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Abstract. We present a state space approach to controlling systems with a highly
structured interconnection topology. It is shown that by capturing these systems as
fractional transformations on temporal and spatial operators, many standard results
in control — such as the bounded real lemma, H-infinity optimization, and robustness
analysis — can be generalized accordingly. The state space formulation yields conditions
that can be expressed as linear matrix inequalities.
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1. Introduction. Many systems consist of similar units which di-
rectly interact with their nearest neighbors. Even when these units have
tractable models and interact with their neighbors in a simple and pre-
dictable fashion, the resulting system often displays rich and complex be-
havior when viewed as a whole. There are many examples of such sys-
tems, including automated highway systems [42], airplane formation flight
[48, 7], satellite constellations [43], cross-directional control in paper pro-
cessing applications [44], and very recently, micro-cantilever array control
for massively parallel data storage [37]. One can also consider lumped ap-
proximations of partial differential equations (PDEs) — examples include
the deflection of beams, plates, and membranes, and the temperature dis-
tribution of thermally conductive materials [46].

An important aspect of many of these systems is that sensing and actu-
ation capabilities exist at every unit. In the examples above, this is clearly
the case for automated highway systems, airplane formation flight, satellite
constellations, and cross-directional control systems. With the rapid ad-
vances in micro electro-mechanical actuators and sensors, however, we will
soon be able to instrument systems governed by partial differential equa-
tions with distributed arrays of actuators and sensors, rendering lumped
approximations with collocated sensors and actuators valid mathematical
abstractions.

If one attempts to control these systems using standard control design
techniques, severe limitations will quickly be encountered as most optimal
control techniques cannot handle systems of very high dimension and with
a large number of inputs and outputs. It is also not feasible to control these
systems with centralized schemes — the typical outcome of most optimal
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control design techniques — as these require high levels of connectivity, im-
pose a substantial computational burden, and are typically more sensitive
to failures and modeling errors than decentralized schemes.

In order for any optimal control technique to be successful, the struc-
ture of the system must be exploited in order to obtain tractable algorithms.
In this paper, we present a state space approach to controlling systems with
a highly structured interconnection topology; in particular, we consider lin-
ear, spatially invariant systems that can be captured as fractional transfor-
mations on temporal and spatial operators. By doing so, many standard
results in control — such as the bounded real lemma, H-infinity optimiza-
tion, and robustness analysis — can be generalized accordingly. The state
space formulation yields conditions that can be expressed as linear ma-
trix inequalities (LMIs) [3], resulting in tractable computational tools for
control design and analysis.

The types of problems considered in this paper have a long history.
In [35], optimal regulation for a countably infinite number of objects is
considered by employing a bilateral Z-transform, which is analogous to the
spatial shift operators introduced in this paper. In [5] it was shown that
discretization of certain classes of PDEs result in control systems defined
on modules, and that the resulting structure can be exploited to reduce
computational effort.

Recently [1], control problems for spatially invariant systems with
quadratic performance criteria (such as Hs and H.,) are tackled by ex-
tending familiar frequency-domain concepts for one-dimensional systems.
The control design problem is then solved for a parameterized (over fre-
quency) system of finite-dimensional systems. It is also shown that the
optimal controller has a degree of spatial localization (similar to the plant)
and can therefore be implemented in a distributed fashion.

Robust stability analysis problems for multidimensional systems are
considered in [26]. Results are derived using Laplace transforms in sev-
eral complex variables which show that the problem can be solved by the
methods of structured uncertainty analysis (u analysis) [39].

An important and practical application, that of cross-directional con-
trol of paper machine processes, is considered in [44]. The notion of loop
shaping [32] is extended to two-dimensional systems (one temporal, one
spatial). The special structure of the paper machine problem, and of similar
problems, is exploited to apply the results in [1] and obtain a computation-
ally attractive practical control design methodology to address performance
and robustness issues.

This paper is based in part on the work in [9, 15, 19, 10, 13, 11, 12,
17, 16, 6, 29], and is organized as follows. In Section 2 we introduce the
systems considered in this paper. In Section 3 we present linear matrix
inequality conditions for analysis — determining whether an infinite extent
interconnected system is well-posed, stable, and contractive, followed by
connections to finite extent problems in Section 4. Controller synthesis
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Fic. 1. Basic building block, one spatial dimension.

and controller implementation are discussed in Section 5, followed by a
numerical example in Section 6. Extensions are discussed in Section 7.

2. Interconnected systems. Consider the diagram in Figure 1. It
consists of a finite dimensional, linear time invariant system governed by
the following state space equations:

@(t) Arr Axs B z(t)
(2.1) w(t) | = | Asr Ass Bs v(t)
z(t) C: Cs D d(t)

where

(2.2) o(t) = (v (t),0- (1),  w(t) = (wy(t), w-(2)) -

We assume that vy (t) and w4 (t) are the same size, and that v_(¢) and
w_(t) are the same size. We will consider various interconnections of large
numbers of these subsystems. We will index these units by the integer-
valued variable s — the spatial independent variable — and thus have the
following equations, valid for each s in some given range, and for each ¢t > 0:

i(t, s) Arr Ars Br z(t, s)
(23) ’U.)(t, 8) = AST ASS BS ’U(t,S)
2(t, s) Cxr Cs D d(t, s)

A remark on notation. When referring to a signal at 1) a specific
location in time and space, we will use the notation d(t, s); 2) over all time,
but at a specific location in space, we will use the notation d(s); 3) over
all space, but at a specific instant in time, we will use the notation d(t);
4) over all time and space, we will use the notation d.

We will consider four types of interconnections based on these identical
copies of the basic building depicted in Figure 1. These are described next.
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F1G. 2. Periodic interconnection.

2.1. Periodic interconnection. Let the number of units be N: 1 <
s < N. Define a periodic interconnection as follows:

(2.4) vi(s+1) = wi(s), 1<s<N-1
(2.5) vi(s=1)=wy(s=N)

(2.6) v-(s —1) =w_(s), 2<s<N
(2.7) v_(s=N)=w_(s=1).

This is depicted for N=20 in Figure 2. Once the interconnection has
been formed, the system inputs are simply d, and the system outputs are
z; v and w can be considered internal system variables.

2.2. Finite interconnection with boundary conditions. Let the
number of units be N. For a given invertible matrix M, define a finite
interconnection with boundary conditions as follows:

(2.8) vi(s+1) = wi(s), 1<s<N-1
(2.9) v-(s—1) =w_(s), 2<s<N
(2.10) vi(s=1)=Mw_(s=1)

(2.11) v_(s=N)=M‘tw (s=N).

This is depicted for N=10 in Figure 3. As in the periodic case, once the
interconnection has been formed, the system inputs are d, and the system
outputs are z.

This method for imposing boundary conditions requires some expla-
nation. It is motivated by the method of images, a tool which is often used
to simplify problems governed by partial differential equations when there
is an underlying symmetry inherent in the system.
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F1c. 3. Finite interconnection with boundary conditions.

As an illustrative example, we can revisit the central finite difference
approximation of the one dimensional heat equation considered in [5]. We
can express the equations governing the temperature evolution of one ele-
ment as follows:

(2.12) &(t,s) =vi(t,s) —x(t,s) +v_(t,s) —x(t,s) +d(t,s)
(2.13)  wy(t,s) =x(t,s)
(2.14)  w_(t,s) = z(t,s)
(2.15) z(t,s) = x(t, s)

In this example, the interconnection variables are simply the near-
est neighbor temperatures. The input d(¢, s) is the external heat flux into
each subsystem, and the output z(¢, s) is the subsystem temperature about
some equilibrium. Consider the problem when a finite number N of these
elements are interconnected, and that the boundaries are insulated from
their environment. This Neumann type of boundary condition can be im-
plemented by requiring that each of the two boundary elements is in con-
tact with an element of equal temperature. In particular, vi(s = 1) =
z(s=1)=w_(s=1)and v_(s = N) = z(s = N) = wy(s = N), which
can readily be seen to correspond to M = 1.

A standard Dirichlet type of boundary condition can be imposed for
this example by requiring that the boundary elements are in contact with
an element of zero temperature; this is in fact the approach taken in
[5]. A slightly modified version of this problem is to consider boundary
elements that are in contact with element of opposite temperature. In
particular, vy (s = 1) = —z(s = 1) = —w_(s = 1) and v_(s = N) =
—x(s = N) = —w4(s = N), which can readily be seen to correspond to
M = —1. The physical interpretation of this boundary condition is that the
average temperature of a boundary element and that of its virtual neighbor
is zero.

These issues are further explored in [30, 29, 6].
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Fic. 4. Finite interconnection with zero boundary condition.

2.3. Finite interconnection with zero boundary condition. Let
the number of units be N. Define a finite interconnection with zero boundary
condition as follows:

(2.16) vi(s+1)=wi(s), 1<s<N-1.
(2.17) vy(s=1)=0.

This is depicted for N=10 in Figure 2. Note that these types of in-
terconnections are only defined when the interconnection variables are re-
stricted to vy and wy. In particular, a subsystem at location s can only
influence a subsystem at location s* provided that s < s*. These types
of interconnections are similar to the “look-ahead” systems considered in
[40]. Once the interconnection has been formed, the system inputs are d,
and the system outputs are z.

2.4. Infinite interconnection. Consider an infinite number of units,
interconnected as follows:

(2.18) vi(s+1)=wi(s) Vs€eZ
(2.19) v_(s—=1)=w_(s) Vse€Z.

This is depicted in Figure 5. This type of interconnection is similar to
the one considered by [35], where a control system is designed for an infinite
number of vehicles. As was pointed out in [35], and more recently in [1], an
infinite approximation may be sufficient when dealing with a large number
of systems. In particular, the scale of influence of localized effects is often
much less than the scale of the whole system. Even if the uncontrolled
system does not satisfy this property, it is likely that the controlled system
will.

There is another important reason for considering infinite extent sys-
tem; as will be discussed in Section 3, if the infinite extent system is well-
posed, stable, and contractive, these properties are inherited by a periodic
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Fic. 5. Infinite interconnection.

interconnection, and by a finite interconnection with zero boundary condi-
tions. When certain symmetry properties are satisfied, the finite intercon-
nection with boundary conditions also inherits these properties.

For infinite extent systems, it is convenient to introduce the spatial
shift operator S:

(2.20) (Sd)(t,s) :==d(t,s+1).
Define the following structured operator Ag:

SI, 0
2.21 Ag :=
1) . [0 S_lf_]

where S I denotes n copies of the operator S along the diagonal, S™! I_

denotes n_ copies of the operator S~! along the diagonal, and n, and n_

are the vector dimensions of signals w (¢, s) and w_ (¢, s), respectively.
We may thus write the interconnected system as follows:

x(t, s) Arr Ars Br x(t, s)
(2.22) (Agv)(t,s) | = | Asr Ass Bs v(t, s)
z(t, s) Cr Cs D d(t, s)

By eliminating interconnection variables v, we can express the inter-
connected system as follows:

(2.23) &(t) = Ax(t) + Bd(t)

(2.24) 2(t) = Ca(t) + Dd(t)

where

(2.25) AB| _ | A B Ars (As — Ags) ™' [ Asz Bs | .
CD C: D Cs
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If (Ag — Ags) ™! exists and is bounded as an operator on o, the space
of square summable sequences, operators A, B, C, and D exist and are
bounded, and we may readily write down the solution as:

(2.26) z(t) = exp(At)z(0) +/0 exp(A(t — 7))Bd(r)dr,

where exp(At) is the strongly continuous semigroup defined by

(2.27) exp(At) := i

the reader is referred to [8, 2] for details. For the reader not familiar
with semigroup theory, the key point is that the boundedness of A, B,
C, and D allows us to formally treat these systems analogously to their
finite dimensional counterparts; this should be compared with spatially
continuous systems which typically have unbounded system operators [8].

We will see in Section 3 that the existence and boundedness of (Ag —
Ags)™! is equivalent to a well-posed interconnection, and is thus not a
restrictive assumption.

2.5. Interconnected systems in higher dimensions. The basic
building block depicted in Figure 1, and the various interconnections de-
scribed in Section 2, can readily be extended to more than one spatial
dimension. For example, in two dimensions, we have the following equa-
tions for the basic building block:

(¢) Arr Ars Bo 2(t)
(2.28) w(t) | = | Asr Ass Bs v(t)
2(t) C: Cs D d(t)
where
(2.29) v(t) = (v (t),v-1(t),v42(t), v 2(t)),
(2.30) w(t) = (w1 (1), w-1(t), wy2(t), w-12(1)) -

These units can be indexed by two integer valued variables s; and ss,
resulting in the following equations:

i(t,slas‘z) Arr Ars Br I(t,81782)
(2.31) w(t,s1,82) | = | Asr Ass Bs v(t, 81, 82)
2(t, 81, 82) Cr Cs D d(t,s1,s2)

Various interconnections can then be defined; the details are omitted.
For example, a finite interconnection with boundary conditions applied on
both spatial directions is depicted in Figure 6; a periodic interconnection in
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Fi1Gc. 6. Finite interconnection with boundary conditions applied on both spatial
directions.

one spatial direction and a finite interconnection with boundary conditions
on the second is depicted in Figure 7; and finally, a periodic interconnection
in both spatial directions is depicted in Figure 8 (only a portion of the
resulting torus is depicted in the figure for clarity). In all these figures, the
inputs d and the outputs z have been omitted for clarity.

An infinite interconnection can be captured as per Equations (2.23),
(2.24), and (2.25), where

Sy I, 0 0 0
0 S 0 0
(2.32)  Ag:= oot
0 0 Sy I 0
0 0 0 Syt I,

3. Well-posedness, stability, and performance. There are three
main considerations when analyzing an interconnected system:
well-posedness, stability, and performance.

3.1. Well-posedness. Simply put, an interconnection is well-posed
if it is physically realizable. The following simple examples illustrate the
concept of well-posedness. Consider the feedback interconnection in
Figure 9. Let P; and P, be unity gain systems: wq(t) = vy (t),w=2(t) =
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Fi1c. 7. Finite interconnection with boundary conditions on one spatial direction,
periodic interconnection in the second spatial direction.

TP et
k ‘- l‘;fﬁ'ﬁ”“
il B

F1G. 8. Periodic interconnection in both spatial directions.

vo(t). This interconnection is not well-posed because there do not exist so-
lutions to the loop equations for all possible exogenous signals n; and ns.

Now let P; be a unity gain system, and let P, be a linear time invariant
system with transfer function P5(¢) = 1—1/¢. This interconnection is also
not well posed because the resulting transfer function from exogenous signal
n1 to interconnection signal vy is not proper, and in fact equal to . There is
thus differentiating action from one of the closed loop system inputs to one
of the closed loop system outputs (all the closed loop dependent variables
are considered outputs: vy, wi, vy, we). The reader is referred to [50]
for an in-depth discussion of well-posedness. We can extend the definition
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F1G. 9. Feedback Interconnection.

of well-posedness in [50] to the interconnections considered in this paper.
In particular, we require that the transfer functions from signals injected
anywhere in the loop to all the closed loop system outputs exist and are
proper.

For interconnections involving a finite number of subsystems, well-
posedness is equivalent to the invertibility of a matrix. In particular, for
any finite interconnection, we may write the following relation between
signals w, v, d, and x:

(3.1) Luyy = Lyx(t) + Lqd(t)

where L., L., and Ly are matrices, and L, is square. Well-posedness is
then equivalent to the invertibility of matrix L.

For infinite interconnections, well-posedness reduces to the existence
and boundedness of operator (Ag — Ass)™!. As we shall see in Section 4,
well-posedness of an infinite interconnection ensures well-posedness of the
various types of finite interconnections considered in Section 2.

3.2. Stability. Once an interconnection has been deemed to be well-
posed, we may consider system stability. We adopt the standard notion of
internal exponential stability: a system is stable if in the absence of inputs
d, all signals decay to zero exponentially fast — see [50, 8] for details.

3.3. Performance. If an interconnected system is well-posed and sta-
ble, we may then consider system performance. The notion of performance
we adopt is that of the L5 gain of the system:

lll
(3.2) Il
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where
(3.3) dl* =" J/O h d*(t,s)d(t, s)dt .

This is simply the o, norm of the interconnected system [50, 8]. When
we consider control design in Section 5, we will require that the £, gain of
the system be made as small as possible.

A well-posed and stable interconnection is said to be contractive if
the £, gain of the system is less than one. By appropriately scaling the
subsystem matrices, there is no loss of generality in requiring that the
interconnected system be contractive as the performance criterion.

3.4. Linear matrix inequality condition for well-posedness,
stability, and performance: the infinite case. When dealing with
a finite number of subsystems, stability and contractiveness can be estab-
lished with the bounded real lemma (see [41], for example), which in turn
can be expressed as an LMI [3]. The main reason for expressing stability
and performance as an LMI is that this condition can then be exploited for
controller synthesis, as was done in [38, 24, 27].

The main problem with this approach, however, is that the size of
the LMI grows with the number of subsystems; computation become pro-
hibitively expensive for even modest size problems. In addition, when these
conditions are used for control design, the resulting controller is centralized,
and may be difficult to implement. For example, how would one implement
a centralized controller for a large number of unmanned vehicles flying in
formation? We will revisit this issue in Section 5.

When dealing with an infinite number of subsystems, the direct ap-
proach described above is not feasible. We can, however, provide a sufficient
(but not necessary) LMI condition for well-posedness, stability, and per-
formance. Partition the matrices in (2.1) so as to be consistent with the
partition of v and w in (2.2):

Ass Ass _ AST Bg
3.4) Ags =: i * , Agr =: *|, Bs=: t,
34 > Ass_+ Ass__ ° Asr_ ° Bs_
(3.5) Ags=:[Ars, Ars_ ], Cs=:[Cs, Cs_] .

Define the following matrices:

Ass Ass _ AST Bg
3.6) Al = - * AL T, Bf = T,
( ) SS 0 I I ST 0 S 0

I 0 0 0

3.7) Ags = , Ao = , Bg = ,
3.7 58 Ass_+ Ass__ ] . Asr_ s Bs_

(3.8) Afg ::[ATS+ O], ALs ::[O ATS_].
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The following result is from [16]:

THEOREM 3.1. Consider the infinite interconnected system defined by
(2.23), (2.24), and (2.25). Then the interconnected system is well-posed,
stable, and contractive if there exist X1t > 0 and symmetric Xg such that

I 0 0 7" [AftpXr+XrArr XrAls XrBr I 0 0
Ast Ass Bs (Afs) Xt —Xs 0 Ast Ass Bg
N 0 o0 I BiXr 0 —I 0o o0 I
(3.9
I o 017" 0 XtAzs O I 0 0
+ AgT A;_s B; (Ars)* Xt Xs 0 A-shr A;s B; <0.
Cr Cs D 0 0 I Cr Cs D

Note that the size of the LMI is dictated solely by the size of one
subsystem, the basic building block in Figure 1.

The result generalizes to multiple spatial dimensions in a straightfor-
ward way: The matrices in (3.4) to (3.8) can be defined and partitioned ac-
cordingly, and the decision variable Xg in the LMI becomes block diagonal.
For example, for two spatial dimensions Xg has the following structure:

Xs 0
3.10 X. = !
(3.10) s [ 0 XS2]

Note that in the absence of interconnection variables, the above reduces to
the bounded real lemma.

4. Connections to finite extent problems. Since analysis of in-
finite extent systems can be performed in an efficient and tractable way
using the tools of Section 3, it is important to know what links, if any, ex-
ist between well-posedness, stability and performance of finite and infinite
interconnections. The main results can be summarized as

THEOREM 4.1. The following hold:

(1) A finite interconnection with zero boundary conditions is always

well-posed.

(2) (a) = (b),

(3) (a) = (c) where

(a) The infinite interconnection is well-posed, stable and contrac-
tive.

(b) For any N, the periodic interconnection with N blocks is well-
posed, stable and contractive.

(¢) For any N, the interconnection with zero boundary conditions
and N blocks is stable and contractive.

The proof of item (2) follows from theorems in [1], once it has been
realized that infinite and periodic interconnections can be seen as systems
over compact groups. Item (1) is straightforward while item (3) is estab-
lished by showing that the IV interconnected blocks with zero boundary
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ek .- .
Wty
L

Fic. 10. The equivalent infinite extent system for the finite interconnection with
zero boundary conditions of Figure 4.

conditions behave just as if they were embedded in an infinite extent sys-
tem with a particular input d, as shown in Figure 10.

The idea of using an equivalent infinite extent system to analyze finite
extent interconnections with boundary conditions is similar in nature to the
“lifting techniques” used in [28, 31] and is also reminiscent of the method
of images used in potential theory to simplify the domain of Laplace’s
equation.

Similar ideas can be used to handle the finite interconnections de-
scribed in Section 2.2. A key property in this case is spatial reversibility
that we shall now define.

4.1. Spatial reversibility.

DEFINITION 4.1. Given an invertible matriz M, the basic building
block defined by (2.1) and (2.2) is said to be M -reversible if there exist
matrices P=P~ ', R=R! and U =U""! such that

P 0 0 ATT ATS BT ATT ATS BT P 0 0
0 Q 0 AST Ass Bs = AST ASS BS 0 Q 0
0 0 U Cr Cs D Cr Cs D 0 0 R
0 M
where Q) := { M-l 0

We will say that the various interconnections are M-reversible when
the basic building block is. We will also restrict ourselves to the case where
R and U are unitary; the general case is treated in [29].

In a well-posed, M-reversible periodic interconnection, with N = 2L
units, signals flowing to the right of the L" block are related to these
flowing to the left from the (L + 1)** block, provided the input d and the
initial state zo := z(t = 0) are well-chosen. More precisely, one can show
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PROPOSITION 4.1. Let the input d and initial state xo of a well-posed
M -reversible periodic system satisfy

d2L+1-3s)=Rd(s) ; zo(2L+1—8) = Pxo(s) for all1 < s < 2L .

Then

(4.1) z(s) = Px(¢,2L + 1 — s)

(4.2) v(s) = Qu(2L+1—s)

(4.3) 2(s) =Uz(2L+1—5) forall1 <s < 2L .

In particular vy (s = 1) = Mv_(s = 2L) = Mw_(s = 1) and v_(s = L) =
M~ (s=L+1)=M1wtr(s=1L).

The following result also holds:

PROPOSITION 4.2. Assume the basic building block is M -reversible.
The finite extent interconnection with boundary conditions matriz M and
L units is well-posed if the periodic interconnection with N = 2L units is
well-posed.

A proof can be found in [29]. Combining Proposition 4.1 and 4.2 we
obtain the following result:

THEOREM 4.2. Let an integer L and an M -reversible building block be
given. Assume that the periodic interconnection with 2L units is well-posed.
Then

1. this periodic interconnection is stable if and only if the finite in-
terconnection with boundary conditions matriz M and L units is
stable.

2. The latter is contractive if the periodic interconnection is contrac-
tive.

Theorems 4.1 and 4.2 provide a link between the properties of infinite
and finite extent interconnections. In particular, they imply that the anal-
ysis conditions of Section 3 are also sufficient for the finite interconnection
with boundary conditions problem, provided that the basic building block
is M-reversible.

These results can readily be extended to more than one spatial dimen-
sion; the details may be found in [29].

5. Controller synthesis and implementation. For control design,
the basic building block is augmented to include sensor and actuator vari-
ables, as depicted in Figure 11 for one spatial dimension. The governing
equations, again for one spatial dimension, become:

(¢, . . . z¢(t,s)
o | 0 [ ]| e
' 2ts) | || ge oo pe d(t,s)
y(t,s) T u(t, s)
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F1c. 11. Basic building block for control design, one spatial dimension.
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F1G. 12. Basic building block for controller, one spatial dimension.

The control design objective is to design a controller, depicted in
Figure 12, with the following governing equations:

" (t, s) Air Afs Br z*(t, s)
(5.2) wk(t,s) | = | AL, AY, BY v (t, s)
u(t, s) cx Cg D~ y(t, s)

such that the closed loop system is well-posed, stable, and contractive.
The resulting closed loop systems for various types of interconnections are
depicted in Figure 13 (in the interest of clarity, the closed loop system
inputs and outputs have been omitted from the diagram for two spatial
dimensions).

Given the governing equations (5.1) for the open loop plant and for
the candidate controller (5.2), one may readily construct a realization for
the closed loop system (2.3); the details may be found in [16]. We may then
invoke the analysis LMI in Section 3 to determine if the closed loop system
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Fic. 13. Closed loop systems.

is well-posed, stable, and contractive. The complication is, of course, that
the controller is not known a-priori, and must be designed.

Upon inspection of the condition in Theorem 3.1, it would seem that
the control design problem is hopelessly non-convex, since the closed loop
matrices are a function of the plant and the controller. As is shown in
[9, 16], however, the synthesis problem can be made convex by performing
several co-ordinate transformations. In particular, the synthesis problem
can be expressed as an LMI with no added conservatism; the only con-
servatism incurred is from the analysis condition which is generally only
sufficient, and not necessary. In other words, given the open loop plant
equations (5.1), there exists a controller (5.2) such that the analysis LMI
in Theorem 3.1 is satisfied for the closed loop system (2.3) if and only if
there exists a solution to a synthesis LMI (whose details are omitted).

It is shown in [9, 16] that the size of the resulting controller is always
less than or equal to that of the plant. In particular, the size of % (¢, s)
is less than or equal to that of z%(t,s), etc.. It is shown in [29] that
M-reversibility is also inherited by the controller.

Note that the controller implementation is distributed, as is depicted
in Figure 13. Just like the plant, the controller consists of various identical
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subsystems, each of which is a linear, time invariant, finite dimensional
state space system, which are interconnected to their nearest neighbors.

The practical advantages of such an implementation are obvious: the
computation is distributed, and physical interconnections are localized.
In addition, well-posedness, stability, and performance are guaranteed for
any number of interconnected units, with obvious consequences for system
re-configuration and fault-tolerance.

6. Example. Consider the following system equations, expressed in
operator form for brevity:

1 1
p=3 (Sl+S;1+Sz+S;1+4)p+E (S1+S;7"'-2) (S2+S5"'—2) di +u

1
zlzﬁ(S1+Sf1—2) (SQ+S2_1—2)p
zZo = U
y=p+ds .

Each signal is a function of one temporal independent variable, and two
spatial independent variables: p = p(t, s1, s2). Recall that (S1p)(¢, s1,s2) =
p(t,s1 + 1,82), (Sap)(t,s1,82) = p(t, s1,82 + 1), etc. The above equations
can readily be expressed as per 5.1 using the software package described in
[11]. The resulting realization has two temporal states z(t, s1, s2) (Arr i &
two by two matrix), and each of the interconnection variables v 1 (¢, s1, s2),
v_1(t,51,82), vy 2(t, 51, 52), and v_ o(t, s1, 52) is of size two (Ass is an eight
by eight matrix); the details are omitted.

Some things to note about the example:

1. The disturbance d; acts through a spatial high-pass filter. In par-
ticular, the filter completely rejects disturbances that are constant
in space, but passes through disturbances whose entries alternate
in sign with their nearest neighbors. For example, focusing in on
a three by three grid, this high frequency disturbance would have
the following profile:

[y —f@ @
(6.1) h)=1| - =f@® f@& —f()
@& =r@ £

where f(¢) is some function of time.

2. The same spatial filter is used to define error variable z;. We
are thus interested in rejecting high spatial frequency variations of
variable p.
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3. The second error variable z5 is the control effort . The sensor
signal y is simply p corrupted by noise d». The control signal u
acts directly on the p equation.

4. The unforced dynamics

1
(6.2) ﬁ=§(sl+sl—1+sg+s;1+4)p

have a simple interpretation: the force on a mass particle at lo-
cation (s1, $2), in a direction orthogonal to the grid, is a function
of the difference between the displacements of the particle and its
nearest neighbors, in a direction orthogonal to the grid, and is
repulsive in nature.

This example is perhaps the simplest, non-trivial applications of the
tools presented in this paper. In particular,

1. It is in two spatial dimensions. An explicit state-space representa-
tion of a ten by ten grid, for example, would result in a 200 by 200
state transition matrix.

2. Spatial filters are used to shape the input disturbance, and define
the performance objective.

The price to be paid for this simplicity, however, is physical rele-
vance. While one could readily ascribe a physical interpretation to the
above equations (a lumped approximation of a membrane under compres-
sion, or electro-static forces acting on a two-dimensional array of charged
particles), it would not be a realistic one. The reader is referred to [10, 23]
for an application and a more realistic example tackled using these tools.

6.1. Distributed controller. A distributed controller was designed
using the control synthesis software described in [11]. The resulting con-
troller had one temporal state x*(, s1, s2), and each of the interconnection
variables v | (¢, 51,52), V% | (t,51,52), v 5(t, 51, 82), and v= ,(t, 51, 52) was
of size two.

It took 0.6 seconds to design the controller on a Pentium III, 1.13 GHz
micro-processor. The upper bound to the £ induced gain of the closed loop
system, as provided by the controller synthesis routine, was 4.58. The L,
induced gain of the system was then calculated to be 4.20 using a frequency
search (note that these figures do not have to match, since the analysis LMI
in Section 3 is a sufficient, but not necessary, condition).

6.2. Decentralized controller number 1. A fully decentralized
controller was then extracted from the distributed controller by discard-
ing all interconnection variables. The resulting closed loop system was
unstable.

6.3. Decentralized controller number 2. A fully decentralized
controller was then designed by simplifying the system equations as
follows:
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p=p—di+u
21 =P
Zo = U
y=p+ds .

The simplification is obtained by considering the worst case effects
of the spatial operators. In terms of the unforced dynamics, the most
instability is obtained when all the neighbors are acting in unison. In
terms of the disturbance and error variable, the worst case effects occur
when neighbors alternate in sign.

The resulting controller was then interconnected with the open loop
plant, and a frequency search used to determine the £» gain. The result
was 5.74.

6.4. Other decentralized control designs. Other decentralized
controllers were designed by considering various simplifications of the sys-
tem equations. They either resulted in an unstable closed loop system, or
in a closed loop system with a larger L2 induced gain than that obtained
with decentralized controller number 2.

6.5. Centralized controllers. Centralized controllers were designed
for periodic interconnections of various size (corresponding to the torus in
Figure 8) using the LMI toolbox [25]. The largest size problem that could
be solved in a reasonable time was a 3 by 3 grid, which took 378 seconds.
The resulting £» induced gain was 4.02. The controller was a 9 state, 9
input and 9 output system.

The computation time for a 2 by 2 grid was 4.14 seconds, and for a 6
by 1 grid 44.95 seconds. By assuming a polynomial growth in computation
time as a function of the size of the problem [3], it would take on the order
of 5 years to design a centralized controller for a 10 by 10 grid (this does
not take into account computer memory limitations).

6.6. Summary. For this particular example, the distributed con-
troller resulted in a closed loop gain which was 1.37 times smaller than
that obtained with the best decentralized controller, and 1.05 times larger
than that obtained with a centralized controller for a three by three grid.

7. Concluding remarks. In this section we outline several directions
in which this research is being expanded.

7.1. Nonlinear interconnected systems. Consider the case where
the subsystem equations in 2.3 are replaced by nonlinear equations:

i"(tas) fT(x(t7 S):“(ta S)ad(ta 5))
(7.1) w(t,s) | = | fs(z(t,s),v(t,s),d(t,s))
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As in Section 2, we can build various types of large-scale systems by
interconnecting a number of such blocks. A significant amount of work
has been devoted to the analysis and control of such non-linear spatially-
interconnected systems. Most approaches have focused on decentralized
control and often require that the coupling terms be small and/or bounded
by some known function [40, 49, 45].

It might be possible to weaken these assumptions and/or achieve better
performance properties in terms of disturbance rejection if one adopts a
distributed control scheme similar to what have been presented here in the
linear case. Other control problems for nonlinear interconnected systems
that naturally lend themselves to a distributed architecture are feedback
linearization and inversion-based trajectory planning.

This becomes apparent if one first considers the infinite extent inter-
connection in the case where the function fs does not depend on v. After
some easy manipulations such a system can be rewritten as

(7.2) i(t) = F(S*x(t),...,S7*z(t),S'd(t), ...,.S~ld(t))
(7.3) 2(t) = H(S*z(t), ...,S7*z(t), Sl d(t), ..., S7Ld(t))

where S is the spatial shift operator and k, [ are positive integers.

System 7.2 is formally similar to a non-linear time-delay system, since
two different operators —temporal differentiation and a spatial shift— ap-
pear; an important difference is that it is possible to shift backwards in
space, but not in time.

It should thus be possible to generalize the methods developed for
time-delay systems (like the concept of d-freeness, [22], which generalizes
flatness, [21] or the differential algebraic framework of [36, 33]) to handle in-
version, path-planning and feedback linearization of nonlinear spatially in-
terconnected systems. Such techniques would naturally yield a distributed
control law since they involve taking successive shifts and differentiations
of the state to determine the control law.

Current work focuses on incorporating the spatial structure of the
plant into these design procedures, as it is in fact hidden in Equations 7.2.

7.2. Heterogeneous systems. Consider the case where the equa-
tions in 2.3 are replaced by the following spatially varying equations:

z(t, s) Arr(s) Ars(s) Br(s) x(t, s)
(7.4) w(t,s) | = | Asr(s) Ass(s) Bs(s) v(t, s)
z(t, s) Cr(s) Cs(s) D(s) d(t, s)

In other words, the subsystems are no longer required to be identical.
By incorporating the ideas and concepts introduced in this paper with the
LMI synthesis techniques developed for linear time varying systems [20],
LMI synthesis conditions for spatially varying systems can be obtained.
These results are presented in [19, 17, 18].
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' 0 ... 0
0[Syt ... 0

=

T ATS BT

AST ASS BS
I Cr Cs | D [
d z

FiG. 14. LFT representation of a multidimensional system.

7.3. Connections to robust control. In this section, we mainly
deal with the analysis problem for infinite extent systems. We also restrict
ourselves to the special case in which the signal flow is in one direction only,
that is, v— and w_ have dimension zero. Denoting temporal differentiation
by T and the spatial shift operators by S;, (i = 1,2,...,n in the case of n
spatial dimensions), we obtain

[T]0 ... 0][ =] T

01S; ... 0 V1 l: ATT ATS m l: Bx

] : = S d,

o R : Asr | Ass : Bs

0|0 ... S, Un Un,
(7.5)

2=[Cr Cs] m +Dd

where the arguments (¢, s1, $2, ..., s,) of all the signals have been omitted

for brevity, as have the multiplicities of operators T and S;.

It is seen at once that the above equations represent a linear fractional
transformation (LFT) [50], [39] on the temporal and spatial shift opera-
tors. The block diagram of this LFT is shown in Figure 14. Since the LFT
paradigm is a powerful and well-developed approach to problems involving
LFTs on structured uncertainties [50], it is expected that the multidimen-
sional control problem has many features in common with robust analysis
against structured uncertainties. This is indeed the case, and we may make
the following observations:

1. The necessary and sufficient conditions for robust stability of a lin-
ear time-invariant system against time-invariant contractive struc-
tured uncertainty require that the structured singular value p of
the system be bounded above by 1. The LFT formulation suggests
that the multidimensional analysis problem is very similar to a
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problem. This forms the basis for the work in [26]; see Section 1.
In fact, it reduces exactly to a pu problem with scalar blocks if the
spatial coordinates are assumed to be causal. The fact that the
scaled small-gain conditions of this paper are not necessary for ro-
bust stability is therefore a consequence of the result that u is not
equal to its upper bound for two or more scalar block uncertain-
ties [39] in this case. However, computation of y is in general a
very hard problem. In fact, certain cases of it have been proved
to be NP-hard [4], [47]. It is therefore very unlikely that general,
computationally tractable necessary and sufficient conditions for
the multidimensional problem will emerge in the near future.

2. In both cases, we make a very similar relaxation by replacing the
exact problem by a scaled small-gain condition. In the usual case
where the LFT is over structured contractive uncertainties, we
obtain positive definite scaling matrices. However, in the case of
multidimensional systems, the spatial shift operators are restricted
to be unitary, and we thus have greater freedom in choosing our
scales, i.e., we can choose them to be arbitrary symmetric matrices.

3. In the case of structured, linear time varying uncertainties, argu-
ments based on the S-procedure [34] show that the scaled small-
gain condition is not only sufficient but also necessary for robust
performance. It is a very interesting problem to determine whether
a similar condition holds for multidimensional analysis. We shall
comment on this problem in greater detail shortly.

4. The LFT approach suggests a very simple way of taking into ac-
count uncertainties in the state-space entries in addition to the
spatial operators. By the standard method of “pulling out un-
certainties” [32], we can extract an LFT structure that includes
both spatial shifts and the contractive uncertainties. It is almost
obvious that if we solve a scaled small-gain theorem for scalings
that commute with the uncertainties and are positive definite, in
addition to the scalings that commute with the shift operators, we
are guaranteed robust performance. This yields an approach to
handle structured perturbations in multidimensional systems.

Thus our approach to multidimensional analysis and synthesis relies on
computationally attractive sufficient conditions which may be conservative.
Therefore it is of interest to estimate qualitatively or quantitatively this
conservatism. Consider the system shown in Figure 14. In the case where
there is only one spatial dimension, arguments based on the S-procedure
can be used to prove the following result:

PROPOSITION 7.1. ([14]) Given that the matriz Arr is Hurwitz, the
LMI condition in Theorem 8.1 is necessary and sufficient for robust per-
formance of the multidimensional system if the spatial shift operator is
replaced by an arbitrary unitary operator which is allowed to be spatially
varying (i.e., which does not necessarily commute with the spatial shift
operator).
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S 0
0 s;;l
[
M(T)
d z

Fic. 15. LFT representation to apply the S-procedure.

This result is obtained by absorbing the temporal operator of the sys-
tem into the block M(T) (see Figure 15) and considering the multidimen-
sional system as an LFT of the LTT system M (T) and the spatial operators,
and applying S-losslessness type arguments. We require that the LTI part
of the system be stable for this analysis, and we therefore need to investi-
gate under what conditions stability of the multidimensional system implies
that of the LTI component. In the case where the number of spatial di-
mensions is greater than one, we conjecture that, given the stability of the
LTI part of the system, the LMI conditions in Theorem 3.1 are necessary
and sufficient if the spatial shift operators S; are replaced by arbitrary uni-
tary operators J; that commute with all S; for j#i (but do not necessarily
commute with S;). Physically, this means that it is sufficient to consider
operators each of which can transfer power in one spatial dimension only.

REFERENCES

[1] B. BAMIEH, F. PAGANINI, AND M. DAHLEH. Distributed control of spatially invari-
ant systems. IEEE Transactions on Automatic Control, 47(7): 1091-1118,
2002.

[2] S.P. BANKS. State-space and frequency domain methods in the control of dis-
tributed parameter systems. Peter Peregrinus, 1983.

[3] S.P. Boyp, L. EL GHAoul, E. FERON, AND V BALAKRISHNAN. Linear Matriz
Inequalities in System and Control Theory. SIAM studies in applied mathe-
matics. Philadelphia: Society for Industrial and Applied Mathematics, 1994.

[4] R. BrAATZ, J. DOYLE, P. YOUNG, AND M. MORARI. Computational complexity
of u calculation. IEEE Transactions on Automatic Control, 39: 1000-1002,
1994.

[5] R.W. BROCKETT AND J.L. WILLEMS. Discretized partial differential equations:
Examples of control systems defined on modules. Automatica, 10: 507-515,
1974.

[6] R.S. CHANDRA, J. FOWLER, AND R. D’ANDREA. Control of interconnected systems
of finite spatial extent. IEEE Conference on Decision and Control, 2002. To
appear.



27]

AN APPROACH TO CONTROL OF INTERCONNECTED SYSTEMS 25

D.F. CHICHKA AND J.L. SPEYER. Solar-powered, formation-enhanced aerial vehi-
cle system for sustained endurance. In Proc. American Control Conference,
pp. 684-688, 1998.

R.F. CURTAIN AND H.J. ZWART. An Introduction to Infinite-Dimensional Linear
Systems Theory. Springer-Verlag, 1995.

R. D’ANDREA. A linear matrix inequality approach to decentralized control of dis-
tributed parameter systems. In Proc. American Control Conference, pp. 1350—
1354, 1998.

R. D’ANDREA. Linear matrix inequalities, multidimensional system optimization,
and control of spatially distributed systems: An example. In Proc. American
Control Conference, pp. 2713-2717, 1999.

R. D’ANDREA. Software for modeling, analysis, and control design for multidi-
mensional systems. In IEEE International Symposium on Computer-Aided
Control System Design, pp. 24-27, 1999.

. D’ANDREA. Extension of Parrott’s theorem to non-definite scalings. IEEE
Transactions on Automatic Control, 45(5): 937-940, 2000.

. D’ANDREA AND C. BEcCK. Temporal discretization of spatially distributed sys-
tems. In Proc. IEEE Conference on Decision and Control, pp. 197-202, 1999.

. D’ANDREA AND R.S. CHANDRA. Multidimensional robust analysis. American
Control Conference, 2003. Submitted.

. D’ANDREA, G. DULLERUD, AND S. LALL. Convex ¢ synthesis for multidimen-
sional systems. In Proc. IEEE Conference on Decision and Control, pp. 1883~
1888, 1998.

R. D’ANDREA AND G.E. DULLERUD. Distributed control of spatially interconnected
systems. IEEE Transactions on Automatic Control. Submitted for publica-
tion.

G. DULLERUD AND R. D’ANDREA. Distributed control of inhomogeneous systems,
with boundary conditions. In Proc. IEEE Conference on Decision and Con-
trol, pp. 186—190, 1999.

G.E. DULLERUD AND R. D’ANDREA. Distributed control of heterogeneous systems.
IEEE Transactions on Automatic Control. Submitted for Publication.

G.E. DuLLErUD, R. D’ANDREA, AND S. LALL. Control of spatially varying
distributed systems. In Proc. IEEE Conference on Decision and Control,
pp. 1889-1893, 1998.

G.E. DULLERUD AND S. LALL. A new approach for analysis and synthesis of time-
varying systems. IEEE Transactions on Automatic Control, 44(8): 1486—
1497, 1999.

M. FLiEss, J. LEVINE, P. MARTIN, AND P. RoucHON. Flatness and defect of
nonlinear systems: introductory theory and examples. Internat. J. Control,
61(6): 1327-1361, 1995.

M. FLiEss AND H. MOUNIER. Quelques propriétés structurelles des systémes
linéaires a retards constants. C.R. Acad. Sci. Paris, 319: 289294, 1994.
J.M. FOWLER AND R. D’ANDREA. Distributed control of close formation flight. In

Proc. IEEE Conference on Decision and Control, 2002.

P. GAHINET AND P. APKARIAN. A linear matrix inequality approach to H-infinity
control. International Journal of Robust and Nonlinear Control, 4: 421-448,
1994.

P. GAHINET, A. NEMIROVSKII, A. LAUB, AND M. CHILALL. The LMI Control
Toolbox. The MathWorks Inc., 1995.

D. GORINEVSKY AND G. STEIN. Structured uncertainty analysis of robust stability
for spatially distributed systems. IEEE Conference on Decision and Control,
2000.

T. IwasAkI AND R.E. SKELTON. All controllers for the general h-infinity control
problem: LMI existence conditions and state space formulas. Automatica,
30(8), 1994.

& ® ® =



26

28]

[29]

(30]

[43]

[44]
45]
[46]

[47]

48]

[49]

[50]

RAFFAELLO D’ANDREA ET AL.

P.P. KHARGONEKAR, K. PoOLLA, AND A. TANNEBAUM. Robust control of linear
time-invariant plants using periodic compensation. IEEE Transactions on
Automatic Control, 27(3): 627-638, 1982.

C. LANGBORT AND R. D’ANDREA. Distributed control of spatially reversible inter-
connected systems with boundary conditions. SIAM Journal of Control and
Optimization. Submitted for publication.

C. LANGBORT AND R. D’ANDREA. Imposing boundary conditions for spatially inter-
connected systems. In Proc. American Control Conference, 2002. Submitted
for publication.

D. LAuGHLIN, M. MORARI, AND R.D. BRAATZ. Robust performance of cross-
directional basis-weight control in paper machines. Automatica, 29(6): 1395—
1410, 1993.

J.M. MACIEJOWSKI. Multivariable feedback design. Addison-Wesley, 1989.

L.A. MARQUEZ-MARTINEZ, C. H. M0OG, AND M. VELASCO-VILLA. The structure
of nonlinear time delay systems. In Proc. of the 6th IEEE Mediterranean
Conference on Control and Systems, MCCS’98 Sardinia, 1998.

A. MEGRETSKI AND A. RANTZER. System analysis via integral quadratic con-
straints. IEEE Transactions on Automatic Control, 42(6): 819-830, 1997.
S.M. MELZER AND B.C. Kuo. Optimal regulation of systems described by a count-

ably infinite number of objects. Automatica, 7: 359-366, 1971.

C.H. Moo, R. CASTRO-LINARES, M. VELASCO-VILLA, AND L.A. MARQUEZ-
MARTINEZ. The disturbance decoupling problem for time-delay nonlinear sys-
tems. IEEE Transactions on Automatic Control, 45(2): 305-309, 2000.

M. NapoL1 AND B. BAMIEH. Modeling and observed design for an array of electro-
statically actuated microcantilevers. In Proc. IEEE Conference on Decision
and Control, pp. 42744279, 2001.

A. PACKARD. Gain scheduling via linear fractional transformations. Systems and
Control Letters, 22(2): 79-92, 1994.

A. PACKARD AND J.C. DOYLE. The complex structured singular value. Automatica,
29(1): 71-109, 1993.

A. PAaNT, P. SEILER, AND J.K. HEDRICK. Mesh stability of look-ahead intercon-
nected systems. IEEE Transactions on Automatic Control, 47(2): 403-407,
2002.

A. RANTZER. On the Kalman-Yakubovich-Popov lemma. Systems and Control
Letters, 28(1): 7-10, 1996.

H. RAazA AND P. IoANNOU. Vehicle following control design for automated highway
systems. IEEE Control Systems, 16(6): 43-60, 1996.

G.B. SHAW, D.W. MILLER, AND D.E. HASTINGS. The Generalized Information
Network Analysis Methodology for Distributed Satellite Systems. PhD thesis,
Massachusetts Institute of Technology, 1998.

G.E. STEWART. Two dimensional loop shaping controller design for paper machine
cross-directional processes. PhD thesis, University of British Columbia, 2000.

D. Swaroop AND J.K. HEDRICK. String stability for a class of nonlinear systems.
IEEFE Transactions on Automatic Control, 41: 349-357, 1996.

M.E. TAYLOR. Partial Differential Equations I: Basic Theory. Springer Verlag,
1996.

O. ToKER AND H. OzBAY. On the complexity of purely complex mu computation
and related problems in multidimensional systems. IEEE Transactions on
Automatic Control, 43(3): 409-414, 1998.

J.D. WoLFE, D.F. CHICHKA, AND J.L. SPEYER. Decentralized controllers for unm-
maned aerial vehicle formation flight. American Institute of Aeronautics and
Astronautics, 96-3833, 1996.

X.G. YAN AND G.Z. DAI. Decentralized output feedback robust control for non-
linear large-scale systems. Automatica, 34(11): 1469-1472, 1998.

K. Zuou, J.C. DoYLE, AND K. GLOVER. Robust and Optimal Control. Prentice
Hall, 1995.



