
Probabilistic Characterization and Synthesis of Complex

Driven Systems

by

Bernd Schoner

Diplom-Ingenieur

Rheinisch-Westph�alische Technische Hochschule Aachen - Germany (1996)

Ing�enieur des Arts et Manufactures

Ecole Centrale de Paris - France (1996)

Submitted to the Program in Media, Arts and Sciences,

School of Architecture and Planning

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2000

c
 Massachusetts Institute of Technology 2000. All rights reserved.

Author .

Program in Media, Arts and Sciences,

School of Architecture and Planning

August 4, 2000

Certi�ed by. .

Neil A. Gershenfeld

Associate Professor of Media Technology

Thesis Supervisor

Accepted by .

Stephen A. Benton

Chairman, Department Committee on Graduate Students

Probabilistic Characterization and Synthesis of Complex Driven
Systems

by
Bernd Schoner

Submitted to the Program in Media, Arts and Sciences,

School of Architecture and Planning

on August 4, 2000, in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

Abstract

Real-world systems that have characteristic input-output patterns but don't provide access

to their internal states are as numerous as they are diÆcult to model. This dissertation

introduces a modeling language for estimating and emulating the behavior of such systems

given time series data. As a benchmark test, a digital violin is designed from observing

the performance of an instrument.

Cluster-weighted modeling (CWM), a mixture density estimator around local mod-

els, is presented as a framework for function approximation and for the prediction and

characterization of nonlinear time series. The general model architecture and estimation

algorithm are presented and extended to system characterization tools such as estimator

uncertainty, predictor uncertainty and the correlation dimension of the data set. Further-

more a real-time implementation, a Hidden-Markov architecture, and function approxi-

mation under constraints are derived within the framework.

CWM is then applied in the context of di�erent problems and data sets, leading to ar-

chitectures such as cluster-weighted classi�cation, cluster-weighted estimation, and cluster-

weighted sampling. Each application relies on a speci�c data representation, speci�c pre

and post-processing algorithms, and a speci�c hybrid of CWM.

The third part of this thesis introduces data-driven modeling of acoustic instruments,

a novel technique for audio synthesis. CWM is applied along with new sensor technology

and various audio representations to estimate models of violin-family instruments. The

approach is demonstrated by synthesizing highly accurate violin sounds given o�-line input

data as well as cello sounds given real-time input data from a cello player.

Thesis Supervisor: Neil A. Gershenfeld

Title: Associate Professor of Media Technology

2

Doctoral Dissertation Committee

Thesis Supervisor Neil Gershenfeld

Associate Professor of Media Technology

MIT Media Laboratory

Thesis Reader John Harbison

Institute Professor of Music

Massachusetts Institute of Technology

Thesis Reader Terrence Sejnowski

Professor - The Salk Institute

Investigator - Howard Hughes Medical Institute

La Jolla, CA

3

Acknowledgments

I would like to thank

my advisor Neil Gershenfeld for giving me a place in his group and pushing me along

all these years despite my pessimistic German attitude. Neil taught me many lessons

including patience, the sense that science takes time, and appreciation for the making of

physical objects. I'm deeply indebted to his educational mission.

my readers John Harbison for sharing his sensibility and knowledge about violins and

Terry Sejnowski for contributing his technical and experimental expertise. My committee

couldn't have been more versatile.

my collaborators Charles Cooper, for bringing his wisdom, manifested in lots of white

hair, to the project as well as doing some really important hardware design, and Chris

Douglas, Tuomas Lukka, and Edward Boyden for being young and brilliant.

my helpful early colleagues Eric Metois, Josh Smith, and Vadim Gerasimov, who got me

started doing real work after years of theory.

Joe Paradiso for designing the initial violin bow which let me have a head start.

my patient violinists Julia Ogrydziak, Sandy Choi, Teresa Marrin, Romy Shioda, and Di-

ana Young, whose musical talent I shamelessly abused by making them play my unreliable

violin interfaces.

Rehmi Post my �rst, only and best oÆcemate ever.

my fellow grad students Pehr Anderson, Henry Chong, Ben Denckla, Elektrizit�ats -

k�unstlerin Kelly Dobson, Rich Fletcher, Yael Maguire, Teresa Marrin, Eric Metois, Femi

Omojola, Ravi Pappu, Rehmi Post, Matt Reynolds, Joey Richards, Peter Russo, Josh

Smith, Jason Taylor, Christopher Verplaetse, Ben Vigoda, for being wonderfully helpful

colleagues.

Mary Farbood for reading and correcting this document and for much support with the

�nal thesis and defense preparation including a recording session of Stars and Stripes

Forever.

my editors and colleagues Tristan Jehan and Diana Young.

my chamber music teachers David Deveau, John Harbison, and Marcus Thompson and my

fellow musicians including Annie Chen, Nina Chen, Elaine Chew, Mary Farbood, Teresa

Marrin, Jaemin Rhee, and Jason Wong, for many unforgettable moments at MIT.

Rafaela Arriaga, Emmanuel Barroux, Susza Bereznai, Dominik Bless, Thomas Bollein -

inger, Wolfram Brinker, G�otz Fr�omming, Stefan G�otz, Armin Haindl, Anne Harley, Hans-

Michael Hauser, Holger Kist, Stephan Koehler, Klaus Langhammer, Nicolas Lemoine,

Jochen Linck, Dirk Lumma, Dominik Meiering, Jean-St�ephane Mesonnier, Thomas Rasch,

Maximilian Riesenhuber, Noah and Seth Riskin, Julia Schmitt, Volker Schott, Thomas

Weber, Stefan Welsch, and Anna Yook, for being my friends.

4

the Flying Karamazov Brothers, Howard, Kristina, Mark, Paul and Rod.

my father Konrad and mother Adelinde for giving me unconditional, loving support; my

sister Ellen and brother Viktor; my grandmothers Marie and Amalie for their understand-

ing; my aunt Hanna for her care and beautiful sculpture work and all my other family

members.

Thank you all.

5

Contents

1 Introduction 10

1.1 The problem . 10

1.2 Outline . 13

I Cluster-Weighted Modeling 15

2 Background and related work 17

2.1 Graphical models . 17

2.1.1 Notation and theory . 18

2.1.2 Inference . 21

2.1.3 Example I: Gaussian mixture models 24

2.1.4 Example II: Hidden Markov models 26

2.2 Nonlinear dynamic systems . 28

2.2.1 State space reconstruction . 29

2.2.2 Input-output embedding . 31

2.2.3 Characterization of nonlinear dynamic systems 32

3 The cluster-weighted modeling framework 34

3.1 Model architecture . 34

3.2 Model estimation . 39

3.3 Model evaluation and system characterization 44

3.4 Online implementation . 46

3.4.1 Online EM updates . 46

3.4.2 Cluster-weighted Kalman-�lter updates for the local models 47

3.5 A cluster-weighted input-output hidden Markov model 49

3.6 Function approximation under constraints 53

II Synthesis Architectures and Applications 60

4 Classi�cation 62

4.1 Classi�cation and decision theory . 62

4.1.1 Linear and nonlinear classi�ers . 64

4.1.2 Feature extraction . 66

6

4.2 Cluster-weighted classi�cation . 69

4.2.1 Simpli�cations . 70

4.3 Applications . 72

4.3.1 Stimulus detection from MEG brain data 72

4.3.2 Consumer fraud characterization . 74

4.3.3 Electronic noses . 76

5 Prediction and Estimation 79

5.1 Background . 79

5.1.1 Estimation Theory . 79

5.1.2 Linear models . 82

5.1.3 Linear Regression . 83

5.1.4 Generalized linear and polynomial models 84

5.2 Cluster-weighted estimation . 86

5.3 Applications . 87

5.3.1 Predicting physical systems . 87

5.3.2 Prediction of the M3-competition time series 88

6 Linear predictive coding 93

6.1 Introduction and related work . 93

6.2 Cluster-weighted linear predictive coding . 95

6.3 Application: An excitation-�lter model of the violin 97

7 Frequency domain estimation 99

7.1 Frequency domain representations of signals and systems 99

7.1.1 Volterra expansion . 101

7.2 Cluster-weighted complex estimation . 103

7.3 Application: nonlinear device characterization 106

8 Sampling 109

8.1 Algorithmic pieces and related work . 109

8.2 Cluster-weighted sampling . 112

III Data-Driven Modeling of Musical Instruments 117

9 Related work in musical synthesis 119

9.1 Synthesis algorithms . 119

9.1.1 Physical modeling . 119

9.1.2 Sinusoidal analysis/synthesis . 123

9.1.3 Wavetable synthesis . 126

9.1.4 More synthesis techniques... 127

9.2 Connectionism and musical applications . 129

9.3 Synthesis evaluation . 130

7

10 The digital stradivarius 133

10.1 General concept and chronology . 133

10.1.1 Background . 133

10.1.2 The goal . 134

10.1.3 De�ning the measurements . 136

10.1.4 Embedding and musical synthesis . 137

10.1.5 A working hello-world: the arm demo 138

10.1.6 A cellist playing a single-string violin 141

10.1.7 The �nal approach . 143

10.2 Data-collection . 144

10.3 Data-analysis . 146

10.4 Inference model . 149

10.4.1 Representation . 149

10.4.2 Feature selection . 153

10.5 Experimental Results . 155

10.5.1 Discussion . 155

10.6 Artistic extensions and applications . 157

10.6.1 A universal violin controller interface 158

10.6.2 Marching Cello . 159

10.6.3 A new violin MIDI controller . 159

10.6.4 Flexible musical instruments: CD-player versus Strad 160

11 Conclusions 162

11.1 Contributions . 162

11.2 Future Work . 164

A Three views of the EM algorithm 165

A.1 Gradient approach . 165

A.2 Information theoretic approach . 167

A.3 Di�erential-geometric approach . 168

A.3.1 The curved space of exponential distributions 168

A.3.2 EM and em algorithm . 170

B Sensor technology and hardware design 173

B.1 Sensor technology . 173

B.1.1 Sensing the bow . 173

B.1.2 Sensing �ngers on the �ngerboard 175

B.1.3 Recording violin audio signals . 175

B.2 Hardware packaging . 176

B.2.1 Violin sensor board . 176

B.2.2 Instrumenting violin and cello . 177

B.2.3 Instrumenting the Marching Cello 177

B.3 Sensor calibration . 177

8

C Code 183

C.1 Cluster-weighted modeling implementations 183

C.1.1 Matlab interface . 183

C.1.2 C interface . 188

C.2 Sinusoidal synthesis . 190

C.3 Wavetable synthesis . 191

9

Chapter 1

Introduction

Die Grammophonplatte, der musikalische Gedanke, die

Notenschrift, die Schallwellen, stehen alle in jener abbilden-

den internen Beziehung zu einander, die zwischen Sprache

und Welt besteht.

Ihnen allen ist der logische Bau gemeinsam.

(Wie im M�archen die zwei J�unglinge, ihre zwei Pferde und

ihre Lilien. Sie sind alle in gewissem Sinne Eins.)

L. Wittgenstein, TRACTATUS LOGICO-PHILOSOPHICUS.1

1.1 The problem

This thesis is about the emulation, prediction, and characterization of real-world dynamic

systems on digital machines. It is about teaching machines how to simulate and predict

physical objects and phenomena given some observation of their state.

Although computers have become many orders of magnitude faster since the idea was

�rst conceived that they could understand and emulate the world in a human-like fashion,

computers appear to be as dumb today as they were then. They know practically nothing

about what the physical world is like, about how to make an intelligent decision, and about

how people like to be treated. What's worse, computers have no notion of how to acquire

these insights. Unless we explicitly tell them every single detail about a phenomenon, a

process, or human behavior, they remain ignorant.

The aim of this thesis is to provide the physical and logical tools that enable computers

to acquire and process data from observed physical systems. It is motivated by the under-

standing that the ignorance of computers regarding representations of the world and their

inability to learn from observation isn't due to a lack of computational resources. Instead,

what's missing are devices that give machines access to the right kinds of information re-

14.014: The gramophone record, the musical thought, the score, the waves of sound, all stand to one

another in that pictorial internal relation, which holds between language and the world.

To all of them the logical structure is common.

(Like the two youths, their two horses and their lilies in the story. They are all in a certain sense one.)

L. Wittgenstein, TRACTATUS.

10

garding the objects and processes around them [Min85]. Comparing machine performance

to human intelligence is unfair as long as humans can see, hear, touch, and smell, while

machines are only fed some context-free numbers. In addition, algorithms are needed that

handle the given data eÆciently, transparently, and in the right context. The black box

approach of arti�cial neural networks is appealing but too crude when it comes to building

a
exible methodology that, for example, reuses earlier experience. In this dissertation,

we will present work on sensing instrumentation for some speci�c applications but will

focus on the logical and numerical means to predict or synthesize systems in the digital

medium.

The list of worthwhile systems to model and forecast is about as long as the list of

unsuccessful attempts to do so. This is astounding given that there is a body of results and

algorithmic tools that let us characterize and predict dynamic systems. Linear systems

theory, for example, provides an exhaustive methodology for any system that can be

described by linear equations. The theory is well established, has generated a multitude

of useful results, and is taught and used in virtually every scienti�c discipline. Moreover,

although it provides di�erent tools for di�erent ends, these tools are wonderfully described

in a common language.

Where the assumption of linearity breaks, dynamic systems theory loses its homogene-

ity. The lack of a uniform theory for nonlinear systems is partly due to the de�nition of

the �eld in the negative. The term non-linear does not de�ne a class of problems but

rather a class which is not something else, i.e. linear [Bos99]. Naturally this is a diÆcult

starting point. However, the theoretical insights into how much we can know about a

nonlinear system are still remarkable. The reconstruction (embedding) theorem provides

the theoretical means to handle highly nonlinear behavior of arbitrary physical systems

with hidden dynamics [Tak81]. It proves that a system's state space can be mapped into

a di�eomorphic space, constructed from any observable of the system, and that the sys-

tem can be characterized with respect to dimensionality and dynamic behavior in this

reconstructed space. The reconstruction theorem also detects low-dimensional structure

in a high-dimensional data space, modeling the e�ective degrees of freedom of a system

rather than its mechanical degrees of freedom. In the case of a physical device such as the

violin, this means that we do not need to represent every single �ber of wood, rather we

can model the larger picture of input signals, e�ective internal states and output signal

[GW93]. The reconstruction theorem is useful as an analysis tool, but, unfortunately,

not very good as a prediction tool for complex systems. Models become easily unstable

given a complicated state space or an arbitrary prediction horizon. Driven systems should

be easier to predict than autonomous systems; however, the embedding dimension of a

driven system is signi�cantly larger since both input and output observables need to be

adequately represented [Cas92]. The presence of noise in practically any real-world system

further complicates the embedding job. Due to these problems, we end up with a fairly

small number of examples where embedding has been applied successfully to predict a

signal (sections 2.2, 5.3.1, and 10.1.4).

In addition, there are theoretical results that, in all generality, are concerned with the

fundamental limits of predicting systems and signals. One of the most prominent of such

results is the halting problem, formulated by Turing in the 1930's. It states that there is

no way to tell from a given computer program's output whether the program will even-

11

tually come to a halt [Tur36]. Since a Turing machine can be implemented in the form

of a dynamic system, there cannot be a universal algorithm that predicts the output of

an arbitrary system. The prediction of the system's output would obviously include the

prediction of its halt [WG93]. Clearly this insight has important implications, but, fortu-

nately, does not interfere with our goals. We do not intend to predict arbitrary systems,

merely systems that behave reasonably in a certain sense. A violin will not stop resonat-

ing as long as a competent violinist continues to play. Our intuition about the physical

device helps us conclude that there are no hidden variables that would cause unexpected

diÆculties. Most systems in the natural world seem to be somewhat predictable in the

sense that we do not expect strange behavior.

Regarding the estimation and approximation of a data set, the Kramer-Rao bound is

a lower bound on the variance of any estimator used.2 Regardless of how well we design

an estimator, it will be limited by the uncertainty given by this bound [WWS96, Ger99a].

Although this information-theoretic result is an interesting limit, its relevance for the

practical estimation of complex nonlinear systems is small. Typically, the real problem is

to measure an optimal set of data rather than design the estimator. Unfortunately, the

bound on the variance does not explain which variables to measure in the �rst place.

A third powerful concept is the source entropy of a dynamic system. It is de�ned

as the asymptotic increase of information in a time series [CT91, Ger99a] and hence

quanti�es how much we can and cannot know about a system looking into the future.

The source entropy is a troublesome quantity. The number of measurements needed for

its estimation increases exponentially with the number of system dimensions. Even more

limiting, entropy always assumes a speci�c representation of the data. As there is no

model-independent measure of entropy, we need a precise idea about what the model

should look like before we can compute its source entropy. The real problem therefore is

to design a good model a priori.

There appears to be a gap between what theory claims to know and what is actually

possible to model and predict in the real world. This thesis aims at bringing the theoretical

limits and practical system characterization closer together. An algorithmic framework

will be presented that uni�es the prediction and characterization of arbitrary systems

within a single coherent probabilistic approach. The goal is to create a modeling language

that is general enough to describe the majority of nonlinear problems yet still speci�c

enough to be useful in practical applications. We'll attack a variety of real-world data sets

reusing techniques and theories that have been established, re�ned, and matured in past

practice. We will overcome the limitations of these techniques by embedding them in a

more general framework. In most applications, linear systems theory will be extended to

nonlinear tools that keep the transparency of the original techniques but are not restricted

by the assumption of linearity.

The main test application for our work is the design and implementation of a digital

violin. We will show how to derive a predictive model of an acoustic instrument from

observed data. A violin combines linear and nonlinear processing as well as probabilistic

and deterministic dynamics; it is high-dimensional and diÆcult to play, yet controllable,

as is proven every day in concert halls all over the world. The physical and logical im-

2under the condition that this estimator exists.

12

plementation of a digital instrument requires resources and knowledge that range from

sophisticated mathematical algorithms to new sensing technology, and even a basic un-

derstanding of the art of violin making. Our ambition is grounded in multiple disciplines.

From a physicist's point of view, we want to know if we can numerically emulate a system

as complex as a violin. From an engineer's point of view, we would like to implement a

digital instrument that operates in real time, sounds great, and is packaged nicely. From

the musician's point of view, we would like to create an object that not only reproduces

a given acoustic instrument, but also gives us access to its internal states which can be

used to enhance its sonic space.

The creation of a digital copy of a violin serves as a paradigm for the philosophy

of the Things That Think research consortium and the Media Lab in general. Namely,

a traditional object, in this case a musical instrument, about which people have strong

opinions, is digitally emulated and then functionally enhanced. In order for this new object

to be accepted by the user and the audience, its historic, social, and cultural identities

need to be respected and its original functionality needs to be preserved. In addition, a

new balance between old and new technologies, between the beauty and eÆciency of a

violin and the power of today's computers, and between the intimacy of a chamber music

concert and the richness of a multimedia event need to be found.

1.2 Outline

In the �rst part of this thesis, the algorithmic framework cluster-weighted modeling

(CWM) is introduced. CWM is a probabilistic modeling tool for the characterization

and prediction of systems of arbitrary dynamic character. The framework is based on

density estimation around Gaussian kernels that contain simple local models describing

the system dynamics of a data subspace. In one extreme case, the framework collapses

into a simple model with linear coeÆcients, while in the opposite extreme, the model

allows for embedding and forecasting data that may be non-Gaussian, discontinuous, and

chaotic. In between these two extremes, CWM covers a multitude of models, each of which

is characterized by a speci�c local input-output relationship and state representation. By

embedding past practice and mature techniques in the general nonlinear framework, we

create globally nonlinear models with transparent local structures.

The second part deals with the implementation details of CWM for a variety of prob-

lems. Guided by real-world data and applications, di�erent local models are presented,

pre and post-processing algorithms are discussed, and experimental results are given.

Cluster-weighted classi�cation is applied to the classi�cation of credit card fraud data,

bacterial measurements from electronic noses, and stimulated MEG brain data. Cluster-

weighted estimation is applied to low-dimensional physical systems and data from a set

of economic time series (section 5.3.2). Cluster-weighted spectral synthesis is applied to

nonlinear microwave device characterization. Cluster-weighted linear predictive coding

and cluster-weighted sampling are introduced as tools for digital sound synthesis.

In the third part, we explain how to build a digital violin. Data-driven musical syn-

thesis is presented and compared to other synthesis methods such as physical modeling

or global sampling. The modeling process can be divided into a series of steps. In the

data-collection step, the synchronized audio and sensor data of a violinist playing the

13

sensor violin are recorded. In the data analysis step, low-level physical information, such

as the short-term spectral decomposition and the instantaneous volume, and high-level

information, such as the instantaneous pitch of the audio, are extracted from the data

set. In the actual modeling step, the nonlinear mapping between input and output is

approximated. This latter step involves �nding the optimal data representation, the op-

timal feature vector, and a nonlinear search for the allocation of model parameters given

the model architecture. In the synthesis step, signals are reconstructed given new o�-line

or real-time input from a violinist or cellist. A real-time system is presented which feels

and sounds like a violin or cello, although it is in reality a mute sensor interface driving a

computer model. The models are extended to cross-synthesis between di�erent members

of the violin family.

In the appendix, the custom sensing hardware and other supporting material are doc-

umented.

14

Part I

Cluster-Weighted Modeling

15

Da� alle unsere Erkenntnis mit der Erfahrung anfange,

daran ist gar kein Zweifel [...]. Wenn aber gleich alle un-

sere Erkenntnis mit der Erfahrung anhebt, so entspringt

sie darum doch nicht eben alle aus der Erfahrung. Denn

es k�onnte wohl sein, da� selbst unsere Erfahrungserken-

ntnis ein Zusammengesetztes aus dem sei was wir durch

Eindr�ucke empfangen , und dem, was unser eigenes

Erkenntnisverm�ogen [...] aus sich selbst hergibt [...].

Man nennt solche Erkenntnisse a priori, und unterschei-

det sie von den empirischen, die ihre Quellen a posteriori,

n�amlich in der Erfahrung, haben.

I. Kant, Kritik der reinen Vernunft, B1,23

The descriptive power and algorithmic beauty of graphical probabilistic networks is

widely appreciated in the machine-learning community. The strong idea behind this

methodology is the concept of conditional probabilities and Bayes' theorem. Immanuel

Kant (1724-1804) never got to know Thomas Bayes (1702-1761), and he certainly didn't

have Bayes' famous theorem in mind when thinking and writing about the origin of knowl-

edge. However, the above quote from Critique of Pure Reason expresses a very similar idea

in that it postulates that there needs to be some a priori intellectual skill or knowledge in

order to acquire new knowledge from observation.

Bayesian networks follow the general scheme of Bayesian learning and knowledge rep-

resentation. Unfortunately, the generality and
exibility of these networks are just about

matched by their diÆculty of use. Unless the architectures are constrained appropriately

and are tailored for particular applications, they are of little use in a practical model-

ing situation. Gaussian mixture models, a subclass of graphical models, resolve some of

these de�ciencies. We present cluster-weighted modeling (CWM), a Gaussian mixture

architecture that combines model
exibility with fast model design and ease of use.

CWM is also used in the context of nonlinear dynamic systems. For a long time, the

�eld of nonlinear dynamics has been su�ering from the lack of a uni�ed theory, a common

language, and a coherent mathematical toolkit. Prediction methods and characterization

tools exist, but they are fragmented and rely on di�erent assumptions. CWM uni�es some

of this methodology in a single framework.

3Experience is without doubt the �rst product that our understanding brings forth [...]. Nevertheless

it is far from the only �eld to which our understanding can be restricted [...]. It tells us, to be sure, what

is, but never that it must necessarily be thus and not otherwise.

Now such universal cognitions, which at the same time have the character of inner necessity, must be

clear and certain for themselves, independently of experience; hence one calls them a priori cognitions:

whereas that which is merely borrowed from experience is, as it is put, cognized only a posteriori, or

empirically.

I. Kant. Critique of Pure Reason. Translated by P. Guyer and A.W. Wood.

16

Chapter 2

Background and related work

2.1 Graphical models

Graphical representations of probabilistic networks conveniently illustrate conditional de-

pendence and independence in a network (�g. 2-1). Graphical models can be considered

low-level descriptions of a network architecture since they provide a detailed decomposi-

tion of a complex network of nodes. At the same time, they are high-level descriptions

of a network because the graphical representation abstracts from the parameterization

of a speci�c distribution. Graphical Models provide the methodology to design new and

complex architectures for complex problems with unusual data dependencies. On the

other hand, they can be used to decompose and understand popular architectures that

have been used for a long time, such as feed-forward neural networks, Markov models and

mixture models. Moreover, graphical networks can be used at a meta-level to analyze and

optimize training algorithms for these network architectures [Bun94].

Graphical models or their subclasses have many names, all of which point out a prop-

erty or function. They are referred to as independence networks because the graphical

representation describes dependence and independence among random variables. They

are called Bayesian belief networks since dependencies between variables are expressed in

terms of conditional probability functions that have implicit or explicit prior beliefs built

into them. They are also called in
uence diagrams since causal dependencies between

variables are illustrated. In
uence is meant in the probabilistic sense, but deterministic

causal dependence is included as a special case. As a meta-class of models, graphical

models are conceptually unbounded. They unify existing network architectures, for ex-

ample classical ANNs, in a single theory [Nea96], but, at the same time, they provide new

insights and extensions to conventional networks and open up new application domains

[HW95, Bun96, Jor98a].

A graphical network is de�ned at two levels: �rstly, the structure of the network,

consisting of a number of nodes, connections, and independence relations, indicates prior

assumptions about the problem. Secondly, the set of parameters describes the marginal

and conditional probabilities of the network structure. Assumptions of independence make

the graph transparent, easy to understand and, most importantly, allow for parameters to

be estimated from data. The more independences there are, the fewer parameters there

are and the easier it is to estimate statistically valid parameters from data.

17

��
��
X1

��
��
X2

��
��
X3

��
��
X4

��
��
X5

��
��
X6

@
@
@
@R

�
�
�
�� @

@
@
@R

�
�
�
��

�
�
�
��

@
@
@
@R

Figure 2-1: Directed acyclic graph [Jor98b].

Statistical machine learning deals with three fundamental problems related to a graph-

ical model.

1. Find the optimal model structure for a problem or a set of observed data (qualitative

speci�cation).

2. Infer the optimal set of parameters, i.e. the correct distributions, given the structure

and the set of observations (quantitative speci�cation).

3. Given a structure and parameters, infer the probabilities of unobserved nodes given

new observations.

(1) and (2) can be summarized as the learning or estimation problem. (3) happens at

a later time and is referred to as the inference problem. It is important to de�ne (1) in

such a way that (2) to (3) are tractable and statistically valid. Often (3) is evaluated in

the process of �nding a solution for (1) and (2).

2.1.1 Notation and theory

Bayesian Networks and directed graphs

A probabilistic graph is speci�ed in terms of a set of discrete or continuous random vari-

ables S = fX1;X2; :::;XKg, represented in nodes, and in terms of conditional dependences
between the variables, represented in edges between the nodes.

A Bayesian Network is a directed acyclic graph (DAG, �g. 2-1). The graphical repre-

sentation indicates a conditional decomposition of the joint probability,

p(X1;X2;X3; X4;X5;X6 j M) = p(X1 j M) p(X2 j M) p(X3 j X1;X2;M) (2.1)

p(X4 j X3;M) p(X5 j X3;M) p(X6 j X4;X5)

where M is the available prior knowledge about the problem. The probability of each

variable Xi is conditioned on its parents, where parents are all the variables that have a

18

directed edge connected to Xi. The general form of the expansion is

p(S j M) =
Y
X2S

p(X j parents(X);M) : (2.2)

Di�erent types of independence can be identi�ed. Two random variables X1 and X2

are conditionally independent with respect to a third variable X3 if

p(X1;X2jX3) = p(X1jX3) p(X2jX3) : (2.3)

Two random variables are marginally independent if

p(X1; X2) = p(X1) p(X2) : (2.4)

Neither of the two independence properties implies the other. In the con�guration

��
��
X1

-��
��
X2

-��
��
X3

X1 and X3 are marginally dependent, but conditionally independent

p(X1; X3) 6= p(X1) p(X3) (2.5)

p(X1;X3jX2) = p(X1jX2) p(X3jX2)

The interpretation of this relationship is that when X2 is known, any further informa-

tion about X1 does not change the distribution of X3. Equ. 2.5 also holds true for the

con�guration

��
��
X1

�
�
�
�	

��
��
X2

@
@
@
@R

��
��
X3

In this case X1 and X3 are said d-separated by X2 [Pea87]. In

��
��
X1

@
@
@
@R

��
��
X3

�
�

�
�	

��
��
X2

19

the situation is inverted. X1 and X2 are marginally independent, but conditionally de-

pendent

p(X1;X2) = p(X1) p(X2) (2.6)

p(X1;X2jX3) = p(X1jX3) p(X2jX1; X3) 6= p(X1jX3) p(X2jX3)

X3 is called a head-to-head node. Combining the two fundamental cases we get the fa-

mous earthquake paradox, which illustrates the surprising interdependency of nonadjacent

random variables through a series of arcs:

��
��
X1

@
@
@
@R

��
��
X2

�
�
�
�	

��
��
X3

@
@
@
@R

��
��
X4

Burglar

Alarm

Earthquake

Radio

If a house owner gets paged, because the house alarm system went o�, he naturally assumes

that a burglar had tried to enter the house. However, if at the same time the radio

announces that there has been an earthquake in the area, the probability that a burglar

caused the alarm to go o� goes down by a lot.

p(X1;X3) = p(X1) p(X3) (2.7)

p(X1;X3jX2;X4) = p(X1jX2;X4) p(X3jX1;X2;X4)

6= p(X1jX2;X4) p(X3jX2;X4)

Undirected graphs

Undirected graphs consist of nodes and undirected edges between them. Nodes are as-

sumed independent from any non-adjacent node and hence ful�ll the �rst order Markov

condition. Therefore undirected graphs are also referred to as Markov �elds (�g. 2-2).

This class of networks is well-suited for applications in image processing. Every pixel is

represented by a node and is assumed to depend on neighbor pixels only [Bun94].

In order to expand the probability distribution over the nodes, we summarize subsets

of nodes in cliques. A clique is a maximal subset of nodes that are fully connected, i.e.

a subset of fully connected nodes that are not completely part of another fully connected

subset. An example of a clique in �g. 2-2 is C = fX1;1;X1;2; X2;1;X2;2g. The graph is

interpreted in terms of the functions (potentials) over the cliques,

p(X) =
Y
Ci

fCi(Ci) (2.8)

20

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

X1;3

X2;3

X3;3

X1;2

X2;2

X3;2

X1;1

X2;1

X3;1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�@

@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

Figure 2-2: Markov �eld, UGM, [Bun94, P.164].

In our example (�g.2-2) the joint distribution decomposes into

p(S) = f1(X1;1; X1;2;X2;1;X2;2) � f2(X1;2;X1;3;X2;2;X2;3) � (2.9)

f1(X2;1; X2;2;X3;1;X3;2) � f2(X2;2;X2;3;X3;2;X3;3) :

From this representation we see that Xi is independent from all the variables with which

it doesn't share a clique, i.e. all the variables that aren't an argument of the fj of which

Xi is an argument. The family of global distributions p(S) and the family of product

distributions
Q
i fi is identical.

2.1.2 Inference

The nodes of a probabilistic graph can be classi�ed in visible units (observed variables

V) and hidden units (hidden variables H). The visible units are represented by observed

instantiated variables. They are also called evidence nodes. Inference is the operation that

�nds the conditional distribution of the hidden units given the evidence units [Jor98b,

JGJS99],

p(HjV) = p(H;V)P
H p(H;V)

: (2.10)

A general methodology for inference in directed and undirected graphs is the JLO

algorithm, named after its inventors Jensen, Lauritzen and Olesen [JLO90, LS88]. The

approach consists of three steps: moralization, triangulation and propagation. Moraliza-

tion and triangulation are summarized in the construction step, in which a junction tree

is constructed. The construction happens o�-line and only once. In the propagation step,

the inference problem is solved, propagating new evidence, that is observed data, through

the network.

The JLO algorithm can be used to estimate arbitrarily complex graph structures.

It contains well known inference algorithms such as the forward-backward algorithm for

hidden Markov models or the Expectation-Maximization algorithm for Gaussian mixture

models as special cases.

21

Moral graphs

We �rst convert the directed graph into an undirected graph. Since both directed and

undirected graphs expand the global distribution in product form we can transform con-

ditional probabilities into local potentials. In directed graphs a node and its parents are

usually not fully connected. We marry the parents of each node to obtain a moral graph

[Jor98b]:

��
��
X1

@
@
@
@R

��
��
X3

�
�
�
�	

��
��
X2

P (X3jX1;X2)

)
��
��
X1

@
@
@
@

��
��
X3

�
�

�
�

��
��
X2

f(X1;X2;X3) = P (X3jX1; X2)

For example, moralizing the Baysian Network from �g. 2-1 yields

��
��
X1

��
��
X2

��
��
X3

��
��
X4

��
��
X5

��
��
X6

@
@
@R

�
�
�� @

@
@R

�
�
��

�
�
��

@
@
@R)

��
��
X1

��
��
X2

��
��
X3

��
��
X4

��
��
X5

��
��
X6

@
@
@

�
�
� @

@
@

�
�
�

�
�
�

@
@
@

and a global distribution that expands into

P (X1;X2;X3; X4;X5;X6) = P (X1) P (X2) P (X3jX1;X2) P (X4jX3) (2.11)

P (X5jX3) P (X6jX4;X5)

= f1(X1;X2;X3) f2(X3;X4; X5) f3(X4;X5;X6) ;

with

f1(X1;X2;X3) = P (X1) P (X2) P (X3jX1;X2) (2.12)

f2(X3;X4;X5) = P (X4jX3) P (X5jX3)

f3(X4;X5;X6) = P (X6jX4;X5) :

Triangulation

The triangulation step is needed to guarantee local and global consistency of a clique tree.

A triangulated graph has no cycles of four or more nodes without a chord, where a chord

is an edge between two non-neighboring nodes. We triangulate a tree by adding chords

where necessary. For example,

22

��
��
X1 ��
��
X2

��
��
X3 ��
��
X4

is triangulated into

��
��
X1 ��
��
X2

��
��
X3 ��
��
X4

�
�
�
�

A triangulated clique tree has the so-called running intersection property: any node that

is part of two cliques is also represented in any clique in between. The clique tree of

a triangulated graph is called a junction tree. The edges joining two cliques are called

separators.

Unlike moralization, triangulation of a network is not unique. Given a moral graph

there are usually many di�erent ways of turning it into a junction tree. In the limit, we

can always fully connect all the nodes and obtain a perfectly valid triangulation of the

tree. However, in the interest of eÆcient and valid model estimation, we want cliques to

be as small as possible. The search for the optimal junction tree is NP-complete, yet,

there are usually many acceptable solutions and good heuristics to �nd them.

Propagation

Given new evidence, distributions and potentials are marginalized and rescaled with re-

spect to the observed data. This can be tricky when nodes are part of more than one

clique since we need to preserve consistency among cliques. Our starting point is the

representation of the joint probability in terms of a product of potential functions on the

cliques,

p(U) =
Y
C2U

fC(XC) : (2.13)

We can extend this representation to include functions on the edges between cliques and

obtain the generalized potential representation,

p(U) =

Q
C aC(XC)Q
S bS(XS)

: (2.14)

The additional term bs(Xs) is used for message passing between cliques. Given the evi-

dence Xk, the adjacent cliques Ci and Cj and the separator Sk in between,

��
��
Ci Sk ��

��
Cj

23

we de�ne

b�Sk(xSk) =
X
CinSk

aCi(xCi) (2.15)

a�Cj (xCj) = aCj (xCj)�Sk(xSk)

�Sk(xSk) =
b�Sk(xSk)

bSk(xSk)

The full clique tree is updated in a collection and a distribution step. In the collection

step the messages are passed to a root clique. In the distribution step they are sent back

to the cliques along the same edges [JLO90, Oli00].

The complexity of the JLO algorithm is exponential in the size of the cliques. For-

tunately cliques are small for most of the well-known architectures, such as HMM and

Mixture models. Recent research has yielded approximate inference algorithms to esti-

mate architectures that were intractable before [SJJ96, SJ96, SJ96, GJ96, JGJS99].

2.1.3 Example I: Gaussian mixture models

Mixture models, also called mixture of experts models, consist of K expert systems and

an integrating network, sometimes referred to as the gating network (�g. 2-3) [Hay99].

Mixture models are usually used in supervised learning problems where di�erent domains

of the feature space have di�erent output characteristics. Depending on the problem, a

large number of simple experts, e.g. linear functions, may be used [JJ94], or alternatively,

a few complex experts, e.g. Neural networks [WMS95]. Mixture models are closely related

to radial basis function architectures [GJP95] and locally weighted polynomial regression

[MSD97].

Gaussian mixture models implement the gating function in the form of a posterior

likelihood of expert K with respect to a data point.

gk(x) =
Cke

�(x)PK
l1 Cle�(x)

(2.16)

We consider a mixture distribution of K normal distributions N (mk; �
2
k) over the multi-

variate random variable x and the random variable z. z depends on x and takes on the

values f1; 2; :::;Kg. The joint distribution of (x; z) is

p(x; z) =
KX
k=1

Æk(z)pk
1p
2�

�k exp

(
�(x�mk)

2

2�2k

)
(2.17)

The term Æk(z) makes sure that only one of the distributions in the sum is turned on at

a time. However, usually z is hidden yielding the marginal distribution of x

p(x; z) =
KX
k=1

pkp
2�

�k exp

(
�(x�mk)

2

2�2k

)
(2.18)

which is called the normal mixture distribution.

24

Expert 1

Expert 2

Expert K

Gating netwok

Σ
y2 y

x
yK

y1

g1

gK

g2

Figure 2-3: Gated (mixture) experts showing experts 1 through K as well as a gating

network [Hay99, p.368].

The graphical representation of a Gaussian mixture is as simple as

��
��
q1 ��
��
q2 ��
��
q3 ��

��
qT

x1��
��

x2��
��

x3��
��

x4��
��? ? ? ?

r r r

The model estimation step is concerned with identifying the parameters pk, �k andmk.

We �rst observe that the estimation of model parameters from data is easy, when all the

states, including z, are observed. In this case we simply compute the relevant moments

for kernel k with respect to the data (x; zjz = zk),

mk =
1

Nk

X
fx;zjz=zkg

x (2.19)

�k =
1

Nk

X
fx;zjz=zkg

(x�mk)
2

pk =
Nk

N

where N is the number of data points and Nk is the number of points for which z = zk.

25

Since the z are usually unknown, we need to estimate the model parameters based on

incomplete data. The implication of this is that we update the parameters in a soft rather

than hard way. The counting procedure is replaced by an update that weights the contri-

bution of all data points given a particular kernel. Secondly the one step ML estimation

is replaced by an iterative search, the Expectation-Maximization (EM) algorithm. The

EM-algorithm uses two distinct steps to optimize the likelihood of the data given the

model.

1. In the E-step the model is assumed correct and the data distribution is reevaluated.

2. In the M-step the data distribution of hidden and observed states is assumed correct

and the model parameters are updated, so that they maximize the likelihood of the

data given the model.

Section 3.2 and Appendix A discuss the EM-algorithm in depth. Mixture models can

become arbitrarily complex using hierarchical layers of gating [JJ94].

2.1.4 Example II: Hidden Markov models

A hidden Markov model (HMM) is a graphical mixture model with dynamics. HMMs

model observables of a time series xt assuming that the observables are dependent on in-

ternal states qt (�g.2-4). The hidden states obey the �rst-order Markov property, i.e. q� is

independent from any state qt except q��1 and q�+1. The observations x� are conditionally
independent from the states q��1 and q�+1, given the state q� .

��
��
q1 ��
��
q2 ��
��
q3 ��

��
qT

��
��
x1 ��
��
x2 ��
��
x3 ��

��
xT

- -

? ? ? ?

A A
�

B B B B

r r r

Figure 2-4: Hidden Markov model in graphical model notation. � is the initial state

probability, A is the matrix of transition probabilities and B is the matrix of emission

probabilities.

An HMM is usually characterized by the number of hidden states J , the number of

time steps T , where T can be in�nite, the initial state probabilities �, the transition

probability matrix A, and the matrix of emission probabilities B.

�(qi) = p(qi) (2.20)

[A]j;i = p(qj;t+1jqi;t)
[B]j;i = p(xj;tjqi;t)

26

In this review we consider discrete emission probabilities and observations of discrete

symbols xt. Section 3.5 we will introduce a continuous-valued HMM. We assume that

there is some underlying state sequence that emits the observed variables and we assume

the system is stationary, i.e. A and B are independent of time.

Given this general architecture three key problems can be identi�ed [RJ86]:

1. Given and observation sequence O = fX1;X2; :::;XT g and a model M = (�;A;B),

how can we compute p(O), the probability of the observation sequence?

2. Given the observation sequence O, which is the most likely underlying state se-

quence?

3. How do we �nd the best model M = (�;A;B) given a set of observations, namely

the model M that maximizes P (OjM)?

Problem (3) may seem to have the highest priority, but we'll �nd that we need the solutions

to problems (1) and (2), in order to solve (3).

Following the methodology from section 2.1.2, we �rst triangulate the graph in �g. 2-4:

"!

"!

"!

"!

q1;x1

q1; q2

q2;x2

q2; q3 r r r

The size of each clique is two, which means that the total complexity of the algorithm is

O(J2T) and that a HMM architecture is one of the rare examples where exact inference

is possible.

Message passing in the case of an HMM translates into the forward-backward algo-

rithm, the key element of the Baum-Welsh algorithm. The Baum-Welsh algorithm in turn

is a special case of EM. Similarly to mixture models, we observe that the estimation of

the model parameters as well as the prediction of future xt would be simple if only we

knew the state sequence qt. However, since the states are hidden we need to �nd more

sophisticated strategies. We �rst assume that all the states, including the internal state

sequence are observed, in which case we simply count observed events. The number of

transitions Nj;i from qi into qj corresponds to the transition probabilities

[A]j;i =
Nj;iPK
k=1Nk;i

(2.21)

Likewise, we count the number of events Mj;i that state qi maps into an observation xj,

to estimate the emission probabilities,

[B]j;i =
Mj;iPL
k=1Mk;i

(2.22)

27

where L is the number of possible observations. We also evaluate the �i by simply counting

the number of observation sequences that start in state qi and by renormalizing.

When the hidden states are unknown, the algorithm needs to be extended in two

directions.

1. Events are not simply counted but are weighted by the probability that the event

actually occurred. For example, the estimator for A is altered to

[A]j;i =

PT
t=1 p(qi;t) p(qj;t+1 j qi;t)PT

t=1

PK
j=1 p(qi;t) p(qj;t+1 j qi;t)

(2.23)

2. The search for the best model iterates between the estimation and a maximization

step. Given some initial conditions, we assume the model M to be correct and

evaluate the probabilities of the observations given the model (E-step). This is

done using the junction-tree (forward-backward) algorithm (section 3.5). We then

assume this new distribution to be correct and reestimate the model parameters

M = f�;A;Bg. Given the new and improved model we go back to step () and keep

iterating (section 3.5).

By now we have indicated solutions to our set of problems. The solution to problem

(1) consists of message passing in the junction tree given the evidence of an observation

sequence. Since every single state sequence has a non-zero probability, we sum over all of

them to evaluate probability of the observation. To solve to problem (2) we evaluate the

probability of every single state qt using the forward-backward procedure, we. We also

evaluate the probability of any sequence of states relative to all the other sequences. We

can then factor out the most likely individual state or the most likely sequence of states.

The result depends on the time horizon of the prediction and on whether the prediction

is real-time and causal or o�-line and non-causal. The model estimation problem (3) is

solved with the Expectation-Maximization algorithm [RJ86].

Extensions of HMMs include coupled hidden Markov models [BNP, Oli00] for modeling

coupled processes, parameterized hidden Markov models [WB98, WB99] for parameterizing

a process, and factorial hidden Markov models [GJ96] for estimating models with many

states.

2.2 Nonlinear dynamic systems

In the beginning of this work there has been the realization that nonlinear systems theory

provides tools that make it possible to fully estimate a dynamic system from observation.

The enabling theoretical insight is the embedding theorem, which will be brie
y reviewed

along with some important system-characterization methodology. Reconstruction of the

physical state space is explicitly or implicitly fundamental to the prediction and charac-

terization applications in the succeeding chapters.

28

2.2.1 State space reconstruction

We �rst consider dynamic systems of the form

@x

@t
= f(x;x0) (2.24)

y(t) = g(x(t)) :

Equation 2.24 describes a system that runs freely given the initial conditions x0 and the

internal governing equations f . It is fully characterized by its manifold of dynamic states

encoded in the function f . Unfortunately, f is unknown for most real-world systems.

With the formulation of the embedding theorem, Floris Takens presented a methodology

to recover an equivalent description of f from observation of the system:

Theorem 1. Let M be a compact manifold of dimension m. For pairs (�; y),

� : M ! M a smooth di�eomorphism and y : M ! R a smooth function ,

it is a generic property that the map �(�;y) :M !R2m+1, de�ned by

�(�;y)(x) = (y(x); y(�(x)); :::; y(�2m(x))) (2.25)

is an embedding; by \smooth" we mean at least C2.[Tak81]

Consider that x is a state variable of a dynamic system, y(x) is an observable of the

system and M is the manifold of system states. If we furthermore specify that x is a

function of time and that �(x) is a delay operator, the enigmatic theorem 2.25 starts to

make sense. The theorem states that there is a di�eomorphic mapping between the man-

ifold X 2 Rm of a dynamic system and a second manifold Y 2 Rn which is reconstructed

from an observable of the system. Given the output measurement y(t) of the system, Y is

reconstructed by using time delayed values y(t � �) as the axes of the embedding space.

The axes of Y are y(t); y(t��); y(t�2�); :::; y(t� (n�1)�), where � is some constant. The

new manifold Y is topologically invariant to X.

Fig. 2-5 illustrates this beautifully. The set of equations known as the Lorenz

_x = �(y � x) (2.26)

_y = �x� y � xz

_z = ��z + xy

set is one of the rare systems that are low dimensional and chaotic. Fig. 2-5a illustrates

the time domain signal of the set. The
at power spectrum (�g. 2-5b) seemingly indicates

that the system is random, however, the state space representation in �g. 2-5c reveals

that there is structure in the data. Surprisingly, the reconstructed state space in �g. 2-5d

gives almost precisely the same picture as the true state space in �g. 2-5c. Not only is the

overall topological shape preserved, but also local details of the orbit are easily identi�ed

in the two plots. We will revisit the Lorenz attractor in sections 3.3 and 5.3.1.

For now we summarize the most important phenomenological implications of the em-

bedding theorem:

29

a) 0 1000 2000 3000 4000
−20

−10

0

10

20

x(nT)

nT b) 100 101 102 103
100

105

1010

n/T

X(n/T)

c)

−20

−15

−10

−5

0

5

10

15

20

−30−20−100102030

x(t)

y(t)
d)

−20−1001020
−20

−15

−10

−5

0

5

10

15

20

x(t)

x(t+tau)

Figure 2-5: x-coordinate of the Lorenz set in (a) time and (b) frequency domain. (c)

Lorenz attractor in the x-y-z state space projected in 2D. (d) 3D time-lag space of x(t)

projected in 2D (� = 10 samples).

1. The manifold formed by a dynamic system's Hamiltonian states is topologically

identical to a second manifold formed by one single observable of the system and

its 2m time lags. The two vector manifolds di�er by no more than a smooth and

invertible local change of coordinates. They therefore de�ne a local di�eomorphism.

2. The above is true only if the dimension of the lag space, referred to as the embedding

dimension, is large enough. In general, the embedding dimension is 2m+1, where

m is the dimensionality of the original manifold. The choice of 2m+1 assures that

the solution does not lie on a bad (ambiguous) subset in the embedding space.

3. The embedding theorem is true generically, i.e. there are only very few unlikely cases

for which it doesn't work. In those pathological cases, a small change of variables

�xes the problem.

4. Due to the robustness of the theorem, the choice of � is arbitrary. However, if � is

too small the manifold degenerates into a single line. If � is too big, the locality of

the dynamics gets lost.

30

2.2.2 Input-output embedding

Most of the systems in this world are not autonomous but depend on time variant input

u(t). Those systems are formally described as

@x

@t
= f(x;u(t);x0) (2.27)

y(t) = g(x(t)) :

Since we typically don't have access to x, the block diagram resembles like a black-box.

u(t) - Unknown system - y(t)

The theory of embedding has been extended to cover this more general type of a dynamic

system. Given a time-dependent scalar input u(t) and an output signal y(t) of a system,

Casdagli and others proposed the following embedding [Cas92, Hun92]:

y(t) = f(y(t� �); y(t� 2�); :::; y(t � (d� 1)�); u(t); (2.28)

u(t� �); u(t� 2�); :::; u(t � (d� 1)�)

Casdagli shows that there is a di�eomorphic mapping between the reconstructed manifold

2.29 and the state space of the driven system. Given an m-dimensional state vector,

Casdagli claims that 2m+1-dimensional time-lag vectors for both the input time series

u(t) and the output time series y(t) results in a unique and singular-valued function f().

The time-discrete version of expression 2.29 is

y(n) = f(y(n�k); y(n�2k); :::; y(n� (m+1)k); (2.29)

u(n); u(n�k); u(n�2k); :::; u(n� (l+1)k)

We use this representation to sketch the proof of the input-output embedding theorem as

developed in [Cas92]. Let's assume a �nite-dimensional unknown system characterized by

its d-dimensional state vector xn and the following set of equations:

x(n+1) = f(x(n);u(n)) (2.30)

y(n+1) = h(x(n+1))

If equation 2.29 is true, the lagged vector

vn =
�
yn; yn�k; yn�2k; :::; yn�(m�1)k ; un; un�k; un�2k; :::; un�(l�1)k

�

is needed to uniquely and smoothly describe the unknown state x(n). Therefore there has

to be a function P : Rm+l !R for all yn such that

y(n+1) = P (v(n)) : (2.31)

31

We assume m = l and de�ne the smooth map � : Rd �Rm�1 !Rm by

�(x; un�1; :::; un�(l�1)k) = :::; h(f(f(x; un�(l�2)k ; un�(l�1)k))); (2.32)

h(f(x; un�(l�1)k)); h(x)

= yn; yn�k:::yn�(m�1)k :

For expression 2.32 to have a unique solution s, m must be chosen such that m > d. For

m = d there would be d simultaneous nonlinear equations for d unknown components of

x, which usually have more than one solution. If m is increased by one, one more equation

is obtained which reduces the set of solutions to a unique solution for almost all cases.

Yet, if we are unlucky, the solution still lies on a bad subset �d�1 of Rd of dimension

d�1. Increasing m, we are reducing the subset dimension until �nally for m > 2d, the

bad subsets disappear. We ignore remaining bad subsets which generically have measure

0 and which do not disappear with a further increase of m.

Having shown that there is a solution for s for all n, we also proved that there is a

smooth function P, as in expression 2.31. P is found by plugging s into 2.30 and iterating.

To summarize: there is a smooth and unique function P for generically all input sequences

given that m; l > 2d. For m; l = d+1 such a function P exists almost everywhere in the

solution space [Cas92].

2.2.3 Characterization of nonlinear dynamic systems

Characterization tools for nonlinear dynamic systems �nd invariants of the system f

(equ. 2.24 and 2.29). Useful characteristics are dimensionality and predictability esti-

mates, or general statistical properties of the system. The tools that are reviewed here

usually assume a reconstructed state space to start with.

The correlation dimension in general �nds the dimensionality of a sub-manifold

M in a space S. Given a data manifold in a reconstructed state space (equ. 2.29), the

correlation integral C(D;N; r) is de�ned as

C(D;N; r) =
1

N

NX
i=1

Bi(xi;D; r) ; (2.33)

where D is the dimension of S, N is the number of data points, r is a radius around point

xi. Bi() is the proportion of points that falls inside the hyper-sphere around point xi. The

correlation dimension � is de�ned as the asymptotic scaling of C(D;N:r) / r� . � is strictly

smaller or equal to D. It increases with D until D exceeds the dimensionality of M , at

which point � equals that dimensionality. For chaotic systems � can be non-integer-valued.

Lyapunov Exponents quantify the rate of divergence of nearby trajectories. They

measure the deformation of an in�nitesimal sphere over time. Assuming a hyper sphere of

radius ri(0) in a reconstructed state space of Dimension D, this sphere is being deformed

with time into an ellipsoid with the principal axis ri(t); i = 1; 2; :::;D. The Lyapunov

coeÆcients �i are then de�ned as

�i = lim
t!1

lim
ri(0)!0

1

t
log

ri(t)

ri(0)
: (2.34)

32

where the �i are usually ordered as �1 � �2 � ::: � �D. The set f�igDi=1 is called the

Lyapunov Spectrum and
PD

i=1 �i quanti�es the volume expansion rate. Systems with one

or more positive Lyapunov coeÆcients have chaotic behavior. The Lyapunov spectrum

can be related to the system dimension by the Kaplan-Yorke conjecture [Ger89].

Entropy measures the rate at which a system generates new information and hence

indicates the predictability of its output. Let x(t) be the output of the system. The scalar

entropy of a time series equals

H1(xt) = �
X
N

p(xt) � log2 p(xt) ; (2.35)

and the entropy of a joint distribution in a two-dimensional time-lag space is de�ned as

H2(�) = �
X
Nt

X
Nt��

p(xt; xt��) � log2 p(xt; xt��) : (2.36)

Consequently, the block entropy for a D-dimensional lag-space vector is

HD(�) = �
X
Nt

X
Nt��

:::
X

Nt�(D�1)�

pD � log2 pD ; (2.37)

where

pD = p(xt; xt�� ; :::; xt�(D�1)�) : (2.38)

We can evaluate the redundancy between two-block entropies of di�erent order D and

D + 1 as

RD(�) = H1(�) +HD�1(�)�HD(�) : (2.39)

RD equals the scalar entropy of the signal xt�(D�1)� , plus the joint entropy HD�1, minus
the joint entropy HD. There are two limit cases to this expression. If D is a lot smaller

than the embedding dimension, then the next sample is undetermined by the previous

D�1 samples and the redundancy equals zero. On the other hand, if D is large, the new

sample doesn't provide any new insight and the redundancy equals the entropy H1. The

embedding dimension equals the minimum D for which RD = H1.

Alternatively, we de�ne the source entropy

h(�) = lim
d!1

HD(�)�HD�1(�) : (2.40)

The dimension then equals the minimal D for which hD(�) = h1(�).

33

Chapter 3

The cluster-weighted modeling

framework

3.1 Model architecture

Cluster-weighted modeling (CWM) is a framework for supervised learning based on prob-

ability density estimation of a joint set of input feature and output target data. It is

similar to mixture-of-experts type architectures [JJ94] and can be interpreted as a
exi-

ble and transparent technique to approximate an arbitrary function. However, its usage

goes beyond the function �tting aspect, since the framework is designed to include local

models that allow for the integrations of arbitrary modeling techniques within the global

architecture. This section introduces the common elements of the framework.

Nonlinear function �tting can be classi�ed into two major categories. The �rst category

are linear coeÆcient models (generalized linear models) which use a sum over arbitrary

nonlinear basis functions fk(x) weighted by linear coeÆcients ak,

y(x) =
KX
k=1

ak fk(x) : (3.1)

A prominent example of this architecture is the class of polynomial models (3.14). The

optimal set of parameters a1 for a linear coeÆcient models (3.1) can be found with a single

matrix inversion. However, it has been shown that the required number of basis terms in

3.1 increases exponentially with the dimensionality of x for a given error.

The second category of nonlinear models uses variable coeÆcients inside the nonlinear

basis functions

y(x) =
KX
k=1

f(x;ak) : (3.2)

Typical examples for type 3.2 are arti�cial neural networks. Nonlinear coeÆcient models

are exponentially more powerful, so they can reduce the number of basis terms to be

linear in the dimensionality of x [Bar93]. However, training of the coeÆcients a requires

1in a mean square sense.

34

an iterative search that can be tedious and time consuming. Moreover, one can never

be sure that the trained coeÆcients are optimal, since search algorithms only converge

to local minima of the cost function. These problems with fully nonlinear models are

commonly summarized as the curse of dimensionality [WG93, Ger99a].

CWM uses the concept of fully nonlinear models as in (3.2) to build globally powerful

nonlinear models. At the same time it describes local data features with simple models

that satisfy expression (3.1). Hence CWM combines the eÆcient estimation of the latter

approach (3.1) with the expressive power of the former approach (3.2, section 3.2).

We start with a set of discrete or real valued input features x and corresponding

discrete or real valued target vectors y. x consists of measured sensor data, processed

features or discrete classi�ers. It is composed of independent observations or of time-

delayed values of an embedded time series. y may be the scalar valued sample of a time

series, an independent target feature or a classifying label. We consider the joint input-

output set fyn;xngNn=1, and it is our goal to infer the joint density p(y;x), which, given

unlimited data, is the most general, compact, and statistically suÆcient description of the

data set. We parameterize p(x;y) as a Gaussian mixture density which allows us to derive

conditional probabilities from the estimated density.

p(x;y) is expanded in a sum over clusters ck. Each cluster contains an input distribu-

tion, a local model, and an output distribution. The input distribution is parameterized

as an unconditioned Gaussian and de�nes the domain of in
uence of a cluster.

p(y;x) =
KX
k=1

p(y;x; ck) (3.3)

=
KX
k=1

p(y;xjck) p(ck)

=
KX
k=1

p(yjx; ck) p(xjck) p(ck) :

The sum over clusters is normalized by the unconditional cluster probabilities p(ck) to

satisify
PK

k=1 p(ck) = 1. If there is unordered, discrete-valued feature data xd (labels) in

addition to real valued input data xr, the cluster probability p(ck) is conditioned on the

state and hence is replaced by p(ckjxd).

p(y;x) = p(y;xr;xd) (3.4)

=
KX
k=1

p(yjxr;xd; ck) p(xrjxd; ck) p(ckjxd) :

We assume the components of xd statistically independent and set
PK

k=1 p(ckjxd) = 1 for

all xd.

Many problems require a distinction between slowly varying variables describing the

global boundary conditions and state of the system and fast varying variables describing

the dynamics of the system. We will provide examples of systems in which the controlling

states are very distinct from the internal states and the output dynamics. A classic

example is linear predictive coding (section 6), where the local dynamics are described by

35

−6 −4 −2 0 2 4 6 8 10 12

Gaussian distributions

piecewise linear functions

smooth predictor

 x

p(
x)

 /
 f

(x
)

Figure 3-1: One dimensional function approximation with locally linear models weighted

by Gaussian kernels.

an IIR �lter applied to an excitation sequence, while the selection of the �lter coeÆcients

depends on di�erent information concerning the state of the system. In order to distinguish

between global (slow) and local (fast) state variables, we decompose x into xs and xf ,

and obtain

p(y;x) = p(y;xs;xf) (3.5)

=
KX
k=1

p(yjxf ; ck) p(xsjck) p(ck) ;

where xs and xf may be identical, overlapping in some dimensions or completely distinct.

The input distribution is taken to be a Gaussian distribution,

p(xjck) =
jP�1

k j1=2
(2�)D=2

e�(x�mk)
T �P�1

k
�(x�mk)=2 ; (3.6)

where Pk is the cluster-weighted covariance matrix in the feature space. The covariance

matrix can be reduced to the diagonal terms when simplicity is important, which reduces

the Gaussians to

p(xjck) =
DY
d=1

1p
2��d;k

e
�
PD

d=1

(xd�md;k)
2

2�2
d;k : (3.7)

where D is the dimension of x.

In the case of a continuous valued output vector y, the output distribution is taken to

be

p(yjx; ck) =
jP�1

k;yj1=2
(2�)Dy=2

e
�(y�f(x;ak))T �P�1

k;y
�(y�f(x;ak))=2 ; (3.8)

where the mean value of the output Gaussian is replaced by the function f(x;ak) with

unknown parameters ak. As in (3.7) the o�-diagonal terms in the output-covariance

36

−2

−1

0

1

2

−2
−1

0
1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Bow−Speed(nT)Bow−Speed(nT−10)

F
un

da
m

en
ta

l E
ne

rg
y

E
nv

el
op

e

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Bow−Speed(nT)
Bow−Speed(nT−10)

Figure 3-2: Clustered violin data. Two-dimensional function approximation with locally

linear models where the input x consists of time lagged bowing data and the output

is the amplitude of the �rst harmonic. Left: vertical view on the input space. Right:

three-dimensional view of input space and output space.

matrices Pk;y can be dropped if needed.

To understand (3.8) consider the conditional forecast of y given x,

hyjxi =

Z
y p(yjx) dy (3.9)

=

Z
y
p(y;x)

p(x)
dy

=

PK
k=1

R
y p(yjx; ck) dy p(xjck) p(ck)PK

k=1 p(xjck) p(ck)

=

PK
k=1 f(x;ak) p(xjck) p(ck)PK

k=1 p(xjck) p(ck)
:

We observe that the predicted y is a superposition of all the local functions, where the

weight of each contribution depends on the posterior probability that an input point was

generated by a particular cluster. The denominator assures that the sum over the weights

of all contributions equals unity.

We choose expression 3.9, the expectation of y given x, to be our predictor of ŷ (Bayes'

least square estimator, Section 5.1.1). This is not the only choice, but a very convenient

and powerful one considering the two alternatives: the maximum a posteriori predictor

of y �nds ŷMAP = argmaxy p(yjx). This may seem a good choice, however ŷ can't be

evaluated analytically. The medium of y (minimum absolute error estimator) is equally

diÆcult to compute. Considering that one or two basis terms are predominant for most

input x, the three options yield very similar results anyway, since medium, mean, and

mode are identical for the Gaussian distribution.

37

We also compute the conditional covariance of y given x,

hPyjxi =

Z
(y � hyjxi)(y � hyjxi)T p(yjx) dy (3.10)

=

Z
(yyT � hyjxihyjxiT) p(yjx) dy

=

PK
k=1

R
yyT p(yjx; ck)dy p(xjck) p(ck)PK

k=1 p(xjck) p(ck)
� hyjxihyjxiT

=

PK
k=1[Pk;y + f(x;ak)f(x;ak)

T] p(xjck) p(ck)PK
k=1 p(xjck) p(ck)

� hyjxihyjxiT

which equals the expected variance if only a single output dimension is considered,

h�2y jxi =
PK

k=1[�
2
k;y + f(x;ak)

2] p(xjck) p(ck)PK
k=1 p(xjck) p(ck)

� hyjxi2 : (3.11)

Espressions (3.10) and (3.11) indicate the conditional uncertainty associated with an input

x and a prediction y, which in turn is a measure of the potential prediction error.

The choice of Gaussian Kernels is mostly one of convenience. Gaussians are described

compactly with view parameters, and they generalize nicely in higher dimensions. Fur-

thermore, one may claim that the world, according to the Central Limit theorem, can be

interpreted as a bunch of Gaussian distributions afterall [Ger99a]. However, the truth is

that we don't really care a lot about the form of our kernels, since we are using them mostly

as a means to select the local predictors. For most applications we are not interested in

the actual density estimator but use the kernels to weight the local predictors.

While the general framework of CWM applies independently of the application, the

choice of the local model and the output distribution provides the
exibility needed to deal

with speci�c applications. In general, the output function expresses prior beliefs about

the data set and the dynamics of a speci�c system.

If the output function is unordered and discrete valued, the output distribution col-

lapses into a simple probability table, which has as many columns as there are discrete

valued dimensions.

p(yjx; ck) = p(yjck) =

0
BBB@

p(x1 = 1jck) p(x2 = 1jck) ::: p(xD = 1jck)
p(x1 = 2jck) p(x2 = 2jck) ::: p(xD = 2jck)

::: ::: ::: :::

p(x1 = Ljck) p(x2 = Ljck) ::: p(xD = Ljck)

1
CCCA ; (3.12)

where L is the number of di�erent labels and D is the number of discrete dimensions.

Every column in the probability table sums to unity.

If the output function is real-valued we constrain the models fk to be generalized linear

models as in (3.1). Although any functional form could be used, (3.1) provides a good

trade o� between model performance and ease of use. Common models that satisfy form

(3.1) are linear models

fk(x) = a0;k +
DX
i=1

ai;kxi ; (3.13)

38

where D is the dimensionality of x, and higher order polynomial models

fk(x) = a0;k +
MX
m=1

am;k	m(x) ;with (3.14)

	m(x) =
Y
i

x
ei;m
i

where ei;m depends on the order of polynomial approximation (section 5.1.4). For some

applications, non-polynomial basis terms may be preferable, for example cosine or wavelet

�lterbanks.

f expresses prior beliefs about the nature of the data or the mechanics of the system,

and hence functions as a regularizer of the model. Machine learning architectures and

estimation algorithms typically depend on global regularizers that handle prior beliefs

about what a good model is. This is problematic since global statements may not apply

locally. For example, the maximum entropy principle is good at handling discontinuities,

but has no notion of local smoothness, whereas integrated curvature is good in enforcing

local smoothness but rounds out discontinuities [SG00]. In our approach, the model is

constrained only by the local architecture which may enforce local smoothness but at the

same time allows for discontinuities where needed.

In order to control under versus over-�tting we trade the complexity of the local models

for the complexity of the global weighting framework [WG93]. Consider the approximation

of a one-dimensional smooth function as in Fig. 7-6. In the one extreme case we use a

single cluster along with a 5th order local polynomial model. The CWM model collapses

into a global polynomial model. In the other extreme case we use ten clusters along with

constant local functions, hence the predictive power of the model is only determined by

the number of Gaussian kernels. Both approximations are reasonably good. However, a

perfect �t is obtained by using a moderate number of �ve clusters along with moderate

3rd-order polynomials.

3.2 Model estimation

The model parameters are found in an iterative search which uses two estimators combined

in a joint update. We use the expectation-maximization algorithm (EM) to �nd the

parameters of the Gaussian kernels and �t the local model parameters by an inversion of

the local covariance matrix.

The EM algorithm has been widely appreciated as an eÆcient training algorithm for

probabilistic networks [DLR77, NH93, Ama95]. Given some observed data, EM assumes

that there is a set of known states (the observed data) and a set of hidden states, char-

acterizing the model. If the hidden states were known, model estimation would be easy,

because we would only need to maximize a parameterized distribution. Yet, since we

don't know the hidden states we need an iterative search for a solution that satis�es the

constraints on the hidden states and maximizes the likelihood of the known states. The

EM algorithm converges to a maximum of the likelihood of the observed data, reachable

from the initial conditions. Given that there are many equivalent solutions for the model,

39

this approach is typically acceptable.2

Unlike conventional kernel-based techniques, CWM requires only one hyper-parameter

to be �xed beforehand, the number of Gaussian kernelsK. Other parameters of the model,

such as the bandwidth (the domain of in
uence) of the Kernels, are results of the estimation

process rather than an input to the training algorithm [CD88]. K is determined by cross-

validation on left-out data or in a bootstrapingp approach (section 5.3.2).

Clusters are initialized in space locations where there is data, which saves time, since

clusters don't have to �nd subspaces that are populated with data points. We pick as

many random points from the data set as there are clusters in the models and use the

data coordinates to initialize the cluster means for input and output. The remaining

output coeÆcients are set to zero. The cluster input and output variances are chosen to

cover the support of the data, i.e. the diagonal terms of the cluster covariance matrices

equal the variance of the data set in each dimension. We set cluster probabilities p(ck) to

1=K in order to give clusters equal starting weight. The measured data is normalized to

zero mean and unit variance since arbitrary scaled data may cause probabilities to become

smaller than machine precision.

The iteration process is kicked o� with the E-step, for which we assume the current

cluster parameters to be correct and evaluate the posterior probabilities that relate each

cluster to each data point in the conditional probability p(ckjy;x). These posterior proba-
bilities can be interpreted as the probability that a particular piece of data was generated

by a particular cluster. Other authors refer to them as the responsibilities of a cluster for

a point [JJ94].

p(ckjy;x) =
p(y;xjck) p(ck)

p(y;x)
(3.15)

=
p(y;xjck) p(ck)PK
l=1 p(y;xjcl) p(cl)

The sum in the denominator causes clusters to interact, �ght over points, and specialize

in data they best explain. Each cluster wants to own as many points as possible, but gets

pushed back by competing clusters.

In the M-step we assume the current data distribution to be correct and �nd the

cluster parameters that maximize the likelihood of the data. We estimate the new uncon-

ditional cluster probabilities p(ck) factoring over the entire current density p(y;x).

p(ck) =

Z
p(ckjy;x) p(y;x) dy dx (3.16)

� 1

N

NX
n=1

p(ckjyn;xn)

In the second line, the integral over the density is replaced by the sum over the known

data. In the limit of in�nite data, these expressions are equal. In the case of limited data,

2Gershenfeld [GW93] refers to this feature of large parameter spaces typical for neural networks the

blessing of dimensionality in reference to the curse of dimensionality mentioned earlier. Appendix A

provides di�erent theoretical explanations of the EM algorithm.

40

the given data distribution is still the best approximation.

Next we compute the expected input mean of each cluster, which is an estimate for

the new cluster means:

mk =

Z
x p(xjck) dx (3.17)

=

Z
x p(y;xjck) dy dx

=

Z
x
p(ckjy;x)
p(ck)

p(y;x) dy dx

� 1

N p(ck)

NX
n=1

xn p(ckjyn;xn)

=

PN
n=1 xn p(ckjyn;xn)PN
n=1 p(ckjyn;xn)

The formal introduction of y into the density has the important result that cluster param-

eters are found with respect to the joint input-output space. Clusters get pulled depending

on where there is data to be explained and how well their model explains the data. In a

similar way, we can de�ne the cluster-weighted expectation of any function �(x),

h�(x)ik �
Z
�(x) p(xjck) dx (3.18)

� 1

N

NX
n=1

�(xn)
p(ckjyn;xn)

p(ck)

=

PN
n=1 �(xn) p(ckjyn;xn)PN

n=1 p(ckjyn;xn)
:

which lets us update the cluster weighted covariance matrices,

[Pk]ij = h(xi �mi)(xj �mj)ik (3.19)

=

PN
n=1(xi �mi)(xj �mj) p(ckjyn;xn)PN

n=1 p(ckjyn;xn)
:

Alternatively, parameters can be derived by taking the derivative of the log-likelihood

of the data with respect to the parameters. For example, the new cluster means need to

satisfy

0 =
@

@mk;i

log
NY
n=1

p(yn;xn) ; (3.20)

which leads to the update rule:

0 =
NX
n=1

@

@mk;i

log p(yn;xn) (3.21)

41

=
NX
n=1

1

p(yn;xn)
p(yn;xn; ck)

2(xn;i �mk;i)

2�2k
(�1)

=
NX
n=1

1

p(yn;xn)
p(yn;xn; ck)

mk;i

�2k
�

NX
n=1

1

p(yn;xn)
p(yn;xn; ck)

xn;i

�2k
:

Resolving expression 3.21 for mk we get back equation 3.17:

NX
n=1

1

p(yn;xn)
p(yn;xn; ck) mk;i =

NX
n=1

1

p(yn;xn)
p(yn;xn; ck) xn;i (3.22)

mk;i =

PN
n=1

1
p(yn;xn;i)

p(yn;xn; ck) xn;iPN
n=1

1
p(yn;xn)

p(yn;xn; ck)

=
1

N p(ck)

NX
n=1

xn;i p(ckjyn;xn)

In order to update the parameters of the local linear coeÆcient models, we take the

derivative of the log-likelihood with respect to each of the model parameters. Considering

a single output dimension y and a single coeÆcient ak, this yields

0 =
NX
n=1

@

@ak;i
log p(yn;xn) (3.23)

=
NX
n=1

1

p(yn;xn)
p(yn;xn; ck)

yn � f(xn; ak)

�2m;y

@f(xn; ak)

@ak;i

=
1

Np(ck)

NX
n=1

p(ckjyn;xn)[yn � f(xn; ak)]
@f(xn; ak)

@ak;i

=

*
[y � f(x;ak)]

@f(x;ak)

@ak;i

+
k

Plugging expression 3.1 into expression 3.23, we can solve for ak

0 = h[y � f(x;ak)]fj(x)ik (3.24)

= hyfj(x)ik| {z }
cj;k

�
IX
i=1

ak;i hfj(x)fi(x)ik| {z }
Bji;k

ak = B�1
k � ck :

If we consider the full set of model parameters for vector-valued input and output, compact

writing of the formulas yields

Ak = B�1
k � Ck ; (3.25)

with

[Bk]ij = hfi(x;ak) � fj(x;ak)ik

42

=
1

N p(ck)

NX
n=1

fi(x;ak) � fj(x;ak) p(ckjyn;xn)

[Ck]ij = hyi � fj(x;ak)ik

=
1

N p(ck)

NX
n=1

yi � fj(x;ak) p(ckjyn;xn) :

(3.25) is the well-known maximum likelihood estimator for linear models, modi�ed to �t

a local subspace of data instead of the total data set. Because the matrix A is symmetric,

we can use eÆcient matrix inversion algorithms to compute the inverse, for example a

Cholesky decomposition [PTVF92, P.96]. However, it is preferable to use the more ex-

pensive but robust singular value decomposition (SVD) to compute the inversion, since

subspaces may become very small.

In the case of the popular, and often suÆcient, local linear models (3.13) expression

(3.26) reduces to

[Bk]ij =
1

N p(ck)

NX
n=1

xi(x;ak) � xj(x;ak) p(ckjyn;xn) (3.26)

[Ck]ij =
1

N p(ck)

NX
n=1

yi � xj(x;ak) p(ckjyn;xn) :

where x0 = 1 (the constant term in the linear model) and xi is the i-th component of

vector x for i > 0.

Finally, the output covariance matrices Py;k associated with each model can be esti-

mated. Estimation of Py;k is analogous to estimation of the error matrix in linear estima-

tion theory. Again, the di�erence is that we estimate the error in the local neighborhood

of the cluster and its predictor.

Py;k = h[y � f(x;ak)] � [y � f(x;ak)]T ik

=
1

N p(ck)

NX
n=1

[yn � f(xn;ak)] � [yn � f(xn;ak)]T p(ckjyn;xn) :

In the case of a discrete output model, the estimation of the probability table (3.12)

basically means counting points of ownership. Each cluster is given probabilities that

represent its relative amount of ownership with respect to a certain class. Hence the

maximization step for the probability table is

p(y = ijck) =
P

njyn=i p(ckjyn;xn)PN
n=1 p(ckjyn;xn)

(3.27)

Let's quickly summarize the model estimation procedure:

1. pick some initial conditions;

2. evaluate the local data distribution p(y;xjck)

43

1 2 3 4 5 6
0

0.5

1

Sorted Cluster Eigenvalues

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

Test Set Mean Square Error

Training Set Mean Square Error

2 4 6 8 10 12 14 16 18 20
0

0.5

1

Test Set Data Likelihood

Training Set Data Likelihood

Figure 3-3: Fitting the Lorenz set. Top: Data likelihood as a function of iterations.

Middle: Mean square error as a function of iteration: Bottom: Sorted eigenvalues of the

local covariance matrices; individual matrices (dashed) and average (solid).

3. given p(y;xjck) �nd the posterior probability of the clusters given the data p(ckjy;x);
4. update the cluster weights p(ck), the cluster-weighted input means mnew

k , the input

variances �2 new
k;d or covariances Pnew

k , the model parameters anewk , and �nally the

output variances �2 new
k;y or covariances Pnew

k;y ;

5. go back to (2) until the total data-likelihood stops increasing (�g. 3-3) [DLR77].

3.3 Model evaluation and system characterization

From the probability density (3.3), error estimates and statistics can be derived that

provide useful insights as well as a self-consistency checks on the model. Some statistics

are derived directly from the model, others require operations on the densities. All of

them relate to some established analysis tools in nonlinear systems theory.

The density itself indicates the model uncertainty. We won't obtain a good model

where the data density is low, but assume that the certainty of the model estimation is

proportional to the data density in a subspace. This is obviously a relative measure, given

that the density integrates to one independently from the total amount of training data.

The conditional covariance (3.10), on the other hand, indicates the prediction uncer-

tainty given an input x. Rather than training a second model that predicts error bars for

the forecast, the error bars are a result of the estimation process (�g. 3-6). If the model

is derived from time series data embedded in a lag space, the scalar-valued conditional

44

variance can be related to other characterizations of uncertainty, such as entropy and Lya-

punov exponents. The di�erential entropy of a Gaussian process is H = log2(2�e�
2)=2.

We ignore the additive terms and consider H = log2(�), because only di�erences in a dif-

ferential entropy matter. The asymptotic rate of growth of the entropy with time is equal

to the source entropy h, which in turn is equal to the sum of positive Lyapunov exponents

multiplied by the time lag � between samples, h = �
P
�+. Therefore, assuming that

the prediction errors are roughly Gaussian, the asymptotic value of the log of the output

width as the input dimension increases provides a local estimate of the source entropy of

the system. The sum of the negative exponents can similarly be found by analyzing the

time series in reverse order (thereby exchanging positive and negative exponents).

Because clusters �nd the subspace that is occupied by data, we can use the cluster pa-

rameters to �nd the dimension of the data set even in a high-dimensional space. Intuitively,

the number of signi�cant eigenvalues of the local covariance matrices provides an estimate

of the dimensionality of the data manifold. For example, we obtain three signi�cant eigen-

values for the Lorenz attractor embedded in six dimensions (�g. 3-3). To quantify this

further we use the eigenvalues of the local covariance matrices Ek = fe1;k; e2;k; :::; e3;kg to
evaluate the radial correlation integral

Ck(r) =

Z r

�r
:::

Z r

�r
p(x1; : : : ; xDjCk) dx1 : : : dxD (3.28)

= erf

0
@ rq

2e21;m

1
A � � � erf

0
@ rq

2e2D;m

1
A

which in turn lets us compute the cluster's correlation dimension [Ger99a]

�k =
@ logCk(r)

log r
(3.29)

=
DX
d=1

1

erf

�
rp
2e2
d;m

�
s

2

�e2d;m
e
�r2=2e2

d;m r

In the limit r ! 0, this dimension is equal to the dimension of the space, because the

curvature of the clustered space cannot be seen locally. If it is evaluated at r = 0:1�max,

for the emax direction, the contribution is still 0.997. However, for a direction with variance

emax=100, the contribution drops to 10�21. The expected dimension of the whole data set

is �nally given by the expectation

h�i =
KX
k=1

�k p(ck) : (3.30)

Unlike a conventional O(N2) calculation of the dimension of a data set from all the pairs

of points, the clusters �nd the signi�cant places to evaluate the dimension, as well as the

appropriate length at which to test the scaling.

45

3.4 Online implementation

Many applications require on-line estimation or adjustment of the model parameters rather

than a �xed model, e.g. echo reduction in bidirectional communication channels or com-

pression �lters for di�erential coding of audio signals. In the context of inference models

for musical instruments (chapter 10), the challenge consists in optimizing the model during

data collection such that a player can himself verify the quality of the model and improve

on its weaknesses.3

We rede�ne the EM-update rules to be used incrementally with new incoming data.

We also propose a recursive linear least-square estimator (Kalman �lter) to update the

coeÆcients of the local models [Met96]. We consider the case of a single new data point,

and scalar outputs y(n). The local models are taken to be linear.

3.4.1 Online EM updates

Let's assume that N�1 data points have been seen so far. The cluster probability based

on a data is then given by

p(N�1)(ck) =
1

N�1
N�1X
n=1

p(N)(ckjyn;xn) ; (3.31)

where p(N�1)(ckjyn;xn) is the posterior probability estimated from the set of N points.

The cluster probability based on N can be estimated as

p(N)(ck) =
1

N

NX
n=1

p(N)(ckjyn;xn) (3.32)

=
1

N

"
N�1X
n=1

p(N)(ckjyn;xn) + p(N)(ckjyN ;xN)
#

� N�1
N

p(N�1)(ck) +
1

N
p(N)(ckjyN ;xN)

The sum over N points is replaced by a single sum which adds in the contribution of

the posterior for the new point, assuming that the posteriors of the existing data are

unchanged. Similarly, the cluster-weighted expectation for N�1 points is

h�(y;x)i(N�1)k =
1

(N�1) p(N�1)(ck)
N�1X
n=1

�(yn;xn)p
(N�1)(ckjyn;xn) ; (3.33)

For N points it can be approximated as

h�(y;x)i(N)
k =

1

(N) p(N)(ck)

NX
n=1

�(yn;xn)p
(N)(ckjyn;xn) (3.34)

3...an application that has yet to be implemented.

46

� (N�1) p(N�1)(ck)
N p(N)(ck)

h�(y;x)i(N�1)k

+
1

(N) p(N)(ck)
�(yN ;xN) p

(N)(ckjyN ;xN) :

This expression has natural limits. If p(N)(ckjyN ;xN) = 0 then the cluster expectation is

unchanged; if the weight p(N)(ck) = 0 then the cluster takes on the value of the new point.

The normalization by the factor N assumes the system is stationary. For non-stationary

systems new data points should be given relatively more weight, so that the in
uence of

old data decreases over time. The weights ful�ll the same role as the coeÆcients of a

classic moving average �lter.

We can exploit expression 3.34 with respect to the �rst order moment to �nd the new

cluster means, and with respect to the second order moment to �nd the new cluster input

covariances.

m
(N)
k =

(N�1) p(N�1)(ck)
N p(N)(ck)

m
(N�1)
k (3.35)

+
1

N p(N)(ck)
xN p(N)(ckjyN ;xN) :

C
(N)
k =

(N�1) p(N�1)(ck)
N p(N)(ck)

C
(N�1)
k +

1

N p(N)(ck)
�

(xN �mN
k)(xN �mN

k)
T p(N)(ckjyN ;xN) (3.36)

3.4.2 Cluster-weighted Kalman-�lter updates for the local models

Now we update the coeÆcients of the local linear models using local Kalman �lters for

each single model. The updates for a cluster are weighted by the posterior probabilities

p(ckjx;y) indicating the relevance of a new point for an old cluster. The derivation of

a linear recursive �lters are well documented in the literature [Ger99a, BH92]. A classic

Kalman �lter is de�ned in terms of a system of linear state space equations,

x[n+1] = E[n] � x[n] + F[n] � v[n] (3.37)

y[n+1] = H[n] � x[n] +w[n] :

where the �rst equation de�nes the evolution of the state vector, and the second equation

describes the measurement update. v[n] and w[n] denote the noise associated with the

two processes. In order to recursively estimate the coeÆcients ak, we choose the following

state space representation (switching from n to N to match equations 3.31 - 3.35):

ak[N+1] = Ek � ak[N] + Fk � vk[N] (3.38)

yk[N] = Hk � ak[N] +w[N] :

with

Ek = I (3.39)

47

Fk = I

Hk =
h
1 xT

i
:

x is the observed input vector as opposed to the state vector of the �lter. vk and wk are

assumed to be white Gaussian noise. Both noise terms relate naturally to the update of

the error covariance matrices associated with a cluster. The assumption of Gaussianity

is not restrictive but should be considered a reasonable working hypothesis that lets us

manipulate equations easily. The system's state ak is updated to minimize the error

covariance of the predictions y, taking into account the posterior probability of the new

data owned by ck. The solution to the problem has the form

ak[N jN] = ak[N jN�1] +Gk[N] � (y[N] � Hk[N] a[N jN�1]) (3.40)

where G[N] is the Kalman gain matrix.

Let's summarize the �lter updates:

1. In case that there are no initial values from a prior batch estimation, we initialize

the estimators,

a[0j� 1] = 0 (3.41)

�e[0j� 1] = �

Set N = 0 and choose � in the order of the covariance of the data.

2. Update the cluster parameters according to equations 3.31 through 3.35.

3. Compute the Kalman Gain matrices Gk, each weighted by the posterior probability

of cluster ck, given data N ,

Gk[N] = �e;k[N jN�1]HT [N] (3.42)

�
�
H[N]�e;k[N jN�1]HT [N]) +�w;k[N]

��1
� pN (ckjxN ; yN) :

Update the ak and the associated error covariance matrix �e,

ak[N jN] = ak[N jN�1] +Gk[N] � (y[N]�H[N] � ak[NjN�1]) (3.43)

�e;k[N jN] = �e;k[N jN�1]�Gk[n] � F ��e;m[N jN�1] :

4. Predict the new vector of coeÆcients ak, as well as the new error covariance matrix,

ak[N+1jN] = ak[N] (3.44)

�e;k[N+1jN] = �e;k[N jN] +�v;k[N]

5. Increment N and go back to (2).

The parameter vector of a cluster and its state space representation are updated de-

pending on how signi�cant a new point is to the cluster. In the limit where the posterior

48

probability tends towards zero, all the values of a cluster remain the same. �v[N] is used

to adjust the inertia of the estimator. The bigger �v[N] is, the slower ak is updated.

�w;k[N] is identical to the error variance �yy[N] which is estimated in the EM update.

3.5 A cluster-weighted input-output hidden Markov model

We have presented an input-output model that is suÆciently complex to handle a large

variety of prediction problems. However, there are applications where additional hierar-

chical structure is helpful if not crucial. For example, CWM does not take into account

temporal dependency in the data, but treats observations as independent data points.

However, considering, for example, audio samples of a violin signal, adjacent data points

clearly relate to each other. The current state and output of the instrument depends on the

player action milliseconds or even seconds ago. In addition there is dependence at di�erent

timescales, such as the note or a phrase level. CWM does not take into consideration any

of this temporal structure.

Hidden Markov models (HMMs) have been developed to model and exploit temporal

structure in observed data (section 3-5). Since they are strictly derived from probabilistic

principles, the hidden state sequence of an HMM can serve as an outer network layer for

a system of cluster-weighted models. Assuming J hidden states, we construct J CWM

models, each of which is conditioned on a system state.

HMMs are de�ned in terms of

� the hidden states q1; q2; :::; qJ ;

� the initial unconditional state probabilities p(qi);

� the state transition probability matrix A with ai;j = p(qt+1 = ijqt = j), where

p(qt+1 = ijqt = j) is the probability that state i succeeds state j;

� the emission probability p(ojqt = j), which is the probability that the system gener-

ates observation o, given that it is in state j (�g. 2-4) [Rab89].

For our purpose, the discrete emission probabilities p(o j qt = j) are replaced with the

continuous probability density function p(x;yjqt = j), which generates an input-output

HMM as opposed to an HMM-based classi�er. Every state qj is represented by its own

little CW model containing one or more clusters (�g. 3-4). For example the data density

given state j is

p(y;x j qt = j) =

KjX
k=1

p(y;x j ck;j) (3.45)

=

KjX
k=1

p(yjx; ck;j) p(xjck;j) p(ck;j)

and the corresponding estimator of y is

hyt j qt = ji =
PKj

k=1 fk(xt) p(ck;j j xt)PKj

k=1 p(ck;j j xt)
: (3.46)

49

Figure 3-4: Cluster-weighted hidden Markov model. State trellis pointing to local CWM

models.

To predict y we integrate over all the states and get

ŷt =

PJ
j=1

PKj

k=1 fk(xt) p(ck;jjxt) p(qt = j)PJ
j=1

PKj

k=1 p(ck;jjxt) p(qt = j)
: (3.47)

For training, we use the classic forward-backward procedure, a variant of the EM

algorithms known as the Baum-Welch algorithm [Rab89]. In the E-step, we evaluate the

probability of seeing a particular sequence O � fy1;x1; :::;yT ;xT g,

p(y1;x1; :::;yT ;xT) = P (O) =
JX

q1=1

:::
JX

qT=1

p(q1; :::; qT ; O) (3.48)

In order to make this expression computable, we expand it recursively.

p(O) =
JX

qT=1

p(qT ; O) (3.49)

50

=
JX

qT=1

p(yT ;xT j qT ;y1;x1; :::;yT�1;xT�1) p(qT ;y1;x1; :::;yT�1;xT�1)

=
JX

qT=1

p(yT ;xT j qT) p(qT ;y1;x1; :::;yT�1;xT�1)

=
JX

qT=1

p(yT ;xT j qT)
JX

qT�1=1

p(qT ; qT�1;y1;x1; :::;yT�1;xT�1) ;

where the third line follows from the fact that observations depend on the current state

only. Factoring over the entire sequence wet get the forward algorithm [Ger99a, p.200],

p(O) =
JX

qT=1

p(yT ;xT j qT)
JX

qT�1=1

p(qT j qT�1)p(yT�1;xT�1 j qT�1)

:::
JX

q2=1

p(q3 j q2) p(y2;x2 j q2)
JX

q1=1

p(q2 j q1) p(y1;x1 j q1) (3.50)

Likewise we estimate the probability of seeing a sequence O going backwards in time

(backwards algorithm),

p(O j qt = i) =
JX

qt+1=1

p(qt+1;yt;xt; :::;yT ;xT j qt = i) (3.51)

= p(yt;xt j qt = i)
JX

qt+1=1

p(qt+1 j qt)p(yt+1;xt+1; :::;yT ;xT j qt+1)

= p(yt;xt j qt = i)
JX

qt+1=1

p(qt+1 j qt) p(yt+1;xt+1 j qt+1) �

JX
qt+2=1

p(qt+2 j qt+1) p(yt+2;xt+2 j qt+2) � ::: �

JX
qT�1=1

p(qT�1 j qT�2) p(yT�1;xT�1 j qT�1) �

JX
qT=1

p(qT j qT�1) p(yT ;xT j qT)

In combining backwards and forward algorithms, we infer joint and conditional prob-

abilities, for example, the probability of a state transition and an observed sequence,

p(qt = i; qt+1 = j;O) = p(qt = i;y1;x1; :::;yt;xt) p(qt+1 = j j qt = i;y1;x1; :::;yt;xt) �
p(yt+1;xt+1; :::;yT ;xT j qt = i; qt+1 = j;yt;xt; :::;yT ;xT)

= p(qt = i;y1;x1; :::;yt;xt) p(qt+1 = j j qt = i) �
p(yt+1;xt+1; :::;yT ;xT j qt+1 = j) ; (3.52)

51

We also evaluate the probability of a state given a sequence and the current model,

p(qt = i j O) = p(O j qt = i)PJ
q�=1 p(O j q�)

: (3.53)

The data-cluster distribution then is conditioned on the state probability.

p(ck;j j y;x; qt = j) =
p(y;x j ck;j) p(ck;j)

p(y;x)

=
p(y;x j ck;j) p(ck;j)PK
l=1 p(y;x j cl;j) p(cl;j)

In theM-step the HMM as well as the CWM parameters are reestimated. We evaluate

the probability of a particular transition at time t given the observed sequence

p(qt+1 = j j qt = i; O) =
p(qt+1 = j; qt = i; O)

p(qt = i; O)
(3.54)

=
p(qt+1 = j; qt = i; O)PJ
qt+1=1

p(qt+1; qt = i; O)

as well as the probability of a hidden state at time t

p(qt = i j O) =
p(qt = i; O)

p(O)
(3.55)

=

PJ
qt+1=1

p(qt+1; qt = i; O)PJ
qt=1

PJ
qt+1=1

p(qt+1; qt; O)

Averaging over these quantities leads to estimates of the new unconditional state proba-

bilities

p(qt = i) =

PT
�=1 p(q� = i j O)PJ

j=1

PT
�=1 p(q� = j j O) (3.56)

=
1

T

TX
�=1

p(q� = i j O)

and the new state transition probabilities

p(qt+1 = j j qt = i) =

PT�1
�=1 p(q�+1 = j j q� = i) p(qt = i j O)PT�1

�=1 p(q� = i j O) : (3.57)

The estimation of cluster parameters is modi�ed with respect to the new posterior

probabilities. Hence the new unconditioned cluster probabilities are

p(ck;j) =

PT
�=1 p(ck;j j y� ;x� ; q� = j)PK

k=1

PT
�=1 p(ck;j j y� ;x� ; q� = j)

52

=
1

T

TX
�=1

p(ck;j j y� ;x� ; O)

Likewise, the cluster-weighted expectation of a function �(x) is modi�ed to

h�(x)ik;j =

PT
�=1 �(x�) p(ck;j j y� ;x� ; q� = j)PT

�=1 p(ck;j j y� ;x� ; q� = j)
:

which lets us update the remaining cluster parameters in the usual fashion (equ. 3.17-3.27).

For the purpose of prediction, two basic scenarios may apply. In the case where all the

input observations are known beforehand, we choose the output sequence that maximizes

the total likelihood of the data with respect to the full input sequence.

hyt j x1; :::;xt; :::;xT i =
PJ

qt=1

PKj

k=1 fk(xt) p(ck;tjxt) p(qt j x1; :::;xt; :::;xT)PJ
qt=1

PKj

k=1 p(ck;t j xt) p(qt j x1; :::;xt; :::;xT)
(3.58)

with

p(qt = j j x1; :::;xt; :::;xT) = p(x1; :::;xt; :::;xT j qt = j)PJ
q�=1 p(x1; :::;xt; :::;xT j q�)

: (3.59)

p(x1; :::;xt; :::;xT j qt = j) is computed in a recursive forward-backwards procedure.

In the case of real time prediction, we only have access to current and past observa-

tions of input data. We therefore maximize the predicted output with respect to past

observations only.

hyt j x1; :::;xti =
PJ

qt=1

PKj

k=1 fk(xt) p(ck;tjxt) p(qt j x1; :::;xt)PJ
q�=1

PKj

k=1 p(ck;tjxt) p(qt j x1; :::;xt)
(3.60)

with

p(qt = j j x1; :::;xt) = p(x1; :::;xt j qt = j)PJ
q�=1 p(x1; :::;xt j q�)

: (3.61)

p(x1; :::;xt j qt = j) is computed recursively in a forward procedure only.

Let's quickly revisit the violin example (Fig. 3-5). Given the state model, a particular

sequence of states now re
ects a sequence of input gestures and internal states of the

violin. Fig. 3-5 illustrates a sequence for simple d�etach�e bowing. We follow a note from

the attack, to the sustained part, to the next bow change. Hence the predictor slowly

transitions from one state to the next given the boundary conditions x.

3.6 Function approximation under constraints

Any model estimation algorithm should include as many a priori constraints on the data

as possible. If up front we know about speci�c properties of the data or the model, this

prior information should be imposed as a constraint. Not only can we make sure that the

�nal model ful�lls the constraints, we also make more eÆcient use of the training data.

Two applications of constrained models jump to mind.

53

� When modeling a physical system, such as a microwave device, we have a lot of prior

insight into the behavior of the system. In the case of a transistor, for example, a

zero input should result in zero output, and the output should saturate below the

supply voltage. In addition there may be symmetries. A resistor with a nonlinear

current-voltage characteristic should have a symmetric response for positive and

negative currents. This means that modeling one half of the curve is suÆcient to

characterize the device, however, we need to make sure that the boundary conditions

at the mirror points are constrained properly.

� No dataset will cover the full real support Rn, yet we would like models to behave

reasonably for any feature vector. If we have insights about what the model should

do in domains where no data is available, this insight should be added as a constraint

to the model. Ideally the model smoothly transitions from the data-driven function

into the constrained function, assuring that there is reasonable extrapolation outside

the data support.

Lagrange multipliers provide the classic methodology for solving optimization problems

under constraints [BS91, P.389]. If we need to minimize the function f(x; y; y0) under the
constraints gj(x; y; y

0; :::), the Lagrange function L is

L(x; y; �) = f(x; y) +
JX
j=1

�j(x) � gj(x; y; y0; :::); y = (y1; :::; yn) ; (3.62)

where the �j are the Lagrange multipliers. If f is parameterized as a = (a1; a2; :::; aI),

we derive L with respect to the ai and �j , which yields a system of equations to solve for

the set of coeÆcients:

0 =
@L

@ai
=

@

@ai
f(x; y) +

@

@ai

JX
j=1

�j(x) � gj(x; y; y0; :::) (3.63)

0 =
@L

@�j
= gj(x; y; y

0; :::)

The CWM architecture can be integrated with the Lagrange multipliers in two ways.

The �rst approach constrains the global model with respect to subspaces given by the

constraints. Local models are only constrained if the constraint concerns their domain

of in
uence. An implementation of this approach would have to provide an absolute

measure of relevance and domain of in
uence, since models are �t with respect to posterior

probabilities indicating the importance of a piece of data for a cluster.

The second solution applies the constraints to all the local functions independently of

their domain of in
uence. If every function satis�es the constraints the linear superposition

of all of them does so as well. In this case the set of constraints only changes the search

for the local model parameters, while the basic estimation algorithm remains the same

(section 3.2). The Lagrange function L is

L(y;x) = log
NY
n=1

p(yn;xn) +
JX
j=1

�j;k(x) � gj(x; y; y0; :::) (3.64)

54

which is used independently for all of the kernels. The solution for cluster ck is given by

0 =
@

@ai;k
L =

@

@ai;k
log

NY
n=1

p(yn;xn) +
@

@ai;k

JX
j=1

�j(x) � gj(x; y; y0; :::) (3.65)

=
NX
n=1

@

@ai;k
log p(yn;xnjck) p(ck) + @

@ai;k

JX
j=1

�j(x) � gj(x; y; y0; :::)

withi= 1:::I; and

0 =
@

@�j;k
L = gj(x; y; y

0; :::):

(3.66)

Equations 1 through I can be rewritten as

0 =

*
[y � f(x;ak)]

@f(x;ak)

@ai;k

+
k

+
@

@ai

JX
j=1

�j(x) � gj(x; y; y0; :::) : (3.67)

If the constraints are generalized linear functions of x and y, the system of equations is

linear and the solution requires a simple matrix inverse. Given that the derivatives of the

basis functions are known and continuous, we can also add constraints on the derivatives

of f . In this case, in order for solutions to be nontrivial when using polynomial basis

functions, the order of the polynomial needs to be suÆciently high.

Example I

We consider the example of a locally polynomial function approximation, which is con-

strained to vanish on the x1 axis, i.e. y(x = [x1; 0; :::; 0]) = 0. The Lagrange function

is

L(y;x) = log
NY
n=1

p(yn;xn) + �1 � [y([x1; 0; :::; 0]) � 0] (3.68)

which yields

0 =

*
[y � f(x;ak)]

@f(x;ak)

@ai;k

+
k

+
@

@ai
�1 � f([x1; 0; :::; 0];ak) (3.69)

= h[y � f(x;ak)] 	i(x)ik + �1	i([x1; 0; :::; 0])

0 =
IX
i=1

ai;k	i([x1; 0; :::; 0])

The solution of this system in terms of a0i;k and �1 is

a0k = B0
k
�1 � c0k ; (3.70)

55

with

a0k �

0
BBBBB@

a0;k
a1;k
:::

aI;k
�1

1
CCCCCA ; c0k =

0
BBB@
hy	0(x)i

:::

hy	I(x)i
0

1
CCCA ; (3.71)

B0
k =

0
BBB@

h	0(x)	0(x)i ::: h	0(x)	I(x)i �	0([x1; 0; :::; 0])

::: ::: ::: :::

h	I(x)	0(x)i ::: h	I(x)	I(x)i �	I([x1; 0; :::; 0])

�	0([x1; 0; :::; 0]) ::: �	I([x1; 0; :::; 0]) 0

1
CCCA

Example II

We consider another example f : R2) R (x) y) where f as well as the �rst derivative

of f vanish for x2 = 0. The local polynomials are chosen to be up to second-order

polynomials. In this case the constraints are

f(x)jx=[x1;0]T = 0 (3.72)

@f(x)

@x2

����
x=[x1;0]T

= 0

yielding the Lagrange function

L(y;x) = log
NY
n=1

p(yn;xn) + �1[f([x1; x2])� 0] + �2[
@f(x)

@x2
jx=[x1;0] � 0] : (3.73)

with

fk(x) =
6X
i=0

ai	i(x) = a0 1 + a1 x1 + a2 x
2
1 + a3 x1 x2 + a4 x2 + a5 x

2
2

fkjx=[x1;0]T = a0 1 + a1 x1 + a2 x
2
1 = 0 (3.74)

@fk

@x2

����
x=[x1;0]T

= a3 x1 + a4 + 2 a5 x2jx2=0 = a3 x1 + a4 = 0

The solution in terms of ak and �1 is

a0k = B0
k
�1 � c0k ; (3.75)

56

with

a0k �

0
BBBBBBB@

a0;k
a1;k
:::

aI;k
�1
�2

1
CCCCCCCA
; c0k =

0
BBBBBBB@

hyi
hy x1i
:::

hyx22i
0

0

1
CCCCCCCA
; (3.76)

B0
k =

0
BBBBBBB@

h1i hx1i ::: hx22i �1 0

hx1i hx21i ::: hx1 x22i x1 0

::: ::: ::: ::: ::: :::

hx22i hx1 x22i ::: hx42i x22 0

�1 x ::: x22 0 0

0 0 ::: 0 0 0

1
CCCCCCCA

(3.77)

From equations 3.72 we see that the coeÆcients a0; :::; a4 need to equal 0, which lets us

eliminate the equations in the linear system and solve for a5 6= 0.

57

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

1 1

2 2

33
44

5

5

6
6

7
7

8

8

bo
w

 s
pe

ed
 in

 la
g−

sp
ac

e

0.5 1.0 1.5 2.0 2.5
0

0.5

1

st
at

e
pr

ob
ab

ili
tie

s

200

600

time [s]

vo
lu

m
e

480

500

pi
tc

h

Figure 3-5: Hidden Markov model, from bottom: cluster/model input space, two clusters

per state; state probabilities; predicted out-of-samples amplitude (measured (dashed line)

and predicted (solid line)); predicted out-of-samples pitch (measured (black and dashed)

and predicted (red and solid line)). Although measured and predicted data are visibly

di�erent, the reconstructed audio sounds similar to the original audio data, since the

spectral characteristics and the basic characteristics of the sound envelope are preserved.

The model abstracts from the glitches in the measured data.

58

−2−1012

−2

0

2

−4

−2

0

2

4

x(t−τ)

x(t)

D
en

si
ty

 P
re

di
ct

io
n−

fu
nc

tio
n

−2
−1

0
1

2

−2

−1

0

1

2

−2

0

2

x(t−τ)

x(t)

C
lu

st
er

s

 D
at

a

0 50 100 150 200 250 300 350 400 450 500

−2

0

2

Time

S
ig

na
l

Figure 3-6: Lorenz set, embedded in a three dimensional lag space. The dense dots show

the embedded data. Below it are the cluster means and covariances and the derived input

density estimate; above it is the prediction surface shaded by the conditional uncertainty,

showing the maxima associated with the orbit reinjection.

59

Part II

Synthesis Architectures and

Applications

60

Handle so, da� die Maxime Deines Willens jederzeit zu-

gleich als Prinzip einer allgemeinen Gesetzgebung gelten

k�onne.

[...]Die reine Geometrie hat Postulate as praktische

S�atze, die aber nichts weiter enthalten als die Vorausset-

zungen, da� man etwas tun k�onne, wenn etwa gefordert

w�urde, man sole es thun und diese sind die einzigen S�atze

derselben, die ein Dasein betre�en.

I. Kant, Kritik der praktischen Vernunft, V30.4

In the second of his three major critiques, Kant discusses the fundamentals of human

ethics. Practical is his term for reasoning, decisions, and actions that a�ect the world

around us, as opposed to the pure ability of reasoning, which was the subject of the �rst

critique. In his famous categorical imperative, Kant says that whatever you do, make sure

that the intent of your action could just as well be the universal law.

In this second part, we introduce CWM-related algorithms that are motivated by

practical problems and speci�c data. Often times the decision for a model architecture

trades performance for elegance and compactness of description. We will decide in favor

of beauty more often than past engineering practice without compromising the results.

Many sophisticated applications of linear signal processing require extra layers of often

ad hoc processing to handle genuinely nonlinear problems. For example, in speech synthe-

sis, di�erent linear �lters are used; however, there is no systematic �lter selection. With

our generalized framework, we hope to unify some of these hacks in a single language. We

typically embed mature techniques in the CWM framework and obtain globally nonlinear

models that locally collapse into models well known from signal processing past practice.

Each chapter begins with a brief summary of basic concepts and related techniques.

These tools are then integrated into CWM, and �nally applications and experimental

results are discussed. Some of the algorithms will be applied in Part III instead.

4So act that the maxim of your will could always hold at the same time as the principle of a universal

legislation.

[...]Pure geometry has postulates as practical propositions, which, however, contain nothing more than

the presupposition that one can do something and that, when some result is needed, one should do it;

these are the only propositions of pure geometry which apply to an existing thing.

I. Kant. Critique of Practical Reason. English translation by L.W. Beck.

61

Chapter 4

Classi�cation

4.1 Classi�cation and decision theory

Many engineering problems, ranging from communication to �re alarm systems, require

decision-making based on a number of measurements [WWS96]. Given a noisy communi-

cation channel corrupting the message, the receiver needs to decide if a 0 bit or a 1 bit

was sent. Likewise, a �re alarm system interprets sensor data at any moment in time and

decides if there was a �re and whether the alarm should go o� or not. The sensor readings

will be noisy for a variety of reasons. Inevitably, the sensors will be a�ected by measure-

ment noise [Ger00b], but there could also be systematic noise (e.g. people smoking in the

room).

The common methodology for these kinds of problems is that of hypothesis testing.

We know beforehand how many and what kind of possible decisions there are and denote

the set of hypotheses fH0;H1; :::;HL�1g. For example, in the case of the �re alarm system

and the binary communication channel L = 2, in the case of ternary logic L = 3. We

denote the vector of measurements x = [x1; x2; :::; xD]. Each Hi is considered a random

variable with an a priori (non-conditional) probability P (H = Hi), which summarizes the

prior believes regarding the likelihood of a hypothesis. We also establish a measurement

model which relates x to a set of hypotheses and is expressed in terms of the conditional

probabilities p(x j H = Hi).

Ultimately, we are interested in the probability of a hypothesis given a measurement,

which we compute using Bayes's theorem.

p(H = Hi j x) =
p(x j H = Hi) � p(H = Hi)

p(x)
(4.1)

=
p(x j H = Hi) � p(H = Hi)PL�1
l=0 p(x j H = Hl) � p(H = Hl)

where the denominator assures that the p(H = Hi j x) add up to unity.

The second important element in decision theory is the actual decision making. Based

on the observation and the measurement model, we need to �nd an optimal decision rule

with respect to some cost function. The cost function C(Hi;Hj) is represented in matrix

form, where each entry indicates the cost associated with the decision in favor of hypothesis

62

−5 0 5
−6

−4

−2

0

2

4

6

class 1

class 2

 x

 x
2

−5 0 5
−6

−4

−2

0

2

4

6

class 1

class 2

class 3

 x

 x
2

Figure 4-1: left: linear classi�er with decision regions separated by straight lines, right:

nonlinear classi�er with disconnected decision regions

Hi, given that hypothesis Hj was correct.

C =

2
64 C(H = H0 j H = H0) ::: C(H = H0 j H = HL�1)

::: ::: :::

C(H = HL�1 j H = H0) ::: C(H = HL�1 j H = HL�1)

3
75 (4.2)

Often the diagonal terms will be zero, since the correct decision typically has no cost to

it1. The decision rule minimizes the expected cost E[C(H)] associated with picking any

of the hypotheses.

E[C(Hi)] =
L�1X
l=0

C(H = Hi j H = Hl) � p(H = Hl j x) (4.3)

and

Ĥ = argminHi
E[C(Hi)] (4.4)

Minimizing the expected cost given a measurement model and a cost model equals par-

titioning the feature space into disjoint regions, each representing a di�erent hypothesis

(Fig. 4-1). The underlying concept is the Likelihood Ratio Test (LRT). In the case of

binary hypothesis testing, the LRT �nds the hypothesis that has the lower expected cost:

C(H0 j H0) � p(H = H0 j X) +

C(H0 j H1) � p(H = H1 j X)

Ĥ(x) = H1
>
<

Ĥ(x) = H0

C(H1 j H0) � p(H = H0 j X) +

C(H1 j H1) � p(H = H1 j X)

1There maybe situations where the best (correct) decision is still costly. Say, one �nds the ideal mate

and decides to get married. Arguably he/she still pays a price in marrying her/him. Just an aside

63

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

 x
1

 x
2

Figure 4-2: Voronoi tesselation

(C(H0 j H1)� C(H1 j H1))

� p(H = H1 j X)

Ĥ(x) = H1
>
<

Ĥ(x) = H0

(C(H1 j H0)�C(H0 j H0))

� p(H = H0 j X)
(4.5)

For a symmetric cost function, all diagonal terms are zero and all o�-diagonal terms

are 1, which makes all errors equally costly. The decision rule becomes that of a minimum

probability-of-error criterion, also named the maximum a posteriori (MAP) decision rule

since

Ĥ = argmaxHi
P (H = HijX) : (4.6)

For binary hypothesis testing this simply means

p(H = H1 j X)

Ĥ(x) = H1
>
<

Ĥ(x) = H0

p(H = H0 j X) : (4.7)

4.1.1 Linear and nonlinear classi�ers

Linear classi�ers describe decision regions in the feature space which are separated by

hyper-planes (straight lines in the two dimensional case, �g. 4-1). Assuming a Gaussian

noise model, the measurement model p(x j Hi) is parameterized as a normal distribution

p(x j Hi) =
jPij�1=2
(2�)D=2

e�(x�mi)
T �P�1

i �(x�mi)=2 : (4.8)

64

Assuming a symmetric cost function, the LRT for the Gaussian model is

L =
p(x j H1) =

jP1j�1=2
(2�)D=2

e�(x�m1)
T �P�1

1 �(x�mi)=2

p(x j H0) =
jP0j�1=2
(2�)D=2

e�(x�m0)T �P�1
0

�(x�mi)=2

Ĥ(x) = H1
>
<

Ĥ(x) = H0

C(H1 j H0)

C(H0 j H1)
� (4.9)

which, taking the logarithm on both sides, can be rewritten as

1
2
xT
h
P�1
0 �P�1

1

i
x

+ xT
h
P�1
1 m1 �P�1

0 m0

i Ĥ(x) = H1
>
<

Ĥ(x) = H0

ln� + 1
2
ln

jP1j
jP0j

+ 1
2

h
mT

1P
�1
1 m1 �mT

0P
�1
0 m0

i
(4.10)

Furthermore, if we constrain the distribution to satisfy P0 = P1 = P, we get

(x�m0)
TP�1(x�mT

0)

Ĥ(x) = H1
>
<

Ĥ(x) = H0

(x�m0)
TP�1(x�m0) + 2ln� (4.11)

and

(m1 �m0)
TP�1x

Ĥ(x) = H1
>
<

Ĥ(x) = H0

1

2
(2ln� +mT

1P
�1m1 �mT

0P
�1m0) = �0

(4.12)

From this we see that x is projected onto (m1�m0)
TP�1 and compared to the threshold

�0. Hence the decision regions are separated by hyper-planes (�g. 4-1) [WWS96].

Nonlinear classi�ers allow for decision regions with complex shapes and for regions

that are not connected (�g. 4-1). p(y j Hi) is not as easy to describe anymore, but we'll

see in the next sections how a mixture density estimator can be used to approximate and

parameterize a complex probability density. Let's �rst look at some less sophisticated

techniques to approximate the decision boundaries.

K-means and Voronoi tesselation

A widely used technique to identify labeled regions is nearest neighbor lookup. Let's

assume we have some training data labeled A and another set labeled B. We can use

the training data itself as our model, by evaluating the distance between any new data

point and the training data in terms of the Euclidean distance. We classify a new point

according to the training data to which it is closest.

Often we can't a�ord to keep all the data but need to summarize it eÆciently. We

can represent (vector-quantize) the training data of class A in terms of a limited number

of hard clusters. An easy way to do this is the K-means algorithm. Very much like EM,

65

K-means is an iterative procedure with two distinct steps per iteration.2

1. We start with some initial guesses for the cluster position.

2. We �gure which points each cluster owns by assigning the closest cluster to each

point.

3. We update the position of a cluster to be the center of gravity of all the points it

owns.

4. We go back to step (2) unless there weren't any changes in point-cluster assignments.

By clustering data set A and B in the described way, we obtain a mixed representation

of the two classes in the same feature space. We classify any new data according to the

label of the cluster that it is closest to. The visualization of this decision rule is called a

Voronoi tesselation. Two adjacent clusters are separated by the centerline between them

(�g. 4-2).3

4.1.2 Feature extraction

Many classi�cation problems require preprocessing of the feature data which reduces the

dimensionality of the feature space and concentrates the discriminating information. A

rough estimate of the amount of data needed to estimate a D-dimensional predictive model

is 10D. This number is not very encouraging but fortunately too conservative for many

data sets. Since data clusters in regions of the space, the relationship between the amount

of training data and the dimensionality of the space can be much better than exponential

[GW93].

In general, we want the dimensionality of the feature space to be as small as pos-

sible. Since additional dimensions introduce noise, density estimation is tricky in high-

dimensional spaces. At the same time, we need as many discriminating features as possible

to reduce the overlap between classes in the feature space. This trade-o� needs to be bal-

anced to achieve an optimal result.

PCA

Principal Component Analysis (PCA) rotates the axis of a multidimensional Euclidean

space in such a way that the dimensions of the new space are maximally uncorrelated.

Hence the transform can be used to �nd the best orthogonal subspace of a data set. In or-

der to �nd the PCA unmixing matrixW one computes the eigenvalues and eigenvectors of

the covariance of the data set [Oja83]. The eigenvectors indicate orthogonal directions in

2K-means is in fact the hard-version of EM applied to Gaussian mixtures. Replacing the variance in

the Gaussian by a delta peak and giving equal weight to all clusters, clusters own points or they don't at

all. The notion of partial owning is replaced by a winner takes all strategy. [PP93, Pop97].
3Support Vector Machines are another sophisticated technique for nonlinear classi�cation and should

be mentioned here[Hay99]. They can be superior to density approximation in cases where there is little

training data.

66

−10 −5 0 5 10

−10

−5

0

5

10

 x

 x
2

−10 −5 0 5 10

−10

−5

0

5

10

 x

 x
2

Figure 4-3: left: PCA transform of a data set. right: ICA transform of a data set.

space while the corresponding eigenvalues indicate the variance in that direction. We ex-

tract a subspace of arbitrary dimension by picking eigenvectors ordered by the eigenvalues

(strong eigenvalues �rst) and project the data onto the eigenvectors (new axes).

y =W � x (4.13)

where x is the original feature vector, W is the unmixing matrix, and y is the projected

data. y is of the same or lower dimensionality than x.

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h0(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h0(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n)

2

h1(n) 2h1(n) 2h1(n) 2h1(n) 2h1(n) 2h0(n)

2

x(n)

Figure 4-4: Wavelet packet transform. Implementation of the �lter bank: h0(n) and h1(n)

are the half band low-pass and high-pass �lters, 2 # stands for down-sampling by a factor

2.

The PCA transform is astonishingly simple and very e�ective at the same time. Not

only does it quickly eliminate redundancy in a high dimensional data set, but it also

67

helps to quickly visualize what a data set is about. Fig. 4-6 shows an example of how a

16-dimensional measurement of brain activity is reduced to 3 to 4 substantial components.

0 20 40 60 80 100 120 140 160 180
01
2
3

4

5

6

7

8

Wavelet coefficients in time and frequency

D
ep

th
 o

f T
ra

ns
fo

rm

Figure 4-5: Wavelet packet transform applied to di�erence signal between two brain re-

sponses: the y-axis refers to the depth of the transform while the x-axis represents the

sub-bands, ordered from left to right. The 0th-order data shows a pure time-domain dif-

ference signal while the 8th-order transform shows a pure frequency representation of the

signal.

However, the PCA transform also has serious limitations. Since it is perfectly linear,

nonlinear e�ects are missed. For example, it is not clear that the strongest components

are also the components with the most discriminating power. Moreover, non-orthogonal

signal mixtures can't be resolved.

ICA

Independent Component Analysis (ICA) �nds non-orthogonal axes that let the projected

data components be maximally independent. Assume, for example, that two independent

audio signals x1(t) and x2(t) are mixed by a matrix A resulting in the signals s1(t) and

s2(t),

s(t) = A x(t) : (4.14)

Given s(t), the ICA algorithm �nds the unmixing matrix W = A�1. The components

of x̂ =Ws will be maximally independent with respect to each other. Unlike PCA, ICA

is not restricted to orthogonal axes. It takes into account higher-order moments of the

data distribution in order to achieve independence of the output. The price for this is an

iterative gradient search that maximizes the joint entropy of the output [BS95].

68

Figure 4-3 illustrates how ICA picks the axes of the transform and how it relates to

PCA. Unlike PCA, it does not preserve the scaling. Hence the selection of a suitable

subspace requires a more sophisticated methodology. Fig. 4-7 shows ICA transformed

MEG brain data, bringing out features such as the heart beat and the alpha-brain waves.

Wavelet packets

Wavelets and �lter banks are used for a wide range of engineering applications such as

audio coding [KMG91, JJS93], image compression [Wat95], and classi�cation of one and

two-dimensional signals [Sai94]. We use wavelet packets to compute the optimal orthonor-

mal representation of a time series with respect to some discriminant measure.

Orthonormal wavelet packets expand signals in a time-frequency grid [CS94, Sai94].

The transform is based on the repeated application of a quadrature mirror �lter to each of

the sub-bands followed by a down-sampling step (�g. 4-4). The number of possible �lters

is endless but includes Daubechies wavelets of various orders [Dau88], Coi
et wavelets

and the cosine transform. After each �ltering step, the blocks of coeÆcients describe

the time domain signal in a more re�ned frequency band. Fig. 4-5 shows the �rst 194

bins of a wavelet packet in time and frequency. The signal corresponds to the di�erence

energy between two simulated brain responses. Repeated application of the �lter causes

the discriminating energy to concentrate in fewer and fewer coeÆcients.

A key problem is the optimal selection of coeÆcients from the time-frequency grid.

Di�erent measures regarding the discriminating power can be applied. One approach is to

choose the coeÆcients that maximize the average square distance DSD between the signal

classes:

DSD = (�wi1 � �wi2)
2=(�wi1�wi2); (4.15)

where �wic denotes the coeÆcient i of class c signals, and �wic is the standard deviation of

coeÆcients wic.

A second approach is to select the maximal entropy subspace of coeÆcients. The

discriminating power of the squared and normalized coeÆcients is evaluated in terms of

the symmetrized relative entropy (Kullback-Leibler distance, DKL) between signals of

di�erent label:

DKL =
X
i

�wi1 log
�wi1

�wi2
+ �wi2 log

�wi2

�wi1
(4.16)

From the orthonormal coeÆcients �wi those that maximize DKL are chosen ([CW92]).

4.2 Cluster-weighted classi�cation

Cluster-weighted classi�cation (CWC) is a framework to approximate the measurement

model p(x j H = Hi). While mixture density estimators typically use separate parameter-

izations for di�erent hypotheses Hi, CWC estimates a single parameterization that takes

Hi as an argument.

69

The density expands into

p(y;x) =
KX
k=1

p(y j ck) p(x j ck) p(ck) (4.17)

where p(y j ck) = p(H = Hi j ck) is an entry into a probability table and p(x j ck) is
de�ned in expression 3.6.

The EM algorithm of CWC simpli�es to evaluating

p(ckjy;x) = p(yjck)p(xjck)p(ck)PK
l=1 p(yjcl)p(xjcl)p(cl)

(4.18)

in the E-step, and

p(ck) =
1

N

NX
n=1

p(ckjyn;xn) (4.19)

mk =

PN
n=1 xn p(ckjyn;xn)PN
n=1 p(ckjyn;xn)

[Pk]ij =

PN
n=1(xi;n �mi;k)(xj;n �mj;k) p(ckjyn;xn)PN

n=1 p(ckjyn;xn)

p(y = yi j ck) =

P
njyn=yi p(ckjyn;xn)PN
n=1 p(ckjyn;xn)

;

in the M-step (section 3.2).

Figures 4-8, 4-11, and 4-10 illustrate di�erent data sets in the feature space.

4.2.1 Simpli�cations

Practical implementations of CWC may require a simpli�ed software version in order to

accommodate design constraints such as limited hardware, processing speed, and memory.

CWC is simple enough to be implemented on a low-end microprocessor. However, it can

be simpli�ed to reduce memory and processing needs thereby gracefully reducing the

performance requirements of the algorithms. Since most constraints will be due to the

device that does the classi�cation rather than the model estimation, the latter can still

use a powerful computer.

1. A straightforward simpli�cation assigns �xed values to cluster-weights and variances.

The data density then expands into

p(y;x) =
KX
k=1

p(y j ck) 1

K
exp

(
DX
d=1

1

�
(xd;n �md;k)

2

)
: (4.20)

There is no normalization factor, since only relative probabilities are of interest. �

is estimated from the data and scales the Gaussians appropriately.

2. CWC evaluates the posterior likelihood of a data point and one cluster relative to all

70

a)
0 200 400 600

35

30

25

20

15

10

5

0

t / samples

ch
an

ne
l

b)
0 200 400 600

16

14

12

10

8

6

4

2

0

t / samples

ch
an

ne
l

c)
0 200 400 600

16

14

12

10

8

6

4

2

0

t / samples

ch
an

ne
l

Figure 4-6: MEG data. a) All channels of one raw epoch. b) The data run through a PCA

transform (the PCA was de�ned on the average of all epochs) c) The data run through a

PCA transform (the PCA was de�ned on single epochs).

the others. Since our feature space is Euclidean we can approximate the posteriors

by measuring the distance between data and clusters. We force the clusters to have

equal weight during estimation and evaluate the scaled square distance between data

n and cluster k

Dck;xn =
DX
d=1

(xd;n �md;k)
2

�2d;k
(4.21)

A point is classi�ed according to the class dominating the cluster that is closest to

it in terms of Dck;xn . This simpli�cation eliminates the evaluation of exponential

functions.

3. Further simpli�cation eliminates �2d;k.

Dck;xn =
DX
d=1

(xd;n �md;k)
2 (4.22)

The discriminating criterion 4.22 is simply the square-distance between points and

clusters. Points are strictly classi�ed according to the cluster they are closest to.

This means we are back in K-means world.

71

a) 0 200 400

5

4

3

2

1

t / samples

ch
an

ne
l

b) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

c) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

d) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

e) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

f) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

g) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

h) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

i) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

j) 0 200 400 600

5

4

3

2

1

t / samples

ch
an

ne
l

Figure 4-7: Recorded MEG epochs stimulated by /d�/,/p�/,/t�/,/b�/ and /p�/. a-e)

PCA transformed responses. f-j) Same epochs ICA transformed as suggested in Makeig

et al. 1996 and 1997. Some events come out clearly, such as the heart beat in channel 4

and the stimulus response in channel 3; however, the noise level is fairly high.

4.3 Applications

4.3.1 Stimulus detection from MEG brain data

Data

Magnetoencephalography (MEG) uses SQUID technology to measure the small magnetic

�elds induced by electrical activity in the brain. Sensitive to roughly the same neural ac-

tivity as EEG/ERP, MEG o�ers some advantages in data analysis and source localization.

Multi-sensor MEG systems recording magnetic
ux at kilohertz sampling rates provide an

incredibly rich source of data about brain activity. We try to determine the type of audio

stimulus applied to the subject given the MEG-recorded brain response of the subject

[LSM00].

The data was collected as part of the experiment reported in [PYP+96]. Brie
y, the

stimuli were 4 synthesized 300 ms syllables, /b�/, /p�/, /d�/, and /t�/. The voiced-

voiceless pairs /b�/-/p�/ and /d�/-/t�/ di�er acoustically only in \voicing onset time,"

with the �rst member of each pair containing 20 ms of \aspiration" prior to the onset of

the voiced portion of the syllable, and the second member containing 80ms of aspiration.

The SQUID-based sensors recorded 37 channels of data over 600 ms triggered 100 ms after

72

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

T T

D

T

T

T

D
T

T

T

DT
TT

D
D

D

DD

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D
D

D D

D
D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

D

D

D D D

D

DD

D

D

D

D

D

D

D

D

D

D

D

D

D

D
D

D

D

D

D
D

D

D

D
D

D

D

D

D
D

D

D

D

D

D

D
D

D

D

D

D

D

D

DT

T

T

T

T
T
T

T

T

T

T

T

TT T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T T

T

T
T

T

T

T

T

T

T

T

T

T

T

T

T
T

T

T

TT

T

T

T

T

T

T
T

T
T

T

T

T

T

T
T

T

T

T

T

T

T

T T

T

T

T

T

T

T

T

T

T

T
T

T

T

T

T

T

T
T

T

T

T

T

coefficient 2 channel 3

co
ef

fic
ie

nt
 5

 c
ha

nn
el

 3

Figure 4-8: Two dimensions of the feature vector for the t�/d� discrimination: The small

letters refer to the actual sample points; the large letters are the centers of the local

experts. The letter T refers to the voiceless version of the consonant, and D to the voiced

version.

the stimulus onset. One hundred epochs of each stimuli were recorded (�g. 4-6).

Results

The analysis of the MEG data proceeds in three steps. First we apply a PCA transform

to reduce the dimensionality of the data from 37 to the order of three to four channels

(section 4.1.2). Fig. 4-7 illustrates the e�ect of the PCA transform in comparison to

that of an ICA transform. Second we apply a wavelet packet transform to the principal

components, from which we retain a 2 to 5-dimensional feature vector. We then build a

CWC model on the feature vector. Fig. 4-8 shows the clustered data.

The epochs for each stimulus were randomly divided into a training set of 70 and a

testing set of 30 epochs. Two di�erent windows with di�erent o�sets were tested, both 256

samples long. The o�set for the second window is beyond the acoustic di�erence between

the stimuli, which ensures that we are detecting based on brain activity and not simply a

MEG recording of the actual stimulus.

73

5 10 15 20
0

2000

4000

6000

8000

transaction−amount (binned/log−scale)

in
ci

de
nc

es

0 5 10
0

5000

10000

fraud type

in
ci

de
nc

es
)

0 10 20 30
0

5

10

number of incidences

nu
m

be
r

of
 c

ar
ds

 (
lo

g−
sc

al
e)

0 10 20 30
0

5

10

number of incidencesnu
m

be
r

of
 m

er
ch

an
ts

 (
lo

g−
sc

al
e)

Figure 4-9: Credit fraud transaction statistics. a) Incidences per transaction amount, b)

incidences per fraud type, c) number of cards over number of incidences per issued card,

d) number of merchants over number of incidences.

Classi�cation of voiced and voiceless consonants (/t�/-/d�/) and (/p�/-/b�/) epochs

results in 78% of correct answers. Classi�cation of voiced or voiceless pairs (/t�/-/p�/)

and (/d�/-/b�/) was impossible with the available data [LSM00].

4.3.2 Consumer fraud characterization

Data

Credit card companies are experiencing an increase in fraudulent activity in terms of dollar

value and number of incidences. In addition to this trend, there is an increase of creativity

regarding what kinds of fraud are committed, to the extent that there are types of fraud

that become a la mode. While there are certain types that have been popular for a long

time, such as stealing cards, there are others that have almost the character of a new

exciting sport. In account takeover, for example, the perpetrator takes on the identity and

plays the role of the card owner to his or her own bene�t.

Card issuers have a strong interest in early detection of new types of fraud, in order

to prevent a new idea from causing too much damage. While the detection of fraudulent

card transactions is almost a classic application for ANN-type networks, the classi�cation

of fraudulent transactions with respect to fraud categories is new.

All fraudulent transactions are reported to the credit card companies from the issuing

banks with a delay of about three months. By then, the fraud has been classi�ed in

seven di�erent categories (lost, stolen, not received, fraudulent application, counterfeit,

other, mail/phone order, multiple imprint, account takeover). The quantity of data is

74

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1 1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2
2

22

2

2

2

2

2

2

2

2

2

2

2

2
2

22

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

33

3

3
3

3

3

3

3

3

3
3

3

4 4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4
4

4

4

4

4

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 6

6
6

6

6

6

6

6
6

6

6
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7 7

77

7 7

7

7

7

7 7

7
7

7

7

7

7

7

7

7

8

8

8
8

8
8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

88

8

8

8

8

8

8

8
8

8

8

1
2

3 3

3

4

5

5

6

6

7 8

3

sensor 1

se
ns

or
 2

Figure 4-10: Bacterial data in a two-dimensional clustered space. Substance labels range

from one to eight, sensor readings range from one to two.

enormous, and the regions are widely overlapping in feature space. It is our goal to learn

how to predict the fraud type given transaction patterns such as transaction amount, the

merchant type or demographic information.

Results

Continuous and discrete-valued features are constructed from the data. The log-scale

transaction amount is used rather then the transaction amount. The total period of fraud

on a particular card is inferred from the �rst and last fraud incidence reported. Merchants

are categorized according to 120 di�erent types. This number is reduced to 20 types, which

covers about two thirds of the incidences, while the remaining merchants are summarized

as others.

Table 4.2 indicates the classi�cation results. Approximately 50% of out-of-sample test

data was classi�ed correctly. Purely random classi�cation has the expectation 1
7
� 100% �

15% of correct answers. A uniform classi�cation in terms of the strongest class would have

resulted in 27:9% correct answers.

Alternatively a model is built to classify the two strongest types. In this case, 91:4%

of the out-of-sample data is classi�ed correctly. Pure chance had an expectation of 50%

correct answers, and classifying according to the strongest label would have given 53:2%

75

Table 4.1: Electronic noses: out-of-sample discrimination results. Labeled substances are

discriminated based on bacterial readings.

1 2 3 4 5 6 7 8

1 20 0 0 0 0 0 0 0

2 0 15 0 0 1 0 0 0

3 0 0 21 0 0 1 0 0

4 0 0 0 22 0 0 0 0

5 2 0 0 0 20 0 0 0

6 0 0 4 0 0 17 0 0

7 0 0 0 0 0 0 29 0

8 0 0 0 0 0 0 0 20

164 correct classi�cations (95%),

8 wrong classi�cations.

of correct answers.

4.3.3 Electronic noses

In this example di�erent substances are classi�ed based on bacterial data. The data was

provided by a sponsor company in the process of developing electronic noses, that is, low

cost electronic devises for chemical sensing. The data set consists of eight substances,

labeled 1...8, and a 32-dimensional measurement vector consisting of bacterial readings,

associated with each substance.

As can be seen from the strong diagonal elements in the detection table (4.1) this

task is considerably easier than the examples introduced earlier. Ninety-�ve percent of

the out-o�-sample data points were classi�ed correctly. The winning model used a feature

vector containing 22 parameters from the data set along with 25 clusters (�g 4-10).

76

−5 −4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

5

6

111 1 1111 1 11 1

11

1 1 11 1 1

11 1

1

11

1 11 111

1

11 1 11 11 1 1 11 11 111 1

111

1 11111

1
1 11 11 11 1111 11 111 1111 11

111 1

1
111 11 11 11

11 11
1 1

1 11 1 111 1111 1111 1 11 11 111 111 11 11
1 11 11

1 1111 111 1 1 11 1 1111
1

1 11111 1 111

11 111 1111 111111 111 1 11

1 1 111 1 11 1 1 111 1

11

111 11 1

1

1 1 11 1
1

1 1

11 11 1

1 111 111 111 1 11 11 11 1

111
1

11111 111
1 1 1

11111 11 11 1111
1 111 11 11 1 11 11 1 11 111 1

1

1

11

1

1 11 1

1

11 11 1 11

11 1

111 1 1111 111 11 11 11

1 1

1 11

1

11 11111 1 1 1
111 111 11

1 11 11 11 1 1 1

11111 1

1 1 1111111 1
1 111 1 1

11 1 11 11 11 11 1 11 1 1
1 1 11 11 1 1111

111

1

11

11 1 1111 111 11 1
1

11111 11 11 11 111 111 1 11 1 11 1

1

1 1 11

11

1

1 11

1 1 11 1 11 1 111 1 11 11 111 1 1111

11

111 11 11 111

11

1

1 1
1 1 111 1 1 11

11

1 1 111
11 1

1 111 11 1 11 11

11 11 1

1 11 1

111 111 1 1 11

111 11

111

111 1 11 11111 1
1
1

1
1 11 1 1

11

1 1

1 11

11
11

11 11
1

111 1

11 1 111 11 11 11 111 11 1 11 111 1 1 11 1

11 111 1111 1111 11111 1 1

1

1

11 1
1 11 11 1 11 111 1

11 11 1

1 11 111 1 111 11
1

1 1 1 11 1

1

1

1111
1 1

11 111

1 1 1111

1 1111 1 1 11 1

11 1 1 11 1 1111111 1 1 111111 11 1 1111 1 1

1

11111 11111 11 1

111

11
11111 1

111 11111 1 111

11

1 11

1

111111 1 11111

11 1 111 1 111

11

1

111 11 1
1 11

1

11 11 11 1
1

1 11111 1 1 111 11 11 1

11 11111

11 1111
1

1 11

11 11 1111

11 1111 11 111 11111 1
1 1

11

1

1 11 1

1 1 1

1
11 1 1111 1 111 1 1

11111 11 111 11

11 11 111111 1 1111
1 1 111 11 1 11111 1 1

1 1 11 11

11
111 1 111 1

1 1

1 11

111 1

1 1 111 111 1
1

1
1

1 1 111 1 11

1111 1

1 1
11 1 11 11

1 1

11
1 111 11 11 11 11111 11

1111

1

11
1 1 1 1

1

1
1 1 11

1

1

111 1 11

11

111

1

11 1 111 1
1 11 1 11 11

1 111 1 11 111 11 111

1
111 1111

111 1 11 111111 11 11 11

1 1 11 11

1 1
1

1 11
1

1 11 1
1 1

11

1111 1 1 11 1

1

1 1 111 111 11

11 11 111 111 111 1

111 11 1111 1 11111 1 11
11 1 1 1 11 1 11

11

11 111 11 111 1

1 11 1 1 11

11 1

1

1

1

1111

1

11 1 1111 11 11 111 1 1

1111 111 11 1

111

11 1 111

1

1

1

1 1 1111

1 1111 1 1

11

1 11

11

111 11 11 111111 1 11111 111 1 111 11 11

1

11 111
1111 11

111 1 11 11
11 1

11

11 11 1

11 111 111 11 11

1 1111 1 1 11 1

1

11

1 1 111 1 1

1 111 1 1 1 111 11 1111 1 111 1 1111 1

1 11111 1 11 1 11 111

1111 111 1 111 11 11 1 11
1 11

111111 111 1

1

1 1 1 1

1

1 1111 1 1 1 111
1 11 1

1 1

1 111 1111 1 11 1
1 11 1 1 1 1 111 11 1111 11 11 11 11 1111 1 1 1111

1

1 11 11 1 11 111 1 1111 1 1111 11 11 1
1 111 1

1

1

1 111

1 11 11 11 1111 11 1 11 1 1
111 1

111 11 1 1111111 11 11 1

1

1

1

1 1 11
1 1111

11 11 1

1 111

1
1

1 111 11

1 11
1 111 11 1

1

11

111 11 1 1 1111

11

1
11

1

1 11 111 11 11

11 1 1

11 1 11

1 11

11

11 111 11

1

1111
11 11 11 11 11 1

1 1 11

111 111

1 11

1 111 1111
1 1

1 111 1111 1

11 1

1111 11 11 1 1 1 11 1
1

1

1111111 1111 1 1111111 11 1 11 1 11 11 1

111

11

11 1
1

111 1

1 11 11 1

11 1 1 1111

1 11

1 11 1 11
111

1111 1111 1111 1
1 11

1

11 11 11 111111 11
11

1 1
11

11

11

1 11 111 11111

11111 111 111 111 1 11

1 1 11 111 1 1111

1111

11 11111 1

11111

1

1 111 1 11

1 111

11

11 1 11 1

11

111 1 111 1 11
11

11

1
1

1 1

1 1

111

11

1 11 111 1 1

111

1 11 111 111 1 111 1 11 11 111 1111 111 111 11 1 1 11 11 11
11 111 1

11 11 1

11 111 1 11 11 1 1 1 11 1

1

1

1

111 111 111 1 111 111 11 1

1 1

1111 1

1

1

111
11 111 11 111 1111 11 11 1

1

111

11 111

11 11 11

1 1

11 11 1 111111 11 1 11 11 1 111
1 1

1 1 1

11

1111 1111 111

11
1 1 11

11 111 111111 1111 1

1

1 111 1 11 1 111 11 1 1

1

1

11

11 111

1

1

1 1 111
1
1 11 11 1 1

111 1

1 1111 111 11

11 1 111 11 1

1

1 1

1 1

111 11

1111

1 1

11
1 1 111

1
111 11 111 1111 111 1 1

111 1

11 1

1 1
11

1

111

1

1 1 11 11

1 111 11 11111 1

11

111

11

11

1

1 11

1111 1

1

11 11

1 11
1

111

1 1

1

11 11 1 11 11

111 11111111111

1 1 1
11

111
1

1

1 1

1 111
1 111 11 1 11111 1 1 1

11 1 11 1111
1 1 11 1

11 11 11 111 11 1

1

111 11 1 1

111

111 111

11 1 11 11 1

11 1

1

1

1

1111

11

11 1111 1
1

1 11
1111 1 1 11 11111 111 111 1 1 11 11 1
1

1

1

11 111 111 11
1 11 1

111 1 1 1 1

111 111 11

111111 1 1111111111
11

1 1 111 1

1

111 11 111
111

1111 1 111 111 11 11 111

1

1 111 11111 1 111 1

1 111 11 11 1 1

111 1 11

1 11 11 11 11111 11

11

111

11

1

1 1

111 111 1 1111 111 1 1

1

11111

11

1

11111

1

111
1

11 111

11

11111

1

1

1

1

1
1

1 11

111 1 1 1

11 1 11 11 11111 11

1

1

1
1

1 1

1

1 1 111 11 1 1 1
1 11 1

11 11111 11 11 11 111 1 111 111

111 1 1

111 11 1 111 111 11 1

1

1
1 1 11 1111 11 1111 11 1 11 1

1 1

11 111 1 1

1

1

11 1
11

1 111 1

111 1

11

1

1 111 1111

1

1

1

11 111 11 11 111

1

11 1111

11111

1

1 1

111

1 11

1 111

1 11

1 1 1 11 1

1

11 1

11 111 1 1 1

11111 111111 11111111111 1111111 11111111 11

11
11 11 1

111

1111 11111

11 1

11 1 11 11 1 111 11 1

11
1

1
1

1 11 11 111 11 1 1

1

11 1 1
11 11 1111 1

1 11

11 1111 1 1 1 1 1 1

1

1

11 111 1111

1

22

2

22 2 2 2 22 2

2 222

222

2

22 22 2 2 222

2222

22

2

2 2

22 22

2

2
2

22 222
222

22222

2

22

22 22

2

2 22

2

2

2 2222

222222 22 2

2 2

2

2
2 2 22 222 2

222 2

2

2 22 2

2

2 2 22
22 2

2 2 2 2

22

22222 2222

2 222 2222 2 222 2 22 2 22 222 222222 222 222 22 22 2 2 2222 222 22 22 22 2222 2 22 2
222

2

2 22
2 2 22 2 2

2
2 22

222 222 2

2

2

2 2

2 2

2 22

22 222

2

2

2

2 2 2 22 222
2

2222 2
2 222

2
22

222 22 2222222 2 2222222 22 2
22 2 22 2 22 2

22 2

22 22 22 2

2 22 2 2 22 2 222 2 2 2 22 222 2
2

2

222

22 22 2 2 2

2 2 22
2 22 2222 2

2

2 22 222 2

2

22 2222 22 222

2 2222222 2 22 2 222 22

222 2 2

2 22 2 2222 2 2 2 222 2 22 222 2

2

2
2 22 222

222 22 22

22222 22 222

2 222222

22 2222 2 222 222 22

2

2

22 2
22222 22

222 22 222 22 2222 22 222 222 22 2 2 222 22
2 2222 2 2

2 2

2222 2 22

22 22 2 222

22 22

2

22 222 22
222 222 22

2

22222 222 22 222

22 2222 2

22 222 2 222
2 2 2

2

222

2

222 2

2

22

22

22

2

22 2 22 22 2

222 22 2 222 22 222 2222 222

2

2

2

2

2 2 22 2 2222 22 22222 22 222 222

2

22 22 2 2 22 22

2

2

22

2

2

222

2 222222 222 222 2

2 222 2222 222 22 2 2

22 2

2

222 22 22
222222 22 22222 222 2

2 22
2

2

2

22 22 2
2

2

2 22

2 2

22

2 2

22 222 2

2 2 2 22

2222 2
2

2
2222 2

22 2

2

222

2

2 2 2 22 22 222 2 22 222 22 2 2

22

2

2

2
2

2 2

2 222 2 222 22
222

2 2 222 2 22222 22 222

22

22 22 222

2 22 222

2

2

2

2

2222 2

222 222

2 22222 22 2 22

2222 2

222 2 222 22 222 2 22222 2222 22 2 22

2 22

22 222 2

2

2

22

2 22222222 22 2

222 2 222 2 22

2 2 2
22 22

2

22 2 2

2

2

222 22
22 2

2 2

2

2 222 222 2 22 2 22 2222 22 222 22 22 22 22 2222 222 22

2

222 2 222

222 2 22 2 2 2

22

2 2

2

2 2222 222 2 22 2222 2 22 22 222 22
2

2

22 2 22

2

22 22 2 22 2222 2 22222
2222 2 2222

2

222 2

22 222 222 22 22 22 222 2

22
22 22 22 2 2

22222222

2 2
222

22 222

2 22

2 22 2222

2 22 2 2

2

2

2 22

2 22 22 22 2 222

2 2

2 2

22
2

22 22 2

222

2 22 2 22222 22 2 22 22 222

22 2 2 2

2

2

2

2

2

2 2222 222 2 2 2 222 22

2

2

2

2

22

222 22 2222

222 2

22

2

2222 2 22

2 222

2
2 2 2

2

2

2 2 222 2 2

22 222

22

2

22
2

22 22

2

22

2 2

2

2

2

2

22 2
22 22
2

22 2222 2

2

222

2

222 2 22
2

2

2

22 2 2 2
22

22

2

2

22

22

2

2

2

2 2

2
22

22 222
22 2 2
222 222 2

2

22 22 22

2 2

22

22

2

2 2 222 2

22 2 22
2 2

2

2222 2222 22 2 222
2

22 2 2

222 2222 222 2
2 2 22

2

2

2

2222 2 2 22 22

2 22 2

2 222 2 2

2

2

2

2

2

2

2 22

2

222 2 2 2

2

2

2

2

22

22

2 222

2222 2 22 2

2

22 22 2 2 2222 2 22222 2 22 222 2

2 222 2 222 2 2

2 2
2

222 2
22 2222 222 2 22 22 22

22

2

22222 2 22

222 2

22 2 222 22 2 2222 2222 2

2

2

2

2

2

2

22

2 22 22

2

22 22222222222 2222 22 2 22 2 22 222 2222

2 22 2 2

2

2

2

2

2

22222 22 222

2222

222 22

2 22 222 22 222 2 22 22 222 22 2

2

22 222 22 22 2

2

2

2 22

2

2

22 22

2

22 2 22

2 22

2 2

2

2

2222222 22 2 222 2 2222 2 22222

222222 2 22 222 222 2 222 2 2

22 22 2

22

2 2

2

2

2

22

2

222

2 22222 2

22

2 222
2

2

2

2

22 22 22

2

2

2 2

2

2

2 2

22 2 22

2

2

2

2

2
2

2

22 22

22 22 22 22 2

2

2

2

2

22 2 22 2

2

2
2 222 2 22 2222

222 2 2 22
2

2 2222 2

22 22
2

2 2
2 22 222
22 222

2 2
22 22 22

2222 2222 2 2 222
2

2

2

22

2

2
22 2

2222 222
2222

22 2 2 22 2 22 222 22 222

2

2

2
2

2

2

2 22

2

222222 2222

222 222 2 22222 222 2 22 222 2 222 22

2 2 222 2 2

22

2 2

2

2 222

2

2 2 2
2 2

22 2 22

22 22 22 2

2222 22 2 222 22

2 222 2 22

22 2 222

222 22 22 222 222 22222222 22222 22 2

2222 2 22 222 222 2222 22 2222 22 2 222 2 2

22

2

2 2 222 2222 2

2

2

2

2

2

2 2

2 22 22

2

2

2 22
2

22 2

2 222 2 2 22 2 2 2222 2 22 22222 222222 22 2

2

222 22 22 22 2 22 2

2

2

2

2

2

2 2 2

2

2

2222
22222

2222 22

2 2 22 22 2

2

22 222
222 2

222

22 22
2
2

2 2

2

22 22 22 2 22 2

2

22 2 22 2 2 22
222 2 22 2 2 2

2

2

2

2

2

2

2

2

2

22
222

222222222

2 222
22 22 2 2222 22

22222 2
2 22 22 22222 2 2

2

2

2

2

2

22

2

2 2

2

2

2

2 22

2 22 2

2 222 222 2 222 2 222 2222

2

2

2

2 2

222 2 2

2

2 2

222

2

2 222 2
22 2

2 2 22

2

222 2
2

2

2
2

2

2

2

22
2

2

2 2
2

22

22 222 2 22 2

22222
2

2 222 2

2

222

2

2

2 22

2

22222 22 22 2
2 222

2222

2222 2 22 22 22 22 2 22 222 22 22 2

2 2 2 222 2 22

22

2 22 22 22

22

2

2

2

222

2 22 22 222 22 2

2 2 22 22 222 2 222 2 2

222

22 222
22

222

2

2

2 2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2 2 2 22222 2 2 2

2 222 2

33 3
333 3 333 33

33333

3

3 33 3

333

3 333

3 3333333

3 3 3

3
33 3 333 33 333

333

3 33 33

3333 3333 33 333 3 3333 3 333 3333 3 33 333 3

3 33 33 33 33 3333 3 3 33 333 3 3 333 3 333 3
33 3333 3

333

333 3 33 3 333 3 333 33 333 3333333 3 333 3 33 333 33333

3 333 33
3 33 3 3

3 3 3

33 333 3
3

33 3333

333333 33

3

33 33 3333 333

3

3 3
3 3 33 3333

33 3

3333
3

3333 3333 3 333333 33 33 3333 333 333 33 3333 333 33 3333 3333 3 333 3

333 333

3

33 3 333 33 333 3
33 33

3 3

33 333 33 3333 33

3

3333 3 3333

333 3 333 3 33 3333 3 33 33333 33 3

33 3 3

3 333 3333 333 33 3 33 3 33 33333 3 33 3

33 333

3 333 33 33 33 33 3 33 33 33
333333 33 33 3 33 3 3 3 33 3 3

33
3 3 3 3333 33 3

3

333 3 33 33333 333 33 3

4

4

4

4

4

44

4

4

44

4

4

44

4

4

4

44 44 4

4 4

4

4

4

4

4

4

4

4 4

4 4

4

4

4 444

4

44 444 4 44 4

4

4 4 44

4

4 4
4 4

44 4 44 44 4444

4 4

4

44 4 44 4 44 4 4

44 444 4444 4

4

4 44 44444 44 44 444

44

4

44

4

4

444 44 44
44444

4

444

4 444 4

4

4

4

4

4444 44

4

4

4
4 4444

44 4 44

44 4

4

44444444444

4

4

4

4

44

4

4

4

44 4

4

4

4

4

4

4

4

4

4

4

4

4 4

4

4

44

4
4

4

4

444 4

4

44444 44444 4444
44 4444

4
4

44 4444

4444 44 44 4

4 4 4

4

4

4

4
4

4 4

4

4

4 4
4 44 44

44 4 4

44

44 44

4 444 4

444

444 4 4 44 444

444 444 444

4

444

4 4

4

4 4

44 4444 4 44
44 4 4 444 44 4 444

4 4 4 444
444 4 44

4

4

4

4 4

4

4

44 44

4

4 4

44

4

4

4

4

4

4

4

4

444 44

4

4

4

4

4

4

4

4 4

4

4

4

4 4

4

4

4

44

4 4 4

4

44444

4

4

4

4

4 44

4

4444 44 4 44 4444 4

44 44 4 444 4444 444 4 4444

4

4

4

4 44

4 44

444

4

4

44 444

4

4

4

4

4

4

4

4

4

4 444 4

4

4

4

4 44
444 444444 44

4

4 4

44 4

4

4

4

4

4444 444 4 4
4

4

4

4

4

4

44

4

4 44 4 4 44

4 4444 4

4444444
44

444 44444 44 44 4

4

4

4

44
4

4

4

4
4 44 44444 4

4444

4 4
4

4
4

4

4 4

4 4 44444
4444

4 44 4 4444 4444

44

4

4

4

4
44

4 44 44 4 4444 4 4444 44 4 44 4 4 44 444 44 44 444 444 4 44 4444 4 44 4

4

4

44

4 4

4 444

4
4

44 4

44 444

44 4

4

4

4

4

44 44444 444 444 4
4 4

44 44

4

4

4

4

4

4

4

44 4

4

4

44

4 44

4

4 4 4

4

444 4
444 4 44 44 44

44

4

4

4

4
4

44

4
4

44

4
4

4 4

4

4

44

44 4

44

44

44 44 4 44 4 44
4 4 4

44

4444

4

4 44

4

4

4

44

4

4

4 444 4

44 4 4

44 4 4 4

44

4 44

4

4

4

444 4444

4

4

4

4

4

444

44

4 4

4 4444 44444 444

444

44

4 4

4 44444 4444 44 44

4 44
4 44

4 44444 444 4 4 44 44 4444

4

4 4 44 44 44

444 44

4

44

444 4 4
4 444 4

4444 4

4

4

4

4

4

4
4

4

4

4

4444 44 4
4

4 44 444

44 44 44444 444

4 4 44 444

44444 44 4 44 44 44 444 4 444 44 4
444 4 444

44

4 4

4

4 4 444 44 4

4

4

4

4

4

4

4 44 44 4 4

4

44 4

4 4

4 4 44 4 444 4 44 4 44

444 44 444 4

44

4

4

4 4

4 4

4

4 4 44

4 4 444 44 44 444 4 44 4

4
4

4

4

4
4

4

4

44

44

4 4 4
4 44 4

444 44

4

4

4

4 44 444 44 44

4

4

4
4 4444 4

4

44 44 44

4

4

4

4

4

4 4

4 4

4

4

4 44

4

4 4

4

4 4 4 44 44 44 4 4 44 44 4444 44 44 4 4444 4 44 44 44 44 4 44 44 4

4
4 44 44 4 444 444 4 44 4 44 44 4

44 4
4 44 4 44 444

4

44

4

4

4

444

44

4

4 4444 44 44

4

4

4

4 44

4

4 44 4

4 44 4

4 44 44

4

4

4

4

4

4

4

4 44
4

444

4 44

444

44 4

444

4

4

4

4

44

4
4

4

4

4

4
4 44 4 44

44

4
44 4

4

4

4

4

4

4

4

4 4

4

4

44

4

4

4 44 44 4
4

44 4 4

4

4

4 444
4

4 4

4

4

44 4

4

4

4

44 44 44 4
44 444 44 444 4 444 44 4 444 444 4 4

4

4

4

4

4

4

4

44

4

4

4

44

4

4

4

4

4

4 44 444

4
4 4 44

4 44

4

4

4

4

4

4 4
44

44

4 4

4

4

4

4
4

4

4

4 44

4

4

4

4

4
4

4

4

44 4444 44 44 44 4 44 444 44 44

4444

4444

4 4 444 4 4

4 4 44 44 4 444 44

4

4

4

4

4

4

4

4

4

444

4

4

4

4

4 4

4

4 4
4

4

44 4444

4

44 4

444 44 4444
4

444444 44 44444 4

4
4

4

4 4444 444

44 444 444

4 44

4

4

4

44

4

4

4

4
44

44

4

44 444 44

4

444 44 44

444
4

44 4444 4 444 444 4 4 44 44

4444 4 44 4 4 444 44444 4444 4444 4444

4

4

4 4

444

4

4

4

4

4

4

4

4

4

4

4
444

44

4
4

4 44

4 4 44

4 44444

4

444

4

444

4

44

4

4

44 44 44

4

4

4

4

44 44

44 4 4 44 444 44 4 44

444
4

4

4

4

44

4

4

4

4

4

4

4 4 4

4 4
4 4

4

4 44

4

4

4

4

4
4 4444

4

44
4

4 44 444

4
4

4

44 4 4
4

4

44

4 4

4
44

4

4

44

4
4

4 44

4

4

4

4 44

4 4
4

4 4

4

4

4

4 4

4
4

4

4

4

4

4

44

4 44 4

4

4

4

44 44 4444 4 4 4 44

444

444
4

44
4 4

4
444 4 444

44 4
44

4

4

4

4

44

4

4

4
4

4 44

4 4

44

44

4 4

44 4 4 4

444 44
4

4

4

4

4

44
44 4

4

4

4

4

4

4

4

444

4

4

4
4

4

4

4

4 4

4

4 4

4

4

4

4

4

444 4 4

44444

444 44 444
4

4

4

44 4 4 4444 4 44 4 444 44444

44

4 4

4

4

4

4

4

44

4
4

4

44 4

444

4

44

4

4 44

4

4

4

4

44

44 44

44 4

4

4

44 4

4

44 444

4

44 4
4

444 44
4

44 4

4 444

44

4

4 4 4

4

4

4

44

4 4

4 4 444 4

44 4 44 444 4

4

4

44

4

4

4 4

4

4

44
4

4

4

444

44 44 4 44 4

444 4

4 44 4444 4

44

44 4

444 44 4

4

4

444 44

44

4

4

4 4 444

4

4

4

4 4

4
4

4

4 4

4

4

44
4

4

44 44 4444 4444 4 44

4

4 4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

44

4

4

44

4 4
444 44

44

4

4

4 44 44

4 4 4 4444 4 4 4444 4

4 44 444 4

4

4

4

4 44

4

4

4

4

44

4

44 44 4 444 44

4

4

44

4

4

44
4 44444 4444 4 44444 4444

4 4444 444 44 4444 444
44 4 4 4 44

4

4

4 44

4

4 4

44

4

4

4

4 44
44 4 44

4 4 444

4

44

4

4

4

4 4

4

4

4

4 4

4

4

44

4 44
4

4

4

44 4

44

44 444 444 4

4

4

4

4

4

4

4 4

4

4

4

4

44 44 4
4

4

4 44444 4 4 444 4 44 44 4 4 44 4

44444 4

4 444 4 4
4 4444 444
44 4

4

4

4

4

4

4

4 4

444

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
444

44 5 55555 555 555 55 55 555 5
5 5

55 555 55 5555 5

55 55 555 55555 5

55 55 5 55
5 55

55 5 5 55 555 5 55 55 55555 55 5 5 5555
555

5 5 5
555

5 5 555 55 5 55

55555555555 5555 55

55

5

5 55 5

5

5

5
5

5 55

5

5

5

5

5

55 5 5 5 55 5 55 55 5 55555
5 55 5 555 55 55 555 55

5

555

5

5

555555

5555

5555555 5 55 55 5 5 5

5
5 55

5 5
555

5555 5 5555555

55

5

5 55 55 555 5

555 5 5 555

55 5 5 55

5

5
5 55

55

5 555 55555
55 55

55 55 5 555

555 55

55

5 55555 55 55 55 5555 5 55

5

55

5 5

5

55 555 555 5

5

5

5

55

5 555 55

5

55

5

5

55 5 55 5555 55 5

5

55
5

55 5
5

55 55

55

5 55 55

55 5

555 5 55 55555 5

5

555

5 555

5 5 55

5 5 5555

5

55 5 5 55 5 5 5 55 5555 5 5555 55 555 555 555 55 55 55 5

55

55 555 5 555 5 55
5555

555

55 5

5 555

5

5
55 55

5 55 5 5555 5555 5
555 5555

5

5

5

55 55555 555 5 55 55 5 55 5

55 55555 5 55 55 5

55

55

5

5 5

5 55 5 55555 5555 555 55

5

5

5555 5

5

5 5

5555

5

55 55

555 5 5 5 5555 5 55 55 55 55 555 5 555

5

5 5
555

5 555 5 5

5 55 5 555 55

55

5

555 5 55 555 5

55555 5 5555 555 5 5

5

5 55 555

5555

5 5 5

5

5 5 5

55

5 55

555

5 5555 555 55

5

5

5

5

5
5

5 5

5

5

555 5 55 555 5

555 55

5

55 5555 555

555 555

55

55 5 5 5 55 55 55555 5

5

55 55

555 5555555 5

5

5 5
5 5555 5

5 55 5 5555

555 5

5 5
55 5

5 55 555 55

55
5

555

5

5

5
55

55

5 55

55 55 5
5 5 55

5 5 55

555

5 55

5

55 5555 5 55 555 55
555 555 5
5 55 5 555 5 55 55 555

55 5

55 55
5 55

5 555

5

5

5 555 5555 555 5 5

5 55 55

55 55 55555 55 5 55 55

5
55

5
5 55 5 555 55 555 55

55 5
55 5 5 5 5 55 5

5

5 5 55 55 55
5 55 55 5 5

555 55

55 55 55 5555 55 55 5 5

55555555555555555555 5555555 555 55 55 5 5555 5555 555 55

5

5

5

555

555

5 5

5

5

5 5 5

5

5
5

5

5 555 55 5

55555 5

55

5 5 5
5

5 55 55 55
55555555555555 55 55 5555 5555 5 55 5

5
5 55 5 5

55
5

55 55 5 5

5

5 55555 55 5 5 55 5

55 555 55555555 555 5 5 55 55 55
555 5 5

5 55 5

5

55 5 5555 5

5

55555

5

5 55 5 555 5 55

5 5

5 55 5
5

5 5

5

5

55 555 5

5 55

555

5

5
5

555

555
55 5

555

5555555 555

5

5 55 5

5 5

5

555

55

555555

5 5 555 5

5555

55 55

555

5

5

5

5 5

5

5

55 5555 5

5 5 5

5555

5 5 555 5 5
55

5 555 5 555 5

5

55 555 5 55

5 55 555

5

555 55

5

5 5 5

555 5
55

5
55

55 55 55 5 5 5

5

5 66 6 6

6666 66

6 6

666

6 66 66

666

66 666 6666

6666

6

6

6 666

666

6 6
6 6

66 6 666 66 6 6

6

666

66 666 66 6 66 666 66

6

66 666

6 6

6

6

66 66 66 666 6666 666 66 666 6 666666 66 66 666 66 666 66 666 66 66 66 6

66 6

66 66 66 6 66666 66 666 6666 6 66 66 66666 666 6 66

666 6

6 6 6 66 6 666 66 6 6 666 66

66 66 66 66 66666 6 6

66 6

7

7
7 7

7 7777 7 777 77 7 7 77777777777 77 7777
77 7

7 77 7 77 777 7

77

7777 77 777 7 77 7 7 77777
77777777 777

777

7

777 77
7 77 77

777 77 7 77 7 77777 7777 77 777

7

777
77 7 77 77 77 7

7 777 7777777 77 7
7 77777 7777 7 77 77 7

777 7 777777 777777 7 7777 77

7 7 77 7777 7 7777 77 77777 7 7 7
7
7 777 7 77 77 7777

7 7

77 77 77

77 7 77 77

777 77 777 77
7

7

77 7
7 77

77 7 7 77
777

7777 777 77 7 7777777 7 7 7 77 77 77

7

77

777

7

7

7

7

7 7
7 7 7

77 777 7 77 77 7

7 7 7

7

7

7 77

7 77 777 7

7 7777 7 7
7 77 7

7
77 7 7777 7

77 77 777777 7777 7777 77 7777

77 7

777
7

7 7 77
7 77 777777777

777 7
7

7

7

7 77 7

7

77 77 777

7
7777

7777 7 7 77777777 77 777 7 777777 777 7

777 777 777777777777777777 777 77 77

7

7

7 7 7

77
77 777 7 777 7 7

77 777777 77

7

777 77777777 77 777 77 7777 777 7 77 777 7777 7

77777777777

777 77 77 77 7 77 777 777 7 77777 7 7777 7 777 777 7777 7 77777777777 77 777777

77

77777777777777777777777 7777777

77

7

7

7

7

7 777 7

7 77 77 7

7

7

777

7777 7

7

7

7 7

7

7

7 7

7

7 777 7

7 77 77 77 7 77777 77 777 7 7777777 7 77 7

7

777

7

7777 777
7

7
7
77 7 77777 777 777 77 777 7 7777 7 77 7

7

7

7

77777777 7777 77 777 77 7 777 77 77 7 77 7 777 7 7777 777 7777 7 7777 7777 7 7 77 777 77 7 77 777 777 77 7 777 77777 7777 7 77
7 77

7

77 77 777
7

7

7

777 77 77 7 777777 77 777 7 777 77

77

77 7

77 7 7777 7777

77 77

77 77 7 7 7777 7 7777 7 77 7 7777 777 77777 7777777 7 77 77777 77 777 7777 7 7777
777 7 77 77

7

77 7777 7

7

7

777 77777 7 777 7

777 7

7 777

7
7 777 777 7 7 77

7 7 77 7 7777
7 7 7

7 77 7 777

7 7 7 77777 77 7
7

77

77 77 77 77 77 77 7 77 777777 7 7

77

7 7 7777 7 7 7777 77 77 77 7777 7 777 777 7

77 7 7 77 7

7

7 77 77 77 7 7

77

7 777 7

7
7 77 77

7777

77 7 77 77 7 77 77 77 777 77 77

7 77 7

7

7 777 77

77

77 777 7 77 77
777 77 7 777 77 7 7

7 77777
77 7 7 777 77777777 7777 77 77777 777 77 7 7 777 77

777 7777 77 77777 77 77777 7

7 7 77 77

7 77 777 7
7 7 77

7

7

7

77 77 77777777 77777777 7777 77 7 77 7
7 77 77

7

7

7 77
7 7

777777 777 777 777 77 77

77

7

777

77 7
7

77777
77 77 77

77 77 7

7 7777 7777 7 77 7 77 777 7 777777 7

7 77

77 77777

777

77

7777 77 7 7 777 777

7

7777 777 777 7 777 77 7777 7

77 77777777

77

7
77 77 77 7

77 7 77 77 7

7

7

7 7 7

77

7777 77777 77 777

7

7

7

7

7777 7

777 77 77777 77

7777 77

7

777
77

7 7

777777 7 777 7 7

7 77777 7777 77 77 7777

7

7

7

7 7 77 7
777 7

77 7

7

7

77 77

777 7 777 77 777 77

77 7 77

7

7

7 7

77 77 7777 777 7777

7 77

7

77

7

7

77 777

777 7

7 77 7 77 7777 7 7 777777 77777 7 7777 77 777 777777 7 7

77 777

77

7 77 77 77 7 77 7777 77 77 77 7 7 77

7 77 7
77 77 77777 7777 7

7 777 7 77 77 7 77777777
7

7 7 7 7

7

7

77

7

77

77 7

77 777 7 77 77777 7 77 777 7 77
7

7 77 7
777

77777 7 777

777

7 7777

77 77

7 7

77 7

77 7

777777

777777

77 7

7

7

7777777 7777777 77 7777777 7 77
77 77

7 77 777

7 777 77

7 7

77

77 7 77 77777 7

7 7 7 777

7 7 7

77

7 7

777

77777 77777 7 7 7
77 777

77

777 77 77777 7 77777 7 7 7 77 7

7 77

7 7777 7777 777777

777

777 7777 7

77 7 7 7

7 77 77

7

7 77 77 77 7 77 7 7 7

777 7 7 7777 777 7 77 77
77 7

7

7

77 7

7777 777 777 77

7 777 7

7
7

7

7

777
777 7

7

7

777 7 77

7

7

7 77 7777 777

7
7 7

77 7777 7 77777777 777 77
7 777

7

7 777 7

77 7
77 77 77

7 77 777 77 777 7 777 7 7 777 7777

7

7

77
7

77 77 7 7777 77 777 7 7

7

777777777 7 77 77

777 777 7777 77 7
7

7 77 77777777

77777 77 77 7
7

77 77 77 7
7

7

7

777 7777 7 7
77 7 7777 7 77 77 777

77

77 7

77

7 7 77 7 77

7 77

7

7

7

77 77

7
777

7

7

77777

7

7

7

7 7777

777 7 7 777

77

7 77

7

77 77 7
7 7777

7 7

7

7 7 7
777 77 777

7 7

77 7

7 77 7 7777777 7 7

7 77 777 77 7777

77 7 7 777 7

7 777

7 7

77 7 77
7

77 77 7

77 7 77 7777777777777
77

77 7 77 77777 7

7

7

7

7
7

7

7777 777

77

7
7

77

777 77 77 7777 77 7777 777 77

77777 77 7

7

777 7 7 777 7

7

7

7 77

7 77 777

7

77 7

77 77 77

7 7 7

7
7 7 7 77 77 7

77 77 777 77 77

77 7 77 77 7

7 77777777
7 77

7 777 777 77 77

7 7

7 7777 7 77777 7 7
77 7

7 7 7 7

7 7 77
77 777 7 77

7 7777 7

7

7

7

7

7

7

7

7
7

7

7 777 7

7 7

777 77
77

77 7 77

77
7

7

7

7

7

7

777 7 7 7
7777777

77777 777 7777 77 777777 77
777777

77 7
7

77

7 777

77 77 777777 7 77 7

7777 77 7

7 7 7 77

7

7 7

7

7 7 77 77 7 7
77 7 77 77 77 77 777 7 7777 777 77 77 77

77

7

7

7

7

7 7

77 7777 7 7 77777777

7

7

7
7

7

7

77 7

7 7777777 77 77777 7 777777 7

7

777 7

77 7

7
7 7 77 7 77777 77 77 77 7

7

77
7 7 7

7

7 7

77

77 7

7

7

77

7

7 77 7

7

7

7

7

7

7

7 7

7 7777 7 7
7

7

77

7

7

7

7

7

7

77

7

7

7

7 77

7 777
77 7 7

7 7 77 777

777 777 77

77
77

777 7

777

777

7 777777
7 7

77

77 77 777777777 777 77 7

77

77 7
77

7

7 7

77 777777 77 77777777 77 7 7 7
7 7777 7 7

777
7

7

7

777 7 77

777

7777 7 77 7 77 77 77 77 77 7
7

7777 777 7 7 7 7
7

7 77 7 77 77 77 7 7 7777 77 7 7
7 7 7 7

77

7 7

7
77

7

7

7

7

7

7

77 777 7 7

77 7 7 7
777

7
7 77 7

7777
7

7

7

7

7

7

7

7

7
777 77777 777 77 7

777 777 777 77 7 77

7 7 77 7

7 7 7
7 77 77 77 7

7777 7 777 7

7

7 7777 77

777
7 7

7 7 77777 77 7777 77 77 7

7

7

7

777 77

7 7 7777 7 777 7 77

77 7 77 77 7 77 77 77

777 77 7 77

77

77 77

777

7777 7 77 7

777 7

7 7

7

7 777 77 7 7 77 77 777 7 7
7777 7

7 7
7 7 77

77 7

77 77

77777
7

77

77

77

7
7

7

7

7

77 7

777777 7

7

777

7

7

77

7

7

77

77

7

7

7
7

7
7

7 777 7 77
7 77 7 77

7 77777 7 7

7 7

7
77 77 77777

77 7 7 77 7777 77
7 77 77

777 7

7777 7777 7 77 777 77 77 7777 77 77 777 77 7 7 7777 77 77 77 7 77
7

77 7 7

777 777 7 7

7

7

7

7

777

7

7
7777 7777 77

7 77

7 77 77
777

7 77 7

7
7

7

7

7

7

7

7

77

7

7777

7 7

7

77777 7 77
777 777 77 77 7 777 7

77 7
77 7 77 777777 77 7 7

7777

7 777

7

7

7

77 7

77 777 7

77

7
7

7

777

7

7

7

7
7 7

7

77

7777

77 7 777 77 7 7

777 7 777

7 7777
7 7

77

7 77

77 7

77 777 7777 777777 7777 7777 7 77 7 77777 77 7777 7 7 777777

7

77 777

7

7

7

7

7

77777
7

77 7

7 7777

7

7 777

77

7

777

777 77 77

7777

777

7

77 7 7
7 77 777 77 77

7

7
7

7

7

7

7

7

7 77 7 7

7

77 7

7

77777 77 7 77777

7

77

7

7

777

7

7 7

7

7

7 7

7 77
11111

1

1
1

1111111111
1

111

1

1

1111

1

1

1
1

1

12
2

2

2 2

2222222 2

2

2
2

2

22
2 2

22

22

2
2

2
2

2

2

2

2

2

33333333333

3

33 3

3

3333333333 333

3

3
3 3

3444

44

4

4

4

4

44

4
4

4444

4

4

4

44

4

44

4

4 4

44

4 4

4

45555

5

5

55555
5

5

5

55

5

55

5

55555

5

5
5

5

5555
5

66 6 666666

6

666

6

66666

6

666666

6

666 66667777

7

7

7

7

77

7

7

77
7 7

77

7

7
77777

7

777

7

7

7

7

7
4

4

1

1

1

2
7

2

47

1

4

4

7

114

2

11

2

111

1 5
111

4

2

4

2

7

4

14
1

2

7

4
11

2

7

2

7

1

5

4

1

4

2

1

1

2

111

4

41
5 1

4

4

2

3 17

141 4

3

11 441

1

5
2

1

7

1

4

7
11

2

4

3
5 4111
1
1

4

2

1

4

4

4

2

7

7
4

5

4

log−transaction amount

T
im

e
in

te
rv

al
 b

et
w

ee
n

fir
st

 a
nd

 la
st

 fr
au

d

Figure 4-11: Credit card fraud data in two-dimensional clustered space. Time interval of

fraudulent transactions versus log-transaction amount of singular fraud incidence.

77

Table 4.2: Detection results { credit card fraud discrimination. The columns indicate the

true label and the rows indicate the classi�cation. The values in the diagonal correspond

to correct classi�cations.

a) in-sample

lost stolen not rec. fr.appli. counterf. other mail/phone

lost 1386 778 43 396 25 15 410

stolen 760 949 50 418 38 14 352

not rec. 191 103 92 46 1 5 34

fr.appli. 450 240 33 1526 21 49 200

counterf. 447 337 13 216 141 8 198

other 47 23 2 17 7 118 6

mail/phone 86 54 5 125 11 9 3497

7709 correct classi�cations (55:1%), 6283 wrong classi�cations;

b) out-o�-sample

lost stolen not rec. fr.appli. counterf. other mail/phone

lost 956 706 29 761 39 15 395

stolen 1185 1061 57 715 84 5 791

not rec. 199 64 3 67 3 0 30

fr.appli. 556 340 11 1318 45 31 262

counterf. 306 214 4 131 56 3 132

other 17 13 3 50 7 8 10

mail/phone 102 38 3 264 20 10 2873

6275 correct classi�cations (44:8%), 7717 wrong classi�cations;

c) in-sample

lost mail/phone

lost 2690 197

mail/phone 113 3500

6190 correct classi�cations (95:2%),

310 wrong classi�cations;

d) out-o�-sample

lost mail/phone

lost 2739 306

mail/phone 254 3201

5940 correct classi�cations (91:4%),

560 wrong classi�cations;

78

Chapter 5

Prediction and Estimation

In the context of time series analysis prediction refers to the e�ort of forecasting future

values of a time series, given past observations of the time series. Usually a single observ-

able is measured. The time series may originate from an autonomous system, such as the

laser from �gure 5-1, or from a driven system, such as the violin. It may be deterministic

or stochastic and predictable or chaotic (Lorenz set, �g. 2-5). In a generalized approach

to prediction one forecasts statistical characteristics, that is moments of the time series.

This takes into consideration that often only statistical statements can be made and that

it is important to be clear about the uncertainty of a prediction. A typical application is

the estimation of volatility, that is variance, of a �nancial time series for the purpose of

option pricing.

Gershenfeld and Weigend [GW93] also distinguish between learning and understanding

of observations. While understanding refers to the mathematical insights into the govern-

ing equations of the system, learning refers to the process of emulating the structure of

a time series given a mathematical approximation framework. The e�ort in this chapter

relates to both aspects of modeling and forecasting a time series. We try to include as

much insight (priors) about the nature of a data set in the modeling, but always train the

model based on a set of measurements.

5.1 Background

5.1.1 Estimation Theory

The prediction of unknown and/or future values y based on observations of a vector x

requires the solution of two estimation problems: estimation of the model parameters a

and estimation of y given x, the actual prediction problem.

In the random approach to parameter estimation, the conditional density p(xjy), where
y is the target quantity and x is a measured quantity, fully characterizes the relationship

between x and y. We choose to analyze this relationship from a Bayesian point of view.

We refer to the density p(y) as the prior density which, independently from any measure-

ment, let's us express prior beliefs about the quantity to be estimated. We also assume

a measurement model characterized by the conditional density p(xjy). This density indi-

cates the probability that a certain data x is generated by the system state characterized

79

by y.

Given p(y) and p(xjy) we �nd the posterior density for x

p(yjx) = p(xjy) p(y)
p(x)

(5.1)

We also introduce a cost function C(y; ŷ), which de�nes the cost associated with estimat-

ing a given y as ŷ. From this and expression (5.1) we derive the estimator ŷ,

ŷ(�) = argminf(�) E[C(y); f(x)] (5.2)

with

E[C(y; f(x))] =

Z +1

�1

Z +1

�1
C(y; f(x)) p(y;x)dydx (5.3)

=

Z +1

�1

�Z +1

�1
C(y; f(x))p(yjx)dy

�
p(x)dx

Since p(x) � 0 equation(5.3) simpli�es and the �nal estimator for a particular measure-

ment x is

ŷ(x) = argmina

Z +1

�1
C(y; a)p(yjx)dy (5.4)

Depending on the cost function C, di�erent estimators are constructed. The minimum

absolute-error estimator (MAE) results from the cost function C(a; â) = ja� âj;

ŷMAE = argmina

Z +1

�1
jy � ajp(yjx)dy (5.5)

Rewriting this expression and di�erentiating with respect to a yields [WWS96],

ŷMAE = argmina

�Z a

�1
(a� y)p(yjx)dy +

Z +1

a
(y � a)p(yjx)dy

�
(5.6)

0 =

�Z a

�1
p(yjx)dy +

Z +1

a
p(yjx)dy

�����
a=ŷMAE

;

which shows that the MAE �nds the median of the posterior probability for the estimator

of y Z ŷMAE(x)

�1
p(yjx) =

Z +1

ŷMAE(x)
p(yjx) = 1

2
: (5.7)

The Maximum A Posteriori (MAP) estimator uses the peak (mode) of the posterior

density as the estimator. It is derived from the Minimum Uniform Cost (MUC) estimator

with the cost function

C(a; â) =

(
1 for ja� âj > "

0 otherwise
(5.8)

The MUC uniformly penalizes any error beyond the threshold ". For " ! 0 the MUC

80

estimator turns into the MAP.

ŷMAP(x) = argmaxa p(ajx) = lim
"!0

ŷMUC(x) (5.9)

The mean-square error (MSE) cost criterion

C(a; â) = (a� â)T (a� â) =
NX
n=1

(ai � âi)
2 (5.10)

yields the Bayes' Least-Square (BLS) estimator

ŷBLS(x) = argmina

Z +1

�1
(y � â)T(y � â) p(yjx)dy (5.11)

Di�erentiating and rearranging of terms yields

@

@a

�Z +1

�1
(y � â)T (y � â) p(yjx)dy

�
= �2

Z +1

�1
(y � â) p(yjx)dy (5.12)

and

0 =

Z +1

�1
(y � â) p(yjx)dy

����
a=x̂BLS

(5.13)

=

Z +1

�1
y p(yjx)dy

����
a=x̂BLS

�
Z +1

�1
ŷBLS(x) p(yjx)dy

����
a=x̂BLS

= E[y j x]� ŷBLS(x)
Z +1

�1
p(yjx)dy

= E[y j x]� ŷBLS(x)

Hence we see that the BLS estimator is the mean of the posterior density p(xjy).

ŷBLS(x) = E[y j x] : (5.14)

The BLS estimator has a number of important properties: it is unbiased and its estimation

error e(y;x) = ŷ(x)� y is orthogonal to any function of the data

E[ŷ(x)� y)gT (x)] = 0 (5.15)

Moreover, the uncertainty of the BLS estimator is lower than that of any other estimator.

If �e denotes the error covariance of any estimator ŷ(�), �BLS satis�es �BLS � �e. CWM

uses the BLS estimator to extract the predicted y from the posterior density function.

If the estimator is constrained to be a linear function of the data, the BLS estimator

turns into the Linear Least-Squares (LLS) estimator.

ŷLLS(�) = argminf(x)E[jjy � f(x)jj2] (5.16)

f(x) = A � x+ a0

If y and x are jointly Gaussian we observe that ŷBLS(x) = ŷLLS(x) = ŷMAP(x) =

81

ŷMAE(x).

5.1.2 Linear models

In 1927, Yule invented what was later named an auto-regressive moving-average (ARMA)

model trying to predict the annual number of sunspots. The MA part in the acronym

refers to the idea that past observables of a system indicate its present state and its future

output (section 2.2.1). The output of a driven system can be approximated as the weighted

sum of its delayed inputs e(t):

x(t) =
NX
n=0

an � e(t� n) (5.17)

While statisticians call this a moving-average model, it really is the implementation of a

convolution �lter and engineers refer to it as a �nite impulse response �lter (FIR). The

many names indicate the importance of this technique in a number of di�erent �elds.

Model 5.17 can be characterized in three domains [WG93, P.12]. In the time domain,

we generate the impulse response of the system by choosing an input signal that is non-zero

for t = 0 only,

e(t) = Æ(t) ; (5.18)

in which case x(t) equals the series of coeÆcients

x(n) = an : (5.19)

Alternatively, we can infer the spectral description of the system in the frequency domain.

Since the convolution in the time domain equals a multiplication in the frequency domain,

and since the power spectrum of an impulse Æ(t) is
at [OS89], the transfer function of

the system equals the Fourier transform of the impulse response [BJ76]

bf =
KX
k=0

ake
�i2�kf ; (5.20)

the power spectrum of which is

cf = j1 + b1e
�i2�f + b2e

�i2�2f + :::+ bKe
�i2�Kf j2 : (5.21)

The information contained in the power spectrum can alternatively be represented in

terms of the auto-correlation coeÆcients of a signal,

�n =
h(xt �mx)(xt�n �mx)i
h(xt �mx)(xt �mx)i (5.22)

where h�i is the expectation operator and �x is the mean of the time series. Likewise the

cross-correlation coeÆcients between time series x(t) and e(t) are de�ned as

�n =
h(xt �mx)(et�n �me)i
h(xt �mx)(et �me)i : (5.23)

82

Before we use the auto-correlation and cross-correlation coeÆcients to estimate a linear

model, let's introduce the auto-regressive (AR) part as well. Auto-regressive models feed

back the output into the input. Once excited, they can keep running forever, which is why

the engineering literature calls them in�nite impulse response (IIR) �lters.

x(t) =
NX
n=1

an � x(t� n) + e(t) (5.24)

e(t) is the system input.

If we combine the MA and AR model we obtain the ARMA model:

x(t) =
MX
m=1

am � x(t�m) +
NX
n=1

bn � e(t� n) (5.25)

Model 5.25 is best described in terms of the z-transform, designed to represent a

discrete system in the spectral domain [OS89]:

X(z) �
n=+1X
n=�1

xnz
n (5.26)

X(z) = A(z)X(z) +B(z)E(z)

=
B(z)

1�A(z)
E(z)

5.1.3 Linear Regression

From a model estimation point of view, ARMA models fall into the category of linear

regression models. x(t) is regressed on some input e(t � n), on itself (x(t �m)), or on

both. Assuming a Gaussian error model, the optimal estimator minimizes the mean square

error between the linear predictor and the data set. Given a set of data g = (x; y) 2 Rd�R,
we de�ne the cost function

H =
1

N

NX
n=1

[f(xn)� yn]
2 (5.27)

f(x) =
DX
d=0

ad � xd ;

with x0 = 1 (the constant term).

As in equation 3.23 we derive the coeÆcients a

raH =
1

N

NX
n=1

2 [f(xn)� yn]
@

@a
f(xn)

=
1

N

NX
n=1

[f(xn)� yn]x

= 0

83

which yields

a = B�1 � c (5.28)

B =
1

N

0
B@
P

n x0;nx0;n :::
P

n x0;nxD;n
::: ::: :::P

n xD;nx0;n :::
P

n xD;nxD;n

1
CA (5.29)

c =
1

N

0
B@
P

n ynx0;n
:::P

n ynxD;n

1
CA

In (5.29), we recognize the covariance matrix of the data and the cross-correlation matrix

between the input xi and the output y. If xi(t) = y(t�i), as in (5.25), and if y is zero mean
(E[y] = 0), expression (5.29) also equals the estimator for the auto-correlation coeÆcients

(5.22).

If y is vector-valued, the full matrix of coeÆcients is

A = B�1 �C

C =
1

N

0
B@

P
n y0;nx0;n :::

P
n y0;nxD;n

::: ::: :::P
n yDy;nx0;n :::

P
n yDy;nxD;n

1
CA (5.30)

ARMA models are good approximations and predictors for some processes. However,

they break for all systems for which the power spectrum is not a useful characterization

[GW93]. Even a system with a very simple nonlinearity, such as the logistic map, causes

the ARMA model to fail terribly.

5.1.4 Generalized linear and polynomial models

A natural extension of linear models into the nonlinear domain are generalized linear

models, that is models that consist of weighted nonlinear basis functions (section 3.1,

equ. 3.1) as opposed to simple linear terms.

f(x) =
IX
i=1

ai	i(x) (5.31)

where the 	k are arbitrary nonlinear functions.

Fitting the coeÆcients is analogous to the strictly linear case replacing the linear basis

functions with the new basis functions.

A = B�1 �C (5.32)

B =
1

N

0
B@
P

n	0(xn)	0(xn) :::
P

n	0(xn)	K(xn)

::: ::: :::P
n	K(xn)	0(xn) :::

P
n	K(xn)	K(xn)

1
CA

84

C =
1

N

0
B@
P

n y0;n	0(xn) :::
P

n yDy;n	0(xn)

::: ::: :::P
n y0;n	K(xn) :::

P
n yDy;n	K(xn)

1
CA (5.33)

The most popular generalized linear models are polynomial models:

	i(x) = xei11 � x2ei2 � :::xeidd (5.34)

Given the polynomial order O, we keep any combination of integer values for e that satisfy

ei1 + ei2 + :::eid � O for all i. This includes the constant term e0;d for which eki = 0. The

number of basis terms I then equals [Met96, P.83]

I(D;O) =

(D +O)

D

!
=

(D +O)!

D! �O! : (5.35)

Polynomial expansions are orthogonal and complete for O ! 1. The matrix B for

polynomial models is known as the Vandermond matrix. Assuming a two dimensional

vector x =

"
x1
x2

#
and a second order approximation it is

B =
1

N
� (5.36)

0
BBBBBBBB@

P
n 1

P
n x1;n

P
n x2;n

P
n x1;nx2;n

P
n x

2
1;n

P
n x

2
2;nP

n x1;n
P

n x
2
1;n

P
n x1;nx2;n

P
n x

2
1;nx2;n

P
n x

3
1;n

P
n x1;nx

2
2;nP

n x2;n
P

n x1;nx2;n
P

n x
2
2;n

P
n x1;nx

2
2;n

P
n x

2
1;nx2;n

P
n x

3
2;nP

n x1;nx2;n
P

n x
2
1;nx2;n

P
n x1;nx

2
2;n

P
n x

2
1;nx

2
2;n

P
n x

3
1;nx2;n

P
n x1;nx

3
2;nP

n x
2
1;n

P
n x

3
1;n

P
n x

2
1;nx2;n

P
n x

3
1;nx2;n

P
n x

4
1;n

P
n x

2
1;nx

2
2;nP

n x
2
2;n

P
n x1;nx

2
2;n

P
n x

3
2;n

P
n x1;nx

3
2;n

P
n x

2
1;nx

2
2;n

P
n x

4
2;n

1
CCCCCCCCA

As was mentioned earlier, nonlinear models need to balance between under and over-

�tting [Ger99a]. Models should abstract from noisy data, e.g. model the true data and

discard the noise. We can enforce this constraint using a regularizing term in the cost

function. In general, a regularizer expresses prior beliefs about what a good model should

look like. Here we propose a smoothness prior that penalizes strong �rst and second

moments.

Since it simpli�es equations signi�cantly we re-normalize the data to �t the �nite

support RD \ [0; 1] and add the integral over the second derivative (curvature) to the cost

function.

H2 =

Z 1

x1=0
:::

Z 1

xD=0
(
@2f

@x2
)2dx1:::dxD (5.37)

=

Z 1

x1=0
:::

Z 1

xD=0

DX
i=1

(
@2f

@x2i
)2 + 2 �

DX
i=1

j�1X
j=1

(
@2f

@xi@xj
)2dx1:::dxD

85

Using � to balance the variational terms the complete expression is

H(f) = H2 + � �H1 (5.38)

=

Z 1

x1=0
:::

Z 1

xD=0
(
@2f

@x2
)2dx1:::dxD + � � 1

N

X
i

N [f(xi)� yi]
2

We �nd the optimal coeÆcients by taking the derivative with respect to the coeÆcients a

and setting the expression to zero,

@H

@a
=

@H1

@a
+ � � @H2

@a
(5.39)

= D � a+ � � (B � a� c) = 0 :

We then resolve for the vector of coeÆcents

a = �(D+ �B)�1 � c : (5.40)

The optimal value for � is determined by cross-validation with a test-set.

5.2 Cluster-weighted estimation

Cluster-weighted estimation and prediction uses simple local estimators, e.g. LLS es-

timators, and superimposes them to form globally powerful nonlinear estimators. The

linear and generalized-linear models that were introduced in the past sections are now

integrated in the cluster-weighted framework. As usual, we start with a set of measure-

ments fy;xgNn=1. We assume that the data points have been generated by some unknown

function 	 : Rx ! Ry, and that the data is corrupted by noise. We expand the density

p(y;x) around the local models. From this we infer the posterior density p(yjx). The

BLS estimator E[p(yjx = X)] is used to approximate the deterministic function 	.

The EM training procedure and the E and M updates have been explained in detail

in Section 3.2. Here we give the update equations for the local models only (3.25). In the

case of local linear models as in (5.27) the matrices Bk and Ck from equation (3.25) are

Bk =

0
B@ hx0x0i ::: hx0xDi

::: ::: :::

hxDx0i ::: hxDxDi

1
CA (5.41)

Ck =

0
B@ hy0x0i ::: hy0xDi

::: ::: :::

hyDyx0i ::: hyDyxDi

1
CA

with

h�i =
PN

n=1 �(xn) p(ckjyn;xn)PN
n=1 p(ckjyn;xn)

(5.42)

86

In the case of second order polynomials as in (5.34) and (5.36), we get

Bk =

0
BBBBBBB@

h1i hx1i hx2i hx1x2i hx21i hx22i
hx1i hx21i hx1x2i hx21x2i hx31i hx1x22i
hx2i hx1x2i hx22i hx1x22i hx21x2i hx32i
hx1x2i hx21x2i hx1x22i hx21x22i hx31x2i hx1x32i
hx21i hx31i hx21x2i hx31x2i hx41i hx21x22i
hx22i hx1x22i hx32i hx1x32i hx21x22i hx42i

1
CCCCCCCA

(5.43)

The cluster-weighted equivalent of the fully general case (5.31 and 5.32), yields

Bk =

0
B@ h	0(x)	0(x)i ::: h	0(x)	I(x)i

::: ::: :::

h	I(x)	0(x)i ::: h	I(x)	I(x)i

1
CA (5.44)

Ck =

0
B@ hy0;n	0(x)i ::: hyDy;n	0(x)i

::: ::: :::

hy0;n	I(x)i ::: hyDy;n	I(x)i

1
CA

5.3 Applications

5.3.1 Predicting physical systems

Section 2.2.1 introduced the embedding theorem and algorithmic tools regarding the pre-

diction and characterization of physical systems. We showed that embedding has the

conceptual potential of predicting any physical system, but also observed that in practice

the number of systems actually tractable with the method is rather small. In this section

we will discuss data set A from the Santa Fe Time Series Competition, a laser
uctuating

at the gain threshold [HWAT93].

Figure 5-1 illustrates various aspects of the laser data set, e.g. the time domain signal.

We embed the data in a two-dimensional lag space and build a predictive CWM model

in this space. Figure 5-1 shows the data along with the clusters and a prediction surface.

We indicate the density estimation of the data and the predictor uncertainty by shading

the surface.

The Lorenz set (section 2.2.3) was originally discovered to describe chaotic
uid dy-

namics. The three-dimensional set of equations (equ. 2.26) generates varying dynamics

depending on the choice of parameters.1 It is famous for its strange attractor which is

rare phenomena for systems with so few degrees of freedom. H�ubner et al. [HWAT93] �nd

that the NH3-FIR laser generates a physical signal with dynamics very similar to those

of the chaotic Lorenz set. They �nd that the parameters r = 1:::20; � = 2; b = 0:25 used

with the Lorenz equations nicely simulate the laser (�g. 5-1).

We use CWM to forecast future values of the laser using such simulated data, working

in the signal rather than in the intensity space. See �g. 5-2 for results.

1Figure 2-5 and 3-6 illustrates the Lorenz set (equ. 2.26) for the parameters � = 10, � = 8=3,b = 28.

87

5.3.2 Prediction of the M3-competition time series

The M3-competition data set2 consists of 3003 time series, most of which describe eco-

nomical, industrial and demographic data from the past decades. Typical examples are

the revenue of a speci�c industrial sector in a speci�c country, interest rates, and social se-

curity expenses for subpopulations. There are six di�erent types of series (micro, industry,

�nance, demographic and other) sampled at four di�erent time intervals. The amount of

data provided is � 14 points for yearly data, � 16 points for quarterly data, � 48 points

for monthly data and � 60 points for other data. The forecasting time horizons are six

periods for yearly data, eight periods for quarterly data, 18 periods for monthly data and

eight periods for other data. Fig. 5-3 shows some representative time series from the set

[HM00].

Table 5.1: Prediction results - M3 competition, The error metric is the average symmetric

MAPE [Hib99]. Errors are in percentages and ordered by time periods (vertical) and

prediction horizons in terms of time period (horizontal).

pred. Horizon 1 2 3 4 5 6 8 12 15 18

all data (3003) 9.0 10.0 10.3 10.7 11.5 12.4 12.5 11.9 14.8 16.3

yearly data (645) 8.8 13.4 18.9 20.8 23.9 26.0

quaterly data (756) 5.9 8.0 9.3 10.7 12.1 13.6 15.0

monthly data (1428) 13.5 13.3 14.3 16.1 14.3 14.0 15.0 15.3 19.0 20.8

other data (174) 1.9 3.1 4.6 5.4 6.2 6.2 7.6

To start, we extract two subsets of points from each set: the training set (about 80% of

the data) and the test set (about 20% of the data). The training set is used to �t models

with di�erent hyper-parameter settings. We randomly select the auto-regressive dimension

for the model as well as the number of clusters and the order of the local �t. However, we

constrain the window of possible values depending on the type of series and on the amount

of data available. The less data there is, the less model resources are allocated. For all

series, one of the parameter choices is a low-dimensional single-cluster linear model. The

di�erent model choices are trained on parts (75%) of the training set randomly choosing

about �ve di�erent subsets for training (bootstrapping). Each incidence of a model is

tested on the unused data from the training set. The performance of a parameter set is

taken to be the average error of all the bootstrapingp cycles.

We build a di�erent model for the di�erent forecasting horizons (�g. 5-4) in order to

avoid adding up errors in the iterative scheme. We also train each set in absolute as

well as di�erential mode. In the di�erential mode, we predict the increment per period,

which simpli�es the prediction for time series that follow an exponential growth, such as

economic time series. The set of parameters with the smallest error on the boot-strapped

training data is used to predict the testset. We choose the di�erential or non-di�erential

method depending on which performs best on the testset. We then rebuild the model one

more time, using the selected combination of parameters with the full data set. This very

last model is used to predict the values of the requested forecasting horizon (Table 5.1).

2The data set of the M3-competition is provided by M. Hibon and S. Makridakis, INSEAD, France

[HM00].

88

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

S
ig

na
l

time

050100150200250 050100150200250300

0

50

150

250

x(t+τ)x(t)

C
lu

st
er

s

 D
at

a

0
50

100
150

200
250 0

50
100

150
200

250

−200

−100

0

100

200

x(t+τ)x(t)

D
en

si
ty

P

re
di

ct
io

n−
fu

nc
.

Figure 5-1: Modeling of a laser
uctuating near the gain threshold. Top: the measured

time series. Middle: the data in a three dimensional time-lag space and the resulting

cluster means and covariances. Bottom: the prediction surface derived from the resulting

density, colored by the conditional uncertainty in the prediction, plotted above the input

density estimate.

89

0 200 400 600 800 1000
−2

0

2
x 10

4

S
ig

na
l

0 200 400 600 800 1000
0

1

2

3

x 10
8

S
im

ul
at

ed
 D

at
a

In
te

ns
ity

0 200 400 600 800 1000
−2

0

2
x 10

4

S
ig

na
l

0 200 400 600 800 1000
0

1

2

3

x 10
8

P
re

di
ct

ed
 D

at
a

In
te

ns
ity

Figure 5-2: Predicting a laser/Lorenz model. Top: synthesized training signal and its

intensity. Bottom: predicted signal and its intensity. The model uses a four-dimensional

lag-space (lag = 16 samples) and ten clusters representing linear models.

90

0 2 4 6 8 10 12 14 16 18 20

2000

4000
as

se
ts

0 5 10 15 20 25 30 35 40 45 50
0

5000

10000

to
n−

m
ile

s

0 5 10 15 20 25
4000

5000

do
m

.p
ro

du
ct

0 5 10 15 20 25
2000

4000

6000

in
su

ra
nc

e

0 5 10 15 20 25
2000
4000
6000
8000

10000

nu
rs

in
g

0 20 40 60 80 100 120 140
0

5000

10000

sh
ip

m
en

ts

0 20 40 60 80 100 120 140

4000

6000

cr
ed

it

Figure 5-3: Examples of M3-competition time series. From top to bottom:

assets (yearly/micro,starting 1/1975), air carriers (international), mail ton-miles

(yearly/industry, starting 1/1947), OECD ECONOMIC OUTLOOK - SWITZERLAND,

Gross Domestic Product- Volume Indices (yearly/macro, starting 1/1970), Veterans Ser-

vicemen'group life insurance - Post separation (yearly/demographic, starting 1/1971),

Nursing Home Care - Veterans Medical Center (yearly/demographic, starting 1/1971),

SHIPMENTS (Code TD-AUTOUNITS) (monthly/micro, starting 10/1984), Consumer in-

stallment credit outstanding, commercial banks (monthly/�nance, starting 1/1083). The

training data reaches up to the vertical bars. The dash-doted lines indicate the predictions.

91

0 2 4 6 8 10 12

0
200
400
600

1−
st

ep

0 2 4 6 8 10 12

0
200
400
600

2−
st

ep
s

0 2 4 6 8 10 12

0
200
400
600

3−
st

ep
s

0 2 4 6 8 10 12

0
200
400
600

4−
st

ep
s

0 2 4 6 8 10 12
−200

0
200
400
600

5−
st

ep
s

0 2 4 6 8 10 12
−500

0

500

6−
st

ep
s

Figure 5-4: Example of a M3-competition prediction. Di�erent models handle di�erent

prediction horizons, such that a one-step (p-step) predictor looks ahead one (p) data

point(s) and predicts one step (p steps) ahead in the future.

92

Chapter 6

Linear predictive coding

6.1 Introduction and related work

Linear Predictive Coding (LPC) is a successful synthesis technique for time series with

peaky spectra [MG76]. It is used �rst and foremost in speech synthesis. LPC aims to

best approximates the spectrum of a given time series in a mean-square sense [Moo78]. In

general, it is based on a stochastic or periodic excitation function which is convolved with

a linear �lter (IIR-�lter). The �lter coeÆcients as well as the excitation functions can be

derived from observed data.

- - - - -
e(t) ug(t) ul(t) s(t)Glottal

Model

Vocal

Tract

Model

Spectral

Correction

Factor

Lip

Radiation

Figure 6-1: Linear speech production model [MG76, p.6]

In linear speech synthesis the vocal tract is typically decomposed into an excitation

element, representing the vocal chords and a series of linear �lters. In the z-domain we

get

S[z] = E[z] �G[z] � V [z] � L[z] ; (6.1)

where E[z] is the excitation function, typically a periodic function plus a noise term,

G[z] models the glottal shaping, V [z] is the impulse response of the vocal tract, and L[z]

models the lip radiation. The transfer functions can be summarized in the all-pole �lter

1=A[z].

A[z] =
MX
m=0

akz
�m (6.2)

=
1

G[z]V [z]L[z]

93

S[z] = E[z] � 1

A[z]

The set of linear �lter coeÆcients a (equ. 6.3) of the all-pole �lter 1=A[z] is the most

eÆcient linear representation and is easy to estimate from observed data.

Equ. (6.1) is referred to as the synthesis model. It is presented here in the context of

speech modeling, but generalizes to all linear signal sources. Given the order of approxi-

mation I, that is the dimension of the linear �lter structure, we �nd the �lter coeÆcients

of 1=A[z] in a linear least-square �t. The auto-regressive structure of the model allows

for two alternative training techniques. The covariance method minimizes the linear

prediction error over the interval [M;N�1], where M is the order of the �lter and N is

the number of points considered [MG76]. The method solves

MX
i=1

ai ci;j = �c0;j ; (6.3)

for j = 1; 2; :::M , with

ci;j =
N�1X
n=M

s(n� i) s(n� j) : (6.4)

The auto-correlation method minimizes the approximation error on the full real axis

[�1 1]. The method solves

MX
i=1

air(ji� jj) = �r(j) ; (6.5)

for j = 1; 2; :::M , with

r(l) =
N�1�lX
n=0

s(n)s(n+ l) l � 0 : (6.6)

The sequence e[n] is referred to as the excitation function, but also corresponds to the

error sequence of the linear �t. It can be estimated by convolving S[z] with the inverse

�lter A[z],

E[z] = S[z]A[z] : (6.7)

This equation describes the analysis model. Alternatively e[n] can be estimated in the

time domain by subtracting a one-step-ahead predicted audio signal from the true signal.

The equivalent of equation 6.7 in the time domain is

e(n) =
MX
i=0

ais(n� i) (6.8)

= s(n) +
MX
i=1

ais(n� i)

since a0 = 1. With the predicted sample ŝ = �PM
i=1 ais(n � i) the time domain error

94

signal is

e(n) = s(n)� ŝ(n) : (6.9)

This expression can be exploited to de�ne the excitation function [MG76].

Multiple excitation-�lter pairs are estimated from di�erent segments of the time series.

Fundamentally, voiced sounds require a pitched periodic excitation while unvoiced sounds

are generated by a non-periodic excitation. Therefore the excitation is typically composed

of a periodic and a noise component.

Since 1=A[z] is an IIR �lter, stability of the estimated �lters is a major concern.

An all-pole �lter F [z], is stable if all the zeros of the inverse 1=F [z] are inside the unit

circle in the z-plane (jzj < 1). This property is not enforced by the linear estimation of

1=A[z]. However, we can test a �lter for its stability [MG76, P.93�] and alternate it in

case it is unstable. One approach to this replaces all the roots outside the unit circle by

their reciprocals,1 which assures stability but alters the spectral properties of the �lter.

Alternatively, we can change some parameters and reestimate the coeÆcients.

Related to the stability issue is that of switching from one �lter to another. An abrupt

change from one �lter to the next will cause an audible artifact. A smooth transition

(linear interpolation) from one �lter to the next can cause stability problems, since the

stability of the interpolated �lters does not insure stability of the mixture. Therefore the

transition window should be short.

It has been shown how the excitation signal can be derived from observed data. How-

ever, it can also be designed from scratch by adding white noise to a periodic impulse

train. The noise component is simply colored by the formant structure of the linear �lter.

The impulse train has a harmonic spectrum, the pitch being determined by the period of

the impulses.

The cross-synthesis of speech and music combines LPC's application to speech synthe-

sis and musical synthesis. Since LPC is based on two major ingredients, excitation and

�ltering, we can combine features from two di�erent sources. For example, the excitation

function of a violin can be modulated by the formant structure of human speech resulting

in a talking violin. Using a non-processed recorded signal of a musical instrument as exci-

tation to the speech �lters is valid may result in unintelligibility of the speech. Whitening

of the excitation signal seems to solve this problem for most instrument families [Pet76]

[Moo78], but it may cause problems for instruments with a strong noise
oor, such as the

ute.

6.2 Cluster-weighted linear predictive coding

Cluster-weighted linear predictive coding (CWLPC) generates time-varying all-pole �lters,

the coeÆcients of which depend on a control sequence. We are given a scalar-valued time

series y and a vector-valued input time series xs which we assume is changing slowly

relative to the dynamics of y (equ. 3.5). y is typically an audio signal, while xs summarizes

a slowly varying control input or the known state of the system.

CWLPC requires three CWM expert models, either as separate models or within the

1Reciprocals are the mirror points relative to the unit circle.

95

Cluster2
ClusterKCluster1

Pointer to Excitation

xw(t-1) xw(t+1)xw(t)

Linear Pitch Predictor

SYNTHESIZED CONTINUOUS AUDIO STREAM

xa(t)xp(t)

Linear Amplitude Predictor

Autoregressive Filter A(z)

Figure 6-2: Cluster-weighted linear predictive coding in graph form: three separate output

models predict pitch and amplitude and implement the autoregressive LPC �lter.

same framework (�g. 6-2). The �rst expert predicts the �lter coeÆcients ai of an auto-

regressive �lter and the �lter output ŷ. For the purpose of estimating this expert we

construct the state vector xf , describing the fast dynamics (3.5), from lagged instances of

y,

xi;f [n] = y[n�i]; d = 1; :::; I : (6.10)

I denotes the order of approximation, i.e. the number of �lter tabs. The �lter output is

then

ŷ[n] =

PK
k=1 a

T
k xf [n] p(xs[n]jck) p(ck)PK
k=1 p(xs[n]jck) p(ck)

: (6.11)

where xf [n] is updated after each time step n according to (6.10) with

x1;f [n] = ŷ[n�1] + e[n] : (6.12)

The estimation of the ak is identical to the non-auto-regressive case (section 3.2).

The second expert is concerned with the prediction of the model gain. Since the linear

all-pole �lter can't be used to control the gain of the predictor, an expert is needed which

scales the excitation function in such a way that the �lter outputs the desired level. The

expert is a simple scalar-valued locally-linear predictor that estimates the scaling factor

96

v[n], given the input xv.

v[n] =

PK
k=1 a

T
k;vxv[n] p(xs[n]jck) p(ck)PK
k=1 p(xs[n]jck) p(ck)

: (6.13)

- - - -
e(t) s(t)Bridge

Model

Body

Model

Radiation

Model

Figure 6-3: LPC model of a violin

The third expert is concerned with the excitation function e[n]. The expert is predict-

ing the pitch of the periodic excitation as well as properties of the noise component of the

excitation function. The pitch-expert is taken to be a locally linear predictor as above,

p[n] =

PK
k=1 a

T
k;pxp[n] p(xp[n]jck) p(ck)PK
k=1 p(xp[n]jck) p(ck)

: (6.14)

Similar estimators can be designed to predict the properties of the noise
oor.2

For synthesis, we superimpose an impulse train at the period of the predicted pitch

p[n] and an appropriate noise
oor. The excitation is scaled by the scaling/volume factor

v[n] and then used as the driving signal for the auto-regressive �lter 1=A[z]. The �lter

coeÆcients a[i] are constructed as a weighted sum of all the individual �lters. We assume

that one cluster predominates the overall �lter, in which case the stability of the individual

�lters is suÆcient for the mixture-coeÆcients to be stable. Alternatively, a winner-takes-

all strategy for the �lter coeÆcients can be used, in which case only the coeÆcients of the

cluster that is most likely given the input vector are used.

6.3 Application: An excitation-�lter model of the violin

Like the vocal tract, a violin can be interpreted in terms of an excitation and a �lter struc-

ture (�g. 6-3). The excitation can be taken to be a simple impulse train, a combination of

an impulse train plus a noise term, or a sampled excitation function. Section 6.1 explained

how to recover the excitation function from a linear �lter model. Subsequently this ex-

citation function is convolved with linear �lters representing the bridge, the resonating

body of the violin, and the sound radiation into the room. As in the speech model, these

�lters can be combined into a single all-pole �lter 1=A[z].

The violin model is di�erent from the speech model3 in that the violin is a stationary

2Research that is yet to be done.
3... and one might argue LPC is the wrong approach for modeling a violin. In fact this technique has

not been pursued beyond initial attempts.

97

−0.5

0

0.5

1

 s
tr

in
g

si
gn

al
 [V

]

−0.5

0

0.5

1

po
in

t p
re

di
ct

ed
 s

ig
na

l

5 10 15 20 25 30 35 40 45

−0.1

0

0.1

time [ms]

er
ro

r/
ex

ci
ta

tio
n

Figure 6-4: Cluster-weighted LPC model built on data recorded from a violin string signal.

Top: training signal; center: point predicted signal; bottom: error signal / excitation

function for a synthesis system. The model uses a linear �lter with 10 tabs, �ve clusters,

and a two-dimensional feature space.

device and hence the �lter coeÆcients shouldn't need to change. In reality di�erent �lters

end up modeling di�erent excitation functions, which to some extent destroys the analogy

between the elements of the model and the actual physical mechanisms [Moo78].

Unfortunately LPC really only shifts the problem of modeling a complicated nonlinear

signal from modeling the true signal to estimating the excitation function. The excitation

function is freed from the linear equalization, but still contains the interesting elements of

the signal. It is therefore as diÆcult to predict as the sound pressure signal (Fig.6-4).

98

Chapter 7

Frequency domain estimation

7.1 Frequency domain representations of signals and sys-

tems

Complex input-output systems are conveniently represented as graphs of block elements

(�g. 7-1) called transfer functions. Transfer functions are easy to understand and to

manipulate. Every block consists of free input variables and output variables dependent

on the inputs. The relationship between the input and output variables can be explicit,

that is in the form y(t) = f(u(t)), or implicit, for example in the form of a di�erential

equation [Mey92].

-

-
-
-

un(t)

u3(t)
u2(t)
u1(t)

System

-

-
-

yn(t)

y2(t)

y1(t)

m

-U(s) Transfer function G(s) - Y (s)

Figure 7-1: Dynamic system and Laplace transform [Mey92]

A particularly interesting subclass of transfer functions are referred to as linear time-

invariant (LTI) systems. A system is linear, if the transfer function satis�es

f(a1u1 + a2u2) = a1f(u1) + a2f(u2) (7.1)

Important examples for linear systems are y(t) =
R t
0 u(�)d� and y(t) = d

dt
u(t). Examples

for nonlinear systems are y(t) = u(t)2 and y(t) = eu(t). The most general representation

99

of a linear transfer function is a linear di�erential equation

yn + an�1y
n�1 + :::+ a1y

0 + a0y = f(u) (7.2)

If the coeÆcients ai in 7.2 are independent of time, the transfer function is said to be time

invariant. The condition for time invariance is

y(t) = f(u(t))) y(t� t0) = f(u(t� t0)) : (7.3)

If the system is time-continuous the Laplace transform L of the linear di�erential

equation results in a much simpler algebraic expression. For example,

T _y + y = ku(t); y(0) = y0 (7.4)

m L
sTY (s) � Ty(0) + Y (s) = kU(s) :

This expression is easily solved for Y (s) or G(s)

Y (s) =
kU(s)

1 + sT
+

Ty(0)

1 + sT
(7.5)

= G(s)U(s) +G0(s)Ty(0)

G(s) =
Y (s)

U(s)

G(s) is the Laplace transform of the impulse response of the system (�g. 7-1). For LTI

systems, the impulse response and its transform are equivalent descriptions.

The frequency response of the system equals G(s) for s = i!. If all the poles of G(s) are

in the left half of the complex plane, G(i!) also equals the Fourier transform of the impulse

response g(t). In this case the frequency response describes the relationship between a

sinusoidal component at the input port and a sinusoidal component at the output port of

the system. The decomposition G(i!) = RefG(i!)g + ImfG(i!)g is used for a variety of

useful visualization and characterization techniques, e.g. for logarithmic magnitude and

phase diagrams of the transfer function.

- - -W (s) Y (s)G(s)

H(s) �

6-
�

Figure 7-2: Feedback system in the Laplace domain [Mey92, p.100].

The representation as a transfer function is crucial for evaluation of the stability of

100

a system. A system is stable if and only if the system response y(t) is bounded for any

bounded input u(t). The translation of this condition in the frequency domain yields the

following result: a linear system with a rational transfer function G(s) is stable if and only

if all poles of the transfer function have a negative real part. Most nontrivial engineering

applications of control systems involve a feedback loop as in �g. 7-2. The stability of

the closed-loop system largely depends on the properties of the open-loop transfer func-

tion G0(s)=̂G(s)H(s). The Nyquist-criterium [OW83, P.717][Mey92] is usually used to

examine feedback systems for their absolute stability, but also for a number of properties

summarized as relative stability.

7.1.1 Volterra expansion

The output of a linear operator and system is a linear combination of all the inputs of the

same frequency (equ. 7.2). In other words, spectral components don't interact with each

other but are simply scaled and phase shifted. For a nonlinear operator, this restriction

doesn't hold, but components are allowed to interact with a component of a di�erent

frequency or a component from a di�erent input port. If the input x(t) is given by

x(t) =
NX
n=1

cn xn(t) (7.6)

we obtain for the response of a second order operator

y(t) = T2[x(t)] (7.7)

= T2[
NX
n=1

cnxn(t)]

=
NX
k=1

NX
n=1

T2fckxk(t); cnxn(t)g

=
NX
k=1

NX
n=1

ckcnT2fxk(t); xn(t)g

If for example

yy(t) = x2(t) ; (7.8)

the response of the system is

yy(t) =
NX
k=1

NX
n=1

ckcnxk(t)xn(t) ; (7.9)

and hence T
y
2 is

T
y
2fxk(t); xn(t)g = xk(t)xn(t) : (7.10)

If T2 describes a time invariant system it turns into the second order Volterra operator

y(t) = H2[x(t)] (7.11)

101

=

Z 1

�1

Z 1

�1
h2(�1; �2)x(t� �1)x(t� �2)d�1d�2 :

h2 is called the second-order Volterra kernel and can be interpreted as a two dimen-

sional impulse response. Let's reconsider system (7.8) assuming that x(t) is a superposition

of two sinusoidal components x1(t) and x2(t) and that f2 = 2f1.

x(t) = a1 sin(2�f1t+ �1) + a2sin(2�f2t+ �2) (7.12)

= Refc1[cos(2�f1t) + i � sin(2�f1t)] + c2[cos(2�f2t) + i � sin(2�f2t)]g
= Refc1x1(t) + c2x2(t)g

where the ci are complex valued coeÆcients. Then

yy(t) =
2X

k=1

2X
n=1

ckcnxk(t)xn(t) (7.13)

= c011x11(t) + c012x12(t) + c021x21(t) + c022x22(t)

with xij(t) = xi(t)xj(t). Since the mixed terms have the same frequency and f2 = 2f1,

this superposition of terms can be rewritten as

yy(t) = c000 + c001x1(t) + c002x2(t) + c003x3(t) + c004x4(t)

with xj(t) representing the sinusoidal basis term of frequency j �f1.
The second-order operator is suÆcient to handle second-order nonlinearities as in

equ. 7.8. In order to deal with arbitrary nonlinearities we can generalize T into the

pth-order operator Tp. The impulse response of Tp is given by

yp(t) = Tp[x(t)] = Tp[
NX
n=1

cnxn(t)] (7.14)

=
NX

n1=1

:::
NX

np=1

Tpfcn1xn1(t); :::; cnpxnp(t)g

=
NX

n1=1

:::
NX

np=1

cn1 :::cnpTpfxn1(t); :::; xnp(t)g

Tp is called a p-linear operator, since it is linear in each argument when all the other

arguments are held �xed [Sch89]. If Tp[�] is time-invariant, it is called the pth-order

Volterra operator Hp[�]. We can relate yp(t) to the input using

yp(t) = Hp[x(t)] (7.15)

=

Z 1

�1
:::

Z 1

�1
hp(�1; :::; �p)x(t� �1):::x(t � �p)d�1:::d�p

The number of terms in the approximation is exponential in p. Yet, given a speci�c

problem or a speci�c nonlinearity a low dimensional approximation may be perfectly valid

(section 7.3).

102

7.2 Cluster-weighted complex estimation

In this section we consider the approximation of a nonlinear complex-valued input-output

function CK ! CL, given a set of complex valued input-output measurements fy;xgNn=1,
where the xn are K-dimensional vector observations and y

n
are L-dimensional observa-

tions. There are two approaches to this problem:

� The complex valued xj are represented as xj = xRe;j + i � xIm;j and the complex

valued y
j
are represented as y

j
= yRe;j + i � yIm;j. Real and imaginary parts are

treated as independent variables. Hence the problem becomes that of a real-valued

function R2K !R2L.

� The complex function is approximated using truly complex arithmetic. In the case

of a linear �t, this means complex-valued coeÆcients and complex valued basis func-

tions. In the case of a neural network, this means complex activation functions and

complex back-propagation for training [GK92][Hay96][Sma97].

The advantage of the �rst approach clearly is that we need not change the architecture

at all. However, it has been shown that LMS training is faster and more stable in the

second case [Hay96, p.826]. Also, we conceptually prefer to keep the truly complex repre-

sentation since for many applications it provides meaningful insight into the problem. We

present a fully complex CWM model but point out that the transparency of the CWM

architecture allows for combinations of complex and real valued data. For example, the

global weighting can be based on a real valued input xs while the local dynamics are

described in the complex plane xf . For example, it may make perfect sense to weight the

model based on the magnitude of the input, while the local models have complex valued

in inputs and outputs.

The change to complex arithmetic simply translates into a rede�nition of the inner

product,

hz1z2i = zT1 z2 (7.16)

=
X
i

z1;i z2;i

where z is the complex conjugate of z [Mag00]. This means that all the matrix transposes

are replaced by the conjugate complex transposes. The covariance matrices on a complex

support are hermitsch.

In the fully complex approach, we rede�ne the Gaussian distributions on a complex

support (section 3.1).

p(xjck) = jP�1
k j1=2

(2�)D=2
e�(x�mk)

T �P�1
k

�(x�mk)=2 ; (7.17)

and

p(yjx; ck) =
jP�1

m;yj1=2
(2�)Dy=2

e�(y�f(x;ak))
T �P�1

m;y �(y�f(x;ak))=2 : (7.18)

103

We furthermore develop the update for locally linear complex predictors. Both basis

functions and coeÆcients are complex valued,

f
k
(x) = aT � x (7.19)

=
DX
d=0

ad xd :

The complex-valued error is de�ned as

en = ŷ
n
� y

n
= Refŷ

n
g �Refy

n
g+ i Imfŷ

n
g � i Imfy

n
g (7.20)

and the complex error function as

E[e e] = E[e2Re + e2Im] = E[e2Re] +E[e2Im] (7.21)

From this we derive the complex gradient

ra =
@

@a
[fRe(x; a) + ifIm(x; a)] � raa (7.22)

=
@

@a
f(x; a) �

"
1

i

#
:

It is easily veri�able that the update rule for the complex-valued basis functions is

(equ. 3.23)

0 =

*h
y � f(x; ak)

i @f(x; ak)

@ak

+
k

where h�ik denotes the cluster weighted expectation with respect to the Gaussian cluster

distributions on the complex support. Hence the update rule for the matrix of coeÆcients

A in the vector valued case is

Ak = B�1
k �Ck ; (7.23)

with

[Bk]ij = hxi � xjik (7.24)

=
1

N p(ck)

NX
n=1

xi � xj p(ckjyn;xn)

[Ck]i;j = hy
i
� xjik

=
1

N p(ck)

NX
n=1

y
i
� xj p(ckjyn;xn) :

104

In similar fashion the updates for the remaining cluster parameters are:

p(ckjy;x) =
p(y;xjck) p(ck)PK
l=1 p(y;xjcl) p(cl)

(7.25)

p(ck) =
1

N

NX
n=1

p(ckjyn;xn)

hmi =

PN
n=1 xn p(ckjyn;xn)PN
n=1 p(ckjyn;xn)

hPi;ji =

PN
n=1 xi;n xj;n p(ckjyn;xn)PN

n=1 p(ckjyn;xn)

hPy;i;ji =

PN
n=1 ŷi;n yy;j;n p(ckjyn;xn)PN

n=1 p(ckjyn;xn)

a1

b1

-

�
DUT

-

�

b2

a2
,

a1

a2

-

-
H

-

-
b1

b2

Figure 7-3: Device under test (DUT) characterized by its transfer function.

vb
ia
s

AGROUND

AGROUND

AGROUND

AGROUNDAGROUND

AGROUND

vbias

1 2

1-2 GHz AMPLIFIER

C=Cstab

Cstable
C

R=RCol

Rc
R

R=RBase1

Rb1
R

R=
RB

as
e2Rb2

R

C=
1

nFACshortOUT
C

C=
1

nFACshortIN
C

C=Cblockout

DCblockOUT
C

L=
Ll

oa
dCollMatchChoke

L

L=
Li

np
utBaseMatchL

L

C=Cblockin

DCblockIN
C

L=
Ls

ta
bLstable

L

R=
Rs

ta
b Rstable

R

VDC=10.0 VCMP59
VDC

EQUATION Cstab=1 nF
EQUATION Cblockout=16 pF
EQUATION Cblockin=12 pF
EQUATION Lload=31 nH
EQUATION Rstab=24
EQUATION Lstab=16 nH
EQUATION Linput=22 nH
EQUATION RCol=75
EQUATION RBase2=1000
EQUATION RBase1=9.05 K

Cout=0.1 pF
Cin=0.1 pF

CMP110
samplelib_at41411_g

ENV ANALYSIS **

FREQ=1.5 GHZ
ORDER=15
TSTOP=50 ns
TSTEP=0.1 ns
OUTPUT_VARS=

CMP111
ENV1Tone

Figure 7-4: Device under test (DUT) for the extended S-parameter approach.

105

0 2000 4000
0

0.5

1

1.5

2
original f0

0 2000 4000
0

0.5

1

1.5

2
predicted f0

0 2000 4000
0

0.005

0.01
original f1

0 2000 4000
0

0.005

0.01
predicted f1

0 2000 4000
0

0.5

1

1.5

2
x 10

−3 original f2

0 2000 4000
0

0.5

1

1.5

2
x 10

−3predicted f2

Figure 7-5: Approximated data (local third-order polynomials) from a simulated ampli�er:

b2(1); b2(2); b2(3). The x-axis gives the test event, the y-axis indicates the energy in the

component. Original and predicted output data are sorted individually by the energy of

the particular component. The noise (non-monotonicity) in the predicted f1 and f2 plot

indicates a slight prediction error.

7.3 Application: nonlinear device characterization

Microwave device technology has evolved into application domains where its emulation

and characterization with linear techniques are no longer satisfactory. Although nonlinear

e�ects appear in many systems to such an extent that failure or success of ambitious design

goals depend on them, the measurement technology as well as the data representation in

state of the art analyzer systems still relies on the assumption of linearity. As a result,

most of the interesting and useful nonlinear behavior of microwave devices is either missed

or neglected [SCDG99].

Nonlinearity is diÆcult to model as well as to characterize; while physical models

[FGN92] of devices and circuits require impractical amounts of computation, reliable elec-

trical models are device-speci�c and tedious to design [MGOP+97]. Motivated by suc-

cessful inference approaches to system characterization in other engineering domains, we

characterize a device based on analysis of empirical data collected from the device under

test (DUT).

Van den Bossche [VB94a][VB94b] introduced the nonlinear S-parameter equivalent for

weakly nonlinear multi-port devices. A linear multi-port network is completely speci�ed

by its scattering and re
ection parameters S(!)i;j , where i refers to an input and j to

an output signal, and the device load can be described by linear superposition of input

signal components. However, transfer and re
ection coeÆcients of nonlinear devices can

only be speci�ed as functions of all input frequency components. Nonlinear interaction

106

between frequency components can be modeled by polynomials beyond the �rst order

linear terms. Such a model characterizes the harmonic responses at the output ports due

to nonlinear coupling between harmonic components at the input ports, up to an arbitrary

order of approximation. Although Volterra approximations perform well on the local scale

[VB94a], their accuracy degrades over a larger dynamic range and a wider frequency span.

Our algorithm overcomes this problem, as it optimally allocates a series of local models

describing di�erent input-output behavior.

Starting from a set of measurements taken from �g. 7-3 we identify the e�ect of com-

binations of input signals ai on the output signals bj. Restricting input and output to

harmonic signal components, we denote the input component associated with the fun-

damental f1, and the harmonics f2; f3::: by ai(1); ai(2); :: respectively. We designate the

corresponding output components by bi(1); bi(2); ::.

The S-parameter approach for linear microwave devices is extended into nonlinear

transmission kernels Hn using the Volterra theory [VB94b, Sch89]. Hn;ji1i2::in(f1;f2;::fn)

describes the n-th order e�ect of frequency components fk at the input port ik on the fre-

quency components f1+f2+::+fn at output port j, where conjugate complex components

are denoted by a negative fi [VB94b]. Instead of restricting the model to the mixed terms

of the Volterra series we keep all the mixing terms between real and complex components

up to the desired order O. The increase in the number of terms is compensated by a gain

in symmetry that facilitates the parameter search.

Thus the local model is

y =
X

e1+e2+::+eD<=O

a � xe11 � xe22 � ::: � xedD : (7.26)

The order of the local model is traded for the complexity of the global architecture (�g. 7-

6). While the polynomial expansion is very eÆcient within a limited input domain of

interest, wide ranges of frequency and amplitude are best captured by splitting the ap-

plication domain into sub-domains of in
uence. Fig.(7-6) illustrates how local and global

complexity contribute to the approximation result in the S-parameter approach. The data

is taken from a device with a single input component at 1.5 GHz and 4 harmonic output

components at 1:5, 3, 4:5 and 6 GHz. It is approximated by a combination of varying num-

bers of clusters and varying polynomial orders. The purely linear approximation (7-6a)

is unable to capture the data characteristics and the �fth-order polynomial model (7-6b)

still performs purely. The approximation with �ve linear models (7-6c) does well, while

the approximation with only three second-order polynomials is practically perfect (7-6c).

The model was also tested on data obtained from realistic simulations of an ampli�er

(�g. 7-4) with two input ports (input 1 and 2 at port 1) and a single output port 2 [VB94b].

There was one input component (1:5 GHz) at input-port 1 and three components (1:5, 3

and 4:5 GHz) at input port 2, causing output components at 1:5, 3 and 4:5 GHz. The model

predicts a three-dimensional complex output vector, given a four-dimensional complex

input vector. Fig. 7-5 shows the approximation results from a particular simulation. The

relative RMS error was at worst 0:001% for the fundamental and 0:5% for the second

harmonic; on some of the test sets a signi�cantly better performance was achieved. Local

third-order approximations performed best, which was expected given that the data ranges

from the fundamental to the second harmonic.

107

0 50
0

1

2
f0

0 50
0

0.2

0.4

0.6

f1

0 50
0

0.02

0.04

f3

0 50
0

1

2

0 50
0

0.2

0.4

0.6

0 50
0

0.02

0.04

0 50
0

1

2

0 50
0

0.2

0.4

0.6

0 50
0

0.02

0.04

0 50
0

0.2

0.4

0.6

0 50
0

0.02

0.04

0 50
0

1

2

real data
predicted data

Figure 7-6: Approximation of three (out of four) frequency components. The rows rep-

resent the approximation results of (a) a linear model, (b) a �fth-order polynomial, (c)

�ve-cluster/local-linear model, (d) three-cluster/local-quadratic model.

108

Chapter 8

Sampling

Global sampling has been used for speech synthesis as well as for musical synthesis. It is

also referred to as wavetable synthesis (section 9.1.3) and relates directly to overlap-add

synthesis techniques [CS86, CM89, VMT91]. Sampling reuses recorded pieces of a time

series (mostly audio signals) to synthesize a new time series given some control parameters.

The new signal has a di�erent shape than the recorded material; however, it is similar in

terms of its timbral properties. Patches of data representing di�erent timbre states are

overlapped and added. Sampling is a pitch synchronous technique and capable of handling

strongly harmonic sound sources. However, its bene�t compared to other popular synthesis

techniques lies in its potential to model noisy signals.

Sampling replays digitized sounds given a limited number of control parameters. The

sequences of audio material are slightly adjusted with respect to pitch and note duration;

that is, they are resampled to match a control pitch and are terminated appropriately with

respect to the end-note command. They are possibly looped to allow for a long sustain and

can be interpolated to match a given attack volume. Sampling relies on some fundamental

concepts and signal processing tools, but also on a variety of tricks and ad hoc methods

that work well, but lack a deeper meaning. Here we will review the former and mention

some of the latter, as long as they have relevance to cluster-weighted sampling. Massie

[Mas98] gives an exhaustive review of the algorithms related to sampling.

8.1 Algorithmic pieces and related work

Pitch shifting

Given that pitch is continuous on many instrument families as well as in speech, it is

impossible to sample enough examples of an instrument to cover all the possible pitches.

However, it is possible to correct slight pitch deviations by pitch-correcting given sound

material with respect to the target pitch. Out of the many known techniques for pitch

correction [Mas98], software re-sampling stands out as a technique that is not limited in

accuracy and achievable targets and doesn't require special hardware.

Re-sampling uses the virtual reconstruction of the band-limited analog signal from

the digitized samples. If an analog signal is played back at a speed di�erent from the

109

recording speed, we hear the pitch shifted1. In the analogous case of a digital signal, we

need to play samples in between digitized samples or leave out samples from the available

data, depending on whether we want to achieve a lower or higher pitch. However, these

in-between samples are not readily available and they vary depending on where in between

they fall. As a �rst order approximation, one can use a linear interpolation between the

nearest samples to the right and left. The result is an understandable signal, but one with

signi�cant artifacts due to aliasing and quanti�cation noise. These negative e�ects can be

reduced by up-sampling the signal before its conversion and then down-sampling it again.

However, the clean approach to the problem uses the sampling theorem directly and in its

pure form.

Given an in�nite length digitized signal, we can reconstruct the analog signal as long

as the original signal was band-limited to the Nyquist frequency, that is, half the sampling

frequency. The time continuous values are perfectly estimated as an in�nite sum over

sinc functions weighted by the digital samples:

ŝ(t) =
NX

n=�N
s(n � Ts) hs(t� n � Ts) (8.1)

hs = minfFs=F 0
sg � sinc(minfFs; F 0

sg � t)
sinc(x) =

sin(x)

x

where Fs is the sampling frequency of the sequence, F 0
s is the target sampling frequency

and N is the number of �lter coeÆcients [SP84]. Evidently, N can't be in�nite in practice,

since we are dealing with �nite signals and we need to keep the amount of computation

per sample reasonable. However, even a tenth-order �lter (N = 10) yields good enough

sound quality.

If the signal is down-sampled, e.g. pitch is increased, the signal needs to be low-pass

�ltered with respect to the new Nyquist frequency, since components may be shifted out

of the covered spectrum. This is taken care of by the term minfFs=F 0
sg in equ. 8.1. Note

that the re-sampling �lter functions as a low-pass �lter as well. Hence, no additional

computation is needed to handle the low-pass �ltering.

Sample pitch and target pitch should not di�er too much, since large pitch shifts cause

the synthesized signal to be perceptively di�erent from the original. One reason for this

is that the formant structure and resonance frequencies of the sound source are altered

along with the shifted pitch. For example, a harmonic component remains strong/weak

although it has been shifted in a register where it should be weak/strong. This e�ect

is particularly strong for speech signals; it is considerable with musical instruments such

as the piano or the violin. Hence re-sampling shouldn't be used for shifts bigger than

semi-tones, but can easily be used to compensate for shifts due to vibrato. Algorithms

that pitch shift the signal without altering the spectral envelope have been introduced in

[Len89] and discussed in [BJ95].

1The length of the sequence is changed at the same rate, but this doesn't matter for our purpose.

110

−1

−0.5

0

0.5

1

=

f

−1

−0.5

0

0.5

1

+

f
e

−1

−0.5

0

0.5

1
f
o

Figure 8-1: Decomposition of a function into and even and odd part

Looping

Sustained notes require looping of the same sample sequence to remain in the same timbre

region for an arbitrary duration. In order for transitions to be inaudible, the juncture has

to be perfectly smooth and the phases of the signal partials need to be preserved. The

former requirement can be achieved by playing the same sequence �rst forward and then

backward in time.

Any real valued signal can be decomposed into an even and an odd part with respect

to a mirror point (�g. 8-1).

s(t) = se(t) + so(t) (8.2)

The odd and even part are extracted from the signal as

so(t) =
1

2
s(t)� 1

2
s(�t) (8.3)

se(t) =
1

2
s(t) +

1

2
s(�t)

We decompose the old signal into odd and even parts at the juncture and then replay

it, superposing the odd part and the inverted even part. Figure 8-1 illustrates how these

elements �t together. This operation assures continuity of all derivatives at the juncture,

but not continuity of the signal partials. To assure the latter we need to carefully pick the

transition point, which is discussed in the next subsection.

Sequencing

When the timbral characteristics of the sound change, we need to switch sampling se-

quences. Unfortunately, there isn't a right or best approach to move from one sequence to

another (as for many DSP problems in sound processing and computer music), but only a

number of heuristic methods that work more or less well. Assuming both sequences have

been resampled at the same pitch, we want to achieve a maximum of continuity by picking

the best transition point. A measure of smoothness that works well is the inner product

between the signals. The two sequences are overlapped in such a way that the correlation

111

in the overlap-window is maximal. Given s1[n] and s2[n] we �nd the correct o�set T

T = argmaxT

NX
n=1

s1[n] � s2[n+ T] (8.4)

where N is the length of the correlation window, which should exceed the period of the

sequence.

One could be afraid of the computational expense of this procedure. However, the

search for the optimal solution can be optimized using additional tricks. For example,

consider a violin signal at an early stage of its creation. Say the signal has been picked-up

by a dynamic transducer system. The signal will then be phase coherent; the Helmholtz

motion is preserved and we see a fairly regular rectangular function (�g. 8-3a). Since the

signal has a very clear maximum per period, we only need to correlate signal one and two

around this �rst estimate of a transition point.

Cross-fading

No matter how well two sequences of sound are pieced together, remaining artifacts need

to be eliminated by yet another powerful technique to enforce smoothness: cross-fading.

Cross-fading is both simple and intuitive. The ending sequence is slowly decreased in

volume, while the starting sequence is increased in volume, in such a way that the two

scaling factors add up to unity at any moment in time.

x[N + n] = x1[N1 �Nf + n] � (1�A[n]) + x2[n] � A[n] (8.5)

where x is the �nal signal, N is the starting point of the cross-fade, x1 is the ending

sequence, N1 is the length of the ending sequence, Nf is the length of the fading interval

and x2 is the starting sequence. The fading coeÆcients A[n] describe a linear ramp, or a

squared sinusoidal function, which in addition to being continuous is continuous in all the

odd derivatives as well:

A[n] = sin2

�n

2Nf

!
(8.6)

Halfway through the fade the two signals are equally strong. Some authors suggest to

pause after this �st part, before starting the second part of the fade ([Mas98]).

Fading works because the sum of two sinusoidal components of equal frequency but

di�erent phase results in a third sinusoid of the same frequency but yet another phase.

Since the starting and ending phase are not the same, a phase stretch occurs during the

fade. If an appropriately long fading interval and fairly well-matched samples are used,

this stretch can be kept small enough to be inaudible.

8.2 Cluster-weighted sampling

Global sampling has been a successful synthesis technique for instruments with a low

dimensional control space, such as the piano [Mas98]. However, the technique is less

appropriate for instruments with a continuous and complex control space, such as the

112

Cluster2
ClusterKCluster1

Pointer to Audio Samples

xw(t-1) xw(t+1)xw(t)

Linear Pitch Predictor

SYNTHESIZED CONTINUOUS AUDIO STREAM

xa(t)xp(t)

Linear Amplitude Predictor

Figure 8-2: Cluster-weighted sampling in a graphical representation. The output models,

including a pointer into samples-space, a pitch predictor and an amplitude predictor.

violin. For the latter family of instruments, as well as for speech, the amount of data

required to cover all possible playing situations is prohibitive, since control possibilities are

essentially unlimited. Cluster-weighted sampling (CWS) overcomes this problem through

eÆcient parameterization of the available sample material. CWS learns how to select the

appropriate samples, but also how to predict the parameters needed to reassemble the

sound from the raw material.

CWS clusters have multiple output models (experts) covering sample selection, am-

plitude prediction and pitch prediction. The �rst expert is a pointer into sample space.

The cluster that most likely generated a perceptive or physical control data xs takes over

and its sequence of samples stands in for the particular playing situation. The cluster

is replayed until another cluster becomes more likely and hence takes over with its own

samples. The maximum likelihood principle is applied during training as well as replay.

Unlike most other local models we have seen so far, the sample selection model uses a

winner-takes-all approach as opposed to a weighted average approach. The reason for this

choice is that sampled sounds do not add up constructively, but would interfere randomly

and create artifacts.

During training the sequence is picked to represent a cluster that has the highest

posterior probability with respect to this cluster. We assume a sequence to be perceptively

represented by its instantaneous spectral characteristics, packaged in the vector x. x can

be interpreted as a pointer into timbre space. The de�nition and research of timbre has

almost become a scienti�c �eld of its own, which we don't want to get into here. However,

in our case, a relative measure of timbre is suÆcient since we only need to de�ne the

113

a)
−0.5

0

0.5

1

time [s]
au

di
o

sa
m

pl
es

b)
0.2 0.4 0.6 0.8 1 1.2

−300

300

time [s]

po
si

tio
n

−100

100

sp
ee

d

−95

−85

fin
ge

r−
po

s 475

485

pi
tc

h

0

500

vo
lu

m
e

Figure 8-3: Cluster-weighted sampling: a) overlapping samples of the string signal. b)

input-output model, from the bottom: bow position; bow speed; �nger position; predicted

out-of-sample amplitude (solid) and given sampled amplitudes (dashed); predicted out-of-

samples pitch (solid) and given sampled pitch (dashed); the doubled dashed lines indicate

overlapping sample windows: the old window is slowly faded out while the new window

is faded in, in such a way that the total weight of data adds up to unity at any given

moment.

closeness of two sounds, not their absolute timbral properties. Closeness can be de�ned

in terms of the Euclidean norm in a feature vector space. In the simplest approach, we

choose the magnitude of the harmonics as the timbral characteristics and the components

of vector x. A more elaborate approach summarizes the spectral information in a measure

of brightness [Wes79]. The Brightness B is de�ned as

B =
k

K
=

PK=2
i=2 fi � AiPK=2
i=2 Ai

(8.7)

where the Ak are the coeÆcients of the short-term Fourier transform and K is the size of

the transform. This measure is closely related to the spectral centroid

C =
2k

K
(8.8)

114

kX
k0=2

jAk0 j =

K=2X
k0=k+1

jAk0 j :

Given a target vector yS that has been extracted from the sequence S, the sequence
that has most likely been generated by a particular cluster ck, is picked to represent this

cluster.

S = argmaxSp(yS j ck) (8.9)

where p(yS j ck) is the usual Gaussian distribution. For prediction, this process is inverted.
The cluster ck is chosen that best represents the current input or state of the system. The

representative sequence of this cluster stands in for the predicted samples,

S = Sck jck = argmaxckp(ckjx) : (8.10)

The second output model is a pitch predictor. Given some control input xpitch a local

linear model predicts the appropriate pitch at any moment in time.

pitch(t) =

PM
k=1 a

T
pitchxpitchp(xsjck) p(ck)PM
k=1 p(xsjck) p(ck)

(8.11)

The third output model predicts the instantaneous scaling factor (volume) given the

control vector xvol. These are once again simple locally linear predictors.

vol(t) =

PM
k=1 a

T
volxvolp(xsjck) p(ck)PM

k=1 p(xsjck) p(ck)
(8.12)

The samples selected for synthesis almost certainly won't match the desired pitch and

volume. Therefore the selected sequence is resampled with respect to the predicted target

pitch and rescaled with respect to the target volume. Re-sampling is done in real time

according to expression (8.1). Likewise, we rescale the sequences with respect to the

predicted target volume, which is as simple as

s[n] = sr[n]
vt[n]

vr[n]
(8.13)

where s is the �nal output, sr is the prerecorded sample, vt is the instantaneous target

volume and vr is the instantaneous prerecorded volume.

CWS uses high-level information about the timbral properties of the modeled sound.

We need pitch, volume, and timbre to instantaneously label, parameterize, and correct

the sample material. These properties may seem diÆcult to ascertain. Pitch tracking, for

example, has not been solved in full generality, although, there are a number of algorithms

that work well in most cases [Met96] [Lar98] [QM98]. For many of these techniques, a

little bit of extra information, such as a rough a priori estimate of the pitch window, helps

a great deal. Often we do have this extra bit of information, since we pick or explicitly

record the sequences that we then use for modeling. Likewise there is a number of slightly

di�erent methods to extract the instantaneous volume of a signal. One approach uses the

instantaneous energy of the signal, another one uses the peak value of the signal within the

115

vicinity of the observation. Yet another approach uses the instantaneous variance of the

signal which tends to be closer to the perceived energy than the signal energy. As opposed

to the instantaneous volume, loudness takes into account the psycho-acoustic properties

of the human ear to evaluate the perceptional e�ect of a signal.

An important aspect of CWS is the sequencing of pieces of audio, when cluster se-

quences have to be looped or transitions from one cluster/sequence to another have to

happen. We choose to match samples by minimizing the least square error between the

old and the new samples as demonstrated in equation 8.4. Additionally, we fade out the

old sound and fade in the new sound using a Hanning window overlap-add as in equation

8.5.

We can increase the resolution of our �t allowing for non-integer alignment of sounds.

Since the audio sequences are resampled anyway, this does not increase the computational

load of the overall algorithm. The success of the overlap-add depends on the length of the

permissible fading interval and on the character of the sound. Fig. 8-3 shows the overlap

of two highly phase-coherent pieces of the string signal of a violin describing a Helmholtz

motion. For the Helmholtz motion, harmonic partials line up nicely with the fundamental

so that discontinuities are a minor problem. However, the sound signal loses its phase

coherence after the �ltering through the bridge and through the resonant body of the

instrument. Alignment becomes more diÆcult then.

Cluster-weighted sampling is applied and tailored to musical synthesis in Part III of

this thesis.

116

Part III

Data-Driven Modeling of Musical

Instruments

117

Geschmack ist das Beurteilungsverm�ogen eines Gegen-

standes oder einer Vorstellungsart durch ein Wohlge-

fallen, oder Mi�fallen, ohne alles Interesse. Der Gegen-

stand eines solchen Wohlgefallens hei�t sch�on.

I. Kant, Kritik der Urteilskraft, B17.2

In his third critique, the Critique of Judgment, Kant de�nes and explains aesthetical

judgment, e.g. he explains the concepts of beauty and taste. Following philosophers like

Aristotle, Kant is not the �rst to decompose knowledge into three disciplines, i.e. rational

reasoning, moral behavior, and aesthetical judgment. The author of this thesis is intrigued

that the division of his own thesis into an initial part with theoretical concepts, a second

part concerning practical implementation, and a third part on aesthetical goals parallels

the themes of the three critiques.

This thesis work has all along been driven by the prospect of building a digital copy

of a violin: a digital Stradivarius. Motivated by insights from dynamic systems theory,

it has been our goal to reconstruct the dynamic behavior of the violin to the extent that

a player would be willing to switch from an acoustic to a digital instrument. Although

the developed machine-learning and signal-processing algorithms apply to problems in

many scienti�c and engineering domains, the challenging application of digitally replicating

violins has remained our benchmark test.

The violin is in many ways an ideal test device. (1) As a physical object, it is well

de�ned in that it has a clear input space, the player's actions, as well as a clear output

signal, the sound pressure. Once we are able to predict a system as complex and well

engineered as the violin, we believe we'll be able to model many other devices as well. (2)

A digital model of the violin comes with a simple but compelling error metric, which can

be summarized in the statement that the model is as good as it sounds. From a player's

perspective, the situation is a little more complex since the quality of an instrument is

also measured in terms of its ease of use and its projection qualities. However, in playing

the model, the skilled violinist easily evaluates these criteria. (3) It is, on the other hand,

extremely challenging to quantify the di�erence between great and not so great sound.

Establishing a valid and general theory regarding the tone quality of an instrument is

probably as diÆcult as the arti�cial synthesis of sound itself. (4) Lastly, the violin is an

object that people care about. Throughout its long history, violin makers have tried to

improve its design, composers have written beautiful music for it, violinists have studied

and performed it, and listeners have enjoyed its playing. Even those who dislike violin

music or today's concert practice still recognize the aura of perfection and harmony around

a master instrument.

2Taste is the ability to judge an object, or a way of presenting it, by means of a liking or disliking

devoid of all interest. The object of such a liking is called beautiful.

I. Kant. Critique of Judgment. English translation by W.S. Pluhar.

118

Chapter 9

Related work in musical synthesis

9.1 Synthesis algorithms

9.1.1 Physical modeling

In many ways, physical modeling is the most fundamental and most intuitive way of emu-

lating the behavior of an instrument on a digital machine. Physical modeling reconstructs

the global behavior of the instrument by means of simulating the mechanical properties

of the instrument.

Physical models retain the natural expressiveness of the acoustic instrument. The

most important aspect of this feature is the ability of building models that extrapolate

to any playing technique of an instrument. The number of di�erent things one can do

with a violin is virtually in�nite, even if one doesn't consider the atypical smashing the

instrument over a chair. Since a physical model implements the dynamic response in

terms of �rst-principle equations, the model has an answer for any of those inputs.

The numeric techniques of approximating physical models on digital machines range

from simple �nite di�erence models to digital waveguide models. The latter methodology

is important since it overcomes computational limitations of most other physical modeling

approaches. The former methodology is interesting because of its transparent structure.

Finite di�erence models approximate the underlying di�erential equation of the dynamic

system. The easiest approximation uses Euler's method, which will be demonstrated here

for a bowed string model.

Finite di�erence models discretize both time and space. The �rst time and space

derivatives are approximated as [Smi98]

_y � y(t; x)� y(t� T;X)

T
(9.1)

and

y0 � y(t; x)� y(t; x�X)

X
(9.2)

where X is the length of a spatial element and T is a discrete time step.

119

0
st

rin
g

ve
lo

ci
ty

0

di
sp

la
ce

m
en

t

1 2 3 4 5 6 7 8 9 10 11

0

m
ea

su
re

d
st

rin
g

ve
lo

ci
ty

time [ms]

Figure 9-1: Helmholtz motion. top: ideal Helmholtz motion, string displacement. center:

ideal Helmholtz motion string displacement. bottom: violin string signal measured with a

dynamic pickup showing a low-pass �ltered rectangular function.

Taking the derivatives of these two expressions we obtain the second order derivatives,

�y � y(t+ T; x)� 2y(t; x) + y(t� T;X)

T 2
(9.3)

y00 � y(t; x+X)� 2y(t; x) + y(t; x�X)

X2
;

shifting everything forward in time in order to avoid delay errors.

The wave equation of the ideal string is given by

Ky00 = ��y (9.4)

where K denotes the string tension, � denotes the linear mass density and y is the string

displacement as a function of x. We cut a string of �nite length into N discrete pieces,

and assume the supports at both ends are rigid. Plugging the approximation for the

derivatives into (9.4) gives

K
y(t; x+X)� 2y(t; x) + y(t; x�X)

X2
= �

y(t+ T; x)� 2y(t; x) + y(t� T; x)

T 2
: (9.5)

Solving for y(t+ T; x) we �nd the �nite di�erence update for each element at time t+ T ,

y(t+ T; x) =
KT 2

�X2
[y(t; x+X)� 2y(t; x) + y(t; x�X)] + 2y(t; x)� y(t� T; x): (9.6)

120

y+(n) y+(n-M)

y(nT,0) y(nT,ξ)

(x=0)

M samples delay

+ +

y-(n) y-(n-M)

M samples delay

(x=x) (x=McT)

Figure 9-2: Delay line model after Smith [Smi98, p.429].

which simpli�es to

y(n+ 1;m) = y(n;m+ 1) + y(n;m� 1)� y(n� 1;m) : (9.7)

using T = 1, X = (
p
(K=�))T , t = nT and x = mX. This is the generic update for the

free vibrating string. In order to create a realistic system, we need to add a dissipation

term. The restoring force in the vibrating string is proportional to the forth derivative

and yields the dissipative wave equation:

��y = Ky00 = �y
0000

(9.8)

with

� = Y �r4=4 (9.9)

where Y is Young's modulus and r is the string radius.

The plugged string is practically as simple as the free string: one of the string elements

is pulled away from its rest position by a �xed displacement and then released. The

string is free again. The boundary conditions for the bowed string are more complicated.

They involve the stick-slip interaction between bow and string, which leads to the famous

Helmholtz motion of a bowed string (�g. 9-1). The bow sticks to the string when the

vertical relative force is lower than the frictional force between bow and string. In this case

the bow enforces its velocity on the string. When the restoration force of the displaced

string becomes too strong, the string slips and the bow acts as a damping force. This

repeated pattern causes the string to travel in a circular square wave around its full

length.

The �nite di�erence implementation has two update rules depending on whether the

bow is in the sticking or the slipping state. If the bow is in the sticking state, the velocity

of the element that is touched by the bow is set to the velocity of the bow. If the pulling

force becomes stronger than the friction force Ff = f �P , where f is the friction coeÆcient

and P is the bow pressure, the system changes into slipping mode. The bow-node is now

121

vs,l
+

Bow Force

-1

M samples delayNut to Bow Delay + Bow to Bridge Delay

Bow to Nut Delay Bridge to Bow Delay

Bow Velocity

Reflection Filter

Body Filter

Bow Table

+

+ *
vb

vs,r
-

v∆
+ ρ

-

-
vs,r

+

vs,l
-

Figure 9-3: Violin waveguide model after Smith [Smi98, P.464].

updated, taking into account the frictional force caused by the bow. If the relative speed

between bow and string becomes smaller than a sticking threshold, the system switches

back into sticking mode.

For the purpose of explaining waveguide models we go back to wave equation (9.4).

As can be easily veri�ed, the solution satis�es

y(x; t) = yr(t� c=x) + yl(t+ x=c) ; (9.10)

where yr is a wave component traveling to the right and yl is a wave component traveling

to the left with speed c =
p
K=� [dA47, Smi98]. For a digital implementation, this

equation needs to be sampled in time and space. The two components are traveling along

a delay line and are simply added together at the pickup point. This is the origin and

motivation for digital waveguide models.

Fig. 9-2 illustrates the component waves traveling in opposite directions, using a ve-

locity wave representation. Fig. 9-3 illustrates the implementation of a violin waveguide

model. The string delay line pairs contain the left-traveling and right-traveling waves go-

ing into and coming from the bow. The nut-end (�nger-end) and bridge-end of the string

are implemented as delay elements modeling the losses and delays at either end of the

string. To �rst order these elements are taken to be rigid re
ection elements that equal

�1. The numerical waveguide implementation represents delay line and re
ection elements
in a single �lter element. The string velocity at any point equals the sum of left-going and

right-going velocity elements and the bow string interaction is again implemented for the

cases of sticking and slipping (see [Smi98] for details). Waveguide models can be shown

to be equivalent to �nite di�erence models in the loss-less case. In addition to being com-

putationally more eÆcient, they also provide more
exibility in terms of including second

order e�ects into the equations.

As was mentioned before, physical models provide a lot of
exibility because we can

change the model parameters and still obtain reasonable physical behavior. We can create

instruments that obey physical laws but have no equivalent in reality. However, in turn,

it is very diÆcult to �nd the right parameters to emulate a given instrument. While it is

122

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

ce
llo

 p
ow

er
 s

pe
ct

ru
m

 (
lo

g−
sc

al
e)

frequency [Hz]

Figure 9-4: Typical short term spectrum of a cello sound.

possible to infer some �lter parameters from observed data, there is no general systematic

search to �nd all the model coeÆcients from sampled data. The �lter parameters of the

bridge and resonating body are hidden in the sound of an acoustic instrument. How-

ever, there is no immediate connection between bow-string interaction parameters and a

recorded violin signal. Also, given a basic model of a violin there is no systematic search

for the parameters that distinguish a Guaneri from a Stradivarius instrument other than

trying out combinations of parameters in a very high-dimensional space.

9.1.2 Sinusoidal analysis/synthesis

Physical modeling uses a bottom-up approach. We start with �rst principles and we hope

to achieve accurate sounds by getting the physical details right. In contrast, sinusoidal

analysis/synthesis uses a top-down approach. It relies on the predominantly harmonic

structure of most musical instruments and physical sound sources. For example, almost

all the energy of a violin is contained in its harmonic partials and hence the signal can be

eÆciently represented as a �nite sum of harmonic sine waves with slowly time-varying fre-

quencies and amplitudes (�g. 9-4). The same is true for speech, although the contribution

of unvoiced sound elements is higher. Unvoiced sounds don't have a harmonic structure

but can be approximated by a sum over sine waves without coherent phase structures.

Alternatively noise can be added in form of a stochastic process.

Additive synthesis parameterizes a quasi-periodic sound signal in terms of

s(n) =
KX
k=1

Ak cos(k!n+�k) ; (9.11)

where n is a discrete time index, Ak and �k are amplitude and phase of the partials

k and K is the number of partials. This representation is both modeling assumption

and synthesis instruction. The model �nds peaks of the power spectrum and estimates

123

the instantaneous frequencies and amplitudes of the underlying sine wave, neglecting the

noise in between partials. To synthesize sound, amplitude and frequency-modulated sine

waves are summed together, interpolating frequencies and amplitudes in between analysis

frames.

The model parameters are typically inferred from a short-term Fourier transform

(STFT) applied to the audio signal at time intervals on the order of 10 ms. The sample

windows can be as long as 100 ms, depending on the register and the character of the

signal or music. The sample sequences used for the STFT need to be windowed, e.g. with

a Hanning or Kaiser window, in order to avoid artifacts. Zero padding the edges of the

window helps achieving a smooth frequency domain signal.

In the simplest approximation the partial amplitudes are taken to be the amplitudes

of the bins, and the frequencies are taken to be the center frequencies of these bins. This

approach is known as phase vocoding. It has been used particularly for pitch and timescale

modi�cations of audio signals. In these applications, either the spectral content remains

the same and time is stretched (timescale modi�cation), or the frequencies are modi�ed

and time remains the same (pitch shifting). The phase vocoder can be implemented in a

time continuous way as a �lter bank that maps any incoming component into a transformed

outgoing component.

The phase vocoder has serious limitations regarding sound quality. For example, it is

assumed that only a single partial falls into the path-band of a �lter. Also, considerable

artifacts are created when partials of natural sounds move in and out of a �lter bank or

a STFT bin. Furthermore, consider a 440 Hz signal and a 512 point STFT. The phase

vocoder frequency estimate for this signal will be 430:6 Hz and the amplitude estimate

will be o� by 8%, due to the fact that the peak is not centered but close to the border of

the frequency bins. Fortunately, there are much more accurate estimates for frequencies

and energies of partials using either adjacent STFT frames or adjacent frequency bins to

estimate a center bin. This leads to the explicit modeling of sound partials rather than

the modeling of a �lter bank. The model representation is driven by the idea that a

quasi-periodic sound is composed by a limited number of harmonic partials and possibly

additional noise components.

Very accurate frequency estimates can be obtained by looking at the phase increments

in between Fourier frames separated by a single time step [BP93]. If

�(k; n) = arctan

�
ImfX[k; n]g
RefX[k; n]g

�
(9.12)

�(k; n�1) = arctan

�
ImfX[k; n�1]g
RefX[k; n�1]g

�

are the phases of the k-th bin at time n and n�1, the estimator for the instantaneous

frequency at time n is

f(k; n) =
!(k; n)

2�
=

1

2�
[�(k; n)� �(k; n�1)] (9.13)

Alternatively, precise frequencies can be estimated from coeÆcients, adjacent to the

124

carrier bin, using a second order polynomial �t of the spectral curve [SS87]

F (z) = a(z � p)2 + b : (9.14)

If k is the index of the carrier bin, we set z(k) = 0, z(k � 1) = �1, and z(k + 1) = 1.

F (�1) = �, F (0) = �, and F (1) =
, where �, �, and
 are the amplitudes of the

correspondent bins. The LMS �t yields,

p =
1

2

��

�� 2� +

(9.15)

k0 = k + p

f� =
fsk

�

N

where k0 is a real valued frequency bin, i.e. it is a real value in [k�1 k+1], f� is

the corresponding peak frequency, fs is the sampling frequency and N is the number of

coeÆcients. The estimated peak height is

F (p) = F (k�) = � � 1

4
(��
) p : (9.16)

Given the spectral parameters, the reconstruction of the original sound relies on the

notion of frame-to-frame peak matching. Partial components in natural sounds such as

speech and music tend to change continuously. For the purpose of analysis, the continuity

assumption helps identifying deterministic as opposed to random components. For syn-

thesis, this continuity needs to be preserved in order to recreate the sound accurately and

to avoid annoying artifacts. Unfortunately, there is no fundamental strategy of identifying

the beginning and the ending of a partial, but a number of heuristics that can be applied.

One tries to maximize the overall continuity in the system while at the same time avoiding

unrealistic, that is, too big steps in frequency. The reconstruction algorithms are com-

monly referred to as the death and birth algorithm, since they deal with a rapid change in

number and location of spectral peaks [MQ85, MQ86].

Many quasi-periodic sounds have signi�cant noise components. Speech sounds consist

of voiced and unvoiced syllables. Violin output is largely harmonic, but can be very noisy

during the bow change and for certain bowing techniques, e.g. spiccato. It has been shown

that these components can be taken care of by adding the noise that was not captured by

the sinusoidal model [MQ86, QM98]. The procedure is as follows: a sinusoidal analysis

and re-synthesis is performed; the resulting sound is subtracted from the original, and

the spectrum of the di�erence signal corresponds to the missing noise. Since it is mainly

noise, it can be modeled as a stochastic process and added on top of the sinusoidal signal.

For this approach to work and for the di�erence signal to be meaningful, the phases

of the reconstructed sinusoids need to match the phase of the original signal. This can

be achieved using a cubic polynomial to interpolate in between frames. The approach

maximizes smoothness of phase increments given the boundary conditions of starting and

ending frequencies and phases [MQ86, QM98].

In a slightly di�erent approach, known as Spectral Modeling Synthesis (SMS), Serra

and Smith [Ser89, SS90] compute the residual component in the magnitude frequency

125

expressivity

physical modeling

?
sampling

accuracy

Figure 9-5: Synthesis trade-o�s after D. Massie [Mas98]. In reality the diagram is pop-

ulated with more than the two examples of existing techniques. However, sampling and

physical modeling nicely describe the edges of the space.

domain. This approach avoids phase matching, since the magnitude spectrum ignores

phase completely. In exchange, the STFT of the sinusoidal components is computed and

compared to the original spectrum. The residual is transformed back into the time domain

using an inverse FFT and then added onto the sinusoids. SMS claims to reconstruct the

full signal, including deterministic and stochastic parts, but its perceptual performance

su�ers from a lack of homogeneity between the two components. The blending of stochastic

and deterministic components appears to be not as seamless as one would wish.

FM synthesis is a variant of spectral modeling [Cho73]. A complex spectrum, meaning

a superposition of many sinusoids, is created by means of modulating a single sinusoid.

Although FM synthesis does not provide explicit control over the parameters of each

signal component, it has been the predominant synthesis technique for most of the early

electronic synthesizers, mostly due to its computational eÆciency (section 9.1.4).

9.1.3 Wavetable synthesis

Wavetable synthesis (section 8.1) has become the predominant technique in modern com-

mercial synthesizers. Dana Massie [Mas98] points out that the main reason for this over-

whelming predominance is the ease with which libraries of sounds can be built. Similar to

photography, which allows archiving of pictures of arbitrary scenes very quickly, sampling

simply records a given audio scene and adds it to the archive. While other popular tech-

niques, e.g. physical modeling, require tedious model adjustment and parameter tuning

for every new instrument considered, sampling requires not much more than a recording

device, the acoustic instrument, and a player.

Wavetable synthesis is the paradigm example for synthesis technology that is charac-

terized by high sound accuracy, but very little
exibility and expressive freedom (�g. 9-5).

It sounds good, because it simply reuses recorded and digitized sound. Yet it is not ex-

pressive since there is no meaningful way to change the samples based on changed control

126

0.01 0.02 0.03
−1

0

1

time [s]

s(t)

220 440 660 880

1

2

frequency [Hz]

F(f)

Figure 9-6: top: FM modulated signal (equ.9.17 using A = 1, fC = 440Hz, I = 10:0, and

fM = 55. bottom: power spectrum of the signal (Bessel-function of the �rst kind).

parameters. The method works well for instruments with low-dimensional control space,

such as pianos. Pianos and organs alike are left alone in between the activation of the

key and the release. Hence the space of sounds is limited and can easily be covered by a

reasonable range of sampled sequences.

While early implementations of Wavetable synthesis su�ered from heavy interpolation

of a few samples, this is less and less of an issue since memory has become cheap. Nowa-

days, any single key of the piano can be sampled many times. Additionally, modern MIDI

sampler o�er a choice between di�erent kinds of pianos, ranging from B�osendorfer and

Steinway grands to honky-donk saloon pianos.

9.1.4 More synthesis techniques...

FM-synthesis(FM) has been the predominant commercial synthesis technique in the 70s

and 80s.1 The success of FM has been due to the fact that one could create very complex

sounds at very little computational expense. Unlike physical modeling or other DSP

approaches, FM is not derived from physical laws nor is it derived from signal processing

ideas close to the physical system [Roa95].

Simple FM or Chowning FM uses a carrier oscillator modulated by a modulator

oscillator.

s(t) = A sin(2�fCt+ I sin(2�fM t)) (9.17)

where A is the carrier amplitude, fC is the carrier frequency, I is the index of modulation,

and fM is the modulating frequency. If fC
fM

is an integer ratio, this formula generates a

harmonic spectrum. If the frequency ratio is rational an inharmonic spectrum is created.

The amount of frequency modulation, i.e. the number of sidebands, is controlled by

1John Chowning from Stanford University is commonly known as the inventor of FM. Yamaha licensed

his patent in the mid 70s [Cho73] and developed the synthesizers GS1 and DX7. The commercial success

of the latter model remains unbeaten.

127

the index of modulation I, i.e. the amplitude of the modulating oscillator. The power

spectrum of a periodically modulated oscillator is described by the Bessel functions of the

�rst kind Jn(I), where I is the index of modulation and n indicates the sideband (�g. 9-6).

Therefore the signal can also be represented in terms of partials,

s(t) =
n=+1X
n=�1

Jn(I) � sin(2�[fC � n � fM] t) : (9.18)

The rest is a bag of speci�c tricks, each of which has its justi�cation in a speci�c sound

e�ect or instrument. Multiple Carrier FM superposes multiple carriers modulated by

a single modulating frequency to generate spectra with a complex formant structure. For

Multiple-Modulator FM, a single carrier oscillator is modulated by multiple oscillators,

either in parallel, e.g. the modulating signals are added, or in series, e.g. each modulating

oscillator is the argument of the oscillator one level up. Feedback FM is good for

generating a controlled increase of partials and smooth partial amplitudes [Roa95].

Like FM, Waveshaping Synthesis is a fairly adhoc technique to construct com-

plex, dynamic spectra at little computational expense. It sends an arbitrary input signal

through a distortion �lter. The �lter has the form of a lookup table that maps every time

signal sample x into a unique output sample w. The function W is called the shaping

function. The amplitude of the driving signal X is used to select domains of the shaping

function, rather than to �x the amplitude. Therefore Waveshaping Synthesis requires an

additional amplitude normalization module to control the dynamics independently from

the spectrum [Ris69, Arf79, LeB79].

Granular synthesis primarily targets the creation of new sounds. As a tool for com-

posers, it provides the means for referencing and reusing given sounds in a new context,

but it is not meant to literally recreate a given source in the digital medium. The funda-

mental building blocks of Granular Synthesis are the so-called Sonic Grains, that is, pieces

of sound weighted by a window envelope. Many di�erent grains, overlapping or not, form

a complex sound. It has been shown that given arbitrarily simple grains, the granular rep-

resentation can approximate any arbitrary signal [Roa95, Gab46, Gab47, Bas80, Bas85].

The grain envelopes vary from Gaussian shapes to piece-wise linear windows and they vary

in length. A major concern is the parameterization of the grains, in order for composers to

be able to use them eÆciently. Fourier/Wavelet Grids use the STFT or wavelet trans-

form to establish a grid of grains corresponding to spectral bands and di�erent points in

time. While the STFT typically uses �xed window length, bandwidth and frame rates,

wavelet transforms �nd these parameters dynamically. Perfect-reconstruction wavelet-

packets are designed to decompose a signal in frequency and time, varying window length

and bandwidth given some entropy measure (section 4.1.2) [Sai94]. Pitch Synchronous

Granular Synthesis analyzes recorded sound with respect to pitch and spectral content.

For synthesis, a pulse train at the right pitch drives a linear �lter which models the spec-

tral content of the original sound (section 6) [DPR91]. Quasi synchronous Granular

Synthesis uses short grains characterized by a carrier frequency and an envelope with

variable pauses in between. The carrier frequency determines the pitch of the sound, while

the fast changing envelope of the grains creates the sideband [OHR91]. Asynchronous

Granular Synthesis allocates grains statistically over a de�ned period of time, creating

128

so called clouds. Clouds are parameterized by starting time, duration, grain length, den-

sity of grains, bandwidth or pitch of the cloud, amplitude envelope of the cloud, and grain

waveform [Roa91, Roa95].

In his dissertationMetois introduces a new synthesis technique which he callsPsymbe-

sis (for Pitch Synchronous Embedding Synthesis) [Met96]. Much like the author of this

thesis, Metois was inspired by the embedding theorem and the prospect of developing

a synthesis method that would have the generality and
exibility of a general nonlinear

model [Cas92]. Metois overcomes the intrinsic stability issues of nonlinear recursive predic-

tors by setting up a framework that forces the signal to follow a recorded pitch-synchronous

period. He de�nes a vector of perceptual control parameters, including pitch, loudness,

and brightness, clusters this control space, and assigns periods of sound to each cluster.

Each cluster period is resampled with respect to a reference pitch and is characterized by

a mean and a variance of each sample. For synthesis, the chosen period is represented in a

low-dimensional lag-space rotating around on the cycle. Depending on the sample variance

of the output, samples are slowly pulled back to the mean values ensuring that the transi-

tion between di�erent sampled periods happens smoothly. The periods are resampled at

the desired pitch and adjusted for the desired loudness [Met96].

Recently researchers have attacked the problem of combining di�erent synthesis meth-

ods. From �gure 9-5 we learn that it is very diÆcult to develop synthesis methods that

provide good sound quality along with expressive freedom. Since most techniques tend

to favor one or the other aspect, it can be bene�cial to dynamically switch between tech-

niques depending on the speci�c needs. Peeters and Rodet combine the bene�ts of sinu-

soidal additive synthesis (S/A) and of Time-Domain Overlap-Add (TD-OLA) and TD-

Pitch-Synchronous OLA (TD-PSOLA) to what they call SINOLA [PR99]. S/A is very

accurate for signals that can be considered stationary over some low number of funda-

mental periods and that have predominantly harmonic content. TD-PSOLA is preferable

for non-stationary and non-harmonic sounds. One of the key issues is how to �nd and

de�ne the switching points. [PR99] de�nes a separate feature vector from a local spectral

analysis, based on which method A, method B, or both at the same time are used. The

other issue concerns the blending of di�erent approaches in such a way that transitions

don't cause artifacts and that the sound appears to be coming from the same source.

9.2 Connectionism and musical applications

Connectionism is a young discipline, mostly because one needs fast computers to solve

large optimization problems such as the parameter search for an Arti�cial Neural Net-

work (ANN). However, ever since connectionist networks have been around, there have

been attempts to use the newly invented tools for applications in music. Given that these

algorithms were in part inspired by the design of the human brain, it appeared natural to

use their power to solve some of the many problems in music cognition. As unexplained

as the predictive power of ANN's originally was, equally unexplained were cognitive phe-

nomena such as analysis, evaluation, and creation of music.

Todd and Loy [TL91] reprint some of the early work in the category of music cognition

and connectionism. Most of the contributions in the volume conclude with the statement

that the proposed networks were really promising but that there hasn't been suÆcient

129

experimental data around to verify �ndings and theory experimentally. More recent work

includes the contribution of H�ornel, who has been working on tonal analysis, harmony and

synthesis of high-level musical structure [HR96, HD96, HM98]. In [HR96, HM98] a system

is presented that predicts harmonic structure given a melody, hence basically acting like

a baroque �gured base player harmonizing a melodic line. The system is also able to

recognize and classify di�erent harmonization styles based on the concept of expectation

and surprise. The authors use a combination of symbolic analysis, trained neural networks,

and simple rule-based algorithms, such as don't use parallel �fths. In [HD96, HM98] a

system is presented that produces melodic variations in the style of baroque composers.

A system of neural networks working in parallel and at di�erent timescales harmonizes a

choral melody and then improvises variations on any of the choral voices.

Increasingly, pattern recognition techniques are being used for classi�cation of music,

style, and instruments. Brown [Bro99] recognizes instruments using Gaussian mixture

models. Martin [Mar99] extends the idea into a system that classi�es sounds with re-

spect to a number of di�erent instruments and instrument families. He is able to teach

machines to classify as accurately as human listeners as long as a single instrument is

recorded. Scheirer [Sch00] worked on the notion of similarity of sounds. His system com-

pares arbitrary music in terms of perceptual properties. He de�nes measures of closeness

and evaluates them with state of the art pattern recognition technology. The latter prob-

lem has also become a key topic for a number of start-up companies.

Connectionist approaches to musical synthesis are not as common. Wessel et al. pre-

sented a synthesis model derived from an ANN that is surprisingly close to our approach

[WDW98]. The fundamental elements of their approach are a psycho-acoustic high-level

characterization of sound, a sinusoidal analysis-synthesis, and a predictor function. A

database of recorded sounds is analyzed and parameterized with respect to pitch, loud-

ness, and brightness as well as to spectral information in the form of frequencies and

amplitudes. The former psycho-acoustic parameters serve as inputs to the feed-forward

network, whereas the latter parameters serve as outputs. The goal is to train the network

to represent a speci�c instrument. When the model is given arbitrary psycho-acoustic

control data, the network maps this control to the sound of the instrument it has been

trained with. The framework is tested with an ANN using one hidden layer and with

a memory-based network. It was found that the ANN model provides smoother output,

while the memory-based models are more
exible and easier to use and modify in a creative

context [WDW98].

9.3 Synthesis evaluation

The quality and similarity of musical sounds are diÆcult to evaluate since both properties

depend on the characteristics of the human ear and the taste of the listener. Unfortunately,

the cognitive process of hearing is highly nonlinear and dependent on a huge number of

external parameters and context. Two completely di�erent time domain signals may

result in exactly the same perceptual experience, while two signals that visually appear

very similar may turn out to be very di�erent acoustically. Both phenomena can be easily

demonstrated in little experiments. If one mirrors all the samples of a digitized piece

of music at the zero-axis, the correlation function between the original and the mirrored

130

signal is maximally negative. However, due to the fact that the ear has no ability of

distinguishing the absolute phase of a signal we will by no means be able to tell the two

signals apart. Likewise, two signals that correlate strongly in the time domain may widely

di�er in some frequency components and noise properties. Another compelling thought

regarding the nonlinearity of musical perception is the often-quoted insight that a music

lover does not experience twice as much joy listening to two of her favorite songs at the

same time [Met96].

In addition to these relatively obvious problems regarding the representation and com-

parability of sounds, there are more subtle psycho-acoustical phenomena which make it

diÆcult to understand, compare, and classify sound. The ear essentially works like a

short-term spectrum analyzer that detects frequency components and events in a sound

scene. However, the resolution with which components are resolved is limited in the fre-

quency and time domains. Only sound events that are suÆciently distant in time and

frequency are resolved as separate events, while those that are too close smear out into

a single event. The minimal frequency di�erence required to resolve two components is

called the critical band. The phenomenon that an event becomes inaudible due to the

presence of a stronger neighboring event is called masking. Masking is diÆcult to model,

but has many practical applications in audio-signal processing, the most prominent appli-

cation being lossy compression of audio signals. Lossy compression transmits only those

frequency bands that are actually perceived, while perceptually irrelevant components are

omitted [Wat95].

In musical synthesis as in lossy compression, only the perceptually relevant output of

an instrument is of interest. We need all the audible e�ects and sound components to be

adequately represented, but do not care about the rest. However, even within the reduced

space of audible sound components, the relevance of di�erent aspects is diÆcult to assess

and certainly can't be simply taken to equal the energy of the component. For example,

a tiny bit of noise during the bow change can make a big di�erence, even though a lot of

harmonic energy is present in the signal at the same time.

The characterization of musical timbre has been the topic of extensive research [Sch77,

Bla73, Wes79, RD82, Hou97]. Timbre is the term most often used to summarize sound

properties that are not easily described in terms of the common quantitative measures such

as loudness, pitch, and duration. Unfortunately, the concept is hardly de�ned scienti�cally

but has di�erent meanings for di�erent people [Mar99]. In fact, the American Standard

Association has explicitly de�ned the term in the negative.2 Timbre certainly relates

to the spectral characteristics of a sound or an instrument, that is, the overtone series.

However, the steady state spectrum of a musical note played on almost any instrument

provides very little discrimination for human as well as for machine listeners [Mar99]. The

overall signal envelopes and especially the attack characteristics of a note are much more

2\[Timbre is] that attribute of auditory sensation in terms of which a listener can judge that two

sounds similarly presented and having the same loudness and pitch are dissimilar[...]. Timbre depends

primarily upon the spectrum of the stimulus, but it also depends upon the waveform, the sound pressure,

the frequency location of the spectrum, and the temporal characteristics of the stimulus [Ass60]." Note

that much of this de�nition is meaningless or redundant. Clearly \timbre" has to depend on the waveform,

which is just about all a human or a machine can know about a sound, and it has to depend on the sound

pressure, otherwise we wouldn't hear anything.

131

relevant for the discrimination and characterization of sounds. The problem of classifying

sounds in terms of timbre is close to that of asserting the similarity or quality of one sound

signal relative to a model signal. In both cases, a measure of similarity needs to be de�ned

that is largely dependent on the psycho-acoustic properties of the ear and brain.

Scienti�cally sounder than the concept of timbre is the concept of perceptual sound

dimensionality. The attempt to identify perceptual dimensions beyond pitch, loudness,

and duration led to multidimensional scaling (MDS) [Gre78, Wes79, HKCH97]. In this

methodology, �rstly features are de�ned which are likely to be relevant for the human

perception of sounds. Secondly, subjects are exposed to a series of tones and are asked

to rate the similarity and dissimilarity of each pair. A computer algorithm then �nds a

low-dimensional subspace of the feature space that best describes the listener experience.

In addition, features are weighted to accommodate the dissimilarity rating. According

to Hajda, the results of di�erent MDS experiments are rather inconsistent [HKCH97].

The feature selection appears to be highly dependent on the kind of sound source, the

instrument family and the context. The only criteria that is consistently identi�ed as

a principal dimension is the average spectral centroid. Wessel [Wes79] showed how this

dimension strongly correlates with the perception of brightness.

Wessel's observation has been con�rmed and extended by Beauchamp [Bea82, Bea93].

The latter suggests that sounds will be perceived as equal as long as the spectral centroid

and the intensity (that is, the indicating loudness) match. Beauchamp uses these features

as the fundamental objective and evaluation methods for his work in analysis and synthesis.

132

Chapter 10

The digital stradivarius

10.1 General concept and chronology

10.1.1 Background

In the early 1990's, physicist Neil Gershenfeld, cellist Yo-Yo Ma, and composer Tod Ma-

chover, joined their disparate expertises to design, perform, and compose music for what

they called the Hypercello. The device they conceived of preserved the traditional func-

tionality of a cello: the sound-generating mechanism was acoustic, it was played like a

cello, and it sounded like a cello (�g. 10-1). However, the instrument was enhanced by

a multitude of sensor devices that tracked the action of the player in real time [PG97].

The cellist not only played the instrument in the way he was trained, but generated infor-

mation describing how he actually went about playing. This information was interpreted

by software and mapped to computer sounds that were either presampled or generated in

real time. Hence, the role of the cellist was closer to the traditional role of a conductor

who controls an entire orchestra (section 10.6) [Mac92].

Subsequently Machover and Gershenfeld collaborated on more Hyperstring projects,

including a Hyperviolin project with violinist Ani Kava�an (�g. 10-2) and a Hyperviola

project with violist Kim Kashkashian. In all these collaborations, a traditional instrument

was enhanced with sensor technology and computer-generated music. Coming out of these

projects, Gershenfeld was a little frustrated that he had to keep the acoustic (electric)

instruments to generate beautiful violin, viola or cello sounds [Ger00a]. Despite very

fast machines, no computer algorithm was available to replace the beauty of the original

instruments.

Gershenfeld considered violins to be analog computers, i.e. machines that take some

input, do computation, and output a signal. He furthermore argued that modern digital

computers had essentially become faster than nature in processing information. Gershen-

feld concluded that it should be possible to replace the analog processor by a digital

machine and hence create a digital violin. This was the birth of the digital Stradivarius

project.

133

Figure 10-1: Yo-Yo Ma playing Begin Again Again... by Tod Machover (Hypercello by

Machover and Gershenfeld), Tanglewood, August 1991.

10.1.2 The goal

It is our goal to predict and synthesize sound from physical control parameters. Our

approach is data-driven: the model is learned from observations of a given acoustical

instrument. During training, a network learns the mapping from physical gesture input to

audio parameters. During synthesis, the network generates appropriate audio, given new

input. Along with the software synthesis engine, we have designed a hardware interface

that feels and sounds like the acoustic instrument with the �nal goal that the original and

the model become indistinguishable.

Our approach to musical synthesis lies conceptually in between physical modeling and

wavetable synthesis. We do not model the instrument in terms of �rst-principle governing

equations, but extract the essence of these equations. The goal is to build a model that,

from the point of view of an independent listener or player, appears to obey the same

physical laws as the acoustic instrument. On the other hand, we choose to represent the

audio data as sequences of samples and in the form of a spectral decomposition which

positions our approach close to conventional synthesis techniques such as global sampling

and sinusoidal analysis/synthesis.

In the physical modeling approach, one replicates the physical mechanisms of the

acoustical instrument from �rst principles [Woo92, Smi92, Smi98]. The models are directly

derived from fundamental acoustic research and have initially been scienti�cally motivated.

Only later were the numerical implementations turned into synthesis engines. Physical

models have the amazing property that they can be used to create new instruments based

on physical principles without having to build them mechanically. The
exibility is endless,

but there are also serious problems with this approach.

Gershenfeld showed how a simple �nite element approximation of a violin is limited

134

Figure 10-2: Ani Kava�an and the Boston Modern Orchestra Project, conducted by Gil

Rose, performing Forever and Ever by Tod Machover (Hyperviolin by Machover and Par-

adiso [PG97]), Jordan Hall, Boston, June 1997.

in terms of speed [SG00]. Assuming ten body modes per body axis and ten �nite-element

nodes per cycle, we get 104 nodes per violin plate and on the order of 105 nodes per

instrument. If we multiply this by a CD-quality sample rate of 44 kHz, we end up with

roughly ten giga-instructions per second needed to run a model in real time. This is still

an order of magnitude more operations per second than what today's fastest machines can

handle. In addition, there is no systematic way of allocating the parameters of a physical

model. Although there have been attempts to �nd coeÆcients of waveguide �lters from

observed data, it is hard to extract di�erences as subtle as those between two master

violins [Smi92].

Physical modeling provides a lot of
exibility, but it is diÆcult to achieve good sound

quality. Global sampling is extreme in the opposite way [Mas98]. Since the original digital

samples are preserved, the sound quality is as good as the recording technology, but there

is no notion of controlling and shaping the music. This is �ne for keyboard instruments

where the control is low-dimensional and where there is no continuous control other than

the eventual release of the note. In the case of a violin, however, the technique fails

because there are more than a few degrees of freedom in the control space and there are

an unlimited number of possible playing situations. Our approach is in fact best described

as a Physics Sampler. We infer our model from recorded data but hope to create a model

that has the
exibility of a physical model.

We are also convinced that the artistic and expressive possibilities of a violin are

intrinsically related to the very speci�c input device consisting of the bow, the strings and

the �ngerboard. We believe that no keyboard can ever recreate the expressive space of an

acoustic violin simply because the kind of control available on a keyboard is inadequate

to shape the sound of a string instrument. Therefore we keep the interface as it is and

135

design unobtrusive recording sensor hardware for the violin as well as a sensor interface

for synthesis only.

We choose to predict and model sound based on physical input data to the model.

This approach is new in the �eld of musical synthesis. More common is the approach

taken by Metois and Wessel et al. who reconstruct a waveform from a given perceptual

description in terms of pitch, loudness and brightness [Met96, WDW98]. Although this is

not our primary intent, our system contains the solution to this problem as well. Using

pitch and loudness as input to the model rather than an output, our system simpli�es

considerably. The only elements to be predicted are spectral parameters (sinusoidal syn-

thesis) or sampling parameters (cluster-weighted sampling). In fact, this is a considerably

simpler task than the highly nonlinear mapping from bowing and �nger data to a useful

sound representation.

10.1.3 De�ning the measurements

Our sound synthesis algorithm is based on measurements of physical inputs of the violin.

De�ning and carefully executing these measurements was assumed crucial for the success

of the model. The search for optimal measurements was guided by three fundamental

considerations:

1. Assuming unlimited access to all input parameters, we want to de�ne a hierarchy

of important parameters. We need to �nd out which parameters are most relevant

for the physical behavior of the instrument both from a musician's and acoustician's

point of view.

2. Di�erent parameters require di�erent physical measurement technologies. Some pa-

rameters may not be measurable at all. We need to �nd the optimal technology and

balance the measurement e�ort with the importance of the measurement.

3. Associated with a measurement is a signal to noise ratio (SNR) which indicates the

statistical quality of the measured value relative to the true value. Depending on

the SNR, the measurement may be worthwhile or not.

The left hand of a violinist shortens the length of the vibrating string, which causes

the wavelength of the vibration and the perceived pitch to change. Clearly we need to

track the position of the �ngers on the di�erent strings and the following sections introduce

a way of making this measurement.

In addition violinists adjust the pressure of their left hand �ngers on the strings. The

quality and timbre of the violin sound changes depending on the pressure between the

�nger and the string. A di�erent �nger pressure can also a�ect pitch. Unfortunately, the

left hand �nger pressure is even more diÆcult to measure than the position in direction

of the �ngerboard. Since we have no measurement technology available, we neglected the

pressure of the left-hand �nger.

The violin bow is held by the right hand of the player. It interacts with the string

in a stick-slip motion, which causes the string to resonate as described in the famous

Helmholtz motion (�g. 9-1). A Helmholtz resonance is only established if three major

bowing parameters, bow speed, bow pressure, and bow position relative to the bridge, are

136

1 2 3 4 5

0.1

1

10

Sul tasto

Minimum bow force

Sul ponticello Brilliant

Maximum bow force

B
ow

 fo
rc

e
[N

]

Distance bow ot bridge [cm]

Figure 10-3: Range of bowing force versus bow-to-bridge distance for a cello, given a bow

speed of 20 cm/s (after [FR97, p.279] and [Sch73]).

kept within a certain window (�g. 10-3). The intensity of the sound is roughly proportional

to the bow speed, to bow pressure, and to the inverse of the bow-bridge distance [Cre84,

FR97]. With decreasing distance between bridge and bow, more pressure and less bow

speed is required to achieve the same sound intensity. The system of three parameters is

over-determined, in that there is more then one combination of parameters that results in

the same intensity. The following chapter will introduce the technology that was used to

measure these parameters.

Also important from a player's perspective are the angle between the plane described

by bow-bar and hair and the strings as well as the angle between the bow-bar and the

strings. The former angle adjusts the amount of bow hair touching the string, which a�ects

the overtones of the sound. The latter angle is used to achieve a change of bow position

while the bow is in motion. Unfortunately these parameters are diÆcult to measure. We

assume that they are implicitly represented in the measurements mentioned above.

10.1.4 Embedding and musical synthesis

The digital Stradivarius project was originally motivated by results from nonlinear dy-

namics theory. The embedding theorem (section 2.2.1) claims that any nonlinear physical

system can be emulated numerically if only we have access to some measurements of the

system. For a period of about a year we tried to apply the embedding theorem to recon-

struct the state space of the violin and then use this state space to predict the audio signal

sample by sample in an iterative approach. For a variety of reasons, the implementation

of this promise turned out to be more diÆcult than expected.

We built specialized hardware to track the violinist's gesture data and the violin audio

137

signal (section 10.2). Although we are seemingly able to capture the most important

and rich input data, our measurements are unlikely to be totally exhaustive. However,

the input-output embedding theorem requires that there be a complete account of all

the driving signals of the model [Cas92]. Unfortunately, there is little reason to believe

that the ability to reconstruct a time series should degrade gracefully with an increasing

lack of input information. Rather than getting a slightly worse forecast, we are likely to

completely lose the predictability and stability of the system given missing data.

A second serious problem is the di�erence in timescales between input and output time

series. The gesture control of a violin happens at roughly the timescale of a millisecond,

which is generally assumed to be the limit of human motor action. This estimate is very

optimistic and perceivable human action is rather on the order of 100 ms or even slower.

A violin audio signal, however, covers the band between 130 Hz (the open G-string) and

20 kHz (roughly the highest perceivable frequency), which corresponds to a period of 0:05

ms. The nonlinear character of the input-output mapping is obvious from looking at these

timescales alone. Unfortunately, relating these very di�erent kinds of signals to each other

turns out to be very diÆcult. Embedded in the same state space, the input hardly changes

while the output goes through 100 periods. How could the output signal be conditioned

in a meaningful way on the input? Somehow the model has to bridge this discrepancy

using a meaningful representation of all the signals.

The use of a reconstructed state space to predict a system output relies on the iterative

structure of the embedded space. The reconstruction theorem uses lagged samples of the

time series to predict future values. The predicted values then become part of the feature

vector for new predictions. Since small prediction errors corrupt future feature vectors,

errors propagate and cause the predicted signal to degrade quickly. While the embedding

theorem works well as an analysis tool to assess system characteristics, it is rather diÆcult

to apply to the emulation and prediction of these systems.

A last insight regarding the failure of state space reconstruction for synthesis purposes

concerns the nature of musical signals. An instrumentalist tries to achieve a certain sound,

that is, he/she shapes the perceptual qualities of the music. As the player doesn't perceive

the details of the waveform, such as partial phases, he also doesn't control these details,

but only shapes the overall statistics of the instrument output. As a consequence the

relationship between waveform and control sequence is not deterministic, but intrinsically

stochastic. While the spectral content of the sound is predictable given the gesture input,

the stochastic components are not. We observe that we need to model the process, not

the particular instantiation of the process as recorded in a single sound. While we can

predict deterministic aspects of the signal, stochastic behavior needs to be summarized in

appropriate statistics such as the power spectrum [SBDH97].1

10.1.5 A working hello-world: the arm demo

Given the lesson from the last section we wanted to come up with a representation that

would allow us to generate recognizable violin sound. The decision was to build a system

that would work but sound bad and then slowly improve from something that was work-

ing rather than going for a perfect model right away. Initially we worked with recorded

1In the chronology of the project, this work was done from October 1995 to December 1996.

138

Figure 10-4: The arm demo (summer 1997). A little antenna is hidden under the shirt,

which receives signals from the bow.

commercial violin sounds2 in an analysis/synthesis approach. We used di�erent represen-

tations to decompose the sound and put it back together, slowly identifying which elements

and parameters were perceptually important and which could be neglected. It was the goal

of this procedure to �nd a representation that could be predicted given the available input

data. A sinusoidal decomposition obtained by structuring the data in terms of frames and

by applying a STFT to those frames turned out to be a reasonable choice, mostly because

this representation can easily abstract from phase information (section 9.1.2).

The discrete short-term Fourier transform is only one possible choice for a spectral

analysis of the audio signal, yet it is a rather good one. Di�erent time-frequency transfor-

mations such as the Fourier, cosine, or wavelet transform use di�erent kinds of orthogonal

basis functions to expand the time domain signal. The author experimented with wavelet

transforms but couldn't �nd any advantage over the Fourier transform in the case of audio

analysis [KMG91]. Clearly the sinusoidal basis functions of the Fourier and cosine trans-

forms are very adequate to represent the highly harmonic structure of musical signals.

Using a sinusoidal representation was a breakthrough in that for the �rst time we were

able to synthesize sound in a stable way. We had found a representation that at the time

didn't sound great but allowed us to make stepwise improvements on sound quality and

functionality of the instrument.

For recording and real-time synthesis we used the Paradiso bow, a violin bow enhanced

with electronics to measure the bow position in two dimensions and to measure the �nger

pressure [PG97, Sch96].3 We also experimented with accelerometers mounted on the

2Victoria Mullova's recording of J.S. Bach's violin solo sonatas and partitas.
3Joe Paradiso designed the bow for the Hyperviolin project with Ani Kava�an. It was originally put

together to last for one concert, but then served the author for a period of three years of daily research.

139

Figure 10-5: A one string digital violin (fall 1998). The strings are muted. The instrument

functions as a sensor input device for the single-string model, ranging over two octaves.

A sound clip is available from [WEB].

bow as an alternative to a capacitive measurement of the bow position. Accelerometers

measure the acceleration of the bow in three dimensions and hence provide all the necessary

information to reconstruct the trajectory of the bow in space.4 However, there are major

drawbacks to this approach. Since we need to integrate the raw sensor values in order

to retrieve bow speed and position, the baseline of those parameters is likely to drift

over time. Baseline correction is possible, but comes with trade-o�s regarding �lter time

constants.

The real-time implementation of this model was presented in form of the arm demo

(�g. 10-4 and [WEB]), which admittedly had a number of serious limitations. Obviously

the player couldn't play notes with di�erent pitch, which motivated only a few composers

to write music for the instrument...5 Furthermore, the model had the annoying feature

that the sound didn't stop when the player stopped bowing. The reason for this missing

feature was that the training data set didn't include silence, which was an important

lesson for future incarnations of the model. At the time we added on/o� functionality by

means of a pressure threshold. There was also considerable latency (� 200 ms) between

the player action and the audio response. This latency was mostly due to a slow serial

connection between the sensor hardware and microprocessor on one end, and the PC

running Windows on the other end.6

4In order to get the position and dynamics of the bow relative to the violin, one needs to do the same

measurement for the violin.
5Special thanks to David Borden, who was actually prepared to write a piece.
6January 1997 to January 1998.

140

Figure 10-6: Violin with mounted sensors and RAAD cello with the sensor board mounted

in the back of the instrument.

10.1.6 A cellist playing a single-string violin

For the next incarnation of our model, we again used the sensor bow from the previous

year, but enriched the interface with a sensor that measures the �nger position on the

A-string of the violin. A number of di�erent sensing approaches were tested including

an ultrasonic approach as used in computer touch screens: an ultrasonic impulse is sent

along the string, re
ected by the �nger and received at the end of the string from where it

has been sent. Unfortunately the medium turned out to be a bad guide for the ultrasonic

wave and the idea had to be abandoned. Likewise, the idea of using a capacitively-coupled

voltage divider along the string was abandoned because the capacitive coupling doesn't

provide resolution necessary for a precise �nger location but rather smears out along the

�ngerboard.

The idea of using a contact-based voltage-divider along the �ngerboard using the string

as a pick-up electrode seems rather obvious. However, attempts to implement this for the

early hyper-instruments failed because it was impossible to �nd a electrically resistive

material that at the same time was mechanically strong enough to stand the impact of

the string on the �ngerboard.7 We decided to compromise on the electrical side and use

stainless steel which is available as very thin foil (0:001 inches) but is strong and easily

mounted below the strings. The electrical resistance on the stainless steel strip was on the

order of 1 Ohm over the length and width of the �ngerboard of violin and cello.8 Due to

the rather low resistance of the material, a high current9 was required to run through the

device.

7For the same reason, force resistive strips were not an option, at least for the recording instrument

[TC99].
8The values are very much the same for both instruments since R /

l
A
, where l is the length of the

piece of material and A is the surface area.
9alternating current, 5kHz.

141

The stainless steel strip was taped onto the �ngerboard and the supporting signal-

conditioning circuit was proto-boarded on the instrument next to it (�g. 10-5). Since the

many cables running to the instrument were only as long as four feet, the action of the

musician was spatially limited to a circle around the desktop PC. However, the model

provided the functionality of playing a scale over about one and a half octaves. It was

trained on violin data, but the Windows GUI included a slider which allowed the user to

change the frequency and turn the installation into a cello or even a double bass. Unlike

later models which were truly based on recorded data from di�erent instruments of the

violin family, this early implementation of a cello was a true hack.10

Figure 10-7: The Marching Cello in performance (Summer 2000); Mary Farbood (piano),

the author (Marching Cello).

Although this incarnation of the model allowed for notes of di�erent pitch to be played,

the limitations of the device were still serious: clearly a single string is rather limiting in

terms of what one can achieve with an instrument; the installation was far from being mov-

able and therefore more like an advanced hello-world demo than a usable instrument; the

setup was mechanically and electrically rather fragile causing many unexpected problems

with bad connections; the sound clearly originated from a violin but the sound quality

was still below a beginner instrument.11 A more speci�c problem: since the author is

trained as a cellist, he plays the violin interface in cello position, which arguably looks

weird (�g. 10-5).

The representation used in the single-string violin is purely sinusoidal. Clearly the

methodology had to be adjusted to handle pitch changes. A little later we developed

10During a demonstration for IBM, the question was posed concerning how long it would take to turn

the violin into a cello. The author carelessly replied that would be a �ve-minute hack... and ended up

having to prove his claim. Five minutes later, at the end of the lab tour, the IBM visitors indeed got to

hear a cello. A video clip of the demo is available from [WEB].
11...to quote Neil [Ger00a]: \This is recognizably the worst violin in the world."

142

a preliminary version of cluster-weighted sampling (section 8.2) which uses a wavetable

representation of the audio. However, there was no real-time implementation of this repre-

sentation. We also experimented with an LPC based synthesis model, which conceptually

is very interesting (section 6). Unfortunately it doesn't provide as much control from a

model-building perspective. In particular the linear �lters tend to be unstable. We have

not implemented a real-time violin system using LPC (section 6.3).12

Figure 10-8: Take The Money And Run, Woody Allen, 1969.

10.1.7 The �nal approach

After this series of implementations we de�ned the following �nal model. Modeling and

synthesis processes are composed by a series of separate steps (�gures 10-9 and 10-10).

The sequence of modeling steps consists of the following:

recording
session:
record
input-out-
put
violin
/cello.

analysis step :
find a spectral
representation
of the audio
data,
instantaneous
volume, pitch ...
align audio and
input.

estimation
step:
estimate
the input-
ouput
mapping
with
CWM.

representation
step:
find the
sinusoidal or
wavetable
representation
for the audio.

store the model
(set of cluster
parameters).

Figure 10-9: Modeling Sequence

12See [WEB] for o�-line sound examples. February 1998 to January 1999.

143

prediction:
use CWM
model to
predict audio
representatio-
n of
violin / cello.

synthesis step :
reconstruct the
audio signal
from the
parameterizati-
on. stored model

(set of cluster
parameters).

input data
from a silent
sensor violin or
cello interface.

play synthesized
signal over
speaker system.

Figure 10-10: Synthesis Sequence

1. We start out with a recording session of violin or cello sounds. The audio signal

of a played instrument is recorded along with the physical gesture input to the

instrument.

2. The database of sounds is analyzed with respect to perceptual properties such as

pitch, loudness, brightness. It is also decomposed into a spectrum of harmonic

components.

3. The recorded input data is ordered along with the analyzed audio data in frames

that are updated 86 times per second.

4. CWM or CWS is trained based on input-output frame data.

The sequence of real-time synthesis steps (�gure 10-10):

1. A player plays the violin/cello sensor interface to deliver gesture control input in

real time.

2. The real-time input is calibrated and fed into the CWM model 86 times per second.

The model predicts the representation of the audio data it was trained for.

3. From the predicted representation, the audio signal is reconstructed and sent to the

sound device.

10.2 Data-collection

Input-output violin data is recorded on 13 channels at 22050 Hz on a PC data acquisition

board. The channel assignments are (appendix B),

0-2: three bow position signals.

3: bow pressure.

144

0 1 2 3 4 5 6 7

B
ow

/B
rid

ge
 D

is
t.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 time/s

B
ow

 P
re

ss
.

F
in

ge
r

P
os

.
B

ow
 V

el
oc

.
B

ow
 P

os
.

Sustained Bowing

A
ud

io

Detache Bowing A Major Scale

Figure 10-11: Violin input data. Horizontally: sustained bowing, d�etach�e bowing, A

major scale. Vertically (from top to bottom): audio data, bow position, bow velocity,

�nger position, bow pressure, bow-bridge distance.

4-7: �nger position on string I-IV.

8: audio signal recorded from a microphone placed inside the instrument (violin) or a

commercial pickup (RAAD electric cello).

9-12: audio signals from string I-IV recorded by a dynamic pickup system.

In this approach channels 0-7 are over-sampled by two orders of magnitude. Since the

sampling device is fast enough, this approach is much more convenient than dealing with

di�erent sampling rates. Signals 0-7 are down-sampled by the factor 256 (� 86 frames per

second) after recording. About 1:5 hours of cello data were recorded in 20-second-long

sequences. About half an hour of violin data was recorded in the same fashion.

In earlier work a data acquisition card for capture of the slow input data was used

together with a PC sound card for a stereo recording of the audio signals. Obviously

this reduces the number of audio channels considerably. The biggest problem with this

approach is the synchronization between the two recording boards. The temporal delays

due to device drivers and operating system are not consistent or systematic in any way.

145

−4

0

4

am
pl

itu
de

s
−30

0
30

en
ve

lo
pe

0di
r

−15

0

15

au
di

o

0

1

pr
es

s

0 1 2 3 4 5 6 7 8 9 10
0

1

po
si

t[s]

Figure 10-12: Analyzed cello data - sustained bowing. From bottom to top: bow position

relative to the strings, bow pressure, audio signal, extracted bowing direction, envelope,

harmonic amplitudes.

For posterior calibration we used a clapperboard approach. An additional input channel

was switched from one to zero about half a second after the recording started. At the

same time a microprocessor generating an audible sound signal (9kHz) superimposed on

one of the audio channels was turned o�. After recording the switching was detected in

both data sets and the time series were aligned accordingly.13

10.3 Data-analysis

Regardless of the sound representation (sinusoidal, wavetable, or mixed presentation) we

extract relevant physical and perceptual information from the collected audio data.14 The

time-synchronized physical input data is used to support this analysis where needed.

1. A spectral representation of harmonic components is extracted at a framerate of

22050=256Hz � 86Hz. A Hanning-windowed short-term Fourier transform is used.

The �nger position input indicates the pitch/register of the sound. Depending on

the pitch estimate we pick the size of the sample window (512� 4096 samples). The

13See appendix B for technical details.
14Time domain audio data is always sampled at 22050kHz in this work.

146

−4

0

4

am
pl

itu
de

s
−30

0
30

en
ve

lo
pe

0di
r

−15

0

15

au
di

o

0

1

pr
es

s

0 1 2 3 4 5 6 7 8 9 10
0

1

po
si

t[s]

Figure 10-13: Analyzed cello data - d�etach�e bowing. From bottom to top: bow position

relative to the strings, bow pressure, audio signal, extracted bowing direction, envelope,

harmonic amplitudes.

Fourier frame is taken to be roughly two times this size in order for the spectral

curve to be smooth.15

From the coeÆcients we pick peaks of the spectrum and assign an estimated ampli-

tude and frequency to each of them using the methodology from section 9.1.2. Given

the �nger position we identify 25 partials corresponding to the �rst harmonic com-

ponents of the sound. Hence we obtain a vector with 50 components for each frame

of sound.16

15The size of the Fourier frame is adjusted to match a power of two by zero padding the ends.
16The precise algorithm is as follows:

(a) Guess a good frequency bin corresponding to the fundamental of the signal, given either prior

knowledge of the recorded signal, or given the �nger position of the player.

(b) Within a window of about 5 bins around the original pitch guess, �nd the maximum of the FFT

and use the corresponding bin as second guess for the fundamental bin. Given this bin compute the

true energy and the true frequency using the methodology described in section 9.1.2 (equations 9.12

{ 9.16).

(c) Given the fundamental frequency, guess the harmonic frequencies using fn � n � f1 (n = 2:::25).

Then repeat (2) for every frequency fn.

147

−4

0

4

am
pl

itu
de

s
−30

0
30

en
ve

lo
pe

0di
r

−15

0

15

au
di

o

0

1

pr
es

s

0 1 2 3 4 5 6 7 8 9 10
0

1

po
si

t[s]

Figure 10-14: Analyzed cello data - dynamic bowing. From bottom to top: bow position

relative to the strings, bow pressure, audio signal, extracted bowing direction, envelope,

harmonic amplitudes.

2. We identify the partial corresponding to the fundamental and use its frequency as

our pitch estimator P .17

3. From the instantaneous spectra and pitch we derive the spectral centroid (equ. 8.8)

and brightness (equ. 8.7).

4. Using a moving average window weighted by a Hamming window (framerate = 86Hz,

framesize = 256 samples) we identify the bias of the audio signal B.18 Using the

same windowing and averaging approach on js(t)j we �nd a measure proportional to
the root of the signal energy E. We estimate the signal amplitude as A = E �B.

5. Remembering the sign of the bias B (the direction of the Helmholtz motion, �g. 9-1)

and the sign of the bow velocity we detect the bowing direction D as well as the

location of the bow changes.19

17The author is aware of the fact that the frequency of the fundamental does not necessarily match the

pitch of the signal. However, the approximation is reasonably close for the strongly harmonic violin-family

instruments.
18As can be seen from �gures 10-12 { 10-13 the recorded audio signal is biased depending on the bowing

direction. The di�erence is inaudible for all practical purposes, but needs to be considered in the modeling

process.
19The location of the bow changes is evaluated using the bow position signal, while the bias of the

148

−4

0

4

am
pl

itu
de

s
−30

0
30

en
ve

lo
pe

0di
r

−15

0

15

au
di

o

0

1

pr
es

s

0 1 2 3 4 5 6 7 8 9 10
0

1

po
si

t[s]

Figure 10-15: Analyzed cello data - mixed bowing pattern. From bottom to top: bow

position relative to the strings, bow pressure, audio signal, extracted bowing direction,

envelope, harmonic amplitudes.

6. Using D we assign negative (up bow) and positive (down bow) signs to harmonic

amplitudes and to the instantaneous signal amplitude (�g. 10-12 { 10-14) leading

to an alternating spectral representation. This little trick forces the signal to

pass through zero when a bow change occurs during synthesis. 20

The spectral components function as indicators of the timbre properties of the recorded

sounds (section 9.3).

10.4 Inference model

10.4.1 Representation

Although linear transforms, such as Fourier or wavelet transforms do not change the

information content of the data, it makes a considerable di�erence in which domain we

Helmholtz motion is a more reliable (short-term) estimator for the bowing direction.
20The early incarnations of the model (section 10.1) have been built without this little trick. The bow

change is sometimes not clearly noticeable.

In learning how to play violin or cello, one spends many years trying to make the bow change as inaudible

as possible. The author, on the other hand, spent many years trying to make bow changes as audible and

characteristic as possible...

149

try to predict. Notably, we need a representation that generalizes with respect to the

boundary conditions since it is our goal to de�ne a singular valued function that maps

any reasonable input to a unique output. The output can vary numerically for identical

input, but needs to be reproducible in terms of its perceptual properties. Clearly, a time

domain audio signal does not have this property, since two identical gestures may result

in completely di�erent waveforms. We believe that the deterministic content of the signal

is hidden in the power spectrum, because the player actively shapes the spectral content

of the signal.

Figure 10-16: The Marching Cello.

We abstract from the notion of absolute phase. Since phase is not perceived in a

typical playing situation, we may pick it arbitrarily as long as we avoid discontinuities in

the signal components. We furthermore observe that violin and cello, like most musical

instruments, are characterized by slowly varying boundary conditions that map onto a

fast audio signal. The nonlinear interaction between bow and string causes the slow

gesture input to be turned into the famous Helmholtz motion containing the frequency

components of the �nal audio signal [Cre84]. The slow and fast elements describe two

di�erent times scales which, if mixed, confuse each other. Instead, fast and slow dynamics

150

and the corresponding state variables need to be treated di�erently. CWM provides the

means to implement such distinction: the slowly varying boundary conditions are used to

select the domain of operation (cluster) in the con�guration space (equ. 3.6), while the

fast dynamics are handled by the local models and the associated state variables (equ. 3.5

and 3.8).

Sinusoidal representation

We decompose the signal (sampled at 22050 Hz) into a short-term Fourier transform

(STFT). The window length is chosen depending on the register (section 10.3) and the

frame rate is 22050=256 � 86 frames/second. From the Fourier coeÆcients, we pick the 25

bins that contain the �rst 25 harmonic partials. Each partial is represented by its frequency

and its energy. Hence for each frame, we obtain a 50-dimensional vector representing the

instantaneous properties of the audio signal.

The frame rate matches the input sample rate, which yields a classic function approx-

imation scheme of Rx !Ry. Frames are considered independent. Continuity is achieved

through time-lagged input values.21 We summarize frequency and energy components of

the spectral representation in a single output vector y. Alternatively, we split the model

into two separate models with di�erent feature vectors yf and ye, since frequencies and

energies rely on di�erent kinds of input information (section 10.4.2).22

During synthesis, output frame y is predicted given the incoming feature vector x.

The estimated instantaneous spectral information is converted into a time-domain audio

signal using a superposition of sinusoidal components. Since the original analysis is strictly

harmonic, we can avoid complicated algorithms to match harmonic components [MQ86].

Instead, all the partials are kept strictly parallel. The ith harmonic of frame k always

transitions into the ith harmonic of frame k+1. In between frames, frequencies and

energies are interpolated linearly.

s[k; n] =
X
i

ei[n] sin(�i[n]) (10.1)

�i[k; n] = �i[k] +
nX

n0=1

��[n0]

= �i[k; n�1] + 2�

fs

�
fi[k] +

n

L
(fi[k+1]� fi[k])

�

ei[k; n] = ei[k] +
n

L
(ei[k+1] � ei[k])

where L is the number of samples per frame (L = 256), k is the last frame, n is the sample

count starting with the last frame, and ei, �i and fi are the energy, the instantaneous

phase and the frequency of the ith partial [SS90, SCDG99].

Only a few ad hoc measures are necessary to avoid model artifacts. Since the model

21The experimental results in this section use this method rather than the hidden Markov approach.

The latter approach was avoided in order to keep the complexity of the model at a minimum.
22The earliest incarnation of the model (section 10-4) uses a joint output vector and CWM model for

frequencies and amplitudes, while subsequent models use independent predictors for the two subsets.

151

is designed to generate continuous sinusoidal components, sound is likely to be generated

even though the bow does not touch the string or string-like support. In fact one of

the particularities of the hardware used is that bowing input can be generated without

physical contact. The problem can be �xed by implementing a switching mechanism. For

example, we de�ne a minimum bow pressure that needs to be achieved in order for the

volume to be nonzero. Alternatively we require the �ngerboard to be touched for the

volume to be nonzero.23

Wavetable representation

We decompose the training audio signal (fs = 22050Hz) into frames at framerate =

86:1Hz. Each frame describes physical and instantaneous properties of the audio signal.

We extract (section 10.3)

� the instantaneous decomposition into harmonic components as an indicator of the

instantaneous timbral properties (sections 10.3 and 10.4.1).

� the instantaneous volume of the signal, using the method of the short-term relative

signal energy (chapter 8 and section 10.3).

� the instantaneous pitch of the signal. Given the harmonic decomposition, pitch

equals the frequency of the fundamental.

Since sample selection, scaling, and pitch prediction require di�erent input features, we

choose to build three independent models. The �rst model is trained to choose the most

appropriate sequence of samples given feature vector xs (equ. 8.10). The second model

learns to predict volume given feature vector xv (equ. 8.12) and the third model learns to

predict pitch given feature vector xp (equ. 8.11).

At synthesis time, we �nd the most likely sequence of samples given the current vector

xs, resample the sequence with respect to the predicted pitch, and rescale it with respect

to the predicted volume (equ. 8.13). Sequences of samples are patched according to the

methodology in Chapter 8. Pitch and volume are linearly interpolated in between frames

(equ. 10.1).

Mixed representation

The strength of the sinusoidal representation lies in its
exibility and robustness with

respect to new player input. Since phase is constrained to be continuous by construction,

artifacts in the generated audio are minimal. The disadvantage of this approach is the lack

of noise components in the sound. By de�nition the harmonic decomposition disregards

noise in the training audio signal as well as in the predicted signal. This is particularly

problematic for the attack part of the violin sound, which is when the noise components are

strong and characteristic. In general the sinusoidal representation and prediction handles

sustained sound very well, but fails in dealing with transitory sounds.

23The cleaner solution adds silent violin data to the training set. In the �nal real-time model, this was

enough to assure that the instrument stopped when not bowed.

152

The wavetable approach, on the other hand, reproduces the full timbre of the sound,

including the noise components. The downside of this faithfulness to the original is less

exibility with respect to unknown input. Also, CWS is more vulnerable in terms of

undesired artifacts.

We combine the advantages of both methods by having a stored sample be played

immediately after the bow change, while having the sinusoidal method model the sustained

part of a note. The synthesis program detects a bow change from a sign change of the

bow velocity. When the bow change occurs, we start a recorded note onset sequence, pitch

adjusted and scaled with respect to the desired volume. After about half a second,24 the

sample sequence fades out and the sinusoidal model takes over at the same rate using

x[N + n] = w[Nw �Nf + n] � (1�A[n]) + s[n] � A[n] (10.2)

where x is the �nal signal, N is the starting point of the cross-fade, w is the wavetable

sequence, Nw is the length of the wavetable sequence, Nf is the length of the fading

interval, and xs is the sinusoidal sequence. The fading coeÆcients A[n] describe a linear

ramp.

This approach preserves the noisy and characteristic violin attack without compro-

mising the sustained part of the note. The resulting attack is over-realistically aggressive

[WEB].

10.4.2 Feature selection

The available raw input data covers

� the bow position relative to the strings bx;

� the bow position relative to the bridge by;

� the pressure between the player's fore�nger and the bow p;

� the �nger position on each of the four strings f1:::4.

Given this raw input, we infer

� the bow velocity v from bx, using a moving average �lter and a di�erentiator;25

� the inverse of the bow-bridge distance b0y;

� the bow change c from a change of sign of v;

� pitch p1:::4 from f1:::4. Since the �ngerboard measurement is perfectly linear, pitch

can be calibrated with two calibration points only (appendix B).

24In our experiments this time was �xed at 0.5s, but it could be taken to be a function of the inputs.
25Estimating velocity from position is diÆcult, especially if the position signal is noisy. In general we

are facing a trade-o� between latency and noise-level in the estimator. We use a time window of three

frames to estimate the di�erential position signal.

Early on we also experimented with a Kalman �lter, but found that, for our application, the response

time of the �lter is too severe.

153

In order to keep the non-linear mapping as smooth and simple as possible, we aim to

construct feature vectors that are as close to the needs of the physical system as possible.

Cremer [Cre84] �nds that the maximum displacement of the string z and the transverse

force at the bridge F are proportional to v
by
. The relationship can be written as

z =
1

8f

v

xy
(10.3)

F = �c
v

xy

where f is the frequency, � is the mass per unit length, and c is the wave speed [FR97].

We compute z from the input data and add it to the vector of features. In general we

accommodate physical features at the right polynomial order.

Since past input conditions the current state of the instrument, the input vector is

augmented with past input data. By adding time-lagged input samples, we balance the

need to include the past input and the burden of a big input space. While the model

scales linearly in the output dimension, it is sensitive to a large input space, which favors

over-�tting.

Given these considerations, a typical feature vector26 to predict spectral energies or

the total volume is

xv[k] =

2
66666664

v[k]

v[k�3]
v[k�6]
bx[k]

p[k]

pi[k]

3
77777775

: (10.5)

A typical feature vector to predict pitch or spectral frequencies is

xf [k] =

"
f [k]

f [k�3]

#
: (10.6)

A typical feature vector to select samples is

xs[k] =

2
6664

v[k]

v[k�3]
bx[k]

f [k]

3
7775 : (10.7)

26The dimensionality of the following vectors is at the upper end of what is recommendable. Some

experiments where done with a subset of the given vectors, e.g.

xv[k] =

"
v[k]

v[k�3]

pi[k]

#
: (10.4)

154

10.5 Experimental Results

Using an o�-line approach, we synthesize violin sounds from sampled input data. Audio

examples based on the sinusoidal as well as wavetable representation are available from

[WEB].

Real-time synthesis from real-time player data is just about the truest out-of-sample

test imaginable for our problem. O�-line out-of-sample testing, even when done care-

fully, is constantly in danger of falling into statistical traps. Repeatedly using the same

training and test data almost inevitably weakens the notion of out-of-sample testing (data

snooping), since accumulated knowledge about the data helps with the search for model

hyper-parameters [STH99, Whi00]. Also, using test and training data from the same

data collection session avoids potential problems with sensor calibration or with player-

dependent models. A real-time instrument has to face these issues, since the collection

of input data is, by de�nition, happening at a di�erent time than the collection of train-

ing data. In addition, the interface and model may be played by any available musician

trained on the particular instrument.

We use a mixed synthesis approach (section 10.4.1), which plays parameterized samples

at the note onset and additive synthesis for the note sustain. Video clips of real-time

synthesis with input data generated by the Marching Cello are available from [WEB].

10.5.1 Discussion

Mechanical and acoustical feedback

On an acoustic instrument, the player gets both mechanical and acoustical feedback.

Touching the strings with the �ngers and the bow gives the player a feeling of contact

resistance and mechanical impedance. This feedback is important, since the establishment

of the Helmholtz motion is subject to multi-dimensional physical constraints. Only when

bow speed, pressure, and distance from the bridge are within a certain window, the string

is forced into a steady state motion [Cre84, FR97]. The accomplished player feels the

establishment of the Helmholtz motion without even hearing the sound. Apart from this

fundamental feedback, there are a lot of accidental little mechanical and visual hints that

help the player �nd the right left-hand �nger position or bow position.

The acoustic feedback is even more important. It is widely accepted that playing in

tune is not a matter of remembering the correct spots on the �ngerboard, but of constantly

adjusting the �nger position to achieve the correct pitch given audio feedback. This is

particularly important for position changes of the left hand. The player hears the pitch

changing and accelerates and decelerates his arm to come to a halt just at the right

position. This is the reason why a good violinist, when given a viola to play for the �rst

time, almost instantly plays in tune, while a mediocre violist27 will not, even though he

has played the instrument for a long time. The violinist hasn't learned the geometry of

his instrument but the ability to react in a control loop with the audio.

Our system provides very little mechanical feedback, however, the acoustic feedback

loop is closed again. The musician hears the sound coming out of the speakers and

27I apologize to all violists. Of course, the example works the other way around as well.

155

can adjust his technique. In the long run, the player learns how to play the digital

instrument and adjusts for possible di�erences between the acoustic instrument and the

digital model.28

Temporal delays

The real-time model deals with a number of sources for time delays. We explicitly use the

notion of time delay to estimate the bow velocity. Since velocity is the time derivative of

position, it can't be perfectly causal. By the time we know that the velocity has changed,

the change is already history. Our particular estimator, a moving average/di�erence �lter

(section 10.4.2 and appendix B), trades o� the time delay with the noise level of the

estimator. The longer the �lter window, the cleaner is the velocity estimator. However,

the delay increases linearly with the window size. Using large windows also smears out

useful features of the signal. The �nal delay is estimated to be about 30 ms.

A second delay is introduced with time-lagged inputs in the feature vector. We try to

assure continuity of the model by including aspects of the past in the current state vector.

Again, we need to trade continuity with latencies of the instrument response.

A third delay is due to the implementation of model computation and communication

between the subsystems. On the input side, we were able to reduce latencies considerably

using an ethernet connection between the micro-controller on the sensor board and the

PC. Unlike serial port connections, the UDP packet-based communication allows for a

constant and instantaneous delivery of sensor data. The delay due to computation almost

by de�nition equals one frame of input data (� 10 ms).

The delay between availability of new audio samples and their digital-to-analog con-

version on the sound card is more diÆcult to assess. High-end sound cards along with

optimized software (Microsoft DirectSound 7.0) have been reported to achieve delays lower

than 20 ms.

Sound quality

A major concern is the evaluation of prediction accuracy and sound quality, both for cross-

validation during training and for the evaluation of the �nal violin model. The training

algorithm used (Expectation-Maximization [DLR77][GSM99]) has an implicit error met-

ric, known as the Kullbach-Leibler distance, or relative entropy between the actual data

distribution and the approximation. The algorithm converges to an optimal solution given

the initial conditions and the model parameters. However, the complex violin model, in-

cluding its preprocessing and post-processing steps, has a large number of implicit and

explicit model parameters, yielding a quasi-in�nite number of parameter combinations

each of which results in di�erent synthesis results. We believe that no machine-listening

technology can replace the judgment of a human listener. We represent sound in terms

of its major spectral components and assume that the closeness of two sounds relates to

the distance in terms of these perceptual parameters. Yet the �nal audio model output is

compared to the original sound material through the ear of a human listener.

28Before demonstrations, the author would typically spend half the night building a new model and the

other half of the night practicing the new model.

156

We are able to synthesize sounds that are arbitrary close to the original recordings

as long as a limited data-space is considered.29 Pitch is much easier to estimate than

the sound envelope, mostly because the mapping from bowing patterns to energy is very

irregular and noisy. Problematic are models that aim at covering the full violin/cello

input space. The explosion of training data is scary. The cello register ranges from C2

to A5, which corresponds to roughly four octaves of notes (4 � 12 = 48 notes). At the

same time an enormous variety of bowing styles is available to the cellist.30 Ideally the

model should be trained on the cross product of these two spaces. Since we cannot hope

to record and deal with that much data, the author chose to �rst record all pitches but

with limited variability in terms of bowing (40 second of data per note). In a second

recording session, an extensive number of bowing styles were recorded at a �xed pitch.

Assuming that bowing and �ngering are independent to some extent, these two data sets

were combined to build a model that would know how to predict the di�erent bow strokes

for all pitches. Original and synthesized sound samples are available from [WEB].

In terms of real-time synthesis, we achieve a recognizable cello attack as well as a

dynamic response with respect to the bow-bridge distance and with respect to bow speed.

The real-time cello covers the full register of the acoustic instrument. The functionality of

double stops has not been implemented at this point, although this extension would only

require a minor software change. Since the sensor interface supports four strings separately,

a multiple-strings-at-a-time system would simply run four separate cello models in parallel.

Open string notes need to be �ngered with the current interface, since the sensor technology

is indi�erent to which string is bowed. The bow model is generic, in that it can be used

with any string and any number of strings at the same time. The �ngerboard has been

repartitioned to provide a spot for the open string as well. In fact we are free to map

the �ngerboard to pitch in any way we want (section 10.6.3 and appendix B). The model

could be improved regarding responsiveness. Fast playing is diÆcult compared to the

acoustic instrument, since the model takes time to build up sound. Work on reducing the

latencies should be helpful in this matter.31

10.6 Artistic extensions and applications

The Hypercello project (section 10.1.1) was a �rst attempt to overcome the limits of

instruments that haven't changed over the past hundreds of years. As engineers, we are a

little bit embarrassed by how little the advancement of science and technology has been

able to contribute to devices such as violins. The truth is that we are not only unable

29For example, 10 to 40 seconds of sound can be estimated in such a way that the test set, taken from

similar input patterns, sounds nearly indistinguishable from the original. Likewise, 5 min of data with the

same pitch are tractable.
30Gershenfeld compiled the following list: legato, d�etach�e, martel�e, sautill�e, spiccato, jet�e, staccato,

staccato volante, viotti stroke, arpeggio, tremolo, sul ponticello, sul tasto, col legno, ondul�e [Ger96].
31The Marching Cello video clip of Stars and Stripes Forever [WEB] runs a model with the following

parameters:

Amplitudes: 30 min of training data, three input parameters (velocity, lagged velocity, bow-bridge

distance), 15 clusters, local linear approximation.

Frequencies: 8 min of training data, one input parameter (�nger position), 2 clusters, local second-order

approximation.

157

to surpass Stradivarius, who worked three hundred years ago, but even worse, we don't

know why his instruments outperform the ones built today. In imitating the performance

of instruments from observation, our modeling approach has the conceptual potential to

get arbitrarily close to a master instrument. A violin by Stradivarius should be as easy or

diÆcult to model as a student violin. Assuming success, the limitations of our model are

the limitations of the instrument from which the data originates.

Reconstructing and synthesizing the output of an actual instrument means accessing its

internal states. This information can be used in many ways, for example, for mappings of

completely genuine computer music. However, full control over the sound generation also

allows us to map di�erent known interfaces onto di�erent known instrument outputs. The

violin interface becomes a universal controller rather than an instrument that computes

violin sound only, just like a keyboard can be an interface to instruments ranging from

harpsichords to analog synthesizers.

The hyper-string idea is concerned with instruments for accomplished players who

want to extend the expressive means of their instrument. Along a di�erent axis, it may

be just as valid to reduce the freedom of control of an instrument [Ger99b] in exchange

for easier use (section 10.6.4).

10.6.1 A universal violin controller interface

While the piano keyboard has long been accepted as a universal interface to many di�erent

types of instruments, the violin bow has never made it beyond the violin family instru-

ments. The piano keyboard has been used as an interface for all kinds of sound-generating

mechanisms, be it hammers that hit or pluck strings, or air tubes that connect to organ

pipes. More recently this collection has been, or enlarged by all kinds of electronic and

digital instruments. Typically, the key selects pitch while the activation of a key controls

note onset, volume, and release. The notion of continuous control con
icts with the key-

board, since the key itself only allows for very brief interaction with the mechanics of the

acoustical sound generation.

The violin bow is a perfect example of a continuous sound generator and controller.

It provides the means for unlimited musical expression. Any note may develop into the

most amazing, complex, and unexpected sound. At the same time, a skilled player is

able to create the illusion of a perfectly sustained sound that doesn't stop when the

bowing direction changes. Despite these unique features and possibilities, until recently,

the haired bow has not been used in a context unrelated to the violin-family sound. In

part this restriction is due to the immense skill that is required to overcome the demands

of a high-dimensional device.32 The question is whether there is a fundamental trade-o�

between control degrees of freedom and the expressive capacity of the instrument. In other

words, we would like to know if we could enjoy the richness of a violin-like instrument

without investing 20 years of our lives practicing to reach that point.

The violin bow has been designed for the very speci�c reason of exciting a resonating

string in a continuous fashion. Unbeknownst to its creators in the 17th century, it was

meant to generate the famous Helmholtz motion of the string which is responsible for the

32Gershenfeld [Ger99b] compares the violin bow to a computer mouse. Not surprisingly he identi�es six

times the number of things one can do with a violin bow than with a mouse.

158

characteristic sound of bowed string instrument. Only recently have there been technolog-

ical e�orts to extend this successful symbioses of bow and string. For example, Trueman

and Cook designed an instrument called BoSSAA (Bowed-Sensor-Speaker-Array) which

integrates a bowing and �nger sensing mechanism and an array of speakers distributed on

a sphere. The purpose of this instrument is to recreate the special characteristics of the

acoustic instrument in addition to sound properties [TC99].

In this section we want to consider the violin bow as a universal control interface for

musical instruments. Rather than conceiving of a completely new instrument, we map a

known interface (the violin interface) onto an instrument such as the cello or a trombone,

which also has continuous pitch. The mapping is done through careful calibration of the

device or probabilistic modeling within the framework of cluster-weighted modeling.

10.6.2 Marching Cello

The Marching Cello is a novel controller device for a cello that can be played standing up

and can be carried around while being played (�g. 10-16). In the movie Take the Money

and Run (1969), young Virgil, played by Woody Allen, gets to play cello in the local

marching band. Carrying a chair and a cello he desperately runs after his fellow marching

musicians, puts down the chair, plays for a couple of seconds, then gets up again and runs

after his colleagues. Needless to say, the experience is frustrating.33

Our Marching Cello solves Virgil's problem. The Marching Cello is played like a cello

and generates cello sound. Although it is strapped onto the player's body, it preserves the

cello geometry and feel. The raw sensor data is wirelessly transmitted (range � 100 feet)

to a receiver with a lightweight Ethernet connection which forwards the data over the

local area network to a PC computing the sound. The sound is played over a loudspeaker

system [WEB].

10.6.3 A new violin MIDI controller

Many electric string instruments (plucked and bowed) provide the functionality of con-

verting the electric audio signal into MIDI control data, which then can be reconverted

into arbitrary sounds by a MIDI compatible synthesizer.34 The converter technology is

entirely based on information contained in the audio signal. Inevitably, there are accuracy

problems with this technology. By de�nition pitch is only de�ned for sound sequences

longer than one period. Hence there is a delay between �ngering a note and knowing its

pitch. For fast playing or noisy sound, pitch often can't be resolved at all.

The developed �ngerboard sensing technology allows retrieval of the player's �nger

position directly from the sensing of the �nger. Hence there are no issues with latency or

noisiness of the pitch-tracking technology. Unlike commercial MIDI violins, which generate

a minimum of acoustic energy and sound pressure, this MIDI converter needs no acoustic

energy at all. Therefore a cello that is �ngered without use of the right hand for plucking

or bowing, can be mapped to MIDI sounds.

33A video clip of the scene is available from [WEB].
34ZETA violin, Yamaha silent string instruments.

159

In addition to the �nger position, our instrumentation indicates the precise bow posi-

tion on two axes as well as bow pressure. This information can be represented in the MIDI

protocol or it can be processed and mapped into high-level control data, which in turn

may be used with a MIDI synthesizer. Used in this manner the interface becomes a hyper-

instrument very similar to the early work on the Hypercello [Ger99b]. The instrumented

RAAD cello was used in this sense in a performance of Meteor Music for Hypercello and

16 Simple Things by Tod Machover.35

10.6.4 Flexible musical instruments: CD-player versus Strad

A Stradivarius violin and a CD-player very much represent opposite limits in the space

of musical interfaces and devices. A Stradivarius gives the ultimate range of expressive

freedom to a skilled player. Every detail and musical gesture are literally in the hands of

the musician and the beauty of the music relies on the magni�cence of the instrument as

much as it relies on the skill and the creativity of the player. Unfortunately, in exchange

for this expressive freedom, one has to invest almost a lifetime to learn the technical skills

required for mastering the instrument.

On the other hand, CD-players and similar mass media require no skill at all, but still

produce beautiful music. Any of these media, however, leave the user completely passive

apart from providing a choice of tracks. There is no notion of expressiveness in a CD

player whatsoever.

The space of musical devices is empty in between these two extremes. Digital sound

synthesis along with new interfaces should help �lling the space with interfaces that trade

o� expressiveness and usability. Not many people can a�ord the luxury of studying an

instrument to the point of total mastery. Regardless, many people feel compelled to play

an instrument because they love music. Instruments that provide a more
exible trade-o�

between expressiveness and ease of playing should be very appropriate for amateur musi-

cians. For example, a violinist with limited pro�ciency may prefer playing a violin with

discretized and well-tempered pitch to playing constantly out of tune. The decomposition

of sound generation into sensing, representing, and predicting, as demonstrated above,

provides the means to implement such an instrument.

35MIT Media Lab, October 1999.

160

0 1 2 3

V
el

.
F

in
g.

time/s

0 1 2 3
0

1

2

3

4

5

time/s

H
ar

m
on

ic
 F

re
qu

en
ci

es
 /

kH
z

(f
0 −

f9)

0 1 2 3
0

1

2

3

4

5

time/s

P
re

di
ct

ed
 H

ar
m

on
ic

 F
re

qu
en

ci
es

0 1 2 3
0

1

2

3

4

5

6

7

8

9

H
ar

m
on

ic
 A

m
pl

itu
de

s
(f

0 −
 f9)

0 1 2 3
0

1

2

3

4

5

6

7

8

9

P
re

di
ct

ed
 H

ar
m

on
ic

 A
m

pl
itu

de
s

0 1 2 3

O

rig
. A

ud
io

Training Data

0 1 2 3

S
yn

th
. A

ud
io

Predictions

Figure 10-17: Comparison of original and predicted spectral violin data. Bottom: Input

sensor measurements, showing the bow velocity (Vel.) and the player's �nger position

(Fing.). Left: Harmonic structure of the training data and the corresponding audio time

series. Right: Harmonic structure and the estimated audio time series (15 clusters, locally

linear models, 10s (860 points) of training data).

161

Chapter 11

Conclusions

11.1 Contributions

Cluster-weighted modeling is a contribution to probabilistic inference networks, more pre-

cisely Gaussian mixture models. CWM expands input-output data in a joint probability

density which can be used to derive conditional probabilities and non-random estimators

such as function approximation schemes. CWM di�erentiates itself from earlier architec-

tures in a number of ways:

1. CWM uses the EM algorithm to allocate Gaussian basis functions and a LMS esti-

mator (matrix inversion) to �t the local models. This fast and transparent parameter

search �nds the locally optimal parameters and converges to the globally best model

reachable from the initial conditions.

2. CWM seamlessly and transparently integrates discrete and continuous, real and

complex, deterministic and stochastic variables. The probabilistic framework allows

for the evaluation of the data density in terms of unconditional and conditional

probabilities, it allows for the derivation of non-random estimators and it allows for

error and uncertainty estimation along with self-consistency checks.

3. CWM is general enough to be applicable to many di�erent estimation and classi�ca-

tion problems, and at the same time it is easy and quick to use. Unlike unconstrained

Bayesian networks, the basic architecture does not change, which makes it instantly

applicable to a large range of engineering applications.

4. CWM is a
exible and carefully designed architecture which can easily be extended

if needed. Examples for such extensions that have been presented here include an

online implementation, a cluster-weighted hidden Markov structure, and function

approximation under constraints.

Linear systems theory and linear signal processing provide a multitude of useful tools,

but many applications have reached limits where the assumption of linearity doesn't make

sense any more. By seamlessly incorporating linear techniques in the CWM framework,

we have pushed the concept of mixture models toward novel algorithms and application

162

domains and have created powerful nonlinear tools. We have developed CWM implemen-

tations for basic nonlinear classi�cation and estimation problems and have created novel

synthesis algorithms within the framework.

1. Cluster-weighted Kalman �ltering was presented to recursively estimate the coeÆ-

cients of locally linear models. The notion of having multiple recursive, linear esti-

mators that are selectively updated based on the state of the system is a powerful

idea that should be useful for many �elds and applications.

2. Cluster-weighted complex-valued estimation and cluster-weighted Volterra modeling

were developed to estimated complex valued functions. Real-valued linear algebra

has been replaced by the complex-valued equivalent to make CWM applicable for

important application domains, e.g. nonlinear device characterization.

3. Cluster-weighted linear predictive coding was developed to unify the successful ex-

citation/�lter models in a coherent framework.

4. Likewise, cluster-weighted sampling extends and uni�es the idea of a global sampler,

creating a tool that is
exible enough to handle rapidly changing sounds with contin-

uous control. While global wavetable synthesis su�ers from a lack of expressiveness

and
exibility, CWS retains the bene�ts of good sound quality, and, in addition, is

applicable to systems and instruments with continuous control.

Inference-based synthesis of acoustic instruments is a novel approach to mimic synthe-

sis of existing sounds. Our approach makes use of well-known techniques for the analysis

and synthesis of sounds, but is also clearly distinct from earlier work:

1. Our synthesis is based on physical input data, such as the bowing gesture data of a

violinist. While there are earlier attempts to map perceptual time series data into

audio data, the idea of deriving a quasi-physical model from physical input-output

data is new.

2. Our approach is data-driven, i.e. all the model parameters are inferred from recorded

data in a joint input-output space. While inference in music is not new, the speci�c

application of reconstructing sound from scratch, based on an inference model, is.

3. Cluster-weighted sampling extends the idea of global wavetable synthesis into arbi-

trary synthesis applications with arbitrary interface and input space. In particular

instruments with after-touch, such as violin-family instruments, become tractable

with this new technique.

4. New instrumentation has been developed that extends earlier technology for violin

bow sensing. A �ngerboard sensor was designed that resists the impact of the string

while giving a precise position measurement. Compared to earlier instrumentation,

sensors and circuitry are packaged in a more
exible way, allowing for the instru-

mentation to be used in di�erent devices ranging from recording devices to synthesis

controllers as unusual as the Marching Cello.

163

11.2 Future Work

Naturally, our violin/cello model leaves room for improvements. The sound quality should

be closer to that of a master acoustic instrument, the model should extrapolate better,

and the instrument should be more responsive. Apart from these improvements, there are

also fundamentally di�erent, and novel, takes on the problem of building a digital violin.

Early in this thesis, we claimed that physical modeling of musical instruments su�ers

from two major problems: it is both computation and model-estimation bound. The

former problem is taken care of by additional time. Waveguide models already run in real

time; soon there will be no speed limitations for other implementations of �rst-principle

physical models as well. However, the estimation of physical models remains a problem

that should be worthwhile to attack.

In the course of this work, the author has built up a certain frustration with digital

sound and with models that clearly lack the liveliness and
exibility of an acoustical

instrument even after careful tuning. The most careful tweaking of hyper-parameters

of an inference model can't really preserve the spectacular responsiveness and the often

surprising features of the physical object. By de�nition the model is only as good as the

data that it is inferred from. As of now, we do not handle extrapolation explicitly. Our

model is general only in so far as we provide the means of estimating any instrument, but

not in that we �nd general rules for instrument design.

The bene�t of a physical model is precisely its generality. If the governing equations are

implemented correctly, the response to any player action is that of the acoustic instrument.

In order to recover this freedom, yet at the same time retain the bene�t of inferring

parameters, future research should consider data-driven physical modeling. Based on

some numerical physical primitives, the estimator would �nd the optimal allocation of

those primitives with respect to some training data. Primitives should be high-level to

start with, but could increasingly become less sophisticated and increase in number in

order to accommodate the subtleties of an acoustic instrument. It should be interesting

to develop a cluster-weighted modeling hybrid that allocates simple physical units in a

meaningful way to create a globally-powerful physical model.

The author would like to see applications of his instruments, explicitly or implicitly

mentioned in this thesis, developed. These instruments and new hybrids should be used for

performances, be it in a classical concert setting or in an installation/performance setting.

The possibilities of combining the new technology with other digital technology and with

traditional acoustic objects are endless. Also, there are many conceivable applications in

musical education, which would be worthwhile to pursue. Music students should have

access to instruments that give feedback and make suggestions for possible improvements

on their playing rather than just passively sounding bad. The learning process could

certainly be sped up and the pain associated with learning a diÆcult instrument could be

reduced. A digital violin interface and synthesis algorithm are good starting points for a

sophisticated interactive learning program.

164

Appendix A

Three views of the EM algorithm

The machine learning community shares the appreciation of the power of EM for training

networks, but also is collectively humbled by how it works. Many times the author of this

thesis had the impression that he �nally got it, just to be disturbed again a minute later by

some aspect of thismagic algorithm. We present three views and approaches that prove the

convergence of the EM algorithm. In the order presented, the three approaches increase

in generality and conceptual beauty, but also in terms of theoretical and terminological

overhead.

A.1 Gradient approach

The �rst idea is the one closest to the CWM notation, the least abstract and in many

ways the most intuitive approach. We want to show that any iteration of Expectation and

Maximization step only increases the data-likelihood.

Consider the log-likelihood L of the data-set [Ger99a]. We di�erentiate L with respect

to the cluster positions mk:

rmk
L = rmk

log
NY
n=1

p(yn;xn) (A.1)

=
NX
n=1

rmk
log p(yn;xn)

=
NX
n=1

1

p(yn;xn)
rmk

p(yn;xN)

=
NX
n=1

1

p(yn;xn)
p(yn;xn; ck) �C�1

k � (xn �mk)

=
NX
n=1

p(ckjyn;xn) �C�1
k � xn �

NX
n=1

p(ckjyn;xn) �C�1
k �mk

165

= Np(ck) �C�1
k �

"
1

Np(ck)

NX
n=1

xnp(ckjyn;xn)
!
�mk

#
| {z }

Æmk

Now consider the maximization update of the cluster means in Section 3.2, equation

3.17) and notice that it equals the term in bracket in equ. A.2. We rewrite the change in

the cluster means as Æmk and obtain

Æmk =
Ck

Np(ck)
� rmk

L : (A.2)

From this we see that the mean moves in the direction of the log-likelihood scaled by the

covariance matrix and likelihood of the cluster (1=(Np(ck))). Since the covariance matrix

is always positive de�nite, the update of the mean increases the likelihood of the data set

at each maximization step.

A similar reasoning proves the convergence with respect to other parameters in the

model, such as the coeÆcients of the local models:

rai;kL = rai;k log
NY
n=1

p(yn;xn) (A.3)

=
NX
n=1

1

p(yn;xn)
p(yn;xn; ck) �C�1

y;k � [yn � f(xn;ak)(�fi(xn))]

=
NX
n=1

p(ckjyn;xn) �C�1
k � yn(�fi(xn))

�
NX
n=1

p(ckjyn;xn) �C�1
y;k � f(xn;ak)(�fi(xn))

= Np(ck) �C�1
k �"

1

Np(ck)

NX
n=1

f(xn;ak)fi(xn)p(ckjyn;xn)
!
�

1

Np(ck)

NX
n=1

ynfi(xn)

!#
| {z }

�

The maximization step �nds the parameters ak, for which � is zero. Since

r2
ai;k

L = �
NX
n=1

p(ckjyn;xn) �C�1
y;k

@f

@ai;k
� f(xn;ak)(�fi(xn))

=
NX
n=1

p(ckjyn;xn) �C�1
y;k � fi(xn)2

� 0

is strictly positive, L is concave and the point where the �rst derivative of L vanishes is

an absolute minimum.

166

A.2 Information theoretic approach

The information theoretic approach establishes a strong analogy between EM and statis-

tical mechanics [NH93, Jor98b]. The problem is posed based on the distinction between

observed and hidden variables. Suppose we observe some phenomenon but assume that it

is dependent on some underlying variables or states which we don't know. The observed

data, i.e. the known states, are denoted Z. The hidden data are denoted Y . The joint

probability of both Z and Y , forming the complete set of data X, is parameterized by

the set of parameters �, the cluster parameters, giving P (Z; Y j�) and a marginal prob-

ability for Z p(Zj�) = P
Y P (Y;Zj�). We wish to �nd the parameterization of the joint

distribution that maximizes the log-likelihood L(�) = logP (Zj�).
In the E-step of the EM algorithm we update the conditional distribution of hid-

den data, given known data and parameters: Pt(Y) = P (Y jZ;�t�1). In the M-step we

re-compute � maximizing EPt [logP (Y;Zj�)] [NH93]. The following convergence proof

closely follows [Jor98b].

We need to maximize the log-likelihood logP (Zj�), with respect to �. The task

would be easy if the hidden nodes were observed, since they are not we can only work

with an average logP (z; yj�). Introducing an average function Q(Y jZ) and using Jensen's
inequality we get the following bound,

log p(Zj�) = log
X
Z

p(Y;Zj�) (A.4)

= log
X
Y

Q(Y jZ) � Y;Zj�
Q(Y jZ)

�
X
Y

Q(Y jZ) log p(Y;Zj�)
Q(Y jZ)

=
X
Y

Q(Y jZ) log p(Y;Zj�)�
X
Y

Q(Y jZ) logQ(Y jZ)

(A.5)

where the right hand depends on the choice of Q(Y jZ) and the parameters �.

In the E-step we maximize expression (A.4) with respect to Q(ZjY), using Q(Y jZ) =
p(Y jZ;�). This gives p(Zj�) on the right hand side. In the M-step we maximize with

respect to the parameters �, maximizing the �rst term in (A.4).

Neal and Hinton make a similar argument [NH93]. They suggest that E and M steps

are both increasing the function F (P;�), which is de�ned as

F (P;�) = EP [logP (Y;Zj�)] +Ep[logP (Y)]) (A.6)

= EP [logP (Y;Zj�)] +H(P)

This expression corresponds to the physical free energy in statistical physics: the �rst

term evaluates to the energy in the system, while the second one equals the entropy of the

system. The free energy of a physical system can only increase, which is the property of

EM we want to demonstrate.

167

A.3 Di�erential-geometric approach

A.3.1 The curved space of exponential distributions

Amari et al. [AKN92, Ama95] enriched the �eld of machine learning with an information

geometric description of probability and estimation theory. Part of Amari's groundbreak-

ing work is a representation and explanation of EM in a curved space described by di�er-

ential geometry. In this approach sets of probability distributions become manifolds in a

high dimensional parameter and data space and instances of networks are represented as

points on those manifolds.

Let's consider a network characterized by a set of parameters � = (�1; :::;�n). Then

all the possible networks characterized by � form an n-dimensional manifold of networks.

If the network is probabilistic these manifolds stand for probability distributions. A sub-

space of the manifold describes those distributions that can be reached by a given network

architecture. Once again we distinguish between known and hidden variables. Using this

distinction we de�ne a manifold S that describes all the probability distributions over the

hidden and observed variables. The data manifold D, a sub-manifold of S, contains only

those distributions that are compatible with the observed data. In other words, when S

is collapsed into D, the dimensions describing the observed data are �xed at the observed

points. Another sub-manifold of S, the manifold M , contains all those distributions that

are achievable given the parameterization of the network. The estimation process then

aims at �nding the distribution in M , that is closest to D relative to some metric. The

metric will be the Kullbach-Leibler distance (KL) between the two distributions. It is the

objective of this section to demonstrate the E-step and M-step in S and the convergence

of EM to a local minimum of KL [Ama95]. Fig. A-1 illustrates the basic elements of this

approach.

S

M

θ(u)

u

S

Dη

Figure A-1: Curved data-manifold D and model-manifold M in S.

A key concept in information geometry (and machine learning in general) is the fam-

ily of exponential distributions, which includes all probability distributions that can be

168

parameterized as

p(x;�) = exp

(
nX
i=1

�iri(x) + k(x) �	(�)

)
: (A.7)

Simple examples are the normal distribution p(x;m;�2) = 1=
p
2��2expf� (x�m)2

2�2
g and

discrete distributions with p = (p0; p1; :::; pn) and pi = Probfx = ig. The parameters m
and � can be easily matched with the parameters in equ. A.7 [Ama95]. The coeÆcients

of the discrete distribution can be parameterized as

�i = log
pi

p0
; i = 1; :::; n (A.8)

ri = Æi(x); i = 1; :::; n :

We are most interested in mixture distributions with hidden variables such as

p(y; z) =
IX
i=0

Æi(z)pi
1q
2��2i

expf�(xi �mi)
2

2�2i
g : (A.9)

where z is hidden and x is observed.

r11 = x; �11 = �0
�2
0

r12 = x2; �12 = � 1
2�20

r2i = Æi(z); �2i = log pi�0
p0�i

� (
�2i
2�2i

� �20
2�20

)

r3i = xÆi(z); �3i = �i
�2
i

� �0
�2
0

r4i = x2Æi(z); �4i = �(1
2�2i

� 1
2�20

)

(A.10)

maps into a member of the exponential family. Mixtures without the term Æ(z) are not

part of the exponential family.

Usually we are dealing with more than one observation, which is why we are looking at

the product space of all the observations r1; r2; :::; rT . Assumed an exponential distribution

the joint distribution is given by

p(r1; r2; :::; rT ; �) =
TY
t=1

p(rt; �) (A.11)

= exp
n
(
X

rt) ��� T�(�)
o

;

which is also an exponential distribution.

The observation of the data set corresponds to a point �̂ = r in S, which most likely

is not part of the model manifoldM . The best model to choose is the one that is as close

to �̂ as possible, i.e. the one that maximizes the Likelihood of M . This in turn means

minimizing the Kullback-Leibler K(�̂jj�(u)) divergence between the observed point �̂

and M , parameterized in terms of �(u). The operation of projecting �̂ onto M is called

m-projection (�g. A-1) and corresponds to the m-step of em (�g. A-2).

169

S

M

D
Qi

Pi+1Pi

m-step

e-step

Figure A-2: Data-manifold D, model-manifold M , as well as E-step and M-step in S.

Since part of the random variables are hidden, part of the data-manifold D can be

chosen freely. We parameterize the data-manifold in terms of �v, the observed data di-

mensions, and �h, the hidden data dimensions (�g. A-1). Since the �h can be chosen

arbitrarily, while the �v are �xed we obtain a sub-manifold of dimension h, parameterized

by �h
D = f�̂ = (�̂v; �̂h)j�̂v = rv; �̂h : arbitraryg : (A.12)

The projection onto D is called the e-projection, which corresponds to the e-step in em

(�g. A-2).

A.3.2 EM and em algorithm

Distributions of the exponential family can be parameterized in two distinct ways. Since

both parameterizations are
at, i.e. two distributions are connected by straight lines in

either parameterization, exponential distributions form a dually
at manifold.

Given two distributions p1 and p2, a parameterization of the curve t 2 [0 1]), and a

normalization factor 	(t), we can connect log p1 and log p2 to obtain

log p(x; t) = (1� t) log p1(x) + t log p2(x) : (A.13)

Alternatively this can be written as

p(x; t) = e
t� p2(x)
p1(x)

+log p1(x)�	(t) (A.14)

Yet another representation of this geodesic is in terms of the parameter �(t) of the expo-

nential family,

��(t) = (1� t) �1 + t �2 = �1 + t (�2 ��1) : (A.15)

170

From this expression it is clear that the connection is a linear projection (geodesic) in

�-coordinates [Ama95].

Alternatively, we can make a connection in the mixture parameterization p(x).

p�(x; t) = (1� t) p1(x) + t p2(x) (A.16)

We observe that the mixture parameterization yields a straight line in �-coordinates.

��(t) = �1 + t (�2 � �1) (A.17)

A straight connection in �-coordinates is called an e-geodesic, and the manifold S is e-
at

in �. A straight line in �-coordinates is called an m-geodesic, and the manifold S ism-
at

in the coordinate system �. The e-geodesics are di�erent from the m-geodesics and vice

versa.

Before explaining em we also need to introduce the divergence K(P;Q) which for

members of the exponential family can be written as

K(�P ; �Q) = 	(�P) + �(�Q)��PiQi : (A.18)

where P is parameterized in terms of �P and Q is parameterized in terms of �Q. K equals

the KL divergence

KL(P;Q) = E�P

"
log

p(r; �P)

p(r; �Q)

#
: (A.19)

with

K(P;Q) 6= K(Q;P) (A.20)

K(P;Q) � 0

K(P;Q) = 0 ; for P = Q

The importance of the K-divergence lies in the property illustrated in �gure A-3. Given

three distributions P , Q and R in a dually
at manifold, such that in Q the m-geodesic

connecting P and Q is orthogonal to the e-geodesic connecting Q and R, then

K(P;R) = K(P;Q) +K(Q;R) : (A.21)

We furthermore de�ne e and m projections of a distribution on a sub-manifold in

our dually
at space. Assuming we are given a sub-manifold of distributions M and a

distribution S that is not part of M , we want to �nd the distribution Q in M that is

closest to S. Since the divergence is asymmetric there are two solutions for Q. The point

Q̂ that minimizes the distance P (P;Q), Q 2 M , is given by the m-projection of P to

M . It is unique if M is an e-
at sub-manifold. The point Q̂ that minimizes the distance

P (Q;P), Q 2 D, is given by the e-projection of P to D. It is unique if D is an m-
at

sub-manifold [Ama95].

Let's recall our initial situation with a model manifold M and a data manifold D

(�g. A-1), as well as the parameterization of them-
at manifoldD in terms of � = (�v ; �h)

and the e-
at manifold M in terms of � = (�v;�h). It is our intent to �nd the points

171

S

R

m-geodesic

P

Q

e-geodesic

Figure A-3: Generalized Pythagoras theorem [Ama95].

~P 2 M and ~Q 2 D that minimize the divergence K(P jjQ). By now we know how to

�nd the Q̂ that minimizes K(Q̂jjP). Given a �xed P we e-project P onto D. Since the

sub-manifold D is m-
at, the e-projection is orthogonal to D in Q̂. The projection is

linear in �-coordinates and solves

��v =
@

@�h
	(��

v;�
P
h) (A.22)

��v = c

and

��
v =

@

@�v
�(��v ; c) (A.23)

��
h = �P

h

Likewise we know how to �nd the P̂ that minimizes K(QjjP̂). Given a �xed Q we

m-project Q ontoM . Since the sub-manifoldM is e-
at, the m-projection is orthogonal to

M in P̂ . The projection is linear in �-coordinates and solves equations similar to (A.22).

The em-algorithm uses these updates iteratively as illustrated in �g. A-2 . We sum-

marize the algorithm:

1. Choose an initial distribution P0 2M .

2. e-step: e-project the current P onto D (A.22). This results in Q̂ 2 D which

minimizes K(Q̂jjP).
3. m-step: m-project the current Q onto M . This results in P̂ 2M which minimizes

K(QjjP̂).
4. Go back to (2), unless the algorithm has converged to a minimum of K(QjjP).
EM and em algorithm are equivalent for most relevant cases. [Ama95] proves this

equivalence and discusses exceptions as well as eÆciency di�erencies.

172

Appendix B

Sensor technology and hardware

design

B.1 Sensor technology

B.1.1 Sensing the bow

The technology used for providing bow data extends earlier work by Paradiso and Ger-

shenfeld [PG97, Sch96]. More measurements have been added and have been compactly

packaged.

Fig. B-6 illustrates the basic functional elements of the bow sensing technology. The

bow is instrumented with four oscillators, implemented as square wave generators using

low power 555 timer chips. The �rst oscillator (25kHz) is placed at the frog and is driving

a chain of 20 2K resistors running along the bow bar. The other end of the resistor series

is connected to the output pin of the second oscillator (35kHz), placed at the tip of the

bow. The resistor chain functions as a voltage divider between signal level and ground.

The signal strength decreases linearly over the length of the bow, in opposite directions for

the two oscillators. Both signals couple capacitively into an antenna mounted underneath

the string. Depending on the position of the bow relative to the strings the two received

signals vary in amplitude. Bowing close to the frog causes the signal from oscillator one

to be predominant while bowing close to the tip causes the other signal to be strong.

The third oscillator (49kHz), placed on the frog, drives a wire antenna running along

the bow. The signal couples capacitively into a receiving antenna mounted at the bridge

of the violin/cello. The signal amplitude varies depending on the distance between the

bow and antenna. Hence the amplitude indicates the bow-bridge distance.

The fourth oscillator (64-72kHz), placed on the frog, is frequency-modulated and also

driving an antenna running along the bow. A force-sensitive strip is mounted on the bow

at the position of the fore�nger of the bow hand. When the player increases the pressure on

the bow, the resistance of the sensor strip decreases. This change is used to modulate the

control voltage of the timer chip, resulting in a maximal frequency change of about 8kHz.

The signal couples into the bridge antenna and is frequency demodulated with respect

to the pressure change. Alternatively the force-sensitive strip can be mounted between

bow hair and wood at the tip of the bow [TC99]. This design measures the actual force

173

differential amplifiers

A-string

D-string

G-string

C-string

V=3.3V

R

Figure B-1: Functional diagram of the �ngerboard.

of the bow on the string, as opposed to the force seen by the player. Unfortunately, the

measurement is not as sensitive as the �rst alternative, and the values depend on the bow

position relative to the strings.

The copper antenna pieces are connected to a FET source follower which in turn

connects to the signal-conditioning board. Four band-pass �lters (two stage, second order

state-variable �lters) select the di�erent carriers (�g. B-2 and B-3). The isolated signals

are ampli�ed. Signal 1-3 (frog signal uf (t); tip signal ut(t); bridge signal uy(t)) are recti�ed

and low-pass �ltered to detect the amplitude of each signal. The fourth signal is ampli�ed

and used in a PLL chip which locks on the carrier signal. The PLL provides a DC voltage

indicating the instantaneous frequency of the carrier up(t) (pressure).

174

uf (t) and ut(t) are combined to provide the left-right position of the bow

ux(t) =
ut(t)� uf (t)

ut(t) + uf (t)
: (B.1)

B.1.2 Sensing �ngers on the �ngerboard

The position of the �nger on the �ngerboard is measured using a stainless steel strip

mounted on the �ngerboard (�g. B-1). The one thousands of an inch thick strip is covering

the violin or cello �ngerboard providing a total resistance of about one Ohm over the full

length. A constant voltage of about 100 mV is applied at the end of the �ngerboard facing

the bridge, creating a voltage gradient over the length of the strip. The strings function

as pickup electrodes wherever a �nger is pressing the string on the �ngerboard. Since the

strings are isolated from one another, each string corresponds to an independent sensor

channel allowing for double stops to be resolved. The pickup voltages are ampli�ed with

a series of two high input impedance di�erential ampli�er stages, converting the voltages

to cover the input range of the analog-to-digital converter chip.

The stainless steel was chosen, because it is strong enough to mechanically resist the

pressed string and a the same time is electrically resistive. Higher resistivity would be

preferable but barely comes along with mechanically strong materials. The DC measure-

ment requires a clear contact between the string and the �ngerboard. This is typically the

case for cello playing, but not necessarily for violin playing. The alternative of AC-based

capacitive coupling between string and �ngerboard has been discarded since a capacitive

measurement does not return a precise voltage at the point of contact but smears out over

the length of the string. The current measurement does not allow a player to press with

two �ngers on the same string. Although players tend to support the pitch-�nger with

�ngers lower on the string, they typically don't push the support �nger down all the way.

The only hand position that is not supported by this system is the thumb position of the

cellist.

B.1.3 Recording violin audio signals

Di�erent commercial audio recording devices are used. An electric RAAD cello1 is used

which has an integrated pickup system mounted to the top plate of the instrument. The

acoustic violin is recorded with a small guitar microphone that �ts through the f -holes.

Our machine-learning approach is very sensitive to amplitude variations that are not

caused by the player action, rather by unrelated causes such as room acoustics or dis-

placement between instrument and microphone. By mounting a microphone inside the

instrument (without interfering with the acoustical properties) these issues are eliminated.

The sound picked up inside an instrument is arguably not the same as the sound projected

into the room, yet the advantages of the transducer mounted close to the instrument were

by far more important for this work.

Two types of custom string-sensing technology are used. A dynamic pickup system

records the signal on the string itself. Small permanent magnets are mounted under each

1made by Richard Armin, RAAD Instrument Inc., Toronto, Canada.

175

string at the end of the �ngerboard. The voltages induced by the vibrating strings are

picked up between the two ends of each string. The voltages are ampli�ed separately by

two stages of di�erential ampli�er circuits.

A piezo pickup system is used to record the audio signals at the bridge. Little pieces

of piezo electric material are placed between the strings and the bridge. The induced

voltages are conditioned and ampli�ed separately.

1 2 3 4

A

B

C

D

4321

D

C

B

A

Title

Number RevisionSize

B

Date: 14-Apr-2000 Sheet of

File: E:\projects\..\VB4f.Sch Drawn By:

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD1

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD2

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD3

AD746

R4

100kR43

RQ=1K

R51

470Ohm

R63

10k

-12V

C9

680pF

R5

100k

R52

470Ohm

C10

680pF

R6

100kR44

RQ=1K

C11

680pF

R7

100k

R98

470Ohm

C12

680pF

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD4

AD746

R102

100K

R105

10K

C25

0.001uF R64

10k

R65

10k

+12V

R8

100k

R108

22k

C29

0.01uF

C34

0.047uF

P1

5k

P2

5k

P3

5k

P17

5K

P4

5k

+12V

R9

100K

C4

47pF

R10

100K

C5

47pF

CH0
1

CH1
2

CH2
3

CH3
4

CH4
5

CH5
6

CH6
7

CH7
8

SHDN
10

V
S

S
9

VREF
11

V
D

D
2

0

REFADJ
12

DOUT
15

SSTRB
16

DIN
17

CS
18

SCLK
19

A
G

N
D

1
3

D
G

N
D

1
4

MAX1

MAX186

C30

0.01uF

C37

4.7uF

RA0
17

RA1
18

RA2
1

RA3
2

RA4/T0CKI
3

RB0/INT
6

RB1
7

RB2
8

RB3
9

RB4
10

RB5
11

RB6
12

RB7
13

V
S

S
5

MCLR
4

OSC1/CLKIN
16

OSC2/CLKOUT
15

V
D

D
1

4

PIC1

PIC16F84

GND
1

AntennaOut
2

9V
3

GND
4

DataIn
5

TX1

TX-Module

+12VPIC

Phase Pulses
1

Phase Comp1 out
2

Comparator IN
3

VCO out
4

INHIBIT
5

C1a
6

C1b
7

Vss
8

VCO in
9

Demodulator out
10

R1
11

R2
12

Phase comp 2 out
13

Signal in
14

Phase Comp 3 out
15

Vdd
16

PLL1

PLL

C26

0.001uF

+12V

C38

.1uF

R132

20K

R133

15K

R109

22K

R110

22K

R12

100K
C31

0.01uF

Out1
1

- IN 1
2

+IN 1
3

+Vs
4

+IN 2
5

- IN 2
6

Out2
7

NC
8

Out4
16

- IN 4
15

+ IN 4
14

- Vs
13

+IN 3
12

- IN 3
11

Out3
10

NC
9

AD18

AD713
R114

100Ohm

R134

10K

R138

1M

C106

0.1uF

Out1
1

- IN 1
2

+IN 1
3

+Vs
4

+IN 2
5

- IN 2
6

Out2
7

NC
8

Out4
16

- IN 4
15

+ IN 4
14

- Vs
13

+IN 3
12

- IN 3
11

Out3
10

NC
9

AD19

AD713

R67

10K
R13

22K

R139

1M

R140

1M

R68

10K
R14

22K

R141

1M

R142

1M

+3.3V
R150

0.1Ohm

R152

560K

C39

.47uF

R116

100Ohm

R135

10K

R143

1M

C107

0.1uF

R153

560K

C40

.47uF

Out1
1

- IN 1
2

+IN 1
3

+Vs
4

+IN 2
5

- IN 2
6

Out2
7

NC
8

Out4
16

- IN 4
15

+ IN 4
14

- Vs
13

+IN 3
12

- IN 3
11

Out3
10

NC
9

AD21

AD713R117

1K

R69

10K
R161

100Ohm

R154

470K

R15

100K

C41

.1uF

R70

10K

R118

1K

R71

10K
R162

100Ohm

R155

470K

R16

100K

C42

.1uF

R72

10K

R73

10K

R165

220Ohm

P20

50K

P21

50K

R17

47K

R18

47K

R156

470K
C108

0.1uF

C120

0.022uF

R19

100K

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD5

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD6

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD7

AD746

R20

100kR45

RQ=1K

R53

470Ohm

R78

10k

-12V

C13

680pF

R21

100k

R54

470Ohm

C14

680pF

R22

100kR46

RQ=1K

R55

470Ohm

R79

10k

C15

680pF

R23

100k

R99

470Ohm

C16

680pF

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD8

AD746

R103

100K

R106

10K

C27

0.001uF R80

10k

R81

10k

+12V

R24

100k

R111

22k

C32

0.01uF

C35

0.047uF

P5

5k

P6

5k

P7

5k

P22

5K

P8

5k

R25

100K

C6

47pF

R82

10K

R166

220Ohm

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD9

AD746

R122

100Ohm
R123

100Ohm

Out1
1

- IN 1
2

+IN 1
3

+Vs
4

+IN 2
5

- IN 2
6

Out2
7

NC
8

Out4
16

- IN 4
15

+ IN 4
14

- Vs
13

+IN 3
12

- IN 3
11

Out3
10

NC
9

AD22

AD713
R124

100Ohm

R136

10K

R144

1M

C109

0.1uF

R157

560K

C43

.47uF

R125

100Ohm

R137

10K

R145

1M

C110

0.1uF

R158

560K

C44

.47uF

R26

47K

R27

47K

Out1
1

- IN 1
2

+IN 1
3

+Vs
4

+IN 2
5

- IN 2
6

Out2
7

NC
8

Out4
16

- IN 4
15

+ IN 4
14

- Vs
13

+IN 3
12

- IN 3
11

Out3
10

NC
9

AD23

AD713

R83

10K
R28

22K

R146

1M

R147

1M

R84
10K

R29

22K

R148

1M

R149

1M

Out1
1

- IN 1
2

+IN 1
3

+Vs
4

+IN 2
5

- IN 2
6

Out2
7

NC
8

Out4
16

- IN 4
15

+ IN 4
14

- Vs
13

+IN 3
12

- IN 3
11

Out3
10

NC
9

AD24

AD713R126

1K

R85

10K
R163

100Ohm

R159

470K

R30

100K

C45

.1uF

R86

10K

R127

1K

R87

10K
R164

100Ohm

R160

470K

R31

100K

C46

.1uF

R88

10K

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD10

AD746

R128

100Ohm
R129

100Ohm

R89

10K

+12VPIC

OSC1
1

GND
2

OSC2
3

OSC1

CHRISTAL_OSCILLATOR

C47

.1uF

C48

.1uF

C121

4.7uF

1
1

2
2

C122

4.7uF

-12V

+12V

C49

.1uF

+3.3V

+5Vraw

C112

0.1uF

C113

0.1uF
GND

1

Vout
2

Vin
3

REG3

3.3V REGULATOR

1

2

3

4

CON16

CON4

+12V

R56

470Ohm

R90

10k

C50

.1uF

C51

.1uF

C52

.1uF

C53

.1uF

C54

.1uF

+12V

+12V

C55

.1uF

+12V

C56

.1uF

+12V

C58

.1uF

C59

.1uF

-12V C60

.1uF

-12V C61

.1uF

-12V C62

.1uF

-12V

+12V

C64

.1uF

+12V

+12V

C66

.1uF

+12V

C67

.1uF

-12V C68

.1uF

-12V C69

.1uF

-12V

C71

.1uF

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD11

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD12

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD13

AD746

R32

100kR47

RQ=1K

R57

470Ohm

R91

10k

-12V

C17

270pF

R33

100k

R58

470Ohm

C18

270pF

R34

100kR48

RQ=1K

R59

470Ohm

R92

10k

C19

270pF

R35

100k

R100

470Ohm

C20

270pF

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD14

AD746

R104

100K

R107

10K

C28

0.001uF R93

10k

R94

10k

+12V

R36

100k

R112

22k

C33

0.01uF

C36

0.047uF

P9

5k

P10

5k

P11

5k

P25

5K

P12

5k

R37

100K

C7

47pF

R95

10K

R167

220Ohm

+12V

C72

.1uF

+12V

+12V

C74

.1uF

+12V

C75

.1uF

-12V C76

.1uF

-12V C77

.1uF

-12V

C79

.1uF

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD15

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD16

AD746

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD17

AD746

R38

100kR49

RQ=2K

R60

470Ohm

R96

10k

-12V

C21

390pF

R39

100k

R61

470Ohm

C22

390pF

R40

100kR50

RQ=2K

R62

470Ohm

R97

10k

C23

390pF

R41

100k

R101

470Ohm

C24

390pF

P13

5k

P14

5k

P15

5k

P16

5k

R42

100K

C8

47pF

+12V

C80

.1uF

+12V

+12V

C82

.1uF

-12V C83

.1uF

-12V

C85

.1uF

-12V C86

.1uF

C87

.1uF

+12V

C88

.1uF

C89

.1uF

C90

.1uF

C91

.1uF

C92

.1uF

C93

.1uF

C94

.1uF

C95

.1uF

+12VAUDIO -12VAUDIO

-12VAUDIO+12VAUDIO

-12VAUDIO+12VAUDIO

+12VAUDIO -12VAUDIO

C96

.1uF

C97

.1uF

-12V
C98

.1uF

-12V

C99

.1uF

+12V

C102

.1uF

+12V

C103

.1uF

C104

.1uF

C105

.1uF

+12VPIC +12VPIC

+12VPIC

R151

47Ohm

D1

DIODE

D2

DIODE

D3

DIODE

3

2

1

D4

DIODE

D6

DIODE

D7

DIODE

+12V

Antenna1

StringS3

StringS4

StringS2

StringS1

ConStripS

StringB4

StringB3

StringB2

StringB1

ConStripB

ConStripB ConStripS

Antenna1

Antenna2 FingerPos4aANALOG

FingerPos3aANALOG

FingerPos2aANALOG

FingerPos1aANALOG

BowSignal4ANALOG

BowSignal3ANALOG

BowSignal2ANALOG

BowSignal1ANALOG

AntennaInput1

DemodulatedSignal4

BowSignal4

DemodulatedSignal4

DemodulatedSignal3

BowSignal3

DemodulatedSignal3DemodulatedSignal2

DemodulatedSignal2

BowSignal2BowSignal1

DemodulatedSignal1

DemodulatedSignal1

Piezo1

Piezo3

StringB1

StringS1

StringAudio1

StringB3

StringS3

StringAudio3 StringAudio4

StringS4

StringB4

StringAudio2

StringS2

StringB2

Piezo4

Piezo2

StringAudio3

StringAudio2Piezo2out

Piezo4out

Piezo1

Piezo2

Piezo3

Piezo4

Piezo3out

Piezo1out

StringAudio4

StringAudio1

Piezo1out Piezo2out

Piezo3out Piezo4out

BowSignal1

BowSignal2

BowSignal3

BowSignal4

FingerPos1a

FingerPos2a

FingerPos3a

FingerPos4a

AntennaInput4AntennaInput2

AntennaInput1

AntennaInput3

StringB1

FingerPos1a

StringB2

FingerPos2a FingerPos3a

StringB3 StringB4

FingerPos4a

C99947

.1uF

1
1

2
2

C999121

4.7uF

+5Vraw

GND
1

C1off
2

C1on
4

C2off
3

C2on
5

CON11

EIGHTH_STEREO

GND
1

C1off
2

C1on
4

C2off
3

C2on
5

CON9

EIGHTH_STEREO

GND
1

C1off
2

C1on
4

C2off
3

C2on
5

CON8

EIGHTH_STEREO

GND
1

C1off
2

C1on
4

C2off
3

C2on
5

CON10

EIGHTH_STEREO

GND
1

C1off
2

C1on
4

C2off
3

C2on
5

CON4

EIGHTH_STEREO

GND
1

C1off
2

C1on
4

C2off
3

C2on
5

CON5

EIGHTH_STEREO

R99910

100K

C9995

47pF

Antenna1

Antenna2

AntennaInput2

R99810

100K

C9985

47pF

Antenna1

Antenna2

AntennaInput3

R99710

100K

C9975

47pF

Antenna1

Antenna2

AntennaInput4

ANT1

MYHOLE

C999111

0.001uF

R99991

330K

R99992

82K

R99993

82K

R99994

330K

R99995

330K

R99996

82K

R99997

82K

R99998

330K

T2in
1

T1in
2

R1out
3

R1in
4

T1out
5

GND
6

Vcc
7

(V+) C1+
8

GND
9

(V-)CS-
10

C2+ (C2-)
11

V- (C2+)
12

C1 (C2+)
13

V+ (C1-)
14

C2+
15

C2-
16

V-
17

T2out
18

R2in
19

R2out
20

MAX233

MAX233

1

6

2

7

3

8

4

9

5

CON15

SerialConnector

+12VPIC

C999930

1uF

1

2

3

4

5

CON2

CON5

R1222

1K

BowSignal1ANALOG

R1282

1K

BowSignal3ANALOG

R1295

1K

BowSignal4ANALOG

R1232

1K

BowSignal2ANALOG

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD882

AD746

C881

0.002uF

R881

10K

R882

100K

P8881

5K

C882

.1uF

-12V

C883

.1uF

+12V

Antenna2

C884

0.002uF

R883

10K

R884

100K

P8882

5K

1

2

3

CON881

CON3

1

2

3

CON882

CON3

1

2

3

CON883

CON3

1

2

3

CON884

CON3

R1142

1K
FingerPos1aANALOG

R1162

1K
FingerPos2aANALOG

R1242

1K
FingerPos3aANALOG

R1252

1K
FingerPos4aANALOG

C1052

4.7uF

C952

4.7uF

C942

4.7uF

C912

4.7uF

C902

4.7uF

C852

4.7uF

C802

4.7uF

C722

4.7uF

C792

4.7uF

C642

4.7uF

C712

4.7uF

C542

4.7uF

C592

4.7uF

L1

LED

L2

LED

L3

LED R8884

1K

L5

LED

L4

LEDR8881

1K

R8882

1K

R8883

1K

R8885

1K

R672

1K

R682

1K

R832

1K

R842

1K

C953

.47uF

C943

.47uF

C932

.47uF

C922

.47uF

OUT1
1

-IN 1
2

+IN 1
3

V-
4

V+
8

Out2
7

-IN 2
6

+IN 2
5

AD142

AD746

R1042

1M

R1072

470K

R932

100k

R942

10k

P252

5K

+12V

C752

.1uF

-12V C762

.1uF

R1292

10K

R1293

10K

C771

.001uF

C772

.001uF

C774

.001uF

C773

.001uF

C775

22pF

C776

22pF

C778

22pF

C777

22pF

C661

4.7uF

R1

100K

C1

47pF

R9991

100K

C9991

47pF

R9981

100K

C9981

47pF

R9971

100K

C9971

47pF

C552

470pF

C551

470pF

C553

470pF

C554

470pF

C558

470pF

C557

470pF

C556

470pF

C555

470pF

1

2

3

4

5

6

7

8

9

10

11

12

CON1

CON12

1

2

3

4

5

6

7

8

9

10

11

12

CON3

CON12

+12VAUDIO

+12V

-12V

-12VAUDIO

+12VPIC

+12V

-12V

-12VPIC

1

2

3

4

5

6

7

8

9

10

11

12

CON771

CON12

R77771

1K

D91

DIODE

R77771

1K

D91

DIODE

R77772

1K

D92

DIODE

R777731K

D93

DIODE

R77774

1K

D94

DIODE

C77771

47pF

C77772

47pF

C77773

47pF

C77774

47pF

C77775

0.01uF

C77776

0.01uF

C77778

0.01uFC77777

0.01uF

C77779

0.001uF

Figure B-2: Violin/cello sensor board - schematic. See [WEB] for a digital copy of the

schematic.

B.2 Hardware packaging

B.2.1 Violin sensor board

The violin sensor board has been designed to accommodate any instrument of the violin

family (�g. B-3). It has been packaged

1. to be easily mounted on the di�erent instruments. All the analog data processing is

done on the sensor board. A microprocessor generates serial data that is wirelessly

transmitted (T) to a little receiver unit connecting to the network. Alternatively

the analog sensor data can be sent o� to a DAQ system (AD).

2. to be stand-alone. With a battery pack providing the operating power, the sens-

ing is wireless. In order for the audio recording to be wireless, o�-the-shelf audio

transmitters could be connected to any of the recording channels.

176

3. to easily be adapted to di�erent instrument geometries and tasks. The antenna ge-

ometry varies between violin (one antenna) and cello (two antennas). Little shorting

jumpers (AJ) connect any of the bow-sensing channels to any of the antennas.

4. in three functional parts: a) the analog bow and �ngerboard processing (AP), b) the

digital conversion and encoding of the sensor data (D), and c) the audio processing

for the string pickups (AU). Parts b) and c) can be powered down independently

with shorting jumpers (PJ) in order to reduce noise. In addition the audio part

(AU) can be cut o� to reduce the size of the board when only the sensor interface

is needed.

Fig. B-2 illustrates the schematic of the sensing board and the bow instrumentation,

Fig. B-3 shows the layout of the board. Supporting documents are available from [WEB].

B.2.2 Instrumenting violin and cello

Fig. 10-6 shows the sensing board mounted in the back of the cello and sensors mounted

on the violin. In the case of the violin, a single antenna mounted next to the bridge picks

up the four bow signals. The instrument is grounded through the copper-taped chin rest.

The cello instrumentation uses two antennas. One is mounted next to the bridge

and picks up the signal representing the bow-bridge distance and the pressure-modulated

signal. A second antenna running underneath the strings between �ngerboard and bridge

picks up the left-right bow signals. Unlike the violin, the cello does not require additional

ground return to the player.

B.2.3 Instrumenting the Marching Cello

The Marching Cello interface (�g. 10-16) uses the same sensor geometry as the instru-

mented RAAD cello. Two antennas are mounted on a little piece of �berglass. The

antenna piece is attached to the �ngerboard but can easily be removed and mounted on

any part of the player's body. The player decides if he bows his knee, leg, or belly

The �ngerboard consists of four strips of stainless steel mounted like cello strings. The

strips are connected in parallel. Every �nger position on any of the strings maps into a

unique voltage. Since there are no strings that can function as pickup electrodes for the

�nger position voltage, a copper-taped foil is mounted on top of the stainless steel. The

foil is held apart from the steel by thin spacing material on either side of the strip. When

the player pushes on the �ngerboard the foil makes contact with the stainless steel, but it

returns to its rest position immediately after release. Every string-electrode connects to

a separate signal-conditioning channel.

B.3 Sensor calibration

The sensor technology provides repeatable measurements at essentially millimeter and

millisecond resolution. However, the raw digital data needs a calibration step for a number

of reasons:

177

1. The numerical scaling of the raw sensor data is meaningless. For example, the bow

position should be given in units relative to a rest position, yet, the 12 bit ADC

spits out an arbitrary number between 0 and 4096. Meaningful scaling of the raw

values helps in the modeling process since often high-level information is needed to

understand and guide the model or to process special cases.

2. Di�erent ADC instrumentation is used for di�erent purposes. For data collection,

an o�-the-shelf data acquisition board is used, that allows for the simultaneous

collection of 13 channels (8 sensor channels + 5 audio channels) at 22050 kHz.2

Since separate audio and data collection boards are diÆcult to synchronize, this

solution is preferred to operating with a multitude of recording devices. For real-

time synthesis, an onboard ADC chip,3 a PIC-microprocessor, 4a one-way digital

radio chip,5 and a lightweight ethernet board6 are used to communicate the sensor

data to a PC running the model (updaterate � 50Hz).

3. Di�erent sensor instruments were used for recording and for interfacing to the model.

Data was collected on a violin and a cello. The synthesis interface was yet another

cello-like device (section B.2.3). Although the type of measurements and the sen-

sor technology were the same, the raw values di�ered due to di�erent instrument

geometries. Cross-synthesis between these input devices was only possible through

careful calibration to meaningful parameters.

4. Some of the measurements are distorted to start with, meaning that linear scaling

is not suÆcient to turn them into meaningful values. Fig. B-4 shows some raw

measurements and their transformation into the �nal calibrated information. It can

be seen how the bow-bridge distance is dependent on the bow position relative to the

strings. This is due to the �nite-length antenna running along the bow, which causes

signals to drop at the ends of the bow. Given the second measurement of left-right

bow position and a nonlinear mapping, this dependency can be eliminated. Hence

calibration also helps to eliminate unwanted artifacts of the measurement technology.

Instead of eliminating these e�ects one by one, we compensate for all of them in one

functional mapping of the raw sensor data.

Figure B-5 illustrates the calibration points of the bow position. A grid of 21 x 4

points is recorded (bow-string distance x bow-bridge distance). These points serve as

data points for a polynomial model. The targets correspond to a grid covering a two-

dimensional space ranging from 0 to 1 in each axis. Data and targets are used to train a

polynomial model, that is, a CWM model that is collapsed into a single cluster. Second

to �fth order polynomials were used. The raw data is projected onto meaningful position

data.

Since the resistive measurement of the �nger position is assumed linear, the �ngerboard

is mapped using two calibration points only: one semi-tone above the open-string and

2National Instruments DAQ Board , 16 bit, 500kBit/s, 16 channels
3MAXIM technologies, MAX186.
4Micorchip PIC16F84.
5Radiometrix TX/RX units.
6Filament board MIT Media Lab [OPH+00].

178

two octaves above the open string. A linear (CWM) model is used to map this interval

onto � 2 [1
12
p
2

1
4
], which corresponds to the appropriate wavelength modi�cation. The

frequency then equals

f = f0 � 1
�

(B.2)

where f0 is the frequency of the open string.

The CWM calibration approach has also been used to calibrate other computer-human

interface devices. Examples include the laser-range �nder [SP98] and a polyphonic
oor-

board for the Flying Karamazov Brothers [RSR+00].

179

Figure B-3: Violin/cello sensor board. Front and (vertically
ipped) back. AP: ana-

log processing; AU: audio processing; D: digital processing; T: transmitter unit; AD:

connector for analog data; PJ: power o� jumpers; AJ: antenna jumpers.

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2
x 10

4

fr
og

time [s]

0

1

2
x 10

4

tip

ra
w

 in
pu

t d
at

a

0

5000

10000

di
st

0.8

1

1.2
x 10

4

pr
es

0

1

2
x 10

4

A
−

st
rin

g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5000

10000

x−
po

s

−5000

0

5000

y−
po

s

ca
lib

ra
te

d
in

pu
t d

at
a

−200

0

200

ve
l

0

2000

4000

pr
es

s

0

5000

10000
fin

g−
po

s

Figure B-4: Raw violin input data, along with calibrated data, and high-level information.

181

Bridge

20 2 1 019

2

1

0

3

Figure B-5: Grid of measurement points in x and y direction for the bow calibration.

3
5
 4
9
 6
4

-

7
2

f
/
k
H
z

h
(
ω)

B
a
n
d
p
a
s
s

f
i
l
t
e
r

-

f
0

=

2
5

k
Hz

A
m
p
l
i
t
u
d
e

D
e
m
o
d
u
l
a
t
o
r

3
5
 4
9
 6
4

-

7
2

f
/
k
H
z

h
(
ω)

B
a
n
d
p
a
s
s

f
i
l
t
e
r

-

f
0

=

3
5

k
Hz

A
m
p
l
i
t
u
d
e

D
e
m
o
d
u
l
a
t
o
r

3
5
 4
9
 6
4

-

7
2

f
/
k
H
z

h
(
ω)

B
a
n
d
p
a
s
s

f
i
l
t
e
r

-

f
0

=

4
9

k
Hz

A
m
p
l
i
t
u
d
e

D
e
m
o
d
u
l
a
t
o
r

3
5
 4
9
 6
4

-

7
2

f
/
k
H
z

h
(
ω)

B
a
n
d
p
a
s
s

f
i
l
t
e
r

-

f
0

=

6
8

k
Hz

F
r
e
q
u
e
n
c
y

D
e
m
o
d
u
l
a
t
o
r

P
L
L

v
p
(
t
)

v
b
(
t
)

v
t
(
t
)

v
f
(
t
)

J
F
E
T

S
o
u
r
c
e
f
o
l
l
o
w
e
r

A
n
t
e
n
n
a

1
 A
n
t
e
n
n
a

2
 J
F
E
T

S
o
u
r
c
e
f
o
l
l
o
w
e
r

2
5
 2
5
 2
5
 2
5

2
5

k
Hz

Os
c
i
l
.

 4
9

k
Hz

Os
c
i
l
.

 6
4
-
7
2

k
Hz

Os
.

+
3
V

B
a
t
t
e
r
y

3
5

k
Hz

Os
c
i
l
.

Gr
o
u
n
d
r
e
t
u
r
n

t
r
o
u
g
h

b
o
d
y

C
a
p
a
c
i
t
i
v
e

C
o
u
p
l
i
n
g

Figure B-6: Functional diagram of the bow sensing technology.

182

Appendix C

Code

C.1 Cluster-weighted modeling implementations

C.1.1 Matlab interface

The following function declarations constitute the Matlab interface to the cwm-code. The

routines are commented in terms of input and output data structs that are visible to the

user. Two example programs are given, illustrating the core functionality of the code

(detection demo.m and prediction demo.m).

cwm.m trains a cwm model based on input-output training data. The function handles

discrete input data (w d) and real valued input data (w), as well as discrete output data

(y d) and real valued output data (y). It distinguishes between fast state vectors (x), and

slow state vectors (w). It also handles autoregressive time series predicition (dim x ar,

dim w ar).

%%

% cwm.m

% Bernd Schoner, (c) 1/99

%%

function [datapoints, datastat, clusters, hmmodel]= ...

cwm(w, w_d, x, y, y_d, nclusters, niterations, polyorder, covariance_w, covariance_y, ...

dim_w_ar, lag_w_ar, dim_x_ar, lag_x_ar, nmodels, graphics)

%%

%

% input data structs:

% w -- the input data matrix for the weighting (slow dynamics). w is of dimension number of

% points N times dim_w (weighting dimension).

% _ _

% | x11, x12, ..., x1D |

% w = | x21, x22, ..., x2D |

% | ..., ..., ..., ... |

% |_xN1, xN2, ..., xND_|

%

% w_d -- discrete input data. Each input in w_d effectively causes a different model to be

% built. w_d is of dimension N times dim_w_d.

% x -- the input matrix which the data regression is based on. x is of dimension N times dim_x

% (regression dimension).

% y -- the output matrix. y is of dimension N times dim_y, where the output is real

% valued.

% y_d -- discrete ouput data. Each different input in y_d defines a label which is predicted

183

% by the model. y_d is of dimension N times dim_y_d.

% nclusters -- scalar, >0. Number of clusters allocated.

% niterations -- scalar, >0 Number of Expectation-Maximization iterations. niterations should

% be chosen in a such a way that the data likelihood fully converges. If nclusters==1 =>

% niterations=1 .

% polyorder -- scalar, >=0. polynomial degree of the local models (0=constant, 1=linear,

% 2=quadratic ...).

% covariance_w -- =0: variance input clusters. =1: covariance input clusters.

% covariance_y -- =0: variance output clusters. =1: covariance output clusters.

% dim_w_ar -- number of lagged dimensions in the weighting domain. =0 for A typical

% non-time-series applications.

% lag_w_ar -- vector of lagged input values (length>=dim_w_ar);

% dim_x_ar -- number of lagged dimensions in the regression domain. =0 for A typical

% non-time-series applications.

% lag_x_ar -- vector of lagged input values (length>=dim_x_ar);

% nmodels -- number of HMM states if an HMM structure is used. if =0 no HMM is allocated.

% graphics -- =1: graphics are updated during iterations. =-1: no graphics,

% =0: graphics are shown after convergence.

%

% output data structs:

% datapoints -- struct containing the packaged data information.

% datastat -- struct containing mean and standard deviation of the input data.

% clusters -- struct containing cluster info of the converged model.

% hmmodel -- struct containing hmm info of the converged hmm model. Empty if nmodels==0.

%

%%

predict.m is the natural partner of cwm.m. It takes the model parameters generated by
cwm.m and predicts new output given new input. New input data should be allocated
using init datapoints.m.

%%

% predict.m

% B.Schoner, (c) 1/99

%%

function datapoints_pred = predict(datapoints, datastat, clusters, hmmodel, pointpred0freerunning1);

%%

%

% input data structs:

% datapoints -- struct containing the packaged data information.

% datastat -- struct containing mean and standard deviation of the input data.

% clusters -- struct containing cluster info of the converged model.

% hmmodel -- struct containing hmm info of the converged hmm model model. Empty if nmodels=0.

% pointpred0freerunning1 -- =0: pointprediction (autoregressive models), =1: freerunning

% iterative model.

%

% output data structs:

% datapoints_pred -- struct that contains the predicted data. The struct equals datapoints,

% except for the members y_pred and y_d_pred which contain the predicted continuous and

% discrete data.

%

%%

init datapoints.m should be used to allocated new (out-of-sample) input data, to be
used with predict.m.

%%

% init_datapoints.m

% Bernd Schoner, (c) 1/99

%%

184

function datapoints = init_datapoints(w, w_d, x, y, y_d, dim_w_ar, lag_w_ar, dim_x_ar, lag_x_ar)

%%

%

% input data structs:

% w -- the input data matrix for the weighting (slow dynamics). w is of dimension number of

% points N times dim_w (weighting dimension).

% _ _

% | x11, x12, ..., x1D |

% w = | x21, x22, ..., x2D |

% | ..., ..., ..., ... |

% |_xN1, xN2, ..., xND_|

%

% w_d -- discrete input data. w_d is of dimension N times dim_w_d.

% x -- the input matrix which the data regression is based on. x is of dimension N times dim_x.

% y -- the output matrix. y is of dimension N times dim_y.

% y_d -- discrete output data. Each different input in y_d defines a label which is predicted

% by the model. y_d is of dimension N times dim_y_d.

% dim_w_ar -- number of lagged dimensions in the weighting domain. =0 for a typical

% non-time-series applications.

% lag_w_ar -- vector of lagged input values (length>=dim_w_ar);

% dim_x_ar -- number of lagged dimensions in the regression domain. =0 for typical

% non-time-series applications.

% lag_x_ar -- vector of lagged input values (length>=dim_x_ar).

%

% output data structs:

% datapoints -- struct containing the packaged data information.

%

%%

plot model.m creates graphical output based on a trained model and a dataset.

%%

% plot_model.m

% Bernd Schoner, (c)1/99

%%

function plot_model(datapoints, clusters, hmmodel, ...

figure_number, inputdimensions)

%%

%

% input data structs:

% datapoints -- struct containing the packaged data information.

% datastat -- struct containing mean and standard deviation of the input data.

% clusters -- struct containing cluster info of the converged model.

% hmmodel -- struct containing hmm info of the converged hmm model model. Empty if nmodels=0.

% figure_number -- figure for graphics.

% inputdimensions -- input dimensions to plot. Two-dimensional vector [v1 v2],

% with 1<=vi<=dim_w.

%

%%

show detection results.m creates a classi�cation matrix for a detection problem.

%%

% show_detection_results.m

% Bernd Schoner, (c)1/99

%%

function show_detection_results(datapoints.y_d, datapoints.y_d_pred)

185

%%

%

% input data members

% datapoints.y_d -- discrete target vector.

% datapoints.y_d_pred -- predicted targets.

%

%%

detection demo.m reads in two-dimensional labeled data, builds a classi�er CWM model
and then labels the same data based on that model.

%%

% detection_demo.m

% Bernd Schoner, (c) 1/99

%%

clear all

%%%

% READ SYNTHETIC DATA FROM FILE

data_file_name='testdata.dat';

data_file=fopen(data_file_name,'r');

i=0;

while (1)

i=i+1;

itemp = fscanf(data_file,'%d',1);

if feof(data_file)

break

end

record(i,1) = itemp;

state(i,1) = fscanf(data_file,'%d',1);

data(i,1) = fscanf(data_file,'%f',1);

data(i,2) = fscanf(data_file,'%f',1);

end

N=i-1

%%%

% CHOOSE PARAMETERS

w=data;

w_d=[];

x=data;

y=[];

y_d=state;

dim_x_ar=0;

lag_x_ar=0;

dim_w_ar=0;

lag_w_ar=0;

nclusters=6;

niterations=15;

polyorder=0;

covariance_w=0;

covariance_y=0;

pointpred0freerunning1=0;

graphics=1;

nmodels=0;

%%%

% TRAIN THE MODEL

[datapoints, datastat, clusters, hmmodel]= cwm(w, w_d, x, y, y_d, nclusters, niterations, ...

polyorder, covariance_w, covariance_y, dim_w_ar, lag_w_ar, dim_x_ar, lag_x_ar, ...

nmodels, graphics);

186

%%%

% USE THE MODEL TO CLASSIFY DATA

datapoints_pred = predict(datapoints, datastat, clusters, hmmodel, pointpred0freerunning1);

%%%

% PLOT DETECTION MATRIX

show_detection_results(datapoints_pred.y_d, datapoints_pred.y_d_pred);

%%

prediction demo.m reads in a time series (Laser data, from the Santa Fe time series
competition) and builds an autoregressive model. It then predicts the time series in a
one-step-ahead scheme (point predictions) and in a freerunning scheme.

%%

% prediction_demo.m

% Bernd Schoner, (c) 1/99

%%

clear all

%%%

% LOAD LASER DATA

N=2000;

a=zeros(1,2*N);

data_file = fopen('a.dat','r');

for (i=1:2*N)

a(i)=fscanf(data_file,'%f',1);

end

fclose(data_file);

a=a';

%%%

% CHOOSE PARAMETERS

w=[];

w_d=[];

x=[];

y_d=[];

y=a(151:N+150);

dim_x_ar=4;

lag_x_ar=[10 10 10 10];

dim_w_ar=4;

lag_w_ar=[10 10 10 10];

nclusters=10;

niterations=15;

polyorder=1;

covariance_w=0;

covariance_y=0;

nmodels=0;

graphics=1;

%%%

% TRAIN THE MODEL

[datapoints, datastat, clusters, hmmodel]= cwm(w, w_d, x, y, y_d, nclusters, niterations, ...

polyorder, covariance_w, covariance_y, dim_w_ar, lag_w_ar, dim_x_ar, lag_x_ar, ...

nmodels, graphics);

187

%%%

% POINT-PREDICT LASER DATA

pointpred0freerunning1=0;

datapoints = predict(datapoints, datastat, clusters, hmmodel, pointpred0freerunning1);

y_pointpredicted=datapoints.y_pred;

%%%

% PREDICT FREERUNNING LASER DATA

pointpred0freerunning1=;

datapoints = predict(datapoints, datastat, clusters, hmmodel, pointpred0freerunning1);

y_freepredicted=datapoints.y_pred;

%%%

% PLOT THE DATA

figure(1)

clf

subplot(3,1,1)

plot(y)

ylabel('original laser signal')

zoom xon

subplot(3,1,2)

plot(y_pointpredicted(1:N))

ylabel('point predicted signal')

zoom xon

subplot(3,1,3)

plot(y_pointpredicted(1:N))

ylabel('predicted freerunning signal')

zoom xon

%%

C.1.2 C interface

The following function declarations constitute the C interface to the cwm-code. The

routines are commented in terms of the input and output data structs, visible to the user.
cwm() trains a cwm model based on input-output training data. The function handles

discrete input data (*x d) and real valued input data (*x) as well as discrete output
data (*y d) and real valued output data (*y). It distinguishes between fast state vectors
(*x) and slow state vectors (*w). It also handles autoregressive time series predicition
(dim x ar, dim w ar).

/***

* cwm20.c

* B. Schoner, (c) 3/99

***/

int cwm(struct s_clust *clust, struct s_hmm *hmm, struct s_datastatistics *datastatistics,

int ndatapoints, int dim_w, double *w, int dim_w_d, int *w_d,

int dim_x, double *x, int dim_y, double *y, int dim_y_d, int *y_d,

int dim_w_ar, int dim_x_ar, int *lag_w_ar, int *lag_x_ar,

int nclusters, int niterations, int polyorder,

int covariance_w, int covariance_y, int nmodels);

/***

* input data structs:

* dim_w -- number of weighting dimensions (slow dynamics).

* w -- the input data matrix for the weighting. w is of length number of points N times dim_w

*

188

* w = | x11, x12, ..., x1D, x21, x22, ..., x2D, ... ,xN1, xN2, ..., xND|

*

* This order is the same for the vectors to follow.

* dim_w_d -- number of discrete input dimensions.

* w_d -- discrete input data. Each input in w_d effectively causes a different model

* to be built. w_d is of length N times dim_w_d.

* dim_x -- number of regression dimensions.

* x -- the input matrix which the data regression is based on. x is of length N times dim_x

* (regression dimension).

* dim_y -- number of real valued output dimensions.

* y -- the output matrix. y is of length N times output dimension, where the output is real

* valued.

* dim_y_d -- number of discrete valued output dimensions.

* y_d -- discrete ouput data. Each different input in y_d defines a label which is predicted

* by the model. y_d is of length N times dim_y_d.

* nclusters -- scalar, >0, number of clusters allocated.

* niterations -- scalar, >0 number of Expectation-Maximization iterations. niterations should

* be chosen in a such a way that the model fully converges. If nclusters==1 =>

* niterations=1 .

* polyorder -- scalar, >=0. polynomial degree of the local models (0=constant, 1=linear, ...).

* covariance_w -- =0: variance input clusters. =1: covariance input clusters .

* covariance_y -- =0: variance output clusters. =1: covariance output clusters .

* dim_w_ar -- number of lagged dimensions in the weighting domain. =0 for typical

* non-time-series applications.

* lag_w_ar -- vector of lagged input values (length>=dim_w_ar);

* dim_x_ar -- number of lagged dimensions in the regression domain. =0 for typical

* non-time-series applications.

* lag_x_ar -- vector of lagged input values (length>=dim_x_ar);

* nmodels -- number of HMM states if an HMM structure is used. if =0, no HMM is allocated.

*

* output data structs:

* clust -- struct containing cluster info of the converged model.

* hmm -- struct containing hmm info of the converged hmm model model. Empty if nmodels=0.

* datastatistics -- struct containing mean and standard deviation of the input and output data.

*

***/

predict() is the natural partner of cwm(). It takes the model parameters generated by
cwm() and predicts new output given new input.

/***/

int predict(struct s_clust *clust, struct s_hmm *hmm, struct s_datastatistics *datastatistics,

int ndatapoints, double *w, int *w_d, double *x, double *y, int *y_d,

double *y_pred, int *y_d_pred, int pointpred0freerunning);

/**

*

* input data structs:

* clust -- struct containing cluster info of the converged model.

* hmm -- struct containing hmm info of the converged hmm model model. Empty if nmodels=0.

* datastatistics -- struct containing mean and standard deviation of the input and output data.

*

* w -- the input data matrix for the weighting. w is of length number of points N times dim_w.

* w_d -- discrete input data. w_d is of length N times dim_w_d.

* x -- the input matrix which the regression is based on. x is of length N times dim_x.

* y -- the output matrix. y is of length N times dim_y.

* y_d -- discrete output data. y_d is of length N times dim_y_d.

* pointpred0freerunning1 -- =0: pointprediction, =1: freerunning iterative model.

*

* output data structs:

* y_pred -- the output vector y is of length number of points N times dim_y.

* y_d_pred -- discrete output vector. y_d is of length number of points times dim_y_d.

*

189

***/

The following data structs are allocated by the user.

/***

* visible data structs

***/

struct s_clust {

int dim_w;

int dim_w_d;

int dim_w_ar;

int lag_w_ar[DIM_W_TOTAL_MAX];

int dim_x;

int dim_x_ar;

int lag_x_ar[DIM_X_TOTAL_MAX];

int dim_y;

int dim_y_d;

int polyorder;

int covariance_w;

int covariance_y;

int nclasses_w_d_total;

int nclasses_w_d[DIM_W_D_MAX];

int nclasses_y_d[DIM_Y_D_MAX];

int nc_classes_total;

int npolynomials;

int nclusters;

double **inputmean;

double ***inputcovariance;

double ***outputcovariance;

double ***outputmodel;

double **inputdistribution;

double ***outputdistribution;

int **exponents;

double ***A;

};

struct s_hmm {

int nmodels;

int nclusters_per_model;

int *modelindex;

double *PI;

double **a;

};

struct s_datastatistics {

double *mean_w;

double *mean_x;

double *mean_y;

double *var_w;

double *var_x;

double *var_y;

};

/**/

C.2 Sinusoidal synthesis

The class c ss is used for real-time sinusoidal synthesis.

190

/**/

#define SAMPLE_RATE 22050

#define FRAME_SIZE 256

#define NHARMONICS 25

#define PI 3.141592654

struct s_state

{

float old_amplitudes[NHARMONICS];

float old_frequencies[NHARMONICS];

float phase[NHARMONICS];

};

class c_ss

{

public:

/***

* use init() to initialize the class

***/

int init();

/**/

* use update() when new input data is available (86 time per second)

*

* amplitudes -- vector of new amplitudes (HAMRONICS long).

* frequencies -- vector of new frequencies (NHARMONICS long).

* audio_scaling -- static scaling of the output.

* samples -- vector contains the updated samples (FRAME_SIZE long).

***/

int update(float *amplitudes, float *frequencies, float audio_scaling, short *samples);

/**/

private:

struct s_state state;

float delta_amp[NHARMONICS];

float delta_freq[NHARMONICS];

float phase[NHARMONICS];

float float_samples[FRAME_SIZE];

float twopi_over_sample_rate;

};

/**/

C.3 Wavetable synthesis

The class c cws is used for real-time wavetable synthesis (CWS).

/**/

#define SAMPLE_RATE 22050

#define FRAME_SIZE 256

#define NTHREADS_MAX 2

#define NFRAMES_PER_CHANGE_MAX 35

#define FADER_ENVELOPE_LENGTH 512

#define NZERO_CROSSINGS 10

#define NFRAMES_MIN_PER_CHANGE 15

#define NSAMPLES_PER_ZERO_CROSSING 256

#define PI 3.141592654

191

struct cws_state

{

int ncurrent_audio_threads;

int current_file_index[NTHREADS_MAX];

int current_sample_index[NTHREADS_MAX];

int nframes_since_last_change;

float new_frame_target_pitch;

float old_frame_target_pitch;

float new_frame_target_envelope;

float old_frame_target_envelope;

int old_file_index;

int old_sample_index;

int file_index[NTHREADS_MAX];

int sample_index[NTHREADS_MAX];

float sample_pointer[NTHREADS_MAX];

int fader_index;

};

class c_cws

{

public:

/***

* use init() to initialize the class

*

* data_filename -- files holding the CWS model and sample sequences.

*

***/

int init(char data_filename[]);

/**/

* use update() when new input data is available (86 time per second)

*

* envelope -- target envelope of the new frame.

* pitch -- target pitch of the new envelope.

* cluster_index -- index of cluster selected to present the model.

* audio_scaling -- static scaling of the output.

* samples -- vector contains the updated samples (FRAME_SIZE long).

*

***/

int update(float envelope, float pitch, int cluster_index,

float audio_scaling, short *samples);

/**/

int find_sample_pointer(int new_file_index, int new_sample_index, float *new_sample_pointer,

int old_file_index, float old_sample_pointer);

int resample(int file_index, float *target_pitch, float *target_envelope,

float old_sample_pointer, float *new_sample_pointer, int nsamples, float *new_samples,

int *old_indeces);

int clear_buffers();

private:

struct cws_state state;

struct cws_param param;

float **audio_data;

float **pitch_data;

float **envelope_data;

192

float target_pitch[FRAME_SIZE];

float target_envelope[FRAME_SIZE];

float delta_target_pitch;

float delta_target_envelope;

float thread_target_envelope[NTHREADS_MAX][FRAME_SIZE];

float envelope_scaling[NTHREADS_MAX][FRAME_SIZE];

float pitch_scaling[NTHREADS_MAX][FRAME_SIZE];

float fadein_envelope[FADER_ENVELOPE_LENGTH];

float fadeout_envelope[FADER_ENVELOPE_LENGTH];

float new_samples[FRAME_SIZE];

float float_samples[FRAME_SIZE];

int old_indeces[FRAME_SIZE];

int resample_buffer_coeffs[2*NZERO_CROSSINGS+1];

float resample_buffer[4*NZERO_CROSSINGS*NSAMPLES_PER_ZERO_CROSSING+1];

};

/**/

193

Bibliography

[AKN92] Shunichi Amari, Koji Kurata, and Hiroshi Nagaoka. Information geometry of

boltzmann machines. IEEE Transactions on Neural Networks, 3(2):260{271,

1992.

[Ama95] Shunichi Amari. Information Geometry of the EM and em Algorithms for

Neural Networks. Neural Networks, 8(9):1379{1408, 1995.

[Arf79] D. Ar�b. Digital synthesis of complex spectra by means of multiplication of

non-linear distorted sine waves. Journal of the Audio Engineering Society,

pages 757{779, 1979.

[Ass60] Amrican Standarts Association. American standart acoustical terminology.

de�nition 12.9. timbre, 1960.

[Bar93] Andrew R. Barron. Universal approximation bounds for superpositions of a

sigmoidal function. IEEE Transactions on Information Theory, 39:930{945,

1993.

[Bas80] M. Bastiaans. Gabor's expansion of a signal into gaussian elementary signals.

Proceedings of the IEEE, 68:538{539, 1980.

[Bas85] M. Bastiaans. On the sliding-window representation of signals. IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, 33(4):868{873, 1985.

[Bea82] J.W. Beauchamp. Synthesis by spectral amplitude and `brightness' match-

ing of analyzed musical instrument tones. J.Audio.Eng.Soc., 30(6):396{406,

1982.

[Bea93] J.W. Beauchamp. Unix workstation software for analysis, graphics, modi�-

cation, and synthesis of musical sounds. Audio Engineering Society Preprint,

(3479, L1-7), 1993.

[BH92] Robert Grover Brown and Patrick Y.C. Hwang. Introduction to Random

Signals and Applied Kalman Filtering. New York, New York, 2nd edition,

1992.

[BJ76] G.E.P. Box and G.M. Jenkins. Time Series Analysis: Forecasting and Con-

trol. Holden-Day, 1976.

194

[BJ95] Robert Bristow-Johnson. A detailed analysis of a time-domain formant-

corrected pitch-shifting algorithm. J. Audio Eng. Soc., 43(5):340{352, 1995.

[Bla73] John Blacking. How musical is man? University of Washington Press,

Seattle and London, 1973.

[BNP] M. Brand, N.Oliver, and A. Pentland. Coupled hidden markov models for

complex action recognition. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, Puerto Rico.

[Bos99] Mark Vanden Bossche, 1999. Personal communication.

[BP93] J.C. Brown and M.S. Puckette. A high resolution fundamental frequency

determination based on phase changes of the fourier transform. J. Acoust.

Soc. Am., 94(2):662{667, 1993.

[Bro99] J.C. Brown. Musical instrument identi�cation using pattern recognition with

cepstral coeÆcients as features. J. Acoust. Soc. Am., 105(3):1933{1941, 1999.

[BS91] I.N. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik.

Nauka/Teubner/Deutsch, 25th edition, 1991.

[BS95] A.J. Bell and T.J. Sejnowski. An information-maximization approach to

blind separation and blind deconvolution. Neural Computation, 7(6):1129{

1159, 1995.

[Bun94] W.L. Buntine. Operations for learning with graphical models. Journal of

Arti�cial Intelligence Research, 2:159{225, 1994.

[Bun96] W.L. Buntine. A guide to the literature on learning probabilistic networks

from data. IEEE Transactions on Knowledge and Data Engineering, 1996.

[Cas92] Martin Casdagli. A dynamical systems approach to modeling input-output

systems. In M. Casdagli and S. Eubank, editors, Nonlinear Modeling and

Forecasting, Santa Fe Institute Studies in the Sciences of Complexity, pages

265{281, Redwood City, 1992. Addison-Wesley.

[CD88] W.S. Cleveland and S.J. Devlin. Regression analysis by local �tting. J. A.

Statist. Assoc., 83:596{610, 1988.

[Cho73] J. Chowning. The synthesis of complex audio spectra by means of frequency

modulation. Journal of the Audio Engineering Society, 21(7):526{534, 1973.

[CM89] F. Charpentier and E. Moulines. Pitch-Synchronous Waveform Prosessing

Techniques for Text-to-Speech Synthesis Using Diphones. In Proceedings of

Eurospeech 89(2), pages 13{19, 1989.

[Cre84] Lothar Cremer. The Physics of the Violin. MIT Press, Cambridge, Mas-

sachusetts, 1984.

195

[CS86] F. Charpentier and M. Stella. Diphone Synthesis Using an Overlap-Add

Technique for Speech Waveforms Concatenation. In Proc. ICASSP, pages

2015{2018, 1986.

[CS94] R.R. Coifman and N. Saito. Constructions of local orthonormal bases for

classi�cation and regression. Comptes Rendus Acad. Sci. Paris, Serie I,

2:191{196, 1994.

[CT91] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley

& Sons, Inc., New York, 1991.

[CW92] R.R. Coifman and M.W. Wickerhauser. Entropy-based algorithms for best

basis selection. IEEE Transactions on Information Theory, 38:713{718,

1992.

[dA47] J.l.R. d' Alembert. Investigation of the Curve formed by a Vibrating String.

In Acoustics: Historical and Philosophical Development. Dowden, Hutchin-

son and Ross, Stroudsburg, 1747.

[Dau88] I. Daubechies. Orthonormal basis of compactly supported wavelets. Comm.

Pure Applied Math., 41:909{996, 1988.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood From

Incomplete Data via the EM Algorithm. J. R. Statist. Soc. B, 39:1{38, 1977.

[DPR91] G. DePoli, A. Piccialli, and C. Roads. Representations of Musical Signals.

MIT Press, 1991.

[FGN92] F. Filicori, G. Ghione, and C.U. Naldi. Physics based electron device mod-

eling and computer-aided mmic design. IEEE Transactions on Microwave

Theory and Techniques, 40/7:1333{1352, 1992.

[FR97] Fletcher and Rosig. The Physics of Musical Instruments. Springer, New

York, 1997.

[Gab46] D. Gabor. Theory of communication. Journal of the Institute of Electrical

Engineers, Part III(93):429{457, 1946.

[Gab47] D. Gabor. Acoustical quanta and the theory of hearing. Nature,

159(1044):591{594, 1947.

[Ger89] Neil A. Gershenfeld. An experimentalist's introduction to the observation of

dynamical systems. In Bai-Lin Hao, editor, Directions in Chaos, volume 2,

pages 310{384. World Scienti�c, 1989.

[Ger96] Neil Gershenfeld. Signal entropy and the thermodynamics of computation.

IBM Systems Journal, 35:577{587, 1996.

[Ger99a] Neil Gershenfeld. The Nature of Mathematical Modeling. Cambridge Uni-

versity Press, New York, 1999.

196

[Ger99b] Neil Gershenfeld. When things start to think. Henry Holt, New York, 1999.

[Ger00a] Neil Gershenfeld, 2000. personal communication.

[Ger00b] Neil Gershenfeld. The Physics of Information Technology. Cambridge Uni-

versity Press, New York, 2000.

[GJ96] Zoubin Ghahramani and M.I. Jordan. Factorial hidden markov models. Ad-

vances in Neural Information Processing Systems, 8, 1996.

[GJP95] Frederico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory

and neural networks architectures. Neural Computation, 7:219{269, 1995.

[GK92] G.N. Georgiou and C. Koutsougeras. Complex domain backpropagation.

IEEE Trans. Circuits Syst. Part II: Analog and Digital Signal Processing,

39:330{334, 1992.

[Gre78] J. Grey. Timbre discrimination in musical patterns. Journal of the Acoustical

Society of America, 64:467{472, 1978.

[GSM99] Neil A. Gershenfeld, Bernd Schoner, and Eric Metois. Cluster-weighted mod-

eling for time series analysis. Nature, 379:329{332, 1999.

[GW93] Neil A. Gershenfeld and Andreas S. Weigend. The future of time series:

Learning and understanding. In Andreas S. Weigend and Neil A. Gershen-

feld, editors, Time Series Prediction: Forecasting the Future and Under-

standing the Past, Santa Fe Institute Studies in the Sciences of Complexity,

pages 1{63, Reading, MA, 1993. Addison{Wesley.

[Hay96] Simon Haykin. Adaptive Filter Theory. Prentice-Hall, Upper Saddle River

NJ, 3rd edition, 1996.

[Hay99] Simon Haykin. Neural Networks. Prentice-Hall, Upper Saddle River NJ,

1999.

[HD96] D. Hoernel and P. Degenhardt. A neural organist improvising baroque-style

melodic variations. In Proceedings International Computer Music Confer-

ence, pages 59{62, Thessaloniki, Greece, 1996.

[Hib99] Michele Hibon, 1999. Personal communication.

[HKCH97] J.M. Hajda, R.A. Kendall, E.C. Carterette, and M.L. Harshberger. Method-

ological Issues in Timbre Research. In I. Deliege and J. Sloboda, editor,

Perception and Cognition of Music. Psychology Press, East Essex, UK, 1997.

[HM98] D. Hoernel and W. Menzel. Learning musical structure and style with neural

networks. Computer Music Journal, 22(4):44{62, 1998.

[HM00] M. Hibon and S. Makridakis. M3 - competition. International Journal of

Forecasting, 2000. to appear.

197

[Hou97] A.J.M. Houtsma. Pitch and timbre: De�nition, meaning and use. Journal

of New Music Research, 26:104{115, 1997.

[HR96] D. Hoernel and T. Ragg. Learning musical structure and style by recogni-

tion, prediction and evolution. In Proceedings International Computer Music

Conference, pages 59{62, Hong Kong, 1996.

[Hun92] Norman F. Hunter. Application of nonlinear time-series models to driven

systems. In M. Casdagli and S. Eubank, editors, Nonlinear modeling and

forecasting. Addison-Wesley, 1992.

[HW95] D. Heckerman and M. Wellman. Bayesian Networks. Communications of

the Association Machinery. 1995.

[HWAT93] Udo H�uebner, Carl-Otto Weiss, Neal Abraham, and Dingyuan Tang. Lorenz-

like chaos in nh3-�r lasers. In Andreas S. Weigend and Neil A. Gershenfeld,

editors, Time Series Prediction: Forecasting the Future and Understanding

the Past, Santa Fe Institute Studies in the Sciences of Complexity, pages

73{105, Reading, MA, 1993. Addison{Wesley.

[JGJS99] M.I. Jordan, Z. Ghahramani, T.S. Jaakola, and L.K. Saul. An introduction

to Variational Methods for Graphical Models. Machine Learning, 1999.

[JJ94] M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM

algorithm. Neural Computation, 6:181{214, 1994.

[JJS93] N. Jayant, J.Johnson, and R. Safranek. Signal compression based on models

of human perception. Proc. IEEE, 81(10):1385{1422, 1993.

[JLO90] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in recursive

graphical models by local computation. Computational Statistics Quaterly,

4:269{282, 1990.

[Jor98a] Michael Jordan, editor. Learning in Graphical Models. MIT Press, Cam-

bridge, Massachusetts, 1998.

[Jor98b] Michael I. Jordan. Graphical models and variational approximation, 1998.

Tutorial slides.

[KMG91] R. Kronland-Martinet and A. Grossman. Application of time-frequency

and time-scale methods (wavelet-transforms) to the analysis, synthesis, and

transformation of natural sounds. In G. DePoli, A. Piccialli, and C. Roads,

editors, Representations of Musical Signals, pages 45{85. MIT Press, 1991.

[Lar98] Jean Laroche. Time and pitch scale modi�cation of audio signals. In

M. Kahrs and K. Brandenburg, editors, Applications of Digital Signal Pro-

cessing to Audio and Acoustics. Kluwer Academic Publishers, Boston, 1998.

[LeB79] M. LeBrun. Digital waveshaping synthesis. Journal of the Audio Engineering

Society, pages 250{266, 1979.

198

[Len89] K. Lent. An eÆcient method for pitch shifting digitally sampled sounds.

Computer Music Journal, 13:65{71, 1989.

[LS88] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabil-

ities on graphical structures and their application to expert systems (with

discussion). Journal of the Royal Statistical Society, Series B, 50:157{224,

1988.

[LSM00] Tuomas Lukka, Bernd Schoner, and Alec Marantz. Phoneme discrimination

from meg data. Elsevier Journal for Neuroscience, Special Issue on Neural

Computation, 2000.

[Mac92] Tod Machover. Hyperinstruments. A Progress Report 1987-1991. Technical

report, MIT Media Laboratory, 1992.

[Mag00] Yael Maguire, 2000. Personal communication.

[Mar99] Keith Dana Martin. Sound-Source Recognition. A Theory and Computational

Model. PhD thesis, MIT Media Lab, 1999.

[Mas98] Dana C. Massie. Wavetable sampling synthesis. In Mark Kahrs and Karl-

heinz Brandenburg, editors, Applications of Digital Signal Processing to Au-

dio and Acoustics, pages 311{341. Kluwer Academic Publishers, 1998.

[Met96] Eric Metois. Musical Sound Information. Musical Gestures and Embedding

Synthesis. PhD thesis, MIT Media Lab, 1996.

[Mey92] H. Meyr. Regelungstechnik und Systemtheory I und II. RWTH Aachen,

Aachen, 1992.

[MG76] J.D. Markel and A.H. Gray. Linear prediction of speech. Springer-Verlag,

New York, 1976.

[MGOP+97] B. Mallet-Guy, Z. Ouarch, M. Prigent, R. Quere, and J. Obregon. A dis-

tributed, measurement based, nonlinear model of fets for high frequencies

applications. In Microwave Symposium Digest of IEEE 1997 MTT-S Inter-

national, pages 869{872, New York, 1997. IEEE.

[Min85] Marvin Minsky. The Society of Mind. Touchstone, New York, 1985.

[Moo78] J.A. Moorer. The use of the linear prediction of speech in computer music

application. Rapport IRCAM, 6, 1978.

[MQ85] R.J. McAulay and T.F. Quatieri. Speech analysis/synthesis based on a si-

nusoidal representation. Technical Report 693, Massachusetts Institute of

Technology / Lincoln Laboratory, Cambridge, MA, 1985.

[MQ86] R.J. McAulay and T.F. Quatieri. Speech analysis/synthesis based on a sinu-

soidal representation. IEEE Transactions on Acoustics, Speech and Signal

Processing, ASSP-34 No.4:744{754, 1986.

199

[MSD97] A.W. Moore, J. Schneider, and K. Deng. EÆcient locally weighted polyno-

mial regression predictions. 1997.

[Nea96] Radford M. Neal. Bayesian Learning for Neural Networks. Springer, New

York, 1996.

[NH93] Radford M. Neal and Geo�rey E. Hinton. A new view of the em algorithm

that justi�es incremental and other variants, 1993.

[OHR91] R. Orton, A. Hunt, and R.Kirk. Graphical control of granular synthesis using

cellular automata and the freehand program. In Proceedings International

Computer Music Conference, pages 416{418, San Franzisco, 1991.

[Oja83] E. Oja. Subspace Methods of Pattern Recognition. Research Studies Press,

New York, 1983.

[Oli00] Nuria M. Oliver. Towards Perceptual Intelligence: Statistical Modeling of

Human Individual and Interactive Behaviors. PhD thesis, MIT Media Lab,

2000.

[OPH+00] O. Omojola, R. Post, M. Hancher, Y. Maguire, R. Pappu, B. Schoner,

P. Russo, R. Fletcher, and N. Gershenfeld. An installation of interactive

furniture. IBM Systems Journal, 2000. To appear.

[OS89] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Pren-

tice Hall, Englewood Cli�s, NJ, 1989.

[OW83] A.V. Oppenheim and A.S. Willsky. Signals and Systems. Prentice Hall,

Englewood Cli�s, NJ, 1983.

[Pea87] Judea Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of

Plausible Inference. Morgan Kaufman, 1987.

[Pet76] T.L. Petersen. Analysis-Synthesis as a Tool for Creating New Families of

Sound. In Proc. of the 54th. Conv. Audio Engineering Society, Los Angeles,

1976.

[PG97] Joseph A. Paradiso and Neil Gershenfeld. Musical applications of electric

�eld sensing. Computer Music Journal, 21(2):69{89, 1997.

[Pop97] K. Popat. Conjoint Probabilistic Subband Modeling. PhD thesis, MIT Media

Lab, 1997.

[PP93] K. Popat and R.W. Picard. Novel cluster-based probability model for texture

synthesis, classi�cation, and compression. Proceedings of the SPIE, 2094,

pt.2:756{68, 1993. Visual Communications and Image Processing '93.

[PR99] Geo�rey Peeters and Xavier Rodet. SINOLA: A New Analysis/Synthesis

Method using Spectrum Peak Shape Distortion, Phase and Reassigned Spec-

trum. In Proc. ICMCs, Beijing, 1999.

200

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes in C: The Art of Scienti�c Computing. Cam-

bridge University Press, New York, 2nd edition, 1992.

[PYP+96] D. Poeppel, E. Yellin, C. Phillips, T.P.L. Roberts, H.A. Rowley, K. Wexler,

and A. Marantz. Task-induced asymmetry of the auditory evoked m100

neuromagnetic �eld elicited by speech sounds. Cognitive Brain Research,

4:231{242, 1996.

[QM98] T.F. Quatieri and R.J. McAulay. Audio signal processing based on sinusoidal

analysis/synthesis. In M. Kahrs and K. Brandenburg, editors, Applications

of Digital Signal Processing to Audio and Acoustics. Kluwer Academic Pub-

lishers, Boston, 1998.

[Rab89] Lawrence R. Rabiner. A tutorial on hidden markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77:257{286,

1989.

[RD82] J.-C. Risset and Wessel D.L. Exploration of timbre analysis and synthesis.

In D. Deutsch, editor, The Psychology of Music, pages 26{58. New York:

Academic, 1982.

[Ris69] J.-C. Risset. Catalog of computer-synthesized sound. Bell Telephone Labo-

ratories, Murray Hill, 1969.

[RJ86] L.R. Rabiner and B.H. Juang. An introduction to hidden markov models.

IEEE ASSP Magazine, pages 4{16, 1 1986.

[Roa91] C. Roads. Asynchronous granular synthesis. In G. DePoli, A. Piccialli, and

C. Roads, editors, Representations of Musical Signals, pages 143{185. MIT

Press, 1991.

[Roa95] Curtis Roads. The computer music tutorial. MIT Press, 1995.

[RSR+00] M. Reynolds, B. Schoner, J. Richards, K. Dobson, and N. Gershenfeld. A

polyphonic
oor, 2000. preprint.

[Sai94] Naoki Saito. Local Feature Extraction and Its Applications Using a Library

of Basis. PhD thesis, Yale University, 1994.

[SBDH97] J. Stark, D.S. Broomhead, M.E. Davies, and J. Huke. Taken's embedding

theorem for forces and stochastic systems. Nonlinear Anal., 30:5303{5314,

1997.

[SCDG99] B. Schoner, C. Cooper, C. Douglas, and N. Gershenfeld. Data-driven mod-

eling of acoustical instruments. Journal for New Music Research, 28(2):417{

466, 1999.

[Sch73] J.C. Schelleng. The bowed string and the player. J. Acoust. Soc. America,

53:26{41, 1973.

201

[Sch77] Pierre Schae�er. Trait�e des objects musicaux. Edition du Seuil, Paris, 1977.

[Sch89] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. John

Wiley and Sons, Inc., New York, 1989.

[Sch96] Bernd Schoner. State reconstructiion for determining predictability in driven

nonlinear acoustical systems. Master's thesis, MIT/RWTH Aachen, 1996.

[Sch00] Eric Scheirer. Music Listening Systems. PhD thesis, MIT Media Lab, 2000.

[Ser89] Xavier Serra. A system for Sound Analysis/Transformation/Synthesis Based

on a Deterministic Plus Stochastic Decomposition. PhD thesis, CCRMA,

Department of Music, Stanford University, 1989.

[SG00] Bernd Schoner and Neil Gershenfeld. Cluster-weighted modeling: Probabilis-

tic time series prediction, characterization and synthesis. In Alistair Mees,

editor, Nonlinear Dynamics and Statistics. Birkhaeuser, Boston, 2000.

[SJ96] L. Saul and M.I. Jordan. Exploiting tractable substructures in intractable

networks. Advances in Neural Information Processing Systems, 8:486{492,

1996.

[SJJ96] L. Saul, T. Jaakkola, and M.I. Jordan. Mean�eld theory for sigmoid belief

networks. Journal of Arti�cial Intelligence, 4:61{76, 1996.

[Sma97] Paris Smaragdis. Information theoretic approaches to source separation.

Master's thesis, MIT Media Lab, 1997.

[Smi92] Julius O. Smith. Physical modeling using digital waveguides. Computer

Music Journal, 6(4), 1992.

[Smi98] Julius O. Smith. Principles of digital waveguide models of musical instru-

ments. In Marc Kahrs and Karlheinz Brandenburg, editors, Applications

of Digital Signal Processing to Audio and Acoustics, pages 417{466. Kluwer

Academic Publishers, 1998.

[SP84] J.O. Smith and P.Gosset. A
exible sampling-rate conversion method. Acous-

tics, Speech, and Signal Processing, 2:19.4.1{19.4.2, 1984.

[SP98] Joshua Strickon and Joseph Paradiso. Tracking hands above large interactive

surfaces with a low-cost scanning laser range�nder. In CHI98, Extended

Abstracts, pages 231{232, New York, 1998. ACM Press.

[SS87] J.O. Smith and X. Serra. An analysis/synthesis program for non-harmonic

sounds based on sinusoidal representation. In Proceedings International

Computer Music Conference, pages 290{297, San Francisco, 1987.

[SS90] Xavier Serra and Julius O. Smith. Spectral modeling synthesis: A sound

analysis/synthesis system based on a deterministic plus stochastic decompo-

sition. Computer Music Journal, 14(4):12{24, 1990.

202

[STH99] R. Sullivan, A. Timmermann, and H.White. Data snooping, technical trading

rule performance, and the bootstrap. Journal of Finance, 54:1647{1692,

1999.

[Tak81] Floris Takens. Detecting strange attractors in turbulence. In D.A. Rand

and L.S. Young, editors, Dynamical Systems and Turbulence, volume 898 of

Lecture Notes in Mathematics, pages 366{381, New York, 1981. Springer-

Verlag.

[TC99] Dan Trueman and Perry R. Cook. BoSSA: The Deconstructed Violin Recon-

structed. In Proceedings International Computer Music Conference, Beijing,

1999.

[TL91] Peter M. Todd and D. Gareth Loy, editors. Music and Connectionism. MIT

Press, 1991.

[Tur36] A.M. Turing. Proc. London Math. Soc., 42:1134{1142, 1936.

[VB94a] F. Verbeyst and M. Vanden Bossche. Viomap, the s-parameter equivalent

for weakly nonlinear rf and microwave devices. In Microwave Symposium

Digest of IEEE 1994 MTT-S International, pages 1369{1372, New York,

1994. IEEE.

[VB94b] F. Verbeyst and M. Vanden Bossche. The volterra input-output map of a

high frequency ampli�er as a practical alternative to load-pull measurements.

In Conference Proceedings TMTC'94, pages 81{85, New York, 1994. IEEE.

[VMT91] H. Valbret, E. Moulines, and J. Tubach. Voice Transformation Using PSOLA

Techique. In Proceedings of Eurospeech 91(1), pages 345{348, 1991.

[Wat95] John Watkinson. Compression in video and audio. Focal Press, Oxford,

1995.

[WB98] A. Wilson and A. Bobick. Nonlinear phmms for the interpretation of param-

eterized gesture. Computer Vision and Pattern Recognition, 1998.

[WB99] A. Wilson and A. Bobick. Parametric hidden markov models for gesture

recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 21(9), 1999.

[WDW98] D. Wessel, C. Drame, and M. Wright. Removing the time axis from spectral

model analysis-based additive synthesis: Neural networks versus memory-

based machine learning. In Proceedings International Computer Music Con-

ference, pages 62{65, Ann Arbor, Michigan, 1998.

[WEB] http://www.media.mit.edu/~schoner/phd/ .

.

203

[Wes79] David L. Wessel. Timbre space as a musical control structure. Computer

Music Journal, 3(2):45{52, 1979. republished in Foundations of Computer

Music, Curtis Roads (Ed., MIT Press).

[WG93] Andreas S. Weigend and Neil A. Gershenfeld, editors. Time Series Predic-

tion: Forecasting the Future and Understanding the Past. Santa Fe Institute

Studies in the Sciences of Complexity. Addison{Wesley, Reading, MA, 1993.

[Whi00] H. White. A reality check for data snooping. Econometrica, 2000. forthcom-

ing.

[WMS95] A.S. Weigend, M. Mangeas, and A.N. Srivastava. Nonlinear gated experts

for time series: discovering regimes and avoiding over�tting. International

Journal of Neural Systems, 6:373{99, 1995.

[Woo92] James Woodhouse. Physical modelling of bowed strings. Computer Music

Journal, 16(4):43{56, 1992.

[WWS96] A. Willsky, G. Wornell, and J. Shapiro. Stochastic Processes, Detection and

Estimation. EECS/MIT, Cambridge, 1996. class-notes.

204

