;

}
if (2==insynch) {
curop->fparanf 12] = startsynch;
curop->f paranf 13] = | engt hsynch;
switch( (int)fabs(curop->typesynch)) {
case TLEFTJUSTI FI ED:
cur op- >f par anf 1] =dur ati on;
curop->tine = startsynch;
br eak;
case TCENTERED:
cur op- >f par anf 1] =dur ati on;
curop->tine = startsynch +
| engt hsynch/ 2-durati on/ 2;
br eak;
case TRI GHTJUSTI FI ED:
cur op- >f par anf 1] =dur ati on;
curop->tine = startsynch +
| engt hsynch-durati on;
br eak;
defaul t:
| ogexi t (-600);
br eak;

Hi t achi Ti mes[ nuntransiti ons] =
Hi tachi Ti me(curop->tine);
Hi t achi Pi ngat es[ nuntransitions++] =
Speci ePi ngat es[ cur speci e- >nunber - 1] ;
Hi tachi Ti mes[ nuntransi ti ons] =
Hi tachi Ti me(curop->time + curop->fparanf{1]);
Hi t achi Pi ngat es[ nuntransitions++] =
- Speci ePi ngat es[ cur speci e- >nunber - 1] ;
i f(curop->typesynch<0) {
i nsynch=0;
curtime += | engthsynch;
nunmticks = (int)(floor(outfreqg*l engthsynch));
total menory += numnti cks;

}

}
if (!curop->typesynch) {
i f(insynch) {
logprint("Error in synchronization.\n");
| ogexi t (-459);

curop->fparanf{ 1] = duration;
curop->tine = curtime;
Hi tachi Ti mes[ nuntransi tions] = Hitachi Ti me(curop->tine);
Hi t achi Pi ngat es[ nuntransitions++] =
Speci ePi ngat es[ cur speci e- >nunber - 1] ;
Hi tachi Ti mes[ nuntransi tions] = Hitachi Ti me(curop->tine +
curop->fparani1]);
Hi t achi Pi ngat es[ nuntransitions++] =
- Speci ePi ngat es[ cur speci e- >nunber - 1] ;
curtime += duration;
nunmticks = (int)(floor(outfreqg*duration));
total menory += numnti cks;
}
br eak;
case PWAIT:
i f(insynch) {
logprint("Can't have a wait in the mddle of a synch.\n");
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| ogexi t (-200);

if(!waitinitialized) {
curop->fparan]{ 1] = duration = curop->fparanf0];
curop->tine = curtime;
curtime += duration;
numticks = (int) (floor(outfreqg*duration));
TheWai tVolts = (Vi Real 64*) mal | oc(nunti cks*
(size_t) sizeof (ViReal 64));
} else {
duration = curop->fparanf0];
curop->tine = curtime;
curtime += duration;

Hi tachi Ti mes[ nuntransi tions] = Hitachi Ti me(curop->tine);
Hi t achi Pi ngat es[ nuntransi tions++] = Pl NGATE_WAI TSTATE;
waitinitialized = 1,
br eak;
case PREAD:
i f(insynch) {
logprint("Can't have a read in the mddle of a synch.\n");
| ogexit(-201);
}
curop->tine = curtime;
Hi tachi Ti mes[ nuntransi tions] = Hitachi Ti me(curop->tine);
Hi t achi Pi ngat es[ nuntransi ti ons++] = Pl NGATE_READSTATE;
br eak;
defaul t:
i f(2==i nsynch) {
i nsynch=0;

}

i f(1==i nsynch) {
i nsynch=2;
curop=opsynchstart->prev;

br eak;

}

}

i f(Merbose) {
oo ol o R e e R R \n");
I ogprint ("Verbose: scheduling and planni ng conplete.\n");

}

logprint("Creating voltages and digital waveform points...\n");
TheVolts = (Vi Real 64*)nalloc( total nenmory * (size_t) sizeof(ViReal 64));
curtick = 0;
curindex= 0;
waitinitialized = 0;
nunsegments = O;
newsegment = 1;
i nsynch=0;
for(curop=TheOps; curop->next; curop= curop->next) {
swi t ch(curop->operation) {

case PROTX

case PROTY:

case PROTP:

i f(newsegnent) {

i f(curindex>prevsegstart) {

AddSegnent ( & TheVol t s[ prevsegstart]),
curindex-prevsegstart, cursegstring);
prevsegstart = curindex;

}

nunsegnent s++;

curop->i ssegment = 1;

curop->segment = (Segment *)mall oc((size_t)sizeof (Segnment));

i f (PROTX==cur op- >oper ation) {
sprintf(curop->segnent->name, "X%", curtick);
sprintf(cursegstring, "X%", curtick);

} else if (PROTY==curop->operation) {
sprintf(curop->segnent->name, "Y%", curtick);
sprintf(cursegstring, "Y%", curtick);

} else if (PROTP==curop->operation) {
sprintf(curop->segnent->name, "P%", curtick);
sprintf(cursegstring, "P%", curtick);
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} else {
curop- >i ssegnent = 0;
}

curspeci e = Get Speci e( TheSpeci es, curop->iparanf{0]);
duration = curop->fparanf1];
i f (PROTP==cur op- >oper ation) {

freql445 = fabs(curop->fparanf9] - curspecie->cw);
} else {

freql445 = fabs(curspeci e->Larnor - curspecie->cw);

nunmticks = (int)(floor(outfreqg*duration));
if ( curop->typesynch ) {
i f(insynch==0) {
synchstarttick = (int)(floor(outfreqg*
curop->fparanf 12]));
synchendtick = (int)(floor(outfreq *
(curop- >f paranf 12] +cur op->f paran{ 13]))) - 1;
for(i=curindex;i<curindex + (synchendtick-
synchstarttick);i++) {
TheVol ts[i] =0;
}

insynch = 1;

}
i f(insynch==1) {
synchel enent = (Vi Real 64*) mal | oc( nunticks *
(size_t) sizeof (ViReal 64));
i f (PROTX==cur op- >oper ation) {
for(i=0;i<nunticks;i++){
synchel enent[i] = curspeci e->naxvol t*
sin(2*pi *freql445 * (i/outfreq + curop->tine) + curop->fparan{2]);

} else if (PROTY==curop->operation) {
for(i=0;i<nunticks;i++){
synchel enent[i] = curspeci e->nmaxvol t*
sin(2*pi *freql445 * (i/outfreq + curop->tine) + PI/2 + curop->fparan{2]);

} else if (PROTP==curop->operation) {
for(i=0;i<nunticks;i++){
synchel enent[i] = curop->fparani10]*
sin(2*pi *freql445 * (i/outfreq + curop->tine) + RAD PER DEG * curop->fparan{8]);
}

switch(curop->type) {
case TSQUARE:
br eak;
case TGAU:
mu=nunt i cks/ out f r eq* cur op- >f parani 5] ;
si gma=nunt i cks/ out freq*
cur op- >f paranf 6] ;
for(i=0;i<nunticks;i++){
synchel enent[i] *=
curop->fparan{ 7] * ONEOVERTHESQUAREROCOTOFTWOPI *1/sigma exp(-powi/outfreq-nmnu, 2)/2/signa/signm);
}

br eak;
case THALFGAU:
mu=f abs(nunti cks/ out freq*
cur op->f parani 5]);
sigma = nunticks/outfreq *
cur op- >f par anf 6] ;
transindex = (int) (nu*outfreq);
i f (curop->fparani5]>0) {
for(i=0;i<transindex;i++) {
synchel enent[i] = 0;

for(i=transindex;i<nunticks;
i++) {
synchel enent[i] *=
cur op- >f par anf 7] * ONEOVERTHESQUAREROOTOFTWOPI * 1/ si gma*exp( - pow(i/outfreq-nmu, )/2/sigma/sigm);

} else {
for(i=0;i<transindex;i++) {
synchel enent[i] *=
cur op- >f par anf 7] * ONEOVERTHESQUAREROOTOFTWOPI * 1/ si gma*exp( - pow(i/outfreq-mu, 2)/2/sigma/sigm);

for(i=transindex;i<nunticks;
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i ++)
synchel enent[i] = 0;

}

br eak;
case TARBFREQ
freql445 = fabs(curop->fparani6]-
cur speci e->cw) ;
for(i=0;i<nunticks;i++) {
synchel enent[i] *=
curop->f parani 7] *si n(2*pi *freql445*(i/outfreq + curop->time) + RAD_PER DEG‘curop->fparan{5]);
}

br eak;
}
curstartindex = curindex + floor(outfreq *
curop->tine) - synchstarttick;
for(i=curstartindex;
i <curindex + floor(outfreq * curop->time) -
synchstarttick + numticks;
i++) {
TheVol ts[i] += synchel enent[i-curstartindex];

free(synchel enent);
i f(curop->typesynch <0) {
insynch = 0;
curti me=cur op- >f paranf 12] +cur op- >f par anf 13] ;
curtick=synchendti ck;
curindex += synchendtick - synchstarttick;

} else {
i f (PROTX==cur op- >oper ation) {

[ do same stuff for non-synchroni zed case ]

br eak;
case PWAIT:
if('waitinitialized) {
i f(curindex>prevsegstart) {
AddSegnent ( & TheVol t s[ prevsegstart]),
curindex-prevsegstart, cursegstring);
prevsegstart = curindex;
}
nunsegnent s++;
curop- >i ssegnent = 1;
curop- >segnent = (Segnent*)nal |l oc((size_t)sizeof (Segment));
sprintf(curop->segnent->name, "WAIT");
sprintf(cursegstring, "WAIT");
duration = curop->fparanf1];
enptycel | nenory =24;
wai ttinme = nunticks = (int)(floor(outfreqg*duration));
enptycel | nenory = enptycel |l nenory - (enptycell menory % 24);
waittine = waittime - (waittinme % 24);
nunmticks = nunticks - (nunticks % 24);
for(i=0;i<24;i++){
TheWaitVolts[i] = 0;

}
AddSegnent (TheWai t Vol ts, 24, cursegstring);
waitinitialized =1,
} else {
i f(curindex>prevsegstart) {
AddSegnent ( & TheVol t s[ prevsegstart]),
curindex-prevsegstart, cursegstring);
prevsegstart = curindex;
}
cur op- >segnent =( Segrment *) mal | oc( (size_t) sizeof (Segnment));
sprintf(curop->segnment->name, "WAIT");
sprintf(cursegstring, "WAIT");
duration = curop->fparanf1];
numt i cks (int)(floor(outfreqg*duration));

}

curtick += numticks;
newsegment = 1;
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}

br eak;
case PREAD:
i f(curindex>prevsegstart) {
AddSegnent ( & TheVol t s[ prevsegstart]),
curindex-prevsegstart, cursegstring);
prevsegstart = curindex;
}
duration = curop->fparanf0];
readduration = duration;
i nfreq=(si gnal bandwi dt h) ?i nfreq/ pow 2, si gnal bandwi dt h-1):infreq;
nunmticks = (int)(floor(infreg*duration));
readnenory = nunticks = pow(2, floor(log(nunticks)/log(2))+1);
readnenory_bytes = nunticks * ((dtype==HPE1437_COWPLEX)?2:1 );
i f(readnmenory_bytes >bl ocksize) {
| ogprint ("Readnenorybytes is |arger than bl ocksize —
can read in at nost one block!\n");
| ogexit(-1305);

}
t hedat a=( Vi Real 32*) nal | oc(readmenory_byt es*(si zeof (Vi Real 32)));
br eak;
defaul t:
logprint("Invalid segment error.\n");
br eak;

}

i f(curindex>prevsegstart) {
AddSegnent (& TheVol t s[ prevsegstart]), curindex-prevsegstart, cursegstring);
prevsegstart = curindex;

}

| ogprint("Done creating voltages and digital waveform points...\n");

sprintf(nessage, "Allocated %d nmenory cells, %d zeros, total %4d bytes, %d enpty.\n",
total menory, enptycel | nenory, t ot al nenory*si zeof (Vi Real 64), enpt ycel | nenory*si zeof (Vi
Real 64));

| ogprint (message) ;

I ogprint("Done creating the read menory.\n");

sprintf(nessage, "All ocated% d,total % d bytes.\n", readnenory, readmenor y*si zeof (Vi Real 32));

| ogprint (message) ;

return O;

int CreateSequenceFronSegnent sAndOps() {

}

[ wites the parsed information into a string for the 1445 — not very instructive ]

int GetLine(FILE *fileptr, char * line, int length) {

}

int len;

line[0] ="'\0";

if (fgets(line, length, fileptr)) {
len = strlen(line);
if (line[len-1] == "\n")

line[len-1] = "\0";

return 1;

} else return O;

Speci es * Get Speci e(Speci es * thespecies, int nunber) {

}

Speci es * aspeci e;

for (aspeci e=t hespeci es; aspeci e->next; aspeci e = aspeci e->next) {
i f (aspeci e- >nunber == nunber)
br eak;

}

return aspecie;

doubl e Angvbd360(doubl e A) {

150

double a = A

whi | e(a>=360)
a- =360;

whi | e(a<0. 0)
a+=360;



return a;

Hitachi Microcontroller Code

We used the Hitachi microcontroller in a Low-Cost SH-1 Evaluation Board. It contained an
SH7032 Hitachi microcontroller, an EPROM, UARTS/serial ports for communication with a host
PC, and an LED. The convoluted code that appearsin lines 109-118 of the following C program
was designed so that each path through the logic took equal time — an important criterion since
we wanted the Hitachi to act as aworthy clock. sci _transnit, sa _receive, and sc _init are serid
data transmission protocols due to Rehmi Post. The program flow (as controlled by a small
monitor program running on the SH7032) isasfollows: enter -> copy_stuff -> ny_main -> exit.

The cache.cfile.
/* H TACH program Copies itself into the onchip cache
* for enhanced speed, then executes. E. Boyden. */

/* PORTS * [/

#define PADR (*(volatile short int *)(0x5ffffc0))

#define PBDR (*(volatile short int *)(0x5ffffc2))

#define PAIOR (*(volatile short int *)(0x5ffffc4))

#define PBIOR (*(volatile short int *)(Ox5ffffc6))

#define PACRL (*(volatile short int *)(Ox5ffffc8))

#define PACR2 (*(volatile short int *)(0x5ffffca))

#define PBCRL (*(volatile short int *)(0x5ffffcc))

#define PBCR2 (*(volatile short int *)(Ox5ffffce))

#define delay_cycles(x) ({int __i; for (__i=0; __i < (x) ; __i++);})

#defi ne PI N_GATE 0xE100 /*pin J5-20, 19, 18,13; port PA15,14,13,8 1110 0001 0000 0000 */

#defi ne ATTENL_PI NS Ox2CDF /*pin J4-14, 12,11, 8-1; portPB13, 11,10, 7-0 0010 1100 1101 1111*/

#defi ne ATTEN2_PI NSJ4 0x0020 /* pin J4-6; port PB5. 0000 0000 0010 0000 */

#def i ne ATTEN2_PI NSJ5 Ox1E8F /* J5-17, 16, 15, 14,12, 8-5; PA12,11,10,9,7,3,2,1,0 ->
0001 1110 1000 1111*/

#define TRI G 1445 0x8000 /* on port B, 15*/

#define TRI G 1437 0x4000 /* PB14 */

#define LED 0x8000 /*PB15 - same as 1445 trigger. */

#define PBCRL_INIT Ox030F /* 0000 0011 0000 1111 */

#defi ne PBCR2_I NI T 0x0000 /* 0000 0000 0000 0000 */

#define PACRL_INIT 0x0000 /* 0O */

#define PACR2_INIT Ox3F00 /* 0011 1111 0000 0000 */

#def i ne OUTPUTA_STUFF (PI N_GATE | ATTEN2_PI NSJ5 )

#def i ne OUTPUTB_STUFF (ATTEN1_PINS | ATTEN2_PINSJ4 | TRI G 1445 | TRI G 1437 | LED)

#def i ne VECTORLENGTH 200

| ong T[ VECTORLENGTH]; /* transition tines */

short int R[VECTORLENGTH];/* pin-gate val ues */

#define | NST 100000

int ny_min() {

short int i=0,j=0, loop=1, initloop=1, length = O;
short int attenuatorl, attenuator2, _a,__b;
char tenp[11];

SCl_init();

SCl put s(" Pul se Programrer 2.0 08/98\n\r");

PBI OR | = QUTPUTB_STUFF; /* all output */

PBCR1 & PBCRL_INIT; /* 0101010101010101 --> turn off reserved/tim ng output */
PBCR2 & PBCR2_INIT; /* 0101010101010101 --> really does nothing */

PAI OR | = QUTPUTA_STUFF; /* all output */

PACRL &= PACRL_INT;

PACR2 &= PACR2_INT;

PBDR &= ~(TRI G 1445 | TRI G 1437);

/ *Command hi er ar chy

commands are:

- 1 - start pul se sequence

- 2 - attenuator data for TX board
- 3 - attenuator data for RX board
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- 4 - pulse programdata */
whi | e(initloop)
PBDR &= ~(TRI G 1445 | TRI G 1437);
SCl put s(" Command?\n\r");
SCl get s(tenp);

i = atoi(tenp);

switch(i) {

case 1 :
SClputs("Starting step 1...\n\r");
initloop = 0;

br eak;
case 2 :
SCl puts("Enter bits 1-10.\n\r");
SCl get s(tenp);
temp[5]="\0"; /* this depends on carriage returns */
attenuatorl = atoi (tenp);
PBDR &= (~ATTENL1_PINS | attenuatorl);
PBDR | = (ATTENL_PINS & attenuatorl);
br eak;
case 3 :
SCl puts("Enter bits 11-20.\n\r");
SCl get s(tenp);
temp[5]="\0";
attenuator2 = atoi (tenp);
PADR &= (~ATTEN2_PINSJ5 | attenuator?2);
PADR | = (ATTEN2_PI NSJ5 & attenuator?2);
PBDR &= (~ATTEN2_PINSJ4 | attenuator2);
PBDR | = (ATTEN2_PI NSJ4 & attenuator?2);
br eak;
case 4 :
SCl puts("Enter length (up to 400)\n\r");
SCl get s(tenp);
temp[5]="\0";
SCl put s("Reading "); SClputs(tenp);
Il ength = atoi (tenp);
SCl puts("Enter tines and values.\n\r");
for (i=0; i < length; i++) {
SCl get s(tenp);
tenp[10]="\0"; /* carriage returns */
T[i] = atol (tenp);
SCl get s(tenp);
temp[5]="\0";
R[i] = atoi(tenp);
SCl puts("Press enter to start.\n\r");
SCl get s(tenp);
temp[10]="\0";
PBDR | = TRI G_1445;
for(__a=0; __a<length;__a++) {
__b = PADR
PADR = (__b | (PINGATE & R[__a])) & (~PIN.GATE | R[__a]);
__b = PADR
{
int __bb;
for(__bb=0; __bb<T[__a];__bb++);
}
}
PBDR | = TRI G_1437;
br eak;
case 5:

PBDR | = TRI G_1445;
for(__a=0; __a<length;__a++) {

b = PADR
PADR = (_b | (PINGATE & R__a])) & (~PIN.GATE | R__a]);
b = PADR
{ int __bb;
for(__bb=0; __bb<T[__a];__bb++);
}

}
PBDR | = TRI G_1437;
del ay_cycl es(100000); /* one led's worth */
br eak;
defaul t:
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SCl put s("[ Unrecogni zed conmand]\n\r");
br eak;

}
SClputs (char *s) { while (s & *s) { SCl_transmt (*s++); } }

SClgets (char *s) {

char c;
do { c=SCl _receive();
*s=c;
s++; } while ( (c !="\r") & (c !="\n") );
}
int exit() {
agai n:
asm ("sl eep");
got o agai n;
}

The LD file (for linking the program with a consistent memory map), due to Rehmi Post.
OUTPUT_FORMAT( " synbol srec")

OUTPUT_ARCH( sh)

INPUT(libma libc.a libgcc.a libc.a libgcc. a)

MEMORY
{
rom ORI G N = 0x00000000, LENGTH = 64k
ram : ORIG N = 0x0A000000, LENGTH = 128k
cache : ORIG N = 0xOF000000, LENGTH = 8k
}
SECTI ONS
vect _seg :
*(.vect);
} > rom
__vect = ADDR(vect _seq);
__vect_end = ADDR(vect_seg) + 1024;

vrom end = ((SI ZEOF(vect_seg) + 1023) & ~ 1023);
cache_text_seg : AT(vrom end)

cache. o(.text);
} > cache

__cache_text = ABSOLUTE(ADDR(cache_text_seg));
__cache_text_end = ((ABSOLUTE( ADDR(cache_t ext _seg)) + SIZEOF(cache_text_seg) + 255) & ~ (255));

ctext_end = vromend + ((SIZEOF(cache_text_seg) + 255) & ~ 255);
romtext_seg ctext_end : AT(ctext_end)

{
CREATE_OBJECT_SYMBOLS;

*(Linit);

*(.text);

*(.strings);
} > rom

__romtext = ABSOLUTE(ADDR(romtext_seqg));
__romtext_end = ((ABSOLUTE( ADDR(rom text_seg)) + SIZEOF(rom text_seg) + 255) & ~ (255));

rtext _end = ctext_end + ((SIZEOF(romtext_seg) + 255) & ~ 255);
data_seg : AT(rtext_end)

*(.data);
} > cache

__data = ABSOLUTE( ADDR( dat a_seg));
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__data_end = ((ABSOLUTE( ADDR(dat a_seg)) + SIZEOF(data_seg) + 255) & ~ (255));
data_end = rtext_end + ((SIZEOF(data_seg) + 255) & ~ 255);

uninit_data_seg : AT(data_end)

{
*(.bss);
* ( COMMON) ;
_end = . ;

} > cache

_uninit_data = ABSOLUTE(ADDR(uninit_data_seg));

__uninit_data_end = ABSOLUTE( ADDR(uni nit_data_seg)) + SlIZEOF(uninit_data_seg);

stack_seg OxOFOO01ff 4:

*(.stack);
} > cache
__stack = ADDR(stack_seg);
}

Theinit.c file, due to Rehmi Post.
/* SETUP PORTS */

#define PADR (*(volatile short
#define PBDR (*(volatile short
#define PAIOR (*(volatile short int *)(0x5ffffc4))
#define PBIOR (*(volatile short int *)(Ox5ffffc6))

int *)(0x5ffffc0))
i
i
i
#define PACRL (*(volatile short int *)(Ox5ffffc8))
i
i
i
i

nt *)(Ox5ffffc2))

#define PACR2 (*(volatile short int *)(0x5ffffca))

#define PBCRL (*(volatile short int *)(0x5ffffcc))

#define PBCR2 (*(volatile short int *)(Ox5ffffce))

#define delay_cycles(x) ({int __i; for (__i=0; __i < (x) ; __i++);})
#defi ne | NST 100000

int enter ()

PBI OR | = 0x8000;
PBCRL &= Ox7fff;
PBDR | = 0x8000;
del ay_cycl es(1 NST);
PBI OR | = 0x8000;
PBCRL &= Ox7fff;
PBDR &= Ox7fff;
del ay_cycl es(1 NST);

copy_stuff ();
my_main ();
}

typedef unsigned | ong ULONG
copy_stuff ()
{

ULONG *src;
ULONG *dst ;
ULONG *end;
extern ULONG _vect_end, _cache_text, _cache_text_end;

src = & vect_end;

dst = & cache_text;

end = & cache_text_end;
while (dst < end) {

*dst ++ = *src++;

}
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Appendix F: ROS, algorithms and selected code sequences

Optimization methods

For the goal maxq, there are three different offered methods, si npl ex, powel 1, @d conj grad. Each of
theseis briefly described below. References for this section are (Ger98) (Pre). Codeinthe C
language is given in (Pre) for all of these procedures.

The Nelder-Mead downhill simplex method, si npl ex

The downhill smplex method minimizes afunction f( X) over a d-dimensional space X which can
be described by a simplex —that is, the convex volumetric hull of acomplete graphond + 1
points. Simplicesin 2 and 3 dimensions correspond to triangles and tetrahedra, respectively. In
each step of the Nelder-Mead agorithm, the simplex is reflected, contracted, or expanded,
depending on the values that f( X ) takes on the corners; the most common step in the Nelder-
Mead agorithm is to take the vertex X at which f( X) is amaximum, and move it to some X’
such that f(X’) < f(X). The ssimplex is commonly compared to an amoeba 0ozing to the minimal
point. It is heavy on function evaluations, but is sometimes useful if nothing else seems to work.

Note that the ROS scripting language specifies the search space in terms of upper and lower
bounds —that is, a scaled hypercube. Since the si npi ex agorithm requires a search space in the
form of asmplicia complex, it automatically picks a simplex containing the search space
specified by the ROS script. The wasted volume caused by this automatic-simplex picking is linear
in the volume of the specified hypercubic search space.

The Powell Direction Set method, pove |

Many d-dimensiona minimzation algorithms use, as a subroutine, a line-minimization agorithm
(which, given afunction f( X), finds the point X . onalineL suchthat f(X ) <f(y) foraly on
L). The line-minimization method can be implemented recursively, evaluating f( X ) at several
points on aline, then increasing the resolution in the part of the line that seems to be the most
promising, and repeating the procedure. Powell’ s method gives a sequence of vectorsin different
directions, along which f( X ) isline-minimized. The directions satisfy a conjugacy requirement,
which makes sure that line-minimizations don’t interfere with one another.

The line-minimization routine comprises the mbr ak, brent, @nd 1 i nni n routines from Numerical
Recipes.

Conjugate gradient descent, conj grad

Conjugate gradient descent is avariant of the familiar gradient descent algorithm, which finds the
minimum of afunction f( X) by moving downhill, e.g. by always following the vector - Nf (X)
until reaching aminimum (e.g., a point where the gradient Nf (X) is zero). Conjugate gradient
descent tries to prevent successive iterations of the gradient descent algorithm from interfering
with one another, by making each iteration move in a different direction from the previous one. In
particular, one can try and move down the component of the gradient which is orthogonal to the
direction moved in the last iteration. This can prevent, for example, a minimization method from
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volleying back and forth across a narrow valley.

Since the function we want to minimize, the Q function, is not differentiable, we must numericaly
estimate the derivative. We do this by a variant of a method detailed in (Pre): to find the
derivative of afunction f(X) along some coordinate x;,

ﬂzlim f(x+h)- f(x)

ﬂxi h® 0 h
one can calculate the finite-differences for various values of h, and extrapolate h® 0 using a
polynomial model. Thisisafairly economical way to compute the gradient of afunction, and
makes conjugate gradient methods viable.

Comparison

Quite briefly, we can compare the performance of these three optimization algorithms on afour-
dimensiona space (X, y, z, w) with some dummy functions (note: the GMW el ectromagnet manual
suggests that the inhomogeneity in the magnetic field is fairly smooth, even parabolic). The table
lists the number of function evauations required to find the minimum of each function, with 1%
tolerance:

f(X)® | (x+y+z+w | (€&+aw)° | (Sn(x)cos(y) +z+w)* | (Sn(x)cos(y) + 2w)°
st mpl ex 77 314 210 210
powel | 120 154 118 118
conj gr ad 119 121 123 o1

Asisclear from the table, evaluating the performance of such a function can be difficult to do
analyticaly. Preliminary trials on the real NMR spectrometer are inconclusive.

The quality (Q function)

The Q function is described by the code given below (which has been modified for readability). |
assume that the time-domain data coming back from the HPE1437 is complex, not real. nr gnin
and f our 1 are Numerical Recipes routines for performing Levenberg-Marquardt function fitting
and the complex Fast Fourier Transform, respectively. Code for quri tedi t Run IS given after the
description of qual i ty; this mysterious-sounding procedure synthesizes the q program to be passed
to QOS. (Roughly, the name qwi teJi t Run IS derived from salient letters from the not-very-
eloquent phrase ‘ g program writeout, with just-in-time compilation and running.’) vector, matri x,
free_vector, and free_matri x &e Numerical Recipes primitives for allocating and deallocating
memory structures.

#define freqout(i) ( (infreq)*( ((float)(i)>(float)nsanp/2) ? \
(-1 + (float)(i)/(float)nsamp) : \
(0 + (float)(i)/(float)nsanmp) ) )
float quality(float *point) {
int dtype,i,nsanp,sanityiters;
float infreq;
static int counts=0;
static int calledal ready=0;
static float * thedata;
static float * thespectrum
char outfilenane[] = “c:\\users\\nnr\\qgos\\data\\grover.dat”;
FILE * datafile;
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fl oat DCof fsetR, DCof fsetl;

fl oat bw, peakfreq, peakval, sd, background;
i nt peaki ndex;

float widthptR w dthptlL;

float a, w0, theta, A

/* Wite the q programand run QOS. */
QNiteditRun(point);

/* Acquire data. */

datafile = fopen(outfilename, "r");

fscanf(datafile, "%\ n", &dtype);

fscanf(datafile, "%\n", &bw);

infreq = (bw==0) ? 20000000 : 20000000/ pow( 2, bw 1);

fscanf(datafile, "%\ n", &nsanp);

if(!calledalready) {
thedata = (float*)malloc( 2* nsanp * (size_t) sizeof(float));
thespectrum = (float*)malloc(nsanp * (size_t) sizeof(float));
cal | edal ready = 1;

}

for(i=0;i<2* nsanp;i++) fscanf(datafile, "% \n", & thedatal[i]));

fclose(datafile);

/* Rermove the DC of fset. */
DCof f set R = DCof fsetl = O;
for(i=0;i<nsanp;i++) {
DCof f set R += t hedat a[ 2*i ] ;
DCof f set| += thedata[ 2*i +1] ;

}
DCof fsetR /= (fl oat)nsanp; DCoffsetl /= (float)nsanp;
for(i=0;i<nsanp;i++) {
thedata[2*i] -= DCoffsetR;
t hedat a[ 2*i +1] - = DCof f set | ;
}

/* Nurmerical recipes Fast Fourier Transform */
fourl(thedata-1, nsanp, 1);

/* Compute the power-spectral density - naive nethod */
for(i=0;i<nsanp;i++)

thespectrunfi] = thedata[2*i]*thedata[2*i] + thedata[2*i+1]*thedata[ 2*i +1];

/* Performlinear approxinmation before curve-fitting */
peakfreq = O;
peaki ndex = O0;
background = 0;
for(i=0;i<nsanp;i++)
i f(thespectrunii]>thespectrunipeaki ndex]) peakindex = i;
background += thespectrun{i];

}
background /= (fl oat)nsanp;
peakfreq = freqout (peaki ndex);
peakval = thespectrunipeaki ndex];
sd = sqrt(background);
for (i =peaki ndex; i <nsanp; i ++)
i f(thespectrunii] <(peakval -background)/?2)
wi dt hpt R = ( (peakval - background)/2 - thespectrunfi-1]) /
(thespectrun{i] - thespectrunfi-1]) + (i-1);
br eak;

}

for (i =peaki ndex;i>=0;i--)
i f(thespectrunii]<(peakval - background)/ 2)
wi dthptL = ( (peakval -background)/2 - thespectrunii]) /
(thespectrun{i+1] - thespectrunf{i]) + i;
br eak;

) }
peakfreq = (freqout (w dthptR) + freqout (w dthptL) )/2;

/* Since this part uses Nunerical Recipes conventions, we block it off */

{
int count, lo, hi, npts,iparan5];
float *x,*y,*sig, *param **covar, **al pha, chisq, ol dchi sq, al anda=-1;
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a=fabs( infreq * ( ( (widthptR>(float)nsanp/2) ? (- nsanp + widthptR)
(widthptR) ) - ( (widthptL>(float)nsanp/2) ?
(- nsamp + widthptL) : (widthptL) ) )/2/(float)nsanp );
wO=sqrt (peakfreq*peakfreq+a*a) * ((peakfreq>0)?1l:-1);
t het a=0;
A=a*a*peakval / P / Pl ;

param = vector (1, 4);
covar = matrix(1,4,1,4);
al pha = matrix(1,4,1,4);

paran{ 1] = ;

paranf 2] = a;

paran{ 3] = theta;

paranf4] = A

iparanf1l] = iparanf2] = iparan{3] = iparanf4] = 1;

lo max( peaki ndex - (int)(5*a/infreq*(float)nsanp), 0);

hi = m n(peaki ndex + (int)(5*a/infreq*(float)nsanmp), (fl oat)nsanp);
npts = hi-lo+1;

x = vector (1, npts);

y = vector(1,npts);

sig = vector(1,npts);

for(i=1;i<=npts;i++) {

x[i] = freqout(lo+i);

y[i] = thespectrunilo+i];

sig[i]=sd;

}
al anda=-1;
sanityiters=0;
whi | e(sani tyiters++<1000) {
nrqmi n(x,y, sig, npts, param i param 4, covar, al pha, &hi sq, Q m &al anda) ;
if (fabs(chisg-oldchisq) < le-6) {
if((++count) > 5) break;
}

el se count = 0;
ol dchi sq = chi sq;

}

al anda = 0;

nrqmi n(x, Yy, sig, npts, param i param 4, covar, al pha, &hi sq, Q m &al anda) ;
w0 = parani1];

a = paranf2];
theta = parani 3];
A = paranf4];

free_vector(x, 1, npts);

free_vector(y, 1, npts);

free_vector(sig,1,npts);

free_vector(param1l,4);

free_matrix(covar,1,4,1,4);

free_matrix(al pha, 1,4,1,4);
}

return Q

}

And now for qwi tedi TrRun, Which writes out a q file corresponding to the current parameters being
optimized, then calls QOS to execute the g file. It'simportant to know that Thesweeps IS an array

of sweep Structures,

typedef struct _sweep {
char nane[ 8] ;
doubl e begi n;
doubl e end;
doubl e step;
int nunst eps;
doubl e curval ;

} Sweep;

Name of the variable to be swept. */

Lower bound. */

Upper bound. */

If just browsing or extracting, */
then there is a stepsize. */

/*
/*
/*
/*
/*
/* Current value */

int QWiteditRun(float *point) {
int i, curline;
char whol el i ne[ LI NESI ZE], 1ine[ LI NESIZE], new i ne[ LI NESI ZE] ;
char * token, *strinci dence, *endl astinci dence, *new inept;
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char qospath[] = “c:\\users\\nnr\\qgos\\(qos. exe”;
char gfilenanme[] = “c:\\users\\nnr\\qos\\grover.q";
char outfilenanme[] = “c:\\users\\nnr\\qgos\\data\\grover.dat”;

for(i=0;i<dinmension;i++)
TheSweeps[i].curval = point[i];

/* Open the output q file. */

if ( (gfile = fopen(gfilenanme, "w')) == NULL) {
sprintf(nessage,"ros error\nThe gfile % could not be opened.\n", qfil enane);
return —1;

for(curline = 0; curline<nunines;curline++) {
strcpy(whol el i ne, TheProgranf{curline]);
strcpy(line, whol eline);
token = strtok(line, delimters);
if (token[0]=="R) continue; /*Skip all ROS script lines-look only for q lines. */
for (cur sweep=0; cur sweep<nunsweeps; cur sweep++) {
whi |l e(strincidence = strstr(whol eline, TheSweeps[cursweep].nanme)) {
endl astinci dence = whol el i ne;
new i nept = new i ne;
strncpy(new i nept, endl astincidence,
strinci dence-endl asti nci dence) ;
new i nept += strincidence-endl asti nci dence;
sprintf(new inept,"%f", TheSweeps[cursweep].curval);
new i nept += strlen(new inept);

endl asti nci dence = strincidence + strlen(TheSweeps[cursweep].nane);
strcpy(new i nept, endl astincidence);
strcpy(whol el i ne, newine);

} }
fprintf(gfile,"%\n", wholeline);
fclose(qfile);

/* Now call QOS in order to execute the newmy */

printf("Calling qos..\n");

sprintf(nessage, "% % %", qospath, gfilenanme, outfil enane);

Sl eep(Rdel ay); /* The delay to wate before executing the q programvia QOS. */
syst em( message) ;

return O;

Extraction methods

For the goal extract, the phase correction algorithm can be used to apply alinear phase
correction. We start off by performing the Levenberg-Marquardt fit as shown in the quality (Q)
function qual i ty (in the previous section), but instead of just returning q at the end, we perform a
linear-phase fitting in the vicinity of the peak. We use the Numerical Recipestit command, which
does alinear fit to a dataset. We replace thereturn @ command by the following block:

{
int 1o, hi;
char corrdatafile[]="c:\\users\\nm\\qgos\\data\\phasecorrected. dat”;

peaki ndex = (w0<0) ? (nsanmp*(1 + wO/infreq)) : (nsamp*(w0/infreq));

t hephases = (float*)nmalloc( nsamp * (size_t)sizeof(float) );
t hedat aphasecorr = (float*)malloc( 2 * nsamp * (size_t)sizeof(float) );

for(i=0;i<nsanp;i++)
thephases[i] = atan(thedata[2*i +1]/thedatal2*i]);

/* If we are renpving the phase offset entirely, e.g. making it a sinusoid (if
we're just subtracting off a specified phase offset, skip this part), then: */
i f (SREAL==subnet hod) {
| o=hi =peaki ndex;
for (i =peaki ndex; i >max( peaki ndex-50,0);i--) {
if ( fabs(thephases[i] - thephases[i-1])<2)
lo =1i;
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el se
br eak;

for (i =peaki ndex; i <(m n( peaki ndex+50, nsanp-1));i++) {
if ( fabs(thephases[i+1] - thephases[i])<2 )
hi =1i;
el se
br eak;

}

/* Performa linear fit. This code uses Nunmerical Recipes conventions and
is therefore bl ocked off. */
{

float *x,*y, *sig,siga,sigb,chi2q;
int ndata;

ndata = hi-|o+1;

x = vector (1, ndata);

y = vector(1,ndata);

sig = vector(1,ndata);

for(i=1;i<=ndata;i++) {
x[i] = freqout(lo+i);
y[i] = thephases[lo+i];
sig[i] = 0.0314;

}
fit(x,y,ndata,sig,O0, &hi0, &hi 1, &si ga, &si gb, &chi 2, &q) ;

free_vector(x, 1, ndata);
free_vector(y, 1, ndata);
free_vector(sig,1, ndata);

}

/* Now subtract off the phase that was fitted or specified. */
for(i=0;i<nsanp;i++)
t hephases[i] -= (phiO + phil * freqout(i));
/* Resynt hesize the phase-corrected dataset. */
for(i=0;i<nsanp;i++) {
t hedat aphasecorr[2*i] = thespectrunii] * cos(thephases[i]);
t hedat aphasecorr[2*i +1] = thespectrunii] * sin(thephases[i]);

/* Wite out the data. */
datafile = fopen(corrdatafile, "w');
for(i=0;i<2*nsanp;i ++)

fprintf(datafile, "% \n", thedataphasecorr[i]);
fclose(datafile);

free(thephases);
free(thedat aphasecorr);
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Appendix G: Auxiliary shimming infor mation

Shim Cails

The shim coils were generated using a custom C program that parametrically creates coilsin DXF
format (the format associated with the computer-aided design program AutoCAD), given the
inner diameter, the outer diameter, the number of turns desired, and the resolution to usein
approximating the coil as a sequence of line segments. The DXF coils were then imported into a
PCB (printed circuit board) layout program (Protel Advanced PCB) and converted to Gerber
format for commercial fabrication using etched copper on FR4 epoxy fiberglass. The copper
traces were 200 nm wide, with consecutive turns of the spiral separated by 200 mm as well.
(Some early shim coils were cut using a LPKF ProtoMat copper PCB mill, then coated with
acrylic to prevent oxidation or other damage of the relatively delicate traces, however, thiswas a
very slow process.)

The DXF-generating code is given below, for reference:

/* CO LGEN.CPP Cuts coils, paranetrically specified. E. Boyden */
#i ncl ude <math. h>

#i ncl ude <stdio. h>

#i ncl ude <i ostream h>

#define Pl 3.141592653589793

int i;
FILE *outfile;
float xshift=2, yshift=-2.0, xcenter=0, ycenter=0, x=0,y=0, xol d=0, yol d=0;
float inradius,outradius,resolution,k, kx, ky,tlo,thi,t,dt=0,tsofar;
i nt nunberofturns,tpercentsofar;
char formatstring[] = "O0\nLINE\ n8\n0\nl10\ n% \ n20\ n% \ n30\ n0. O\ n11\ n% \ n21\ n% \ n31\ n0. O\ n";
float scale = 254,
int nmain(int argc, char * argv[]) {
outfile = fopen("coil.dxf","w');
fprintf(outfile, "O\nSECTI ON\ n2\ nENTI TI ES\ n") ;
printf("Enter center coordinates x,y (use 0,0 for ordinary PCB fab, use 5,5 for
Protel).\n");
scanf ("%, %", &xcenter, &ycenter);
printf("Enter scale factor (use 254 for PCB fab, 1 for Protel).\n");
scanf ("% ", &scale);
printf("Drawing a circular spiral, please enter data.\n");
printf("For your information the screen has | ower coordinates (-1,-1)\n and upper
coordinates (1,1).\n");
printf("\nEnter the inner radius of the spiral.\n");
scanf ("% ", & nradius);
printf("\nEnter the outer radius of the spiral.\n");
scanf ("% ", &outradius);
printf("\nEnter the number of turns of the spiral.\n");
scanf (" %", &nunberofturns);
printf("\nEnter the resolution to use per step.\n");
scanf ("% ", & esolution);
printf("\nSol ving equations...\n");
k = (outradius - inradius)/(2 * Pl * (float)nunberofturns);
kx = scale * k;
ky = scale * k;
tlo = inradius/k;
thi = outradius/k;
printf("Paranetrized as % 4f*t*cos(t), % 4f*t*sin(t) fromt=% to %.\n",k,k,tlo,thi);
x = 0; y = 0; yold= 0; xol d=0;
tpercentsofar = 0;
tsofar = tlo + (tpercentsofar+10)/100*(thi-tlo);
xold = x = kx*tlo*cos(tlo); yold =y = ky*tlo*sin(tlo);
fprintf(outfile, formatstring, xcenter + xold, ycenter + yold, xcenter + X, ycenter + y);
for (t=tlo;t<thi;t+=dt) {
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if(t>tsofar) {
printf("%l%%o done.\n", tpercentsofar);
t percent sof ar +=10;
tsofar += .1*(thi-tlo);

}

dt = (float)resolution/((float)(k*t));

x = kx*t*cos(t);

y = ky*t*sin(t);

fprintf(outfile,formatstring, xcenter + xold, ycenter + yold, xcenter+x, ycenter+y);
xold = x; yold =vy;

}

printf("Done!\n");

fprintf(outfile, "O\nENDSEC\ nO\ nEOF\n");
fclose(outfile);

return O;

Codefor theVersion Il Shims

The code for the version Il shim board, which is shorter and clearer than that for the first-model
shim board (not presented here, as explained in Appendix Z), follows:

/*
* final shim
* Edwar d Boyden, e@redia.mt.edu, NWVR QC
* 3/ 24/ 99
*/

#i ncl ude <16F84. H>

#def i ne LED PI N_A2
#define SR SHCP  PIN_A3
#def i ne DEMUX_I NA PI N_A4
#define FROMPC  PI N_BO
#define TO PC PI N_B1
#define SR SIO  PINB2
#define SR_STCP  PIN B3
#def i ne DEMUX_I NH PI N_B4
#def i ne DEMUX_I ND PI N_B5
#def i ne DEMUX_I NC PI N_B6
#def i ne DEMUX_I NB PI N_B7
#def i ne DAC DATA PIN_AO
#define DAC CLK PIN AL

#use del ay(cl ock=10000000)

#fuses HS, NOWDT, NOPROTECT

#use RS232(baud=38400, xm t =TO_PC, r cv=FROM PC, parity=N, bits=8)
#define bit short int

byte boardnum = 1; /* shimboard #1 */ /* NOT USED IN TH S REV */

byte relayl=0,relay2=0; /* relayl[i] shimi, relay2[i] that of shim (i+8) */

mai n() {
byte id=0; /* which shimto nodify? */
byte rel ay;
byt e | owDAC=0, hi ghDAC=0; /*| owDAC contains bits 0..7, highDAC 8..15 */
int i;
byt e pi cker;

byte | atchmap[16] = {10, 11, 8, 9, 14, 15, 12, 13,
0, 2, 1, 3, 4 5 6, 7},
byt e I atchi d;

/* set initial state */
out put _| ow( LED) ;

out put _hi gh( SR_SHCP) ;
out put _| ow( DEMUX_| NA) ;
out put _| ow( TO_PC) ;

out put _I ow(SR_SI O ;

out put _| ow( SR_STCP) ;
out put _hi gh( DEMUX_I NH) ;
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out put _| ow( DEMUX_| ND) ;
out put _I ow( DEMUX_I NC) ;
out put _| ow( DEMUX_| NB) ;
out put _| ow( DAC_DATA) ;
out put _I ow( DAC_CLK) ;

/* blink light */
out put _hi gh(LED) ;
del ay_ns(2000) ;
out put _| ow( LED) ;
del ay_ns(2000) ;

while(1l) {
if(kbhit()) {
id=getc() - "0"; /* character id */
relay = getc() - '0"; /* character 0 or 1*/

| owDAC = getc(); [/* a straight bitstring */
hi ghDAC = getc();
for(i=0;i<2;i++) {

out put _hi gh(LED) ;

del ay_ns(100);

out put _| ow( LED) ;

del ay_ns(100);

}
del ay_ns(1000) ;
/* assenble the relay word */
if(id>7) { /* use relay2 */
picker = 1 << (id-8);
relay2 | = relay * picker;
relay2 & 255 - ~relay * picker;
} else { /* use relayl */
picker =1 << id;
relayl | = relay * picker;
relayl & 255 - ~relay * picker;
}

/* broadcast the relay word, clocking into SR */
/* shimn --> SR 15-n, so reverse the word*/

/* but put QL5 in first, so put shimO in first -- it all works */
for(i=0;i<16;i++) {
if(i>7) {

if(bit_test(relay2,i-8))
out put _hi gh(SR_SI O ;

el se
out put _l ow(SR_SI O ;

} else {

if(bit_test(relayl,i))
out put _hi gh(SR_SI O);

el se
out put _I ow(SR_SI O ;

}
/* SHCP falling edge */
out put _| ow( SR_SHCP) ;
delay_ns(1);
out put _hi gh( SR_SHCP) ;
delay_ns(1);

}

/* do a parallel load */
out put _hi gh( SR_STCP) ;
delay_ns(1);

out put _| ow( SR_STCP) ;
delay_ns(1);

/* next, load the DAC as appropriate*/
for(i=7;i!=0xFF;i--) {
out put _| ow( DAC_CLK); /* down-up clock */
i f(bit_test(highDAC i))
out put _hi gh( DAC_DATA); /* generate a 1 */

el se
out put _| ow( DAC_DATA); /* generate a 0 */
delay_ns(1); /* clock = 500 ns -- 20 instr! */
out put _hi gh( DAC_CLK) ;
delay_ns(1);
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for(i=7;i!=0xFF;i--)
out put _| ow( DAC_CLK); /* down-up clock */
if(bit_test(lowDAC i))
out put _hi gh( DAC_DATA); /* generate a 1 */

el se
out put _| ow( DAC_DATA); /* generate a 0 */
delay_ns(1); /* clock = 500 ns -- 20 instr! */
out put _hi gh( DAC_CLK) ;
delay_ns(1);

}

/* next, latch it in */
/* this is more conplicated. */
/* first map shimi --> Sxx */ /* then inhibit o */
latchid = latchmap[id];
/* then Sxx -> ABCD */
if (latchid & 0x01)

out put _hi gh( DEMUX_| NA) ;
el se

out put _| ow( DEMUX_| NA) ;
if (latchid & 0x02)

out put _hi gh( DEMUX_| NB) ;
el se

out put _| ow( DEMUX_| NB) ;
if (latchid & 0x04)

out put _hi gh( DEMUX_I NC) ;
el se

out put _I ow( DEMUX_I NC) ;
if (latchid & 0x08)

out put _hi gh( DEMUX_| ND) ;
el se

out put _| ow( DEMUX_| ND) ;

/* then inhibit lo */
out put _| ow( DEMUX_I NH) ;
delay_ns(1);

out put _hi gh( DEMUX_I NH) ;
delay_mns(1);

/* blink to signify term nation */
for(i=0;i<2;i++) {

out put _hi gh(LED) ;

del ay_ns(100);

out put _| ow( LED) ;

del ay_ns(100);

}
del ay_ns(1000) ;



Appendix Z: The old days

Strictly speaking, the Mark | quantum computer was not the first attempt at an NMR
spectrometer by a member of the Physics and Media Group. The “ Smartfish” DSP board was
intended to be an earth’ s-field (or low-field) NMR spectrometer (Chong). This was followed by a
handbuilt mass of cables and an old magnet (Fletcher), which used a PIC and afew Mini-Circuits
boxes to accomplish mixing and amplification. A permanent magnet was then added to the system
to make a single channel *H spectrometer (Maguire). All of these implementations were used to
perform spin-echo experiments, with the output displayed on an oscilloscope.

Digital acquisition was then added using a NI-DAQ board (the PCI-M10-16E-1, which contained
a12-bit 1.25 MHz ADC on board, as well as two 12-bit DACs), which alowed the first pulse
programming and signal processing to be performed (Boyden). Software was written first in
LabView...

Bla2vi-
File Edit Operate Project Windows Help

!s |13pt Application Font =l I;m_vl IT]: -”Fﬁ vl

1 I | I I
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Pulze Operations

TNotpusig
B
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o400 | %4000
0.0 1 1 1 1 1 1 1 1 1 [
000 100 200 300 400 500 EOD FO0  B00 800 1000

Figure 13: thefirst interface

...thenin C, and afirst version of the q programming language was written. It was pretty sad: the
entire, incomprehensible language comprised the following commands:

KEY [all units are volts, mcroseconds, and Hertz]
# comment
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| is the initialization command

outputfreq i nputfreq device inchannel outchannel gate outchanne

L demarcates the beginning of a | oop, E nmarks the end

| oop_i d_nunber nunberof repeats

| oop_i d_nunber

Sis a single pulse, followed by a single wait. No phase can be specified
pul sel ength waitl ength

W specifies a COSY experinment where the pulses are different fromp/2 pul ses
Wpl waitlstart waitlend waitlincrement p2 wait2start wait2end wait2i ncrenment
# A specifies an anplitude and a duration. Causes a sinc pulse in frequency space
A anplitude duration

# T nmeans acquire

T readtinme

# C specifies a COSY experinent.

C waitlstart waitlend waitlincrement wait2start wait2end wait2increnent

FonHFEmMrHF—H

The parser and pulse generator numbered only a few hundred lines of code, and system
integration occurred in afew afternoons. Using this system, the first nontrivial NMR experiment,
the 2D HETCOR experiment, was performed in April 1998 (see picture). The program that was
run to acquire this data was

# the positive-frequency axis COSY program
| 500000.0 500000.0 1 101
C 100.0 2000.0 50.0 100.0 2000.0 50.0

Pasitive frequency axis of COSY spectrum

S

il

%Eﬁénp.m_“_,,-.h-~

e 1820 1o00

-ﬁZH}

Figure 14: 2D NMR of chloroform
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It was not until summer 1998 that printed circuit boards with working NMR circuitry were
constructed (Maguire), which became part of the Mark | quantum computer.

The number of false starts throughout this project is interesting, since the assignment all along
was to reinvent NMR without looking at past spectrometer designs. As aresult lots of little
incidents occurred that wasted time but taught much. The experience was analogous to being
forced to reinvent the wheel, but with the requirement that the wheel have seven corners, work on
ice in zero-gravity conditions, be mass-producible for $100, and have a pretty interface.

Figure 15: A NMR probe mount designed in SDRC Ideas

For example, | spent aweek learning 3D CAD in SDRC-IDEAS in order to make a mount that
could hold a set of planar shim coils, as well as a sample and probe-cail (picture shown above).
The inside was to be sprayed with a conductive coating (Croshield 4900 Conductive Coating,
from Parker Hannifin Corp.), to provide EMI shielding. | printed the mount out in medical-grade
ABS plastic on our Stratasys 3D printer; it took over 71 hours to print the 625 layers from the
bottom upwards. Asit turns out, the tolerances on the 3D printer were so bad that when the
mount was placed in the GWM electromagnet, the flexible pole pieces of the electromagnet were
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forced to tilt dlightly, due to the irregularity of the bumpy plastic. As aresult of the resultant
magnetic susceptibility perturbations in the vicinity of the sample, the field homogeneity actually
became much worse than before! We went back to using the ceramic-spacer module that was
provided by the electromagnet manufacturers.

The original shim hardware is pictured below as it appearsin PCB layout. It was capable of
setting the currentsin four coils with values between —20 and 20 mA, with theoretical resolution
of about 300 nA.
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Figure 16: Thefirst shim board

Each of the four copies of the basic shim element contains one PIC16F84 (a small cheap yet
surprisingly versatile microcontroller with EEPROM and a small amount of onchip memory), one
AD420 current DAC (with output 0 — 20 mA), two relays (for switching the direction of the
current in the coil; this assures that the current is not noisy, as would occur with transistor
switches), and auxiliary transistors, diodes, power regulators, and LEDs.

In the lower left hand corner isasingle MAX233A RS-232 leve converter (made by Maxim
Integrated Circuits), for enabling communication to a PC. Each PIC passes messages to its
neighbor; through this complicated message-passing process, parameters are passed from the PC
to the destination PIC, possibly through a number of intermediate PICs. The code is not included,
since it is awkward and, athough functional, the message-passing routines unnecessarily
complicate the design. Eventually the silly message-passing architecture was scrapped, and the
shim hardware detailed in VI.1.ii. was devel oped.
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