The Path from Petascale to Exascale
Hardware and Applications Issues



Supercomputing & Cloud Computing

 Two dominant macro architectures dominate
large-scale (intentional) computing
infrastructures (vs embedded & ad hoc)

* Supercomputing type Structures

— Large-scale integrated coherent systems

— Managed for high utilization and efficiency
 Emerging cloud type Structures

— Large-scale loosely coupled, lightly integrated
— Managed for availability, throughput, reliability



Top 500 Trends
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Looking to Exascale

Power and Memory costs dominate
Novel technologies introduced

1TFI* >
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A Three Step Path to Exascale

Begin Full System Delivery (Yr) 2004 2007 2012 2015 2019

Design Parameters BG/L BG/P ONE TWO THREE
Cores / Node 2 4 16 32 96
Clock Speed (GHz) 0.7 0.85 1.6 2.3 2.8
Flops / Clock / Core 4 4 8 16 16
Nodes / Rack 1024 1024 512 1024 1024
Racks / Full System Config 64 72 256 256 256
MB RAM/core 256 512 1024 1024 1024
Total Power 2.5MW 4.8MW 8MW 30MW 40MW
Flops / Node (GF) 5.0 14 205 1178 4301
Flops / Rack (TF) 5.7 14 105 1206 4404
LB Concurrency 2.E+05 1.E+06 2.E+07 1.E+08 4 E+08

Full System

Total Cores (Millions) 0.13 0.3 2 8 25
Total RAM (TB) 33.6 151 2147 8590 25770
Total Racks 64 72 256 256 256

Peak Flops System (PF) 0.37 1 27 309 1127
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Top Pinch Points

Power Consumption

— Proc/mem, 1/0, optical, memory, delivery
Chip-to-Chip Interface Scaling (pin/wire count)
Package-to-Package Interfaces (optics)

Fault Tolerance (FIT rates and Fault
Management)

— Reliability of irregular logic, design practice

Cost Pressure in Optics and Memory



Programming Models:
Twenty Years and Counting

* |n large-scale scientific computing today
essentially all codes are message passing
based (CSP and SPMD)

* Multicore is challenging the sequential part of
CSP but there has not emerged a dominate
model to augment message passing



Quasi Mainstream
Programming Models

C, Fortran, C++ and MPI

OpenMP, pthreads

CUDA, RapidMind

Clearspeeds Cn

PGAS (UPC, CAF, Titanium)

HPCS Languages (Chapel, Fortress, X10)

HPC Research Languages and Runtime

HLL (Parallel Matlab, Grid Mathematica, etc.)




Existing Applications of Interest

Climate and Weather (e.g. CCM3, POP, WRF)
Plasma Physics (e.g. GTC, GYRO, M3D)
Combustion (e.g. S3D, NCC)

Multi-physics CFD (e.g. NEK, SHARP)

Lattice QCD (e.g. MILC, CPS)

Cosmology and Relativity (e.g. ENZO, Cactus)
Astrophysics (e.g. FLASH, CHIMERA)
Molecular Dynamics (e.g. NAMD, AMBER)
Electronic Structure (e.g. QBOX, LSMS, QMC)
Evolution (e.g. mrBayes, Clustalw-MPI)



NERSC 2007 Rank Abundance
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Many Classes of Applications are Massively Parallel
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Candidate Codes: Aoents
*Inherently parallel; written using MPI
*Memory required per MPI task is less than that available on a BG/L node
*Dominated by collective communication across all nodes
=|_ocality of communications within 3D mapping
Non-Candidate Codes:
=|_arge memory footprints required on individual nodes

=*Client/server structures
*Dominated by disk /O




Million Way Concurrency Today

e Little’s law driven need for concurrency
— To cover latency in memory path
— Function of aggregate memory bandwidth and clock speed
— Independent of technology and architecture to first order

 Mainstream CPUs (e.g. x86, PPC, SPARC)
— 8-16 cores, 4-8 hardware threads per core,
— Total system with 103 — 10° nodes => 32K — 12M threads

— BG/P example at 1 PF 72 x 4K = 300,000 (but each thread
has to do 4 ops/clock) => 1.2M ops per clock

 GPU based cluster (e.g. 1000 Tesla 1 U nodes)

— 3 x 128 cores x (32-96) threads per core x 1000 nodes =
12M — 36M threads



Existing Body of Parallel Software

How many existing HPC science and engineering codes
scale beyond 1000 processors?

— My estimate is that it is less than 1000 world wide
— Top users at NERSC, OLCF and ALCF < 200 groups

— |t appears likely that the bulk of cycles on Top500 are used
in capacity mode with the exception of a sites with policies
that enforce capability runs

How quickly are new codes being generated?
— Ab initio development
— Migration and porting from previous generations

There are different choices faced by large-established
projects and personal explorations of new technologies
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Speculations on The Shift

Provisioning by the kilogram €= discrete units

— 1/0 surface to volume effects, flexible topologies, the computer is the
computer

Reconfigurable hardware € porting software

— Based on programming models that are inherently parallel and scale
invariant to shift the problem to emulation not discovery of
concurrency

Internally self powered € external power sources
— Metabolic logic? Photodriven? Beta decay? Accoustic?
Long service lifetime (100yr+, ZeroM) €= few years + maint

— Massively redundant computing elements embedded in structurally
useful materials?

Adiabatic logic €= dissipatory logic
— Ambient environment, no infrastructure



